1
|
Girigoswami A, Girigoswami K. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes (Basel) 2023; 14:1370. [PMID: 37510275 PMCID: PMC10379962 DOI: 10.3390/genes14071370] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is managed using conventional therapies, including chemotherapy, radiation therapy, or a combination of both. Each of these therapies has its own limitations, such as the indiscriminate killing of normal as well as cancer cells, the solubility of the chemotherapeutic drugs, rapid clearance of the drugs from circulation before reaching the tumor site, the resistance of cancer cells to radiation, and over-sensitization of normal cells to radiation. Other treatment modalities include gene therapy, immunological checkpoint inhibitors, drug repurposing, and in situ cryo-immune engineering (ICIE) strategy. Nanotechnology has come to the rescue to overcome many shortfalls of conventional therapies. Some of the nano-formulated chemotherapeutic drugs, as well as nanoparticles and nanostructures with surface modifications, have been used for effective cancer cell killing and radio sensitization, respectively. Nano-enabled drug delivery systems act as cargo to deliver the sensitizer molecules specifically to the tumor cells, thereby enabling the radiation therapy to be more effective. In this review, we have discussed the different conventional chemotherapies and radiation therapies used for inhibiting lung cancer. We have also discussed the improvement in chemotherapy and radiation sensitization using nanoparticles.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| |
Collapse
|
2
|
Hassan N, Efing J, Kiesel L, Bendas G, Götte M. The Tissue Factor Pathway in Cancer: Overview and Role of Heparan Sulfate Proteoglycans. Cancers (Basel) 2023; 15:1524. [PMID: 36900315 PMCID: PMC10001432 DOI: 10.3390/cancers15051524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Historically, the only focus on tissue factor (TF) in clinical pathophysiology has been on its function as the initiation of the extrinsic coagulation cascade. This obsolete vessel-wall TF dogma is now being challenged by the findings that TF circulates throughout the body as a soluble form, a cell-associated protein, and a binding microparticle. Furthermore, it has been observed that TF is expressed by various cell types, including T-lymphocytes and platelets, and that certain pathological situations, such as chronic and acute inflammatory states, and cancer, may increase its expression and activity. Transmembrane G protein-coupled protease-activated receptors can be proteolytically cleaved by the TF:FVIIa complex that develops when TF binds to Factor VII (PARs). The TF:FVIIa complex can activate integrins, receptor tyrosine kinases (RTKs), and PARs in addition to PARs. Cancer cells use these signaling pathways to promote cell division, angiogenesis, metastasis, and the maintenance of cancer stem-like cells. Proteoglycans play a crucial role in the biochemical and mechanical properties of the cellular extracellular matrix, where they control cellular behavior via interacting with transmembrane receptors. For TFPI.fXa complexes, heparan sulfate proteoglycans (HSPGs) may serve as the primary receptor for uptake and degradation. The regulation of TF expression, TF signaling mechanisms, their pathogenic effects, and their therapeutic targeting in cancer are all covered in detail here.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| |
Collapse
|
3
|
Heitz N, Greer SC, Halford Z. A Review of Tisotumab Vedotin-tftv in Recurrent or Metastatic Cervical Cancer. Ann Pharmacother 2022; 57:585-596. [PMID: 35962528 DOI: 10.1177/10600280221118370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of tisotumab vedotin-tftv (TV), a first-in-class vectorized anti-tissue factor (TF) antibody-drug conjugate (ADC), for the treatment of recurrent or metastatic cervical cancer. DATA SOURCES A literature search of ClinicalTrials.gov, Embase, and PubMed was conducted using the terms tisotumab vedotin AND cervical cancer from inception to June 30, 2022. STUDY SELECTION AND DATA EXTRACTION All applicable publications, package inserts, meeting abstracts, and clinical trials involving TV in the treatment of cervical cancer were reviewed. DATA SYNTHESIS TV is a fully human TF-specific monoclonal antibody conjugated to monomethyl auristatin E, which serves as a highly potent cytotoxic payload. In the pivotal phase II InnovaTV 204 clinical trial, TV demonstrated an objective response rate of 24% (95% confidence interval [CI], 16%-33%). The mean duration of response was 8.3 months. Common toxicities included abdominal pain, alopecia, conjunctivitis, constipation, decreased appetite, diarrhea, dry eye, epistaxis, nausea/vomiting, and peripheral neuropathy. Unique and/or serious adverse events warranting careful monitoring include ocular complications, hemorrhaging, peripheral neuropathies, fetal-embryo toxicity, pneumonitis, and immunogenicity. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Recurrent or metastatic cervical cancer remains a high-risk disease with limited treatment options. Using ADCs to target tumors with aberrant expression of TF appears to be a viable treatment strategy. CONCLUSIONS TV is the first Food and Drug Administration-approved TF-directed ADC. With a manageable safety profile and promising anticancer activity, TV warrants consideration as a novel targeted agent for the treatment of recurrent or metastatic cervical cancer. Further studies are required to determine the optimal place in therapy for TV.
Collapse
Affiliation(s)
- Nathan Heitz
- Jackson-Madison County General Hospital, Jackson, TN, USA
| | | | - Zachery Halford
- Pharmacy Practice, Union University College of Pharmacy, Jackson, TN, USA
| |
Collapse
|
4
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
5
|
Zhang B, Pang Z, Hu Y. Targeting hemostasis-related moieties for tumor treatment. Thromb Res 2020; 187:186-196. [PMID: 32032807 DOI: 10.1016/j.thromres.2020.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Under normal conditions, the hemostatic system, that includes the involvement of the coagulation response and platelets, is anatomically and functionally inseparable from the vasculature. However, the hemostatic response always occurs in a wide range of tumors because of the high expression of coagulation initiator tissue factor (TF) in many tumor tissues, and due to the leakage of coagulation factors and platelets from the circulation system into the tumor interstitium through abnormal tumor vessels. Therefore, in addition to TF, these coagulation factors, platelets, the central moiety thrombin, the final product fibrin, and fibronectin, which is capable of stabilizing coagulation clots, are also abundant in tumors. These hemostasis-related moieties (HRMs), including TF, thrombin, fibrin, fibronectin, and platelets, are also closely associated with tumor progression, e.g., primary tumor growth and distal metastasis. The hemostatic response only occurs under pathological conditions, such as tumors, thrombosis, and atherosclerosis other than in normal tissues. The HRMs within tumors are also highly specific, establishing functional and therapeutic targets for tumor treatment. Therefore, strategies including active targeting to these moieties, modulation of HRMs deposited in the tumor microenvironment to improve tumor drug delivery, activation of prodrug by the coagulation complex formed during coagulation response, and direct inhibition of the tumor-promoting activity of HRMs could be designed for tumor therapy. In this review, we summarize various strategies that target HRMs for tumor treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Zarredar H, Ansarin K, Baradaran B, Ahdi Khosroshahi S, Farajnia S. Potential Molecular Targets in the Treatment of Lung Cancer Using siRNA Technology. Cancer Invest 2018; 36:37-58. [DOI: 10.1080/07357907.2017.1416393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Safar Farajnia
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Bokemeyer C, Langer F. Crosstalk between cancer and haemostasis. Hamostaseologie 2017; 32:95-104. [DOI: 10.5482/ha-1160] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/20/2011] [Indexed: 12/14/2022] Open
Abstract
SummaryCancer is characterized by bidirectional interrelations between tumour progression, coagulation activation, and inflammation. Tissue factor (TF), the principal initiator of the coagulation protease cascade, is centrally positioned in this complex triangular network due to its pleiotropic effects in haemostasis, angiogenesis, and haematogenous metastasis. While formation of macroscopic thrombi is the correlate of cancer-associated venous thromboembolism (VTE), a major healthcare burden in clinical haematology and oncology, microvascular thrombosis appears to be critically important to blood-borne tumour cell dissemination. In this regard, expression of TF in malignant tissues as well as shedding of TFbearing microparticles into the circulation are thought to be regulated by defined genetic events relevant to pathological cancer progression, thus directly linking Trousseau’s syndrome to molecular tumourigenesis.Because pharmacological inhibition of the TF pathway in selective tumour types and patient subgroups would be in line with the modern concept of individualized, targeted anti-cancer therapy, this review will focus on the role of TF in tumour biology and cancer-associated VTE.
Collapse
|
8
|
Zhou P, Qin J, Li Y, Li G, Wang Y, Zhang N, Chen P, Li C. Combination therapy of PKCζ and COX-2 inhibitors synergistically suppress melanoma metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:115. [PMID: 28865485 PMCID: PMC5581453 DOI: 10.1186/s13046-017-0585-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023]
Abstract
Background Metastatic malignant melanoma is one of the most aggressive malignancies and its treatment remains challenging. Recent studies demonstrate that the melanoma metastasis has correlations with the heightened activations of protein kinase C ζ (PKCζ) and cyclooxygenase-2 (COX-2) signaling pathways. Targeted inhibitions for PKCζ and COX-2 have been considered as the promising strategies for the treatment of melanoma metastasis. Thus, the PKCζ inhibitor J-4 and COX-2 inhibitor Celecoxib were combined to treat melanoma metastasis in this study. Methods The Transwell assay, Wound-healing assay and Adhesion assay were used to evaluate the inhibition of combined therapy of J-4 and Celecoxib on melanoma cells invasion, migration and adhesion in vitro, respectively. The impaired actin polymerization was observed by confocal microscope and inactivated signal pathways about PKCζ and COX-2 were confirmed by the Western blotting assay. The B16-F10/C57BL mouse melanoma model was used to test the inhibition of combined therapy of J-4 and Celecoxib on melanoma metastasis in vivo. Results The in vitro results showed that the combination of J-4 and Celecoxib exerted synergistic inhibitory effects on the migration, invasion and adhesion of melanoma B16-F10 and A375 cells with combination index less than 1. The actin polymerization and phosphorylation of Cofilin required in cell migration were severely impaired, which is due to the inactivation of PKCζ related signal pathways and the decrease of COX-2. The combined inhibition of PKCζ and COX-2 induced Mesenchymal-Epithelial Transition (MET) in melanoma cells with the expression of E-Cadherin increasing and Vimentin decreasing. The secretion of MMP-2/MMP-9 also significantly decreased after the combination treatment. In C57BL/6 mice intravenously injected with B16-F10 cells (5 × 104 cells/mouse), co-treatment of J-4 and Celecoxib also severely suppressed melanoma lung metastasis. The body weight monitoring and HE staining results indicated the low toxicity of the combination therapy. Conclusions This study demonstrates that the combination therapy of PKCζ and COX-2 inhibitors can significantly inhibit melanoma metastasis in vitro and in vivo, which will be an efficient strategy for treatment of melanoma metastasis in clinics.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Jiaqi Qin
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yuan Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Guoxia Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yinsong Wang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Ning Zhang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Peng Chen
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
| | - Chunyu Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
9
|
Mechanistic insight into the procoagulant activity of tumor-derived apoptotic vesicles. Biochim Biophys Acta Gen Subj 2016; 1861:286-295. [PMID: 27864149 DOI: 10.1016/j.bbagen.2016.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Chemotherapy induces the release of apoptotic vesicles (ApoV) from the tumor plasma membrane. Tumor ApoV may enhance the risk of thrombotic events in cancer patients undergoing chemotherapy. However, the relative contribution of ApoV to coagulation and the pathways involved remain poorly characterized. In addition, this study sets out to compare the procoagulant activity of chemotherapy-induced ApoV with their cell of origin and to determine the mechanisms of ApoV-induced coagulation. METHODS We utilized human and murine cancer cell lines and chemotherapeutic agents to determine the requirement for the coagulation factors (tissue factor; TF, FII, FV, FVII, FVIII, FIX and phosphatidylserine) in the procoagulant activity of ApoV. The role of previously identified ApoV-associated FV was determined in a FV functional assay. RESULTS ApoV were significantly more procoagulant per microgram of protein compared to parental living or dying tumor cells. In the phase to peak fibrin generation, procoagulant activity was dependent on phosphatidylserine, TF expression, FVII and the prothrombinase complex. However, the intrinsic coagulation factors FIX and FVIII were dispensable. ApoV-associated FV could not support coagulation in the absence of supplied, exogenous FV. CONCLUSIONS ApoV are significantly more procoagulant than their parental tumor cells. ApoV require the extrinsic tenase and prothrombinase complex to activate the early phase of coagulation. Endogenous FV identified on tumor ApoV is serum-derived and functional, but is non-essential for ApoV-mediated fibrin generation. GENERAL SIGNIFICANCE This study clarifies the mechanisms of procoagulant activity of vesicles released from dying tumor cells.
Collapse
|
10
|
Bourcy M, Suarez-Carmona M, Lambert J, Francart ME, Schroeder H, Delierneux C, Skrypek N, Thompson EW, Jérusalem G, Berx G, Thiry M, Blacher S, Hollier BG, Noël A, Oury C, Polette M, Gilles C. Tissue Factor Induced by Epithelial–Mesenchymal Transition Triggers a Procoagulant State That Drives Metastasis of Circulating Tumor Cells. Cancer Res 2016; 76:4270-82. [DOI: 10.1158/0008-5472.can-15-2263] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/26/2016] [Indexed: 11/16/2022]
|
11
|
Wei X, Dong J. Aquaporin 1 promotes the proliferation and migration of lung cancer cell in vitro. Oncol Rep 2015; 34:1440-8. [PMID: 26151179 DOI: 10.3892/or.2015.4107] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 11/05/2022] Open
Abstract
To examine the potential role of aquaporin 1 (AQP1) in lung cancer progression, the effects of AQP1 expression and underlying mechanisms on cell proliferation and migration were investigated on LLC and LTEP-A2 cell lines in vitro. LLC and LTEP-A2 lung cancer cells with a discrepant AQP1 expression level were used to determine the role of AQP1 in cancer cell proliferation and migration potential. An immuno-fluorescence assay was used to detect AQP1 expression levels in the LLC and LTEP-A2 cell lines. The method targeting the knockdown of AQP1 on lung cancer cell lines by siRNA was established and validated by RT-PCR and western blot analysis. The proliferation and migration abilities of AQP1 knockdown cell lines were detected by MTT, invasion and wound-healing assays. Moreover, the alteration of MMP-2, MMP-9, TGF-β and epidermal growth factor receptor (EGFR) expression, associated with the migration and metastasis potential of lung cancer cell lines, was identified by western blot analysis in transfected cells. In the tumor cell migration and invasion test, AQP1 knockdown significantly decreased the migration and invasion of AQP1-siRNA cells. Additionally, the expression levels of MMPs were markedly decreased after AQP1-siRNA treatment in the two cell lines. Moreover, the decrease of MMP-2/-9 expression on lung cancer cell lines was associated with AQP1-siRNA doses. However, AQP1 knockdown did not have a significant effect on TGF-β and EGFR. The results suggest that AQP1 may facilitate lung cancer cell proliferation and migration in an MMP-2 and-9-dependent manner.
Collapse
Affiliation(s)
- Xiaobai Wei
- Department of Chinese Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Chinese Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
12
|
Kim YD, Park TE, Singh B, Maharjan S, Choi YJ, Choung PH, Arote RB, Cho CS. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine (Lond) 2015; 10:1165-88. [DOI: 10.2217/nnm.14.214] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of the most lethal diseases worldwide, and the survival rate is less than 15% even after the treatment. Unfortunately, chemotherapeutic treatments for lung cancer are accompanied by severe side effects, lack of selectivity and multidrug resistance. In order to overcome the limitations of conventional chemotherapy, nanoparticle-mediated RNA interference drugs represent a potential new approach due to selective silencing effect of oncogenes and multidrug resistance related genes. In this review, we provide recent advancements on nanoparticle-mediated siRNA delivery strategies including lipid system, polymeric system and rigid nanoparticles for lung cancer therapies. Importantly, codelivery of siRNA with conventional anticancer drugs and recent theranostic agents that offer great potential for lung cancer therapy is covered.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Tae-Eun Park
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral & Maxillofacial Surgery & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Rohidas B. Arote
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
13
|
Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model. Stem Cells Int 2014; 2014:316214. [PMID: 25587286 PMCID: PMC4281407 DOI: 10.1155/2014/316214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022] Open
Abstract
We tested the hypothesis that Lipofectamine siRNA delivery to deplete transient receptor potential cation channel (TRPC) 1 protein expression can suppress hypoxia-induced pulmonary arterial hypertension (PAH) in mice. Adult male C57BL/6 mice were equally divided into group 1 (normal controls), group 2 (hypoxia), and group 3 (hypoxia + siRNA TRPC1). By day 28, right ventricular systolic pressure (RVSP), number of muscularized arteries, right ventricle (RV), and lung weights were increased in group 2 than in group 1 and reduced in group 3 compared with group 2. Pulmonary crowded score showed similar pattern, whereas number of alveolar sacs exhibited an opposite pattern compared to that of RVSP in all groups. Protein expressions of TRPCs, HIF-1α, Ku-70, apoptosis, and fibrosis and pulmonary mRNA expressions of inflammatory markers were similar pattern, whereas protein expressions of antifibrosis and VEGF were opposite to the pattern of RVSP. Cellular markers of pulmonary DNA damage, repair, and smooth muscle proliferation exhibited a pattern similar to that of RVSP. The mRNA expressions of proapoptotic and hypertrophy biomarkers displayed a similar pattern, whereas sarcomere length showed an opposite pattern compared to that of RVSP in all groups. Lipofectamine siRNA delivery effectively reduced TRPC1 expression, thereby attenuating PAH-associated RV and pulmonary arteriolar remodeling.
Collapse
|
14
|
Aissaoui H, Prévost C, Boucharaba A, Sanhadji K, Bordet JC, Négrier C, Boukerche H. MDA-9/syntenin is essential for factor VIIa-induced signaling, migration, and metastasis in melanoma cells. J Biol Chem 2014; 290:3333-48. [PMID: 25505176 DOI: 10.1074/jbc.m114.606913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanoma differentiation associated gene-9 (MDA-9), also known as syntenin, is a novel gene that positively regulates cancer cell motility, invasion, and metastasis through distinct biochemical and signaling pathways, but how MDA-9/syntenin is regulated in response to signals with the extracellular environment and promotes tumor progression is unclear. We now demonstrate that MDA-9/syntenin is dramatically up-regulated by a combination of rFVIIa and factor F(X) in malignant melanoma. Induction of MDA-9/syntenin in melanoma was found to occur in a thrombin-independent signaling pathway and involves the PAR-1/c-Src/Rho GTPases Rac1 and Cdc42/c-Jun N-terminal kinase axis resulting in the activation of paxillin, NF-κB, and matrix metalloproteinase-2 (MMP-2). MDA-9/syntenin physically interacts with c-Src through its PDZ binding motif following stimulation of melanoma cells with rFVIIa and FX. We also document that induction of this signaling pathway is required for TF·FVIIa·Xa-induced cell migration, invasion, and metastasis by melanoma cells. The present finding uncovers a novel role of MDA-9/syntenin as an important TF·FVIIa·Xa/PAR-1-regulated gene that initiates a signaling circuit essential for cell motility and invasion of metastatic melanoma. In these contexts, targeting TF·FVIIa·Xa and its relevant downstream targets such as MDA-9/syntenin, may represent a novel therapeutic strategy to control the evolution of neoplastic cells.
Collapse
Affiliation(s)
- Hanaa Aissaoui
- From the EA 4174, Onco-Hematology Unit, University Claude Bernard, INSERM, Lyon 1, 69372 Lyon, France
| | - Célia Prévost
- From the EA 4174, Onco-Hematology Unit, University Claude Bernard, INSERM, Lyon 1, 69372 Lyon, France
| | - Ahmed Boucharaba
- the Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and
| | - Kamel Sanhadji
- the Transplantation and Clinical Immunology Department, Edouart Herriot Hospital, Lyon, France
| | - Jean-Claude Bordet
- From the EA 4174, Onco-Hematology Unit, University Claude Bernard, INSERM, Lyon 1, 69372 Lyon, France
| | - Claude Négrier
- From the EA 4174, Onco-Hematology Unit, University Claude Bernard, INSERM, Lyon 1, 69372 Lyon, France
| | - Habib Boukerche
- From the EA 4174, Onco-Hematology Unit, University Claude Bernard, INSERM, Lyon 1, 69372 Lyon, France,
| |
Collapse
|
15
|
YU YONGJIANG, HOU XUDONG, LI YUMIN. Effect of tissue factor knockdown on the growth, invasion, chemoresistance and apoptosis of human gastric cancer cells. Exp Ther Med 2014; 7:1376-1382. [PMID: 24940442 PMCID: PMC3991493 DOI: 10.3892/etm.2014.1591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/06/2014] [Indexed: 11/06/2022] Open
Abstract
This study aimed to explore the role of tissue factor (TF) and evaluate its antitumor effects in the biological processes of gastric cancer cells using the application of RNA interference technology to silence TF in the SGC7901 gastric cancer cell line. Specific small interfering RNA (siRNA) designed for targeting human TF was transfected into SGC7901 cells. The expression levels of TF in the cells were detected by reverse transcription-polymerase chain reaction. Cell proliferation and chemosensitivity were measured by Cell Counting Kit-8. The metastatic potential of the SGC7901 cells was determined by Transwell experiments and wound-healing assays. Cell apoptosis was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide double-staining method. The expression levels of TF mRNA were significantly reduced by the TF-siRNA in the SGC7901 cells, resulting in the suppression of cell proliferation, chemoresistance and invasion, and subsequently the induction of cell apoptosis. TF knockdown with siRNA inhibits the growth, invasion and chemoresistance and enhances the apoptosis of SGC7901 cells, providing a potential approach for gene therapy against human gastric cancer.
Collapse
Affiliation(s)
- YONG-JIANG YU
- Department of General Surgery, The 1st Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - XU-DONG HOU
- Department of General Surgery, The 1st Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - YU-MIN LI
- Department of General Surgery, The 2nd Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China
| |
Collapse
|
16
|
Yeh HH, Chang WT, Lu KC, Lai WW, Liu HS, Su WC. Upregulation of tissue factor by activated Stat3 contributes to malignant pleural effusion generation via enhancing tumor metastasis and vascular permeability in lung adenocarcinoma. PLoS One 2013; 8:e75287. [PMID: 24086497 PMCID: PMC3785526 DOI: 10.1371/journal.pone.0075287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural effusion (MPE) is a poor prognostic sign for patients with lung cancer. Tissue factor (TF) is a coagulation factor that participates in angiogenesis and vascular permeability and is abundant in MPE. We previously demonstrated that autocrine IL-6-activated Stat3 contributes to tumor metastasis and upregulation of VEGF, resulting in the generation of MPE in lung adenocarcinoma. In this study, we found IL-6-triggered Stat3 activation also induces TF expression. By using pharmacologic inhibitors, it was shown that JAK2 kinase, but not Src kinase, contributed to autocrine IL-6-induced TF expression. Inhibition of Stat3 activation by dominant negative Stat3 (S3D) in lung adenocarcinoma suppressed TF-induced coagulation, anchorage-independent growth in vitro, and tumor growth in vivo. Consistently, knockdown of TF expression by siRNA resulted in a reduction of anchorage-independent growth of lung adenocarcinoma cells. Inhibition of TF expression also decreased the adhesion ability of cancer cells in normal lung tissues. In the nude mouse model, both lung metastasis and MPE generation were decreased when PC14PE6/AS2-siTF cells (TF expression was silenced) were intravenously injected. PC14PE6/AS2-siTF cells also produced less malignant ascites through inhibition of vascular permeability. In summary, we showed that TF expression plays a pivotal role in the pathogenesis of MPE generation via regulating of tumor metastasis and vascular permeability in lung adenocarcinoma bearing activated Stat3.
Collapse
Affiliation(s)
- Hsuan-Heng Yeh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tsan Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuang-Chu Lu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (WCS); (HSL)
| | - Wu-Chou Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (WCS); (HSL)
| |
Collapse
|
17
|
Huang FY, Mei WL, Tan GH, Dai HF, Li YN, Guo JL, Huang YH, Zhao HG, Wang H, Zhou SL, Lin YY. Cytochalasin D promotes pulmonary metastasis of B16 melanoma through expression of tissue factor. Oncol Rep 2013; 30:478-84. [PMID: 23615686 DOI: 10.3892/or.2013.2423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/27/2013] [Indexed: 11/06/2022] Open
Abstract
Cytochalasin D (CytD) targets actin, a ubiquitous protein in eukaryotic cells. Previous studies have focused mainly on the antitumor effects of CytD. We previously found CytD to promote lung metastasis in B16 melanoma cells, which we had not anticipated, and, therefore, in the present study we investigated the possible underlying mechanisms. B16 melanoma cells were co-cultured with CytD and other agents and used to establish a lung metastatic model. In this B16 melanoma metastatic model, significantly increased lung metastasis and lung weight were found in CytD-treated mice, which was almost completely suppressed by tissue factor (TF) RNA interference expressed via lentivirus. The results of northern and western blot, and real-time RT-PCR analysis showed that the expression of TF was significantly upregulated in B16 cells treated with CytD but was significantly inhibited by TF RNA interference. In addition, upregulation and phosphorylation of mitogen-activated protein kinase p38 were also found in the metastatic lung tissues treated with CytD and in the B16 cells co-cultured with CytD and factor VIIa (FVIIa), but not in cells cultured with CytD, dimethyl sulfoxide or FVIIa alone. These results indicate that CytD stimulates the expression of TF in B16 melanoma cells, activating both coagulation-dependent and -independent pathways via binding to FVIIa, eventually promoting lung metastasis. TF interference is a potential approach to the prevention of B16 melanoma metastasis.
Collapse
Affiliation(s)
- Feng-Ying Huang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, Hainan, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
de Oliveira ADS, Lima LG, Mariano-Oliveira A, Machado DE, Nasciutti LE, Andersen JF, Petersen LC, Francischetti IMB, Monteiro RQ. Inhibition of tissue factor by ixolaris reduces primary tumor growth and experimental metastasis in a murine model of melanoma. Thromb Res 2012; 130:e163-70. [PMID: 22683021 PMCID: PMC3424357 DOI: 10.1016/j.thromres.2012.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/05/2012] [Accepted: 05/22/2012] [Indexed: 02/08/2023]
Abstract
Melanoma is a highly metastatic cancer and there is strong evidence that the clotting initiator protein, tissue factor (TF), contributes to its aggressive pattern. TF inhibitors may attenuate primary tumor growth and metastasis. In this study, we evaluated the effect of ixolaris, a TF inhibitor, on a murine model of melanoma B16F10 cells. Enzymatic assays performed with B16F10 and human U87-MG tumor cells as the TF source showed that ixolaris inhibits the generation of FX in either murine, human or hybrid FVIIa/TF complexes. The effect of ixolaris on the metastatic potential was further estimated by intravenous injection of B16F10 cells in C57BL/6 mice. Ixolaris (250 μg/kg) dramatically decreased the number of pulmonary tumor nodules (4 ± 1 compared to 47 ± 10 in the control group). Furthermore, a significant decrease in tumor weights was observed in primary tumor growth assays in animals treated with ixolaris (250 μg/kg) from days 3 to 18 after a subcutaneous inoculation of melanoma cells. Remarkably, immunohistochemical analyses showed that inhibition of melanoma growth by ixolaris is accompanied by a significant downregulation of both vascular endothelial growth factor (VEGF) expression and microvascular density in the tumor mass. Our data demonstrate that ixolaris targets B16F10 cell-derived TF, resulting in the reduction of both the primary tumor growth and the metastatic potential of melanoma, as well as the inhibition of tumor angiogenesis. Therefore TF may be a potential target for the treatment of this aggressive malignancy.
Collapse
Affiliation(s)
| | - Luize G Lima
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Mariano-Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel E Machado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Nasciutti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - John F Andersen
- Vector Biology Section, National Institutes of Health, Bethesda, MD, USA
| | - Lars C Petersen
- Biopharmaceutical Research Unit, Novo Nordisk, Maalov, Denmark
| | | | - Robson Q Monteiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Hua D, Qi S, Li H, Zhang Z, Fu L. Monitoring the process of pulmonary melanoma metastasis using large area and label-free nonlinear optical microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:066002. [PMID: 22734758 DOI: 10.1117/1.jbo.17.6.066002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We performed large area nonlinear optical microscopy (NOM) for label-free monitoring of the process of pulmonary melanoma metastasis ex vivo with subcellular resolution in C57BL/6 mice. Multiphoton autofluorescence (MAF) and second harmonic generation (SHG) images of lung tissue are obtained in a volume of ≈ 2.2 mm × 2.2 mm × 30 μm. Qualitative differences in morphologic features and quantitative measurement of pathological lung tissues at different time points are characterized. We find that combined with morphological features, the quantitative parameters, such as the intensity ratio of MAF and SHG between pathological tissue and normal tissue and the MAF to SHG index versus depth clearly shows the tissue physiological changes during the process of pulmonary melanoma metastasis. Our results demonstrate that large area NOM succeeds in monitoring the process of pulmonary melanoma metastasis, which can provide a powerful tool for the research in tumor pathophysiology and therapy evaluation.
Collapse
Affiliation(s)
- Daozhu Hua
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
20
|
Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes. PLoS One 2012; 7:e31477. [PMID: 22363655 PMCID: PMC3283624 DOI: 10.1371/journal.pone.0031477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 01/12/2012] [Indexed: 01/23/2023] Open
Abstract
It is believed that the inherent differentiation program of melanocytes during embryogenesis predisposes melanoma cells to high frequency of metastasis. Sox10, a transcription factor expressed in neural crest stem cells and a subset of progeny lineages, plays a key role in the development of melanocytes. We show that B16F10 melanoma cells transfected with siRNAs specific for Sox10 display reduced migratory activity which in turn indicated that a subset of transcriptional regulatory target genes of Sox10 is likely to be involved in migration and metastasis of melanoma cells. We carried out a microarray-based gene expression profiling using a Sox10-specific siRNA to identify relevant regulatory targets and found that multiple genes including melanocortin-1 receptor (Mc1r) partake in the regulation of migration. We provide evidences that the effect of Sox10 on migration is mediated in large part by Mitf, a transcription factor downstream to Sox10. Among the mouse melanoma cell lines examined, however, only B16F10 showed robust down-regulation of Sox10 and inhibition of cell migration indicating that further dissection of dosage effects and/or cell line-specific regulatory networks is necessary. The involvement of Mc1r in migration was studied in detail in vivo using a murine metastasis model. Specifically, B16F10 melanoma cells treated with a specific siRNA showed reduced tendency in metastasizing to and colonizing the lung after being injected in the tail vein. These data reveal a cadre of novel regulators and mediators involved in migration and metastasis of melanoma cells that represents potential targets of therapeutic intervention.
Collapse
|
21
|
Abstract
RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.
Collapse
|
22
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
23
|
Xu C, Gui Q, Chen W, Wu L, Sun W, Zhang N, Xu Q, Wang J, Fu X. Small interference RNA targeting tissue factor inhibits human lung adenocarcinoma growth in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:63. [PMID: 21619686 PMCID: PMC3118969 DOI: 10.1186/1756-9966-30-63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/28/2011] [Indexed: 01/04/2023]
Abstract
Background The human coagulation trigger tissue factor (TF) is overexpressed in several types of cancer and involved in tumor growth, vascularization, and metastasis. To explore the role of TF in biological processes of lung adenocarcinoma, we used RNA interference (RNAi) technology to silence TF in a lung adenocarcinoma cell line A549 with high-level expression of TF and evaluate its antitumor effects in vitro and in vivo. Methods The specific small interfering RNA (siRNA) designed for targeting human TF was transfected into A549 cells. The expression of TF was detected by reverse transcription-PCR and Western blot. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The metastatic potential of A549 cells was determined by wound healing, the mobility and Matrigel invasion assays. Expressions of PI3K/Akt, Erk1/2, VEGF and MMP-2/-9 in transfected cells were detected by Western blot. In vivo, the effect of TF-siRNA on the growth of A549 lung adenocarcinoma xenografts in nude mice was investigated. Results TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels. The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner. Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells. Moreover, intratumoral injection of siRNA targeting TF suppressed the tumor growth of A549 cells in vivo model of lung adenocarcinoma. Conclusions Down-regulation of TF using siRNA could provide a potential approach for gene therapy against lung adenocarcinoma, and the antitumor effects may be associated with inhibition of Erk MAPK, PI3K/Akt pathways.
Collapse
Affiliation(s)
- Chengcheng Xu
- Department of General Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Huang W, Ghisletti S, Saijo K, Gandhi M, Aouadi M, Tesz GJ, Zhang DX, Yao J, Czech MP, Goode BL, Rosenfeld MG, Glass CK. Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 2011; 470:414-8. [PMID: 21331046 PMCID: PMC3464905 DOI: 10.1038/nature09703] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 11/22/2010] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) function as initiators of inflammation through their ability to sense pathogen-associated molecular patterns and products of tissue damage1,2. Transcriptional activation of many TLR-responsive genes requires an initial de-repression step in which NCoR co-repressor complexes are actively removed from target gene promoters to relieve basal repression3,4. Ligand-dependent SUMOylation of liver X receptors (LXRs) potently suppresses TLR4-induced transcription by preventing the NCoR clearance step5–7, but the underlying mechanisms remain enigmatic. Here, we provide evidence that Coronin 2A (Coro2A), a component of the NCoR complex of previously unknown function8,9, mediates TLR-induced NCoR turnover by a mechanism involving interaction with oligomeric nuclear actin. SUMOylated LXRs block NCoR turnover by binding to a conserved SUMO2/3 interaction motif in Coro2A and preventing actin recruitment. Intriguingly, the LXR transrepression pathway can itself be inactivated by inflammatory signals that induce CaMKIIγ-dependent phosphorylation of LXR, leading to its deSUMOylation by the SUMO protease SENP3 and release from Coro2A. These findings reveal a Coro2A/actin-dependent mechanism for de-repression of inflammatory response genes that can be differentially regulated by phosphorylation and nuclear receptor signaling pathways that control immunity and homeostasis.
Collapse
Affiliation(s)
- Wendy Huang
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu C, Fu X. [Advances of tissue factor in lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:908-12. [PMID: 20840822 PMCID: PMC6000340 DOI: 10.3779/j.issn.1009-3419.2010.09.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chengcheng Xu
- Department of General Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | |
Collapse
|
26
|
Bluff JE, Amarzguioui M, Slattery J, Reed MWR, Brown NJ, Staton CA. Anti-tissue factor short hairpin RNA inhibits breast cancer growth in vivo. Breast Cancer Res Treat 2010; 128:691-701. [PMID: 20830515 DOI: 10.1007/s10549-010-1149-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/20/2010] [Indexed: 12/31/2022]
Abstract
In breast cancer, there is a correlation between tissue factor (TF) expression, angiogenesis and disease progression. TF stimulates tumour angiogenesis, in part, through up-regulation of vascular endothelial growth factor (VEGF). Therefore, this study aimed to establish whether TF stimulates angiogenesis and tumour progression directly and independent of VEGF up-regulation. Initially, the effects of TF and VEGF were assessed on endothelial cell migration (Boyden chamber) and differentiation (tubule formation on Matrigel). Subsequently, MDA-MB-436 breast cancer cells, which produce high levels of both TF and VEGF (western blot analysis), were established in vivo, following which tumours were treated three times per week for 3 weeks with intra-tumoural injections of either anti-VEGF siRNA, anti-TF shRNA, the two treatments combined, or relevant controls. Both VEGF and TF significantly stimulated endothelial cell migration and tubule formation (P < 0.02). Breast cancer xenografts (MDA-MB-436) treated with TF or VEGF-specific agents demonstrated significant inhibition in tumour growth (VEGFsiRNA 61%; final volume: 236.2 ± 23.2 mm(3) vs TFshRNA 89%; 161.9 ± 17.4 mm(3) vs combination 93%; 136.3 ± 9.2 mm(3) vs control 400.4 ± 32.7 mm(3); P < 0.005). Microvessel density (MVD), a measure of angiogenesis, was also significantly inhibited in all groups (MVD in control = 29 ± 2.9; TFshRNA = 18 ± 1.1; VEGFsiRNA = 16.7 ± 1.5; both = 12 ± 2.1; P < 0.004), whereas the proliferative index of the tumours was only reduced in the TFshRNA-treated groups (control = 0.51 ± 0.011; TFshRNA = 0.41 ± 0.014; VEGFsiRNA = 0.49 ± 0.013; both = 0.41 ± 0.004; P < 0.008). These data suggest that TF has a direct effect on primary breast cancer growth and angiogenesis, and that specific inhibition of the TF-signalling pathway has potential for the treatment of primary breast cancer.
Collapse
Affiliation(s)
- J E Bluff
- Department of Oncology, University of Sheffield Medical School, Sheffield, South Yorkshire, S10 2RX, UK
| | | | | | | | | | | |
Collapse
|
27
|
Chen Y, Bathula SR, Yang Q, Huang L. Targeted nanoparticles deliver siRNA to melanoma. J Invest Dermatol 2010; 130:2790-8. [PMID: 20686495 DOI: 10.1038/jid.2010.222] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma is a severe skin cancer that often leads to death. To examine the potential of small interfering RNA (siRNA) therapy for melanoma, we have developed anisamide-targeted nanoparticles that can systemically deliver siRNA into the cytoplasm of B16F10 murine melanoma cells, which express the sigma receptor. A c-Myc siRNA delivered by the targeted nanoparticles effectively suppressed c-Myc expression in the tumor and partially inhibited tumor growth. More significant tumor growth inhibition was observed with nanoparticles composed of N,N-distearyl-N-methyl-N-2-(N'-arginyl) aminoethyl ammonium chloride (DSAA), a guanidinium-containing cationic lipid, than with a commonly used cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Three daily injections of c-Myc siRNA formulated in the targeted nanoparticles containing DSAA could impair tumor growth, and the ED(50) of c-Myc siRNA was about 0.55 mg kg(-1). The targeted DSAA nanoparticles containing c-Myc siRNA sensitized B16F10 cells to paclitaxel (Taxol), resulting in a complete inhibition of tumor growth for 1 week. Treatments of c-Myc siRNA in the targeted nanoparticles containing DSAA also showed significant inhibition on the growth of MDA-MB-435 tumor. The enhanced anti-melanoma activity is probably related to the fact that DSAA, but not DOTAP, induced reactive oxygen species, triggered apoptosis, and downregulated antiapoptotic protein Bcl-2 in B16F10 melanoma cells. Thus, the targeted nanoparticles containing c-Myc siRNA may serve as an effective therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Yunching Chen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
28
|
Politano A, Butcher M, Zeadin M, Gross P, Vaezzadeh N, Shaughnessy SG. Targeted Knockdown of Tissue Factor in B16F10 Melanoma Cells suppresses their Ability to Metastasize to Bone and cause cancellous Bone Loss. CANCER GROWTH AND METASTASIS 2010. [DOI: 10.4137/cgm.s5229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we use a well-defined mouse model to examine tissue factor's (TF) role in osteolytic bone metastasis. C57BL/6 mice received either mock siRNA-transfected or TF-specific siRNA-transfected B16F10 melanoma cells by left ventricular injection. A third group served as an age-matched control and did not receive any tumour cells. The effect on tumour burden and bone strength was then determined 14 days later by using bone histomorphometry and biomechanical testing. Based on histomorphometric analysis of the femurs, mice receiving TF-specific siRNA-transfected tumour cells had significantly reduced tumour burden as compared to those from mice that received mock siRNA-transfected tumour cells (2.20 ± 0.58% vs. 9.18 ± 2.20%). Furthermore, the femurs from mice receiving TF siRNA-transfected tumour cells displayed decreased osteoclast surface and consequently, increased cancellous bone volume and strength when compared to those isolated from mice that were injected with mock-transfected tumour cells. More importantly, no differences in osteoclast surface or cancellous bone volume and strength were observed when the femurs of mice that received TF siRNA-transfected tumour cells were compared to control mice that did not receive tumour cells. Based on these findings, we conclude that the expression of TF by tumour cells promotes their ability to metastasize to bone, thereby facilitating tumour cell—induced cancellous bone loss.
Collapse
Affiliation(s)
- Amanda Politano
- Department of Pathology and Molecular Medicine, McMaster University and the Thrombosis & Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Martin Butcher
- Department of Pathology and Molecular Medicine, McMaster University and the Thrombosis & Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Melec Zeadin
- Department of Pathology and Molecular Medicine, McMaster University and the Thrombosis & Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Peter Gross
- Department of Pathology and Molecular Medicine, McMaster University and the Thrombosis & Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Nima Vaezzadeh
- Department of Pathology and Molecular Medicine, McMaster University and the Thrombosis & Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Stephen G. Shaughnessy
- Department of Pathology and Molecular Medicine, McMaster University and the Thrombosis & Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Chen XZ, Zhu KJ, Xu Y, Tang XY, Cai XZ, Zhang X, Cheng H. RNA interference silences the human papillomavirus 6b/11 early gene E7 in vitro and in vivo. Clin Exp Dermatol 2009; 35:509-15. [DOI: 10.1111/j.1365-2230.2009.03624.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Richardt-Pargmann D, Vollmer J. Stimulation of the immune system by therapeutic antisense oligodeoxynucleotides and small interfering RNAs via nucleic acid receptors. Ann N Y Acad Sci 2009; 1175:40-54. [PMID: 19796076 DOI: 10.1111/j.1749-6632.2009.04971.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most of the therapeutic applications for synthetic oligodeoxynucleotides (ODN) and oligoribonucleotides (ORN) relate to mechanisms of manipulating gene expression based on Watson-Crick base pairing to endogenous nucleic acids. However, in recent years it has become apparent that the immune system has evolved defense mechanisms against infections that are based on the detection of infecting viral and bacterial nucleic acids. In some cases, synthetic ODN and ORN can trigger these defenses and, therefore, can interfere with or distort the mechanism of action of antisense ODN or small interfering RNAs.
Collapse
|
31
|
Abstract
BACKGROUND The precise timing of the angiogenic switch and the role of angiogenesis in the development of breast malignancy is currently unknown. METHODS Therefore, the expression of CD31 (pan endothelial cells (ECs)), endoglin (actively proliferating ECs), hypoxia-inducible factor-1 (HIF-1alpha), vascular endothelial growth factor-A (VEGF) and tissue factor (TF) were quantified in 140 surgical specimens comprising normal human breast, benign and pre-malignant hyperplastic tissue, in situ and invasive breast cancer specimens. RESULTS Significant increases in angiogenesis (microvessel density) were observed between normal and benign hyperplastic breast tissue (P<0.005), and between in situ and invasive carcinomas (P<0.0005). In addition, significant increases in proliferating ECs were observed in benign hyperplastic breast compared with normal breast (P<0.05) cancers and in invasive compared with in situ cancers (P<0.005). Hypoxia-inducible factor-1alpha, VEGF and TF expression were significantly associated with increases in both angiogenesis and proliferating ECs (P<0.05). Moreover, HIF-1alpha was expressed by 60-75% of the hyperplastic lesions, and a significant association was observed between VEGF and TF in ECs (P<0.005) and invasive tumour cells (P<0.01). CONCLUSIONS These findings are the first to suggest that the angiogenic switch, associated with increases in HIF-1alpha, VEGF and TF expression, occurs at the onset of hyperplasia in the mammary duct, although the greatest increase in angiogenesis occurs with the development of invasion.
Collapse
|
32
|
Milsom CC, Yu JL, Mackman N, Micallef J, Anderson GM, Guha A, Rak JW. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2009; 68:10068-76. [PMID: 19074872 DOI: 10.1158/0008-5472.can-08-2067] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ErbB oncogenes drive the progression of several human cancers. Our study shows that in human carcinoma (A431) and glioma (U373) cells, the oncogenic forms of epidermal growth factor receptor (EGFR; including EGFRvIII) trigger the up-regulation of tissue factor (TF), the transmembrane protein responsible for initiating blood coagulation and signaling through interaction with coagulation factor VIIa. We show that A431 cancer cells in culture exhibit a uniform TF expression profile; however, these same cells in vivo exhibit a heterogeneous TF expression and show signs of E-cadherin inactivation, which is coupled with multilineage (epithelial and mesenchymal) differentiation. Blockade of E-cadherin in vitro, leads to the acquisition of spindle morphology and de novo expression of vimentin, features consistent with epithelial-to-mesenchymal transition. These changes were associated with an increase in EGFR-dependent TF expression, and with enhanced stimulation of vascular endothelial growth factor production, particularly following cancer cell treatment with coagulation factor VIIa. In vivo, cells undergoing epithelial-to-mesenchymal transition exhibited an increased metastatic potential. Furthermore, injections of the TF-blocking antibody (CNTO 859) delayed the initiation of A431 tumors in immunodeficient mice, and reduced tumor growth, vascularization, and vascular endothelial growth factor expression. Collectively, our data suggest that TF is regulated by both oncogenic and differentiation pathways, and that it functions in tumor initiation, tumor growth, angiogenesis, and metastasis. Thus, TF could serve as a therapeutic target in EGFR-dependent malignancies.
Collapse
Affiliation(s)
- Chloe C Milsom
- Henderson Research Centre, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Menzies KE, Mackman N, Taubman MB. Role of Tissue Factor in Cancer. Cancer Invest 2009. [DOI: 10.1080/07357900802656665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Pawlinski R, Mackman N. Use of mouse models to study the role of tissue factor in tumor biology. Semin Thromb Hemost 2008; 34:182-6. [PMID: 18645923 DOI: 10.1055/s-2008-1079258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade and plays an essential role in hemostasis. TF also contributes to many diseases, including cancer. The correlation between thrombosis and cancer has been recognized for more than a century. However, it is only in the past two decades that we have begun to understand the role of TF in tumor biology. TF expression is upregulated on both tumor and host cells in cancer patients as well as in the circulation. Clinical observations indicate a direct correlation between the levels of tumor cell TF expression and poor prognosis for cancer patients. The role of TF in tumor biology has been extensively studied using various mouse tumor models. It has been demonstrated that tumor cell TF contributes to tumor metastasis, growth, and angiogenesis. The role of host TF in tumor progression is less clear. Recently developed mouse models with altered levels of TF may be useful in further analysis of the role of host cell TF in cancer.
Collapse
Affiliation(s)
- Rafal Pawlinski
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
35
|
Jiang L, Zeng X, Yang H, Wang Z, Shen J, Bai J, Zhang Y, Gao F, Zhou M, Chen Q. Oral cancer overexpressed 1 (ORAOV1): A regulator for the cell growth and tumor angiogenesis in oral squamous cell carcinoma. Int J Cancer 2008; 123:1779-86. [DOI: 10.1002/ijc.23734] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Osterholm C, Li S, Ekberg H, Hedner U, Holgersson J. Downregulation of tissue factor (TF) by RNA interference induces apoptosis and impairs cell survival of primary endothelium and tumor cells. Cell Tissue Res 2008; 334:93-102. [PMID: 18665396 DOI: 10.1007/s00441-008-0650-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 05/19/2008] [Indexed: 11/27/2022]
Abstract
Tissue factor (TF) has been implicated in the thrombotic complications seen during vascular rejection of allografts and may contribute to intimal hyperplasia in chronic allograft vasculopathy. Downregulation of endothelial TF expression post-transplantation could therefore be of therapeutic value. Lentivirus-mediated RNA interference was used in primary endothelial cells (EC) to investigate its effects on TF protein expression and functional activity. Lentivirus-mediated expression of a TF-specific short-interfering (si) RNA with green fluorescent protein as a reporter gene (siRNATF-GFP) resulted in a 42 +/- 3.9% reduction in EC surface-expressed TF as compared with cells expressing a scrambled siRNATF sequence (P = 0.025). The TF content in EC lysates was reduced from 6.85 +/- 1.99 ng to 3.05 +/- 0.82 ng (P = 0.006). Factor X (FX) activation was not impaired on the apical EC surface. The subendothelial matrix of ECs with low TF expression showed significantly reduced TF activity compared with non-transduced cells or with cells harboring the empty vector. ECs expressing siRNATF-GFP exhibited reduced reporter gene (GFP) expression and cell density and an altered morphology. Transfection of control cells with high (J82 cells) or low (MiaPaCa-2 cells) TF expression with siRNATF oligonucleotides caused apoptosis of the J82 but not of the MiaPaCa-2 cells. Thus, lentivirus-mediated RNA interference reduces the TF expression of activated ECs but does not affect FX activation by TF/FVIIa expressed on the apical surface. The downregulation has nevertheless substantial negative effects on the viability of ECs and TF-expressing control cells. These findings imply that certain levels of TF are required for the maintained viability and growth of endothelium and TF-expressing tumor cells.
Collapse
Affiliation(s)
- Cecilia Osterholm
- Division of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Ishigami T, Uzawa K, Fushimi K, Saito K, Kato Y, Nakashima D, Higo M, Kouzu Y, Bukawa H, Kawata T, Ito H, Tanzawa H. Inhibition of ICAM2 induces radiosensitization in oral squamous cell carcinoma cells. Br J Cancer 2008; 98:1357-65. [PMID: 18349842 PMCID: PMC2361700 DOI: 10.1038/sj.bjc.6604290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We recently identified genes and molecular pathways related to radioresistance of oral squamous cell carcinoma (OSCC) using Affymetrix GeneChip. The current study focused on the association between one of the target genes, intercellular adhesion molecule 2 (ICAM2), and resistance to X-ray irradiation in OSCC cells, and evaluated the antitumor efficacy of combining ICAM2 small interfering RNA (siRNA) and X-ray irradiation. Downregulation of ICAM2 expression by siRNA enhanced radiosensitivity of OSCC cells with the increased apoptotic phenotype via phosphorylation (ser473) of AKT and activation of caspase-3. Moreover, overexpression of ICAM2 induced greater OSCC cell resistance to the X-ray irradiation with the radioresistance phenotype. These results suggested that ICAM2 silencing is closely related to sensitivity of OSCC cells to radiotherapy, and that ICAM2 may be an effective radiotherapeutic target for this disease.
Collapse
Affiliation(s)
- T Ishigami
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bluff JE, Brown NJ, Reed MWR, Staton CA. Tissue factor, angiogenesis and tumour progression. Breast Cancer Res 2008; 10:204. [PMID: 18373885 PMCID: PMC2397518 DOI: 10.1186/bcr1871] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue factor, the primary initiator of the coagulation cascade, maintains vascular integrity in response to injury. It is now recognised that, in addition to the role as a procoagulant activator, tissue factor participates in many tumour-related processes that contribute to malignant disease progression. The present review details the recent evidence supporting a role for tissue factor in tumour haemostasis, angiogenesis, metastasis and malignant cell survival. Furthermore, future research directions are discussed that may enhance our understanding of the role and regulation of this protein, which could ultimately lead to the innovative design and development of new anticancer therapies.
Collapse
Affiliation(s)
- Joanne E Bluff
- Microcirculation Research Group, Academic Unit of Surgical Oncology, School of Medicine and Biomedical Sciences, Beech Hill Road, Sheffield S10 2RX, UK.
| | | | | | | |
Collapse
|
39
|
Depasquale I, Thompson WD. Prognosis in human melanoma: PAR-1 expression is superior to other coagulation components and VEGF. Histopathology 2008; 52:500-9. [DOI: 10.1111/j.1365-2559.2008.02978.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Delgado André N, De Lucca FL. Knockdown of PKR expression by RNAi reduces pulmonary metastatic potential of B16-F10 melanoma cells in mice: possible role of NF-kappaB. Cancer Lett 2008; 258:118-25. [PMID: 17936498 DOI: 10.1016/j.canlet.2007.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/22/2007] [Accepted: 08/31/2007] [Indexed: 11/30/2022]
Abstract
It was suggested that PKR may act as a tumor suppressor. However, the results are still controversial. Here, we investigate the effect of PKR-specific short hairpin RNA (shRNA) expressing plasmids on pulmonary metastatic potential of B16-F10 melanoma cells in mice. Levels of both PKR mRNA and PKR protein were only significantly reduced in tumor cells transfected with plasmid-based PKR-specific shRNA. Injection of tumor cells transfected with PKR-specific shRNA expressing plasmid resulted in inhibition (85%) of metastatic nodules compared with control. Our results suggest that this effect is mediated by the transcription factor NF-kappaB. This study does not support the concept of PKR as a tumor suppressor.
Collapse
Affiliation(s)
- Nayara Delgado André
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
41
|
Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 2007; 76:9-21. [PMID: 17457539 PMCID: PMC7079960 DOI: 10.1007/s00253-007-0984-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/13/2023]
Abstract
Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Numerous studies, based on different modes of administration and various siRNA formulations and/or modifications, have already accumulated promising results. This applies to various animal models covering viral infections, cancer and multiple other diseases. Continuing efforts will lead to the development of efficient and “double-specific” drugs, comprising of siRNAs with high target gene specificity and of nanoparticles enhancing siRNA delivery and target organ specificity.
Collapse
Affiliation(s)
- Achim Aigner
- Department Pharmacology and Toxicology, School of Medicine, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany.
| |
Collapse
|