1
|
Hao H, Bian Y, Yang N, Ji X, Bao J, Zhu K. Discovery of anti-tumor small molecule lead compounds targeting the SH3 domain of c-Src protein through virtual screening and biological evaluation. Arch Biochem Biophys 2025; 764:110286. [PMID: 39743031 DOI: 10.1016/j.abb.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
c-Src, also known as cellular Src, is a non-receptor tyrosine kinase that plays a crucial role in various cellular processes, including cell proliferation, adhesion, and migration. Its dysregulation has been implicated in the development and progression of several diseases, particularly cancer. Current therapeutic agents targeting c-Src are primarily small molecules binding to its kinase domain. However, drug resistance often reduces the effectiveness of these drugs. The SH3 domain of c-Src is a highly conserved functional region with a low propensity for developing drug resistance, whereas there are no existing anti-cancer drugs specifically binding to this domain. In this study, structure-based virtual screening and thermal shift experimental verification identified three molecules that showed potent binding affinity with SH3 domain of c-Src. Subsequent kinase activity assay validated the inhibitory activity of these compounds against c-Src, with IC50 values ranging from 60.42 to 122.2 nM. Next, cell-level assays and preliminary study were conducted to further evaluate the efficacy of the identified active compounds. In conclusion, the present work has provided new chemical templates as lead structures for the future development of new antitumor therapeutics targeting the c-Src SH3 domain to overcome drug resistance.
Collapse
Affiliation(s)
- Haifang Hao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yuan Bian
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Na Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kongkai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Pham DT, Tran TD. Drivergene.net: A Cytoscape app for the identification of driver nodes of large-scale complex networks and case studies in discovery of drug target genes. Comput Biol Med 2024; 179:108888. [PMID: 39047507 DOI: 10.1016/j.compbiomed.2024.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
There are no tools to identify driver nodes of large-scale networks in approach of competition-based controllability. This study proposed a novel method for this computation of large-scale networks. It implemented the method in a new Cytoscape plug-in app called Drivergene.net. Experiments of the software on large-scale biomolecular networks have shown outstanding speed and computing power. Interestingly, 86.67% of the top 10 driver nodes found on these networks are anticancer drug target genes that reside mostly at the innermost K-cores of the networks. Finally, compared method with those of five other researchers and confirmed that the proposed method outperforms the other methods on identification of anticancer drug target genes. Taken together, Drivergene.net is a reliable tool that efficiently detects not only drug target genes from biomolecular networks but also driver nodes of large-scale complex networks. Drivergene.net with a user manual and example datasets are available https://github.com/tinhpd/Drivergene.git.
Collapse
Affiliation(s)
- Duc-Tinh Pham
- Complex Systems and Bioinformatics Lab, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Viet Nam; Graduate University of Science and Technology, Academy of Science and Technology Viet Nam, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Tien-Dzung Tran
- Complex Systems and Bioinformatics Lab, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Viet Nam; Faculty of Information and Communication Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Viet Nam.
| |
Collapse
|
3
|
Dang XW, Duan JL, Ye E, Mao ND, Bai R, Zhou X, Ye XY. Recent advances of small-molecule c-Src inhibitors for potential therapeutic utilities. Bioorg Chem 2023; 142:106934. [PMID: 39492169 DOI: 10.1016/j.bioorg.2023.106934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Proto-oncogene tyrosine-protein kinase Src, also known as c-Src, belongs to the family of non-receptor tyrosine protein kinases (TKs) called Src kinases. It plays a crucial role in cell division, motility, adhesion, and survival in both normal cells and cancer cells by activating various signaling pathways mediated by multiple cytokines. Additionally, c-Src kinase has been implicated in osteoclasts and bone loss diseases mediated by inflammation and osteoporosis. In recent years, remarkable advancements have been achieved in the development of c-Src inhibitors, with several candidates progressing to the clinical stage. This review focuses on the research progress in several areas, including the mechanism of action, drug discovery, combination therapy, and clinical research. By presenting this information, we aim to provide researchers with convenient access to valuable insights and inspire new ideas to expedite future drug discovery programs.
Collapse
Affiliation(s)
- Xia-Wen Dang
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ji-Long Duan
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Emily Ye
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Nian-Dong Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - RenRen Bai
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xinglu Zhou
- Drug Discovery, Hangzhou HealZen Therapeutics Co., Ltd., Hangzhou, Zhejiang 310018, China.
| | - Xiang-Yang Ye
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Xu K, Tang H, Xiong J, Ban X, Duan Y, Tu Y. Tyrosine kinase inhibitors and atherosclerosis: A close but complicated relationship. Eur J Pharmacol 2023:175869. [PMID: 37369295 DOI: 10.1016/j.ejphar.2023.175869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Targeted cancer therapies have revolutionized the treatment of the disease in the past decade. The tyrosine kinase inhibitor (TKI) class of drugs is a widely used option for treating various cancers. Despite numerous advances, clinical and experimental studies have demonstrated the atherosclerosis-inducing properties of these drugs that can cause adverse cardiovascular events. TKIs also have an atherosclerosis-preventing role in patients with cancer through different mechanisms under various conditions, suggesting that specific drugs play different roles in atherosclerosis regulation. Given these contradictory properties, this review summarizes the outcomes of previously performed clinical and basic experiments and shows how the targeted effects of novel TKIs affect atherosclerosis. Future collaborative efforts are warranted to enhance our understanding of the association between TKIs and atherosclerosis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Hao Tang
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jie Xiong
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xiaofang Ban
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yuchen Duan
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yingfeng Tu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
5
|
Tseng JC, Wang BJ, Wang YP, Kuo YY, Chen JK, Hour TC, Kuo LK, Hsiao PJ, Yeh CC, Kao CL, Shih LJ, Chuu CP. Caffeic acid phenethyl ester suppresses EGFR/FAK/Akt signaling, migration, and tumor growth of prostate cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154860. [PMID: 37201366 DOI: 10.1016/j.phymed.2023.154860] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is upregulated in prostate cancer (PCa). However, suppression of EGFR did not improve the patient outcome, possibly due to the activation of PI3K/Akt signaling in PCa. Compounds able to suppress both PI3K/Akt and EGFR signaling may be effective for treating advanced PCa. PURPOSE We examined if caffeic acid phenethyl ester (CAPE) simultaneously suppresses the EGFR and Akt signaling, migration and tumor growth in PCa cells. METHODS Wound healing assay, transwell migration assay and xenograft mice model were used to determine the effects of CAPE on migration and proliferation of PCa cells. Western blot, immunoprecipitation, and immunohistochemistry staining were performed to determine the effects of CAPE on EGFR and Akt signaling. RESULTS CAPE treatment decreased the gene expression of HRAS, RAF1, AKT2, GSK3A, and EGF and the protein expression of phospho-EGFR (Y845, Y1069, Y1148, Y1173), phospho-FAK, Akt, and ERK1/2 in PCa cells. CAPE treatment inhibited the EGF-induced migration of PCa cells. Combined treatment of CAPE with EGFR inhibitor gefitinib showed additive inhibition on migration and proliferation of PCa cells. Injection of CAPE (15 mg/kg/3 days) for 14 days suppressed the tumor growth of prostate xenografts in nude mice as well as suppressed the levels of Ki67, phospho-EGFR Y845, MMP-9, phospho-Akt S473, phospho-Akt T308, Ras, and Raf-1 in prostate xenografts. CONCLUSIONS Our study suggested that CAPE can simultaneously suppress the EGFR and Akt signaling in PCa cells and is a potential therapeutic agent for advanced PCa.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Bi-Juan Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ya-Pei Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ying-Yu Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Tzyh-Chyuan Hour
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 80737, Taiwan; Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 80737, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80737, Taiwan
| | - Li-Kuo Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City 104217, Taiwan; Department of Nursing, Mackay Medical College, Taipei City, Taiwan
| | - Po-Jen Hsiao
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Chih Yeh
- Department of Education and Medical Research, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Li Kao
- Division of Urology, Departments of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Urology, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Li-Jane Shih
- Department of Education and Medical Research, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32031, Taiwan; PhD Program for Aging and Graduate Institute of Basic Medical Science, China Medical University, Taichung City 40402, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung City 40227, Taiwan.
| |
Collapse
|
6
|
Gul M, Navid A, Rashid S. Structural basis of constitutive c-Src kinase activity due to R175L and W118A mutations. J Biomol Struct Dyn 2023; 41:634-645. [PMID: 34854354 DOI: 10.1080/07391102.2021.2010600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
Cellular Src (c-Src) belongs to a non-receptor membrane-associated tyrosine kinase family that plays essential roles in cellular processes. Growing evidence suggests that R175L and W118A mutations in SH2/SH3 domains of c-Src functionally inactivate these domains leading to constitutive activation of kinase domain (KD). Here we modeled c-SrcR175L, c-SrcW118A and c-SrcW118A+R175L structures by inducing phosphorylation at Y416 or Y527, respectively to characterize the comparative dynamics in the active versus inactive states through molecular dynamics simulation assay. We observed more conformational readjustments in c-Srcopen than its close variants. In particular, C-terminal tail residues of c-SrcW118A-open and c-SrcW118A+R175L-open demonstrate significantly higher transitions. The cross-correlation analysis revealed an anticorrelation behavior in the motion of KD with respect to SH2, SH3 and the linker region of SrcW118A+R175L-open, while in c-SrcWT-open, SH2 and SH3 domains were anticorrelated, while KD and C-terminal tail motions were correlated. Due to these conformational differences, c-Src open forms exhibited lower interaction between pY527 and SH2 domain. Through detailed structural analysis, we observed a uniform myristate binding cavity in c-SrcWT-open, while the myristoyl pockets of mutant forms were deformed. We propose that constitutive activation of mutant Src forms may presumably be achieved by the prolonged membrane binding due to unusual conformations of C-terminal and myristoyl switch residues that may result in a higher dephosphorylation rate at pY527 in the myristoylated c-Src. Thus, our study establishes novel clues to decipher the constitutive activation status of c-Src in response to known mutations that may help in devising novel therapeutic strategies for cancer metastasis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ahmad Navid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
7
|
Schlesinger T, Stockfleth E, Grada A, Berman B. Tirbanibulin for Actinic Keratosis: Insights into the Mechanism of Action. Clin Cosmet Investig Dermatol 2022; 15:2495-2506. [PMID: 36415541 PMCID: PMC9675993 DOI: 10.2147/ccid.s374122] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023]
Abstract
Actinic keratosis (AK) is a common pre-neoplastic skin lesion constituted by uncontrolled proliferation of atypical keratinocytes that may evolve to squamous cell carcinoma. With global prevalence increasing, AK is expected to be the most common carcinoma of the skin. Tirbanibulin is a reversible tubulin polymerization inhibitor with potent anti-proliferative and anti-tumoral effects. In-vivo and in-vitro studies have shown that tirbanibulin significantly inhibits cell proliferation, tumor growth and downregulates Src signaling with no overt toxicity. Early phase and Phase III trials have shown high lesion clearance, compliance, and few side effects of once daily tirbanibulin treatment. This review discusses tirbanibulin anti-cancer activity, focusing on tubulin polymerization and Src signaling inhibitory effects, highlighting relevant literature and novel preclinical results from the ATNXUS-KX01-001 study. Furthermore, we address the relevant findings obtained in recent clinical trials to evaluate the safety, efficacy, pharmacokinetics, clearance efficacy, and side effects of the 1% tirbanibulin ointment applied once daily. In summary, we highlight preclinical and clinical evidence on the use of tirbanibulin as an effective and safe treatment option for AK.
Collapse
Affiliation(s)
| | - Eggert Stockfleth
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian Berman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Singh A, Mishra A. Investigation of molecular mechanism leading to gefitinib and osimertinib resistance against EGFR tyrosine kinase: molecular dynamics and binding free energy calculation. J Biomol Struct Dyn 2022:1-15. [PMID: 35510318 DOI: 10.1080/07391102.2022.2068650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
Tyrosine kinase (TK) is an important protein responsible for phosphorylation of variety of proteins that helps in signal transduction process in transferring signal to regulate various physiological and biochemical processes. Drugs inhibiting signal transduction pathways can be a very rational approach to inhibit cellular physiological and biochemical process. Tyrosine kinase inhibitors are a wide family of drugs that have been used successfully in cancer chemotherapy. Certain mutations around the catalytic cleft may cause conformational changes at binding site and leads to decrease in inhibitor sensitivity to TK mutants. EGFRT790M mutation is the first recognized acquired resistance after tyrosine kinase inhibitor therapy that leads to resistant to first generation TKI in about 50% of non-small cell lung carcinoma patients. Third generation EGFR-TKIs bind irreversibly to the C797, which is present in the ATP-binding pocket. The present work provides a molecular mechanism for understanding the Gefitinib and Osimertinib sensitivities with the EGFRWILD, EGFRL858R, EGFRT790M, EGFRT790M+C797S mutants using molecular modelling techniques. Changes in response against Gefitinib and Osimertinib were observed with the change of amino acids at the tyrosine kinase domain of EGFRWILD and its mutants (EGFRL858R, EGFRT790M, EGFRT790M+C797S). RMSD, RMSF and binding energies calculation well correlates with the change in clinical observation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
9
|
Singh A, Saini R, Mishra A. Novel allosteric inhibitor to target drug resistance in EGFR mutant: molecular modelling and free energy approach. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2055012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
10
|
Bradley ST, Lee YS, Gurel Z, Kimple RJ. Autophagy awakens-the myriad roles of autophagy in head and neck cancer development and therapeutic response. Mol Carcinog 2022; 61:243-253. [PMID: 34780672 PMCID: PMC8799495 DOI: 10.1002/mc.23372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Autophagy is an evolutionarily conserved cell survival mechanism that degrades damaged proteins and organelles to generate cellular energy during times of stress. Recycling of these cellular components occurs in a series of sequential steps with multiple regulatory points. Mechanistic dysfunction can lead to a variety of human diseases and cancers due to the complexity of autophagy and its ability to regulate vital cellular functions. The role that autophagy plays in both the development and treatment of cancer is highly complex, especially given the fact that most cancer therapies modulate autophagy. This review aims to discuss the balance of autophagy in the development, progression, and treatment of head and neck cancer, as well as highlighting the need for a deeper understanding of what is still unknown about autophagy.
Collapse
Affiliation(s)
- Samantha T Bradley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yong-Syu Lee
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
11
|
[Translated article] Tirbanibulin: review of its novel mechanism of action and how it fits into the treatment of actinic keratosis. ACTAS DERMO-SIFILIOGRAFICAS 2022. [DOI: 10.1016/j.ad.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
|
12
|
Gilaberte Y, Fernández-Figueras M. Tirbanibulina: revisión de su mecanismo de acción novedoso y de cómo encaja en el tratamiento de la queratosis actínica. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:58-66. [DOI: 10.1016/j.ad.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
|
13
|
Tirbanibulin: review of its novel mechanism of action and how it fits into the treatment of actinic keratosis. ACTAS DERMO-SIFILIOGRAFICAS 2021. [DOI: 10.1016/j.adengl.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
|
14
|
Jimura N, Fujii K, Qiao Z, Tsuchiya R, Yoshimatsu Y, Kondo T, Kanekura T. Kinome profiling analysis identified Src pathway as a novel therapeutic target in combination with histone deacetylase inhibitors for cutaneous T-cell lymphoma. J Dermatol Sci 2021; 101:194-201. [PMID: 33531202 DOI: 10.1016/j.jdermsci.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Revised: 12/26/2020] [Accepted: 01/13/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) are used to treat patients with cutaneous T-cell lymphoma (CTCL), but they show limited efficacy. Hence, combination therapies should be explored to enhance the effectiveness of HDACis. OBJECTIVE This study was conducted to identify novel therapeutic targets that can be combined with HDACis for treating CTCL. METHODS We performed a global kinome profiling assay of three CTCL cell lines (HH, MJ, and Hut78) with three HDACis (romidepsin, vorinostat, and belinostat) using the PamChip® microarray. The three cell lines were co-treated with romidepsin and an inhibitor against the tyrosine kinase pathway. RESULTS Principal component analysis revealed that kinome expression patterns were mainly related to the cell origin and were not affected by the drugs. Few kinases were commonly activated by the HDACis. Most identified kinases were Src-associated molecules, such as annexin A2, embryonal Fyn-associated substrate, and progesterone receptor. Phosphorylated Src was not observed in any untreated cell lines, whereas Src phosphorylation was detected in two of the three cell lines after HDACi treatment. Ponatinib, a Src inhibitor, significantly enhanced romidepsin-induced apoptosis not only in HH, MJ, and Hut78 cells, but also in Myla and SeAx CTCL cell lines. CONCLUSION The Src pathway is a possible target for combination therapy involving HDACis for CTCL.
Collapse
Affiliation(s)
- Nozomi Jimura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuyasu Fujii
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan.
| | - Zhiwei Qiao
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan; Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
15
|
Zhang S, Zhang S, Wang H, Huang X, Wang J, Li J, Cheng D, Wang H, Lu D, Wang Y. Silencing myelin protein zero-like 1 expression suppresses cell proliferation and invasiveness of human glioma cells by inhibiting multiple cancer-associated signal pathways. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system. It has high morbidity and poor survival. Myelin protein zero-like protein 1 (MPZL1) is a cell surface glycoprotein that activates numerous adhesion-dependent signaling pathways. MPZL1 plays important roles in human cancers that include metastatic process; however, it is not clear if MPZL1 plays a role in human glioma. Therefore, this study aimed to determine if silencing MPZL1 impacted the cell proliferative features of human glioma cells. First, MPZL1 expression was investigated in human glioma samples and tumor cell lines. Then the effects of small interfering RNA (siRNA)-targeting MPZL1 were analyzed on proliferation, colony formation, cell cycle progression, and invasion of human glioma cells. The results from this study demonstrated that MPZL1 was highly expressed in human glioma tissues and glioma cell lines. In addition, knockdown of MPZL1 significantly inhibited cell proliferation, colony formation, and invasiveness of glioma cells, and effectively induced cell cycle arrest at the G1 phase. Western blotting analysis indicated that silencing MPZL1 expression downregulated the expression of matrix metalloproteinase-2 (MMP-2), WNT1, caspase-3, cyclin A1, epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), and upregulated p53. The results from this study suggest that MPZL1 might be a marker for tumors and could be a potential therapeutic target for human glioma.
Collapse
|
16
|
Nakamura N, Vijay V, Sloper DT. Gene expression profiling in dorsolateral prostates of prepubertal and adult Sprague-Dawley rats dosed with estradiol benzoate, estradiol, and testosterone. J Toxicol Sci 2020; 45:435-447. [PMID: 32741896 DOI: 10.2131/jts.45.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
The imbalance of testosterone to estradiol ratio has been related to the development of prostate diseases. Although rat models of prostate diseases induced by endocrine-disrupting chemicals (EDCs) and/or hormone exposure are commonly used to analyze gene expression profiles in the prostate, most studies utilize a single endpoint. In this study, microarray analysis was used for gene expression profiling in rat prostate tissue after exposure to EDCs and sex hormones over multiple time points (prepubertal through adulthood). We used dorsolateral prostate tissues from Sprague-Dawley rats (male offspring) and postnatally administered estradiol benzoate (EB) on postnatal days (PNDs) 1, 3, and 5, followed by treatment with additional hormones [estradiol (E) and testosterone (T)] on PNDs 90-200, as described by Ho et al. Microarray analysis was performed for gene expression profiling in the dorsolateral prostate, and the results were validated via qRT-PCR. The genes in cytokine-cytokine receptor interaction, cell adhesion molecules, and chemokines were upregulated in the EB+T+E group on PNDs 145 and 200. Moreover, early-stage downregulation of anti-inflammatory gene: bone morphogenetic protein 7 gene was observed. These findings suggest that exposure to EB, T, and E activates multiple pathways and simultaneously downregulates anti-inflammatory genes. Interestingly, these genes are reportedly expressed in prostate cancer tissues/cell lines. Further studies are required to elucidate the mechanism, including analyses using human prostate tissues.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, USA
| | - Daniel T Sloper
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, USA
| |
Collapse
|
17
|
Abstract
Melanoma, originating from epidermal melanocytes, is a heterogeneous disease that has the highest mortality rate among all types of skin cancers. Numerous studies have revealed the cause of this cancer as related to various somatic driver mutations, including alterations in KIT-a proto-oncogene encoding for a transmembrane receptor tyrosine kinase. Although accounting for only 3% of all melanomas, mutations in c-KIT are mostly derived from acral, mucosal, and chronically sun-damaged melanomas. As an important factor for cell differentiation, proliferation, and survival, inhibition of c-KIT has been exploited for clinical trials in advanced melanoma. Here, apart from the molecular background of c-KIT and its cellular functions, we will review the wide distribution of alterations in KIT with a catalogue of more than 40 mutations reported in various articles and case studies. Additionally, we will summarize the association of KIT mutations with clinicopathologic features (age, sex, melanoma subtypes, anatomic location, etc.), and the differences of mutation rate among subgroups. Finally, several therapeutic trials of c-KIT inhibitors, including imatinib, dasatinib, nilotinib, and sunitinib, will be analyzed for their success rates and limitations in advanced melanoma treatment. These not only emphasize c-KIT as an attractive target for personalized melanoma therapy but also propose the requirement for additional investigational studies to develop novel therapeutic trials co-targeting c-KIT and other cytokines such as members of signaling pathways and immune systems.
Collapse
Affiliation(s)
- Duc Daniel M Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Hensin Tsao
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Zhang W, He R, Chen S, Zhang L, Cao G, Yang W, Li J. The JAM-B/c-src/MMP9 pathway is associated with progression and regulates the invasion of pancreatic cancer. J Cancer 2020; 11:3246-3255. [PMID: 32231730 PMCID: PMC7097935 DOI: 10.7150/jca.40953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Junctional adhesion molecule B (JAM-B) is a multifunctional transmembrane protein that plays an important role in tumor progression. JAM-B is significantly upregulated in gastric cancer, melanoma cell metastasis and oral squamous cell carcinoma. JAM-2 may also function as a putative tumor suppressor in the progression and metastasis of colorectal cancer. The inconsistency of the results in different cancers has led to uncertainty regarding the role of JAM-B in carcinogenesis. For this purpose, the expression levels of JAM-B in pancreatic cancer (PanCa) tissues were associated with T stage and lymph node involvement with significant differences. A relatively high expression of JAM-B was found in PanCa cell lines by immunohistochemistry and western blot analysis. By cell transfection, JAM-B was silenced in tumor cell lines to determine cell invasion and migration abilities. Scratch wound assays and Transwell assays revealed that shJAM-B significantly decreased Panc-1 cell migration and invasion. Experiments were also conducted using a subcutaneous PanCa nude mouse model. A significant difference in tumor diameter at the injection site was found between the control group and the JAM-B low expression group. The expression levels of c-Src and MMP9 were also significantly reduced compared to that in the control group by immunohistochemistry. In conclusion, our results suggest that JAM-B secreted by cancer cells can promote progression and invasion in PanCa by upregulating the c-Src signal and related downstream proteins.
Collapse
Affiliation(s)
- Wunai Zhang
- Department of General Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5 th Road, Xi'an, 710004, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui He
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5 th Road, Xi'an, 710004, China
| | - Shuo Chen
- Department of General Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5 th Road, Xi'an, 710004, China
| | - Li Zhang
- Department of General Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5 th Road, Xi'an, 710004, China
| | - Gang Cao
- Department of General Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5 th Road, Xi'an, 710004, China
| | - Wenbin Yang
- Department of General Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5 th Road, Xi'an, 710004, China
| | - Junhui Li
- Department of General Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5 th Road, Xi'an, 710004, China
| |
Collapse
|
19
|
Asik E, Akpinar Y, Caner A, Kahraman N, Guray T, Volkan M, Albarracin C, Pataer A, Arun B, Ozpolat B. EF2-kinase targeted cobalt-ferrite siRNA-nanotherapy suppresses BRCA1-mutated breast cancer. Nanomedicine (Lond) 2019; 14:2315-2338. [DOI: 10.2217/nnm-2019-0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the role of EF2K in BRCA1-mutated breast cancer. Materials & methods: We developed silica coated cobalt-ferrite (CoFe) nanoparticles for in vivo delivery of small interfering RNAs (siRNAs) into BRCA1-mutated breast cancer. Results: Expression of EF2K is highly upregulated in the majority (78.5%) of BRCA1-mutated patients and significantly associated with poor patient survival and metastasis. Silencing of EF2K reduced cell proliferation, migration and invasion of the cancer cells. In vivo therapeutic targeting of EF2K by CoFe-siRNA-nanoparticles leads to sustained EF2K gene knockdown and suppressed tumor growth in orthotopic xenograft models of BRCA1-mutated breast cancer. Conclusion: EF2K is a potential novel molecular target in BRCA1-mutated tumors and CoFe-based siRNA nanotherapy may be used as a novel approach to target EF2K.
Collapse
Affiliation(s)
- Elif Asik
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Yeliz Akpinar
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Chemistry, Kırsehir Ahi Evran University, Kırsehir 40100, Turkey
| | - Ayse Caner
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Murvet Volkan
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Constance Albarracin
- Department of Pathology, Division of Pathology/Lab Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Apar Pataer
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Banu Arun
- Departments of Breast Medical Oncology & Breast Cancer Genetics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference & Non-Coding RNA, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
20
|
Ben Abdessamad I, Bouhlel I, Chekir-Ghedira L, Krifa M. Antitumor Effect of Bryonia dioïca Methanol Extract: In Vitro and In Vivo Study. Nutr Cancer 2019; 72:747-756. [PMID: 31460802 DOI: 10.1080/01635581.2019.1654528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Abstract
Aim: A large number of plant-derived products have been approved for the treatment of numerous types of cancer, and these products have also shown to reduce the effects of metastatic cancer. The aim of this study is to evaluate the anticancer effects of a methanolic extract of Bryonia dioïca root (M extract) against B16F10 melanoma cancer cells in vitro as well as in vivo.Results: It was shown to induce apoptosis, in vitro, and to inhibit cell growth by arresting cell cycle progression in SubG1 phase. Mice bearing the melanoma cells were used to confirm any in vivo effectiveness of the M extract as an antitumor promoting agent. In mice dosed with 50 mg M/kg/d (for 28 days), tumor weight was inhibited by 65.03% compared to that in mice that did not receive the product. Our results demonstrate on the one hand, that this inhibition was accompanied by a drastic decrease regulation of complex FAK, Src, ERK, p130Cas and paxillin. On the other hand, it was marked by a measurable decrease of the metastatic descent in the lungs.Conclusions: These effects could be ascribed to the presence of bryoniosides and cucurbitacins such as cucurbitacin A and cucurbitacin G in M extract.
Collapse
Affiliation(s)
- Imen Ben Abdessamad
- Research Unit Bioactive Natural Products and Biotechnology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Biochemistry, General Medicine Faculty of Monastir, Monastir, Tunisia
| | - Ines Bouhlel
- Research Unit Bioactive Natural Products and Biotechnology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Biochemistry, General Medicine Faculty of Monastir, Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Biochemistry, General Medicine Faculty of Monastir, Monastir, Tunisia
| | - Mounira Krifa
- Research Unit Bioactive Natural Products and Biotechnology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Biochemistry, General Medicine Faculty of Monastir, Monastir, Tunisia
| |
Collapse
|
21
|
Chia J, Tay F, Bard F. The GalNAc-T Activation (GALA) Pathway: Drivers and markers. PLoS One 2019; 14:e0214118. [PMID: 30889231 PMCID: PMC6424425 DOI: 10.1371/journal.pone.0214118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
The enzymes GALNTs add GalNAc sugar to Ser and Thr residues, forming the Tn glycan. GALNTs are activated by trafficking from Golgi to ER, a process driven by the Src kinase and negatively regulated by ERK8. This GALNTs activation (aka GALA) pathway induces high Tn levels and is a key driver of liver tumor growth. Recently, Tabak and colleagues have contested our previous data that EGF stimulation can induce GALNTs relocation. Here, we show that relocation induced by EGF is actually detectable in the very images acquired by Tabak et al. Furthermore, we show that over-expression of EGFR strongly enhances EGF-induced relocation and that EGFR appears required to drive relocation induced by ERK8 depletion. Direct co-localisation of GALNT with the ER marker Calnexin is observed after EGF stimulation. We furthermore propose that quantification of O-glycosylation of the ER resident protein PDIA4 provides a mean to quantify GALA independently of imaging. In sum, we demonstrate that the claimed non-reproducibility was due to experimental imaging conditions, that EGFR is indeed a driver of GALA and propose additional markers to facilitate the study of this pathway.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
22
|
Dorff TB, Quinn DI, Pinski JK, Goldkorn A, Sadeghi S, Tsao-Wei D, Groshen S, Kuhn P, Gross ME. Randomized Phase II Trial of Abiraterone Alone or With Dasatinib in Men With Metastatic Castration-resistant Prostate Cancer (mCRPC). Clin Genitourin Cancer 2019; 17:241-247.e1. [PMID: 31227432 DOI: 10.1016/j.clgc.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2018] [Revised: 02/06/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Signaling via the Src pathway is thought to be a mediator of resistance to androgen targeted therapy in prostate cancer. We studied whether adding the Src inhibitor dasatinib to abiraterone would delay progression. PATIENTS AND METHODS Eligible patients had metastatic castration-resistant prostate cancer (mCRPC), without prior chemotherapy. Abiraterone was prescribed at 1000 mg daily with prednisone 5 mg twice daily in both arms, and dasatinib 100 mg daily was added for Arm B. The primary endpoint was progression-free survival (PFS). The interim analysis was planned after 48 subjects, but the study was terminated early. PFS was evaluated using a 1-sided log rank test. The Fisher exact test was used for other categorical data analyses. Circulating tumor cells (CTCs) were identified with the Epic platform. RESULTS With 26 men randomized and a median follow up of 41.8 months, the median PFS was 15.7 months (95% confidence interval, 8.2-49.0+ months) for Arm B and 9.0 months (95% confidence interval, 4.4-30.7 months) for Arm A (P = .15). Response Evaluation Criteria in Solid Tumors responses were seen in 5 (36%) of 14 patients, including 2 complete responses (CRs) on Arm B, and 2 (17%) of 12 responses without CR on Arm A (P = .39). Grade ≥ 3 toxicities more common in Arm B included hypertension, pleural effusion/dyspnea, and gastrointestinal effects. CTCs were detected at baseline in 10 of 19 evaluable patients (median, 2.7/mL blood [range 0.41-59.7]). At week 4, CTCs increased in 1 (10%) of 10 patients on Arm A and 4 (44%) of 9 patients on Arm B. CONCLUSION Dasatinib did not significantly prolong PFS in combination with abiraterone, although power was limited owing to the incomplete study cohort. Treatment with the combination was associated with robust objective responses, including Response Evaluation Criteria in Solid Tumors CRs.
Collapse
Affiliation(s)
- Tanya B Dorff
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| | - David I Quinn
- Division of Medical Oncology, USC Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Jacek K Pinski
- Division of Medical Oncology, USC Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Amir Goldkorn
- Division of Medical Oncology, USC Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Sarmad Sadeghi
- Division of Medical Oncology, USC Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Denice Tsao-Wei
- Department of Prevention and Biostatistics, USC Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Susan Groshen
- Department of Prevention and Biostatistics, USC Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Peter Kuhn
- Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA
| | - Mitchell E Gross
- Lawrence J. Ellison Institute for Transformative Medicine of USC and Norris Comprehensive Cancer Center, USC Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
23
|
Targeting the Hepatocyte Growth Factor and c-Met Signaling Axis in Bone Metastases. Int J Mol Sci 2019; 20:ijms20020384. [PMID: 30658428 PMCID: PMC6359064 DOI: 10.3390/ijms20020384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Bone metastasis is the terminal stage disease of prostate, breast, renal, and lung cancers, and currently no therapeutic approach effectively cures or prevents its progression to bone metastasis. One of the hurdles to the development of new drugs for bone metastasis is the complexity and heterogeneity of the cellular components in the metastatic bone microenvironment. For example, bone cells, including osteoblasts, osteoclasts, and osteocytes, and the bone marrow cells of diverse hematopoietic lineages interact with each other via numerous cytokines and receptors. c-Met tyrosine kinase receptor and its sole ligand hepatocyte growth factor (HGF) are enriched in the bone microenvironment, and their expression correlates with the progression of bone metastasis. However, no drugs or antibodies targeting the c-Met/HGF signaling axis are currently available in bone metastatic patients. This significant discrepancy should be overcome by further investigation of the roles and regulation of c-Met and HGF in the metastatic bone microenvironment. This review paper summarizes the key findings of c-Met and HGF in the development of novel therapeutic approaches for bone metastasis.
Collapse
|
24
|
El Sayed I, Helmy MW, El-Abhar HS. Inhibition of SRC/FAK cue: A novel pathway for the synergistic effect of rosuvastatin on the anti-cancer effect of dasatinib in hepatocellular carcinoma. Life Sci 2018; 213:248-257. [PMID: 30292831 DOI: 10.1016/j.lfs.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Statins extended their hypocholestremic effect to show a promising anticancer activity. Hepatocellular carcinoma (HCC), the third common cause of cancer-related death, responded positively to statins. Some in-vitro studies reveal the rosuvastatin antitumor effect, but barely in-vivo studies. Hence, we evaluated the antitumor potential of rosuvastatin in a HCC model, the possible signaling cues involved, and whether it augments the dasatinib anticancer effect. METHOD For the in-vitro study, the IC50 and the combination (CI)/dose reduction (DRI) indices were determined for HCC cell line (HepG2) treated with dasatinib and/or rosuvastatin. For the in-vivo study, mice with diethylnitrosamine-induced HCC were treated for 21 days with dasatinib and/or rosuvastatin (10 and 20 mg/kg, respectively). The p-focal adhesion kinase/p-rous sarcoma oncogene cellular homolog (p-FAK/p-Src) cascade and its downstream molecules were assessed. RESULTS The in-vitro study confirmed the synergistic effect of rosuvastatin with dasatinib, which entailed the in-vivo results. The two drugs decreased the p-FAK/p-Src cue along with p-Ras/c-Raf, p-STAT-3, and p-Akt levels to enhance apoptosis by an increase in caspase-3 level and a decline in survivin level. Additionally, they inhibited HGF, VEGF, and the MMP-9. Moreover, the different treatments downregulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. The best effect was mediated by the combination regimen that surpassed the effect of either drug alone. CONCLUSION Our results highlighted some of the signals involved in rosuvastatin antitumor effect and nominate it as an adds-on therapy with dasatinib to yield a better effect in HCC through inhibiting the FAK/Src cascade.
Collapse
Affiliation(s)
- Ibrahim El Sayed
- Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, El-Bahira, Egypt.
| | - Hanan S El-Abhar
- Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
25
|
Qi Z, Tang T, Sheng L, Ma Y, Liu Y, Yan L, Qi S, Ling L, Zhang Y. Salidroside inhibits the proliferation and migration of gastric cancer cells via suppression of Src‑associated signaling pathway activation and heat shock protein 70 expression. Mol Med Rep 2018; 18:147-156. [PMID: 29749547 PMCID: PMC6059663 DOI: 10.3892/mmr.2018.8958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/02/2022] Open
Abstract
Salidroside, an active ingredient extracted from the Rhodiola rosea plant, has potential anti-tumor effects. However, the effects of salidroside on gastric cancer cell proliferation and migration remain unclear. In the present study, the inhibitory effects of salidroside on gastric cancer cell proliferation, migration and invasion and the molecular mechanisms underlying these effects were investigated. The human gastric cancer cell line, BGC-823, was treated with different concentrations of salidroside (200, 400 and 600 µg/ml). Cell proliferation was determined with Cell Counting Kit-8 and colony formation assays, and the migration and invasion of cells was detected by a wound healing and Transwell assay, respectively. Western blotting was performed to detect the levels of N-cadherin, E-cadherin and heat shock protein (HSP)70. In addition, the phosphorylation of proto-oncogene tyrosine-protein kinase Src (Src), protein kinase B (Akt), mitogen activated protein kinase 1 (ERK), signal transducer and activator of transcription (STAT)3 and focal adhesion kinase 1 (FAK) was examined by western blotting. The levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by enzyme-linked immunosorbent assay kits. Levels of reactive oxygen species (ROS) in cells were measured by a fluorescence plate reader with dichloro-dihydro-fluorescein diacetate. The results indicated that salidroside significantly suppressed cell proliferation and colony formation, inhibited cell migration and invasion, increased E-cadherin expression and decreased N-cadherin, MMP-2 and MMP-9 expression. Furthermore, salidroside suppressed ROS production and subsequently reduced the phosphorylation of Src, Akt, ERK and FAK. Salidroside also inhibited HSP70 expression, and HSP70 overexpression reversed the inhibitory effects of salidroside on BGC-823 cell proliferation, migration and invasion. In conclusion, the present study revealed that salidroside inhibited the proliferation, migration and invasion of BGC-823 cells by downregulating ROS-mediated Src-associated signaling pathway activation and HSP70 expression.
Collapse
Affiliation(s)
- Zhilin Qi
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Tuo Tang
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lili Sheng
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yunfei Ma
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yinhua Liu
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liang Yan
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Shimei Qi
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liefeng Ling
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yao Zhang
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
26
|
Smolinski MP, Bu Y, Clements J, Gelman IH, Hegab T, Cutler DL, Fang JWS, Fetterly G, Kwan R, Barnett A, Lau JYN, Hangauer DG. Discovery of Novel Dual Mechanism of Action Src Signaling and Tubulin Polymerization Inhibitors (KX2-391 and KX2-361). J Med Chem 2018; 61:4704-4719. [PMID: 29617135 DOI: 10.1021/acs.jmedchem.8b00164] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
The discovery of potent, peptide site directed, tyrosine kinase inhibitors has remained an elusive goal. Herein we describe the discovery of two such clinical candidates that inhibit the tyrosine kinase Src. Compound 1 is a phase 3 clinical trial candidate that is likely to provide a first in class topical treatment for actinic keratosis (AK) with good efficacy and dramatically less toxicity compared to existing standard therapy. Compound 2 is a phase 1 clinical trial candidate that is likely to provide a first in class treatment of malignant glioblastoma and induces 30% long-term complete tumor remission in animal models. The discovery strategy for these compounds iteratively utilized molecular modeling, along with the synthesis and testing of increasingly elaborated proof of concept compounds, until the final clinical candidates were arrived at. This was followed with mechanism of action (MOA) studies that revealed tubulin polymerization inhibition as the second MOA.
Collapse
Affiliation(s)
- Michael P Smolinski
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Yahao Bu
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - James Clements
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics , Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Taher Hegab
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - David L Cutler
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Jane W S Fang
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Gerald Fetterly
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Rudolf Kwan
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Allen Barnett
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Johnson Y N Lau
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - David G Hangauer
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| |
Collapse
|
27
|
Network approach of the conformational change of c-Src, a tyrosine kinase, by molecular dynamics simulation. Sci Rep 2018; 8:5673. [PMID: 29618744 PMCID: PMC5884825 DOI: 10.1038/s41598-018-23964-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Non-receptor tyrosine kinase c-Src plays a critical role in numerous cellular signalling pathways. Activation of c-Src from its inactive to the active state involves large-scale conformational changes, and is controlled by the phosphorylation state of two major phosphorylation sites, Tyr416 and Tyr527. A detailed mechanism for the entire conformational transition of c-Src via phosphorylation control of Tyr416 and Tyr527 is still elusive. In this study, we investigated the inactive-to-active conformational change of c-Src by targeted molecular dynamics simulation. Based on the simulation, we proposed a dynamical scenario for the activation process of c-Src. A detailed study of the conformational transition pathway based on network analysis suggests that Lys321 plays a key role in the c-Src activation process.
Collapse
|
28
|
Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer 2018; 17:36. [PMID: 29455664 PMCID: PMC5817861 DOI: 10.1186/s12943-018-0801-5] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Protein tyrosine kinase (PTK) is one of the major signaling enzymes in the process of cell signal transduction, which catalyzes the transfer of ATP-γ-phosphate to the tyrosine residues of the substrate protein, making it phosphorylation, regulating cell growth, differentiation, death and a series of physiological and biochemical processes. Abnormal expression of PTK usually leads to cell proliferation disorders, and is closely related to tumor invasion, metastasis and tumor angiogenesis. At present, a variety of PTKs have been used as targets in the screening of anti-tumor drugs. Tyrosine kinase inhibitors (TKIs) compete with ATP for the ATP binding site of PTK and reduce tyrosine kinase phosphorylation, thereby inhibiting cancer cell proliferation. TKI has made great progress in the treatment of cancer, but the attendant acquired acquired resistance is still inevitable, restricting the treatment of cancer. In this paper, we summarize the role of PTK in cancer, TKI treatment of tumor pathways and TKI acquired resistance mechanisms, which provide some reference for further research on TKI treatment of tumors.
Collapse
Affiliation(s)
- Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Shuliang Song
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| | - Yun-Shan Wang
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China.
| |
Collapse
|
29
|
Perez M, Lucena-Cacace A, Marín-Gómez LM, Padillo-Ruiz J, Robles-Frias MJ, Saez C, Garcia-Carbonero R, Carnero A. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaliplatin in tumors with high levels of phospho-Src. Oncotarget 2018; 7:33111-24. [PMID: 27105527 PMCID: PMC5078079 DOI: 10.18632/oncotarget.8880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Despite the development of new antineoplastic agents for the treatment of colorectal cancer (CRC), oxaliplatin and fluoropyrimidines remain the most commonly employed drugs for the treatment of both early and advanced disease. Intrinsic or acquired resistance is, however, an important limitation to pharmacological therapy, and the development of chemosensitization strategies constitute a major goal with important clinical implications. In the present work, we determined that high levels of activated Src kinase, measured as phospho-Src at the Tyr419 residue in CRC cell lines, can promote colorectal carcinoma cell resistance to oxaliplatin, but not to 5-fluorouracil (5FU), and that inhibition of this protein restores sensitivity to oxaliplatin. Similar results were observed with in vivo patient-derived xenograft (PDX) models that were orthotopically grown in murine livers. In PDX tumor lines derived from human CRC liver metastasis, dasatinib, a Src inhibitor, increases sensitivity to oxaliplatin only in tumors with high p-Src. However, dasatinib did not modify sensitivity to 5FU in any of the models. Our data suggest that chemoresistance induced by p-Src is specific to oxaliplatin, and that p-Src levels can be used to identify patients who may benefit from this combination therapy. These results are relevant for clinicians as they identify a novel biomarker of drug resistance that is suitable to pharmacological manipulation.
Collapse
Affiliation(s)
- Marco Perez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Luis Miguel Marín-Gómez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of General Surgery, Virgen del Rocío University Hospital, Seville, Spain
| | - Javier Padillo-Ruiz
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of General Surgery, Virgen del Rocío University Hospital, Seville, Spain
| | - Maria Jose Robles-Frias
- Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain.,Present address: HUVR-IBiS Biobank, Virgen del Rocío University Hospital, Seville, Spain
| | - Carmen Saez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain
| | - Rocio Garcia-Carbonero
- Department of Medical Oncology, Virgen del Rocío University Hospital, Seville, Spain.,Present address: Department of Medical Oncology, 12 of October University Hospital, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
30
|
Hughes VS, Siemann DW. Treatment with Src inhibitor Dasatinib results in elevated metastatic potential in the 4T1 murine mammary carcinoma model. ACTA ACUST UNITED AC 2018; 1:30-36. [PMID: 29658958 DOI: 10.4103/tme.tme_19_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Introduction The src inhibitor Dasatinib has been widely studied as an anti-metastatic agent. The aims of this study were to examine the effect of Src inhibition on the metastatic potential of the 4T1 murine mammary carcinoma. Context Src is a non-receptor tyrosine kinase well-known to contribute to the metastatic potential of tumour cells. It does so through alteration of signalling pathways important to metastasis. Elevated levels of Src are common in many cancer types, and have been correlated with tumour progression and poor patient prognosis. Aims This study examined whether disruption of the Src signalling pathway could inhibit metastases formation. Settings and Design The Src inhibitor Dasatinib was evaluated in vitro and in vivo using the highly metastatic 4T1 murine mammary adenocarcinoma cell line. Methods and Material In vitro assays included growth curve, western blot, migration, and invasion assays. In vivo assays included intradermal and tail vein injection models. Statistical analysis used In vitro data were analysed using one-way ANOVA with Dunnett's multiple comparisons in GraphPad Prism 6.0. In vivo data were analysed using GraphPad Prism 6.0, using the Wilcoxon matched pairs test. Results Dasatinib is effective at inhibiting in vitro phosphorylation of Src, migration and invasion in the 4T1 cell line, as well as angiogenesis in vivo. In vitro treatment with Dasatinib impaired the metastatic ability of tumour cells as assessed by a tail vein injection model. However, both the syngeneic BALB/c and the athymic nu/nu mice receiving oral doses of the drug developed significantly higher numbers of 4T1 lung metastases. This effect was not seen in a different breast carcinoma cell line, the MDA-MB-231-4175-LM2, nor was this effect seen in the murine fibrosarcoma KHT cell line. Conclusions The 4T1 cell line is not an appropriate model to study Src inhibition.
Collapse
Affiliation(s)
- Veronica S Hughes
- Department of Radiation Oncology, University of Florida, Gainesville, FL
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL
| |
Collapse
|
31
|
FYN promotes mesenchymal phenotypes of basal type breast cancer cells through STAT5/NOTCH2 signaling node. Oncogene 2018; 37:1857-1868. [DOI: 10.1038/s41388-017-0114-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|
32
|
Wang J, Deng R, Cui N, Zhang H, Liu T, Dou J, Zhao X, Chen R, Wang Y, Yu J, Huang J. Src SUMOylation Inhibits Tumor Growth Via Decreasing FAK Y925 Phosphorylation. Neoplasia 2017; 19:961-971. [PMID: 29069627 PMCID: PMC5653241 DOI: 10.1016/j.neo.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 01/14/2023] Open
Abstract
Src, a non-receptor tyrosine kinase protein, plays a critical role in cell proliferation and tumorigenesis. SUMOylation, a reversible ubiquitination-like post-translational modification, is vital for tumor progression. Here, we report that the Src protein can be SUMOylated at lysine 318 both in vitro and in vivo. Hypoxia can induce a decrease of Src SUMOylation along with an increase of Y419 phosphorylation, a phosphorylation event required for Src activation. On the other hand, treatment with hydrogen peroxide can enhance Src SUMOylation. Significantly, ectopic expression of SUMO-defective mutation, Src K318R, promotes tumor growth more potently than that of wild-type Src, as determined by migration assay, soft agar assay, and tumor xenograft experiments. Consistently, Src SUMOylation leads to a decrease of Y925 phosphorylation of focal adhesion kinase (FAK), an established regulatory event of cell migration. Our results suggest that SUMOylation of Src at lysine 318 negatively modulate its oncogenic function by, at least partially, inhibiting Src-FAK complex activity.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Nan Cui
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Tianqi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| |
Collapse
|
33
|
Kim S, Alsaidan OA, Goodwin O, Li Q, Sulejmani E, Han Z, Bai A, Albers T, Beharry Z, Zheng YG, Norris JS, Szulc ZM, Bielawska A, Lebedyeva I, Pegan SD, Cai H. Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Res 2017; 77:6950-6962. [PMID: 29038344 DOI: 10.1158/0008-5472.can-17-0981] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2017] [Revised: 08/24/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Protein N-myristoylation enables localization to membranes and helps maintain protein conformation and function. N-myristoyltransferases (NMT) catalyze co- or posttranslational myristoylation of Src family kinases and other oncogenic proteins, thereby regulating their function. In this study, we provide genetic and pharmacologic evidence that inhibiting the N-myristoyltransferase NMT1 suppresses cell-cycle progression, proliferation, and malignant growth of prostate cancer cells. Loss of myristoylation abolished the tumorigenic potential of Src and its synergy with androgen receptor in mediating tumor invasion. We identified the myristoyl-CoA analogue B13 as a small-molecule inhibitor of NMT1 enzymatic activity. B13 exposure blocked Src myristoylation and Src localization to the cytoplasmic membrane, attenuating Src-mediated oncogenic signaling. B13 exerted its anti-invasive and antitumor effects against prostate cancer cells, with minimal toxic side-effects in vivo Structural optimization based on structure-activity relationships enabled the chemical synthesis of LCL204, with enhanced inhibitory potency against NMT1. Collectively, our results offer a preclinical proof of concept for the use of protein myristoylation inhibitors as a strategy to block prostate cancer progression. Cancer Res; 77(24); 6950-62. ©2017 AACR.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Octavia Goodwin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Qianjin Li
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Aiping Bai
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Zanna Beharry
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Scott D Pegan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia.
| |
Collapse
|
34
|
Bahrami A, Shahidsales S, Khazaei M, Ghayour-Mobarhan M, Maftouh M, Hassanian SM, Avan A. C-Met as a potential target for the treatment of gastrointestinal cancer: Current status and future perspectives. J Cell Physiol 2017; 232:2657-2673. [PMID: 28075018 DOI: 10.1002/jcp.25794] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2025]
Abstract
Aberrant activation of the HGF/c-Met signalling pathways is shown to be related with cell proliferation, progression, metastasis, and worse prognosis in several tumor types, including gastrointestinal cancers, suggesting its value as a stimulating-target for cancer-therapy. Several approaches have been developed for targeting HGF and/or c-Met, and one of them, crizotinib (dual c-Met/ALK inhibitor), is recently been approved by FDA for lung-cancers with ALK-rearrangement. The main aim of current review is to give an overview on the role of c-Met/HGF pathway in gastrointestinal cancer, in preclinical and clinical trials. Although several important matters is still remained to be elucidated on the molecular pathways underlying the antitumor effects of this therapy in gastrointestinal-cancers. Further investigations are warranted to recognize the main determinants of the activity of c-Met inhibitors, for parallel targeting signalling pathway associated/activated via MET/HGF pathway or in response to the cell resistance to anti-c-Met agents. Additionally, identification of patients that might benefit from therapy could help to increase the selectivity and efficacy of the therapy.
Collapse
Affiliation(s)
- Afsane Bahrami
- Molecular Medicine Group, Department of Modern Sciences and Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh Shahidsales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Neurogenic Inflammatory Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftouh
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Takiguchi E, Nishimura M, Mineda A, Kawakita T, Abe A, Irahara M. Growth inhibitory effect of the Src inhibitor dasatinib in combination with anticancer agents on uterine cervical adenocarcinoma cells. Exp Ther Med 2017; 14:4293-4299. [PMID: 29067110 PMCID: PMC5647549 DOI: 10.3892/etm.2017.5061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
Uterine cervical adenocarcinoma has a poor clinical prognosis when compared with squamous cell carcinoma. Therefore, the development of new treatment strategies for uterine cervical adenocarcinoma is necessary. Src is a proto-oncogene that is important in cancer progression. Dasatinib is a Src inhibitor that has been reported to be effective when used in combination with anticancer drugs. The present study aimed to confirm Src expression in human cervical adenocarcinoma cell lines and to determine the mechanism underlying the inhibitory effect of dasatinib on Src signaling in vitro. Western blot analysis was performed to investigate Src expression in cervical adenocarcinoma cell lines (HeLa and TCO-2 cells). The cells were cultured for 48 h with the addition of different concentrations of anticancer drugs (paclitaxel or oxaliplatin). Viable cell count was measured using a colorimetric (WST-1) assay. The concentrations of anticancer agents were fixed according to the results obtained, and the same experiments were performed using the drugs in combination with dasatinib at various concentrations to determine the concentrations that significantly affected the number of viable cells. The presence or absence of apoptosis was investigated using a caspase-3/7 assay. Signal transduction in each cell line was examined using western blotting. Src was activated in the two cell lines, and cell proliferation was significantly suppressed by each anticancer drug in combination with 10 µM dasatinib. Caspase-3/7 activity was also increased and Src signaling was suppressed by each anticancer drug in combination with dasatinib. In conclusion, Src is overexpressed in cervical adenocarcinoma cell lines, and dasatinib inhibits intracellular Src signaling and causes apoptosis. The results of the present study suggest that Src may be targeted in novel therapeutic strategies for cervical adenocarcinoma.
Collapse
Affiliation(s)
- Eri Takiguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ayuka Mineda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Akiko Abe
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
36
|
Korphaisarn K, Loree JM, Nguyen V, Coulson R, Holla V, Litzenburger BC, Chen K, Mills GB, Maru DM, Meric-Bernstan F, Shaw KRM, Kopetz S. Genomic analysis of exceptional responder to regorafenib in treatment-refractory metastatic rectal cancer: a case report and review of the literature. Oncotarget 2017; 8:57882-57888. [PMID: 28915719 PMCID: PMC5593691 DOI: 10.18632/oncotarget.18357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2017] [Accepted: 05/20/2017] [Indexed: 12/19/2022] Open
Abstract
We present the case of a 53-year-old male with metastatic rectal cancer who was treatment resistant to FOLFOX and FOLFOXIRI. Due to a Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, regorafenib was given in the third line setting. Surprisingly, the patient had a prolonged partial response that lasted 27 months. Mutational status was extensively evaluated to identify potential alterations that might play a role as predictive markers for this unusual event. A poorly characterized but nontransforming mutation in Fms-like tyrosine kinase 4 (FLT4) was present in the tumor. Prior to and at the time of clinical progression, we found amplification of fibroblast growth factor receptor 1 (FGFR1) and epidermal growth factor receptor (EGFR), loss of the FLT4 mutation, and gain of KIT proto-oncogene receptor tyrosine kinase (KIT) G961S suggesting potential roles in acquired resistance.
Collapse
Affiliation(s)
- Krittiya Korphaisarn
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Medicine, Division of Medical Oncology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Van Nguyen
- Department of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryanne Coulson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vijaykumar Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beate C Litzenburger
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken Chen
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstan
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenna R Mills Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
37
|
Parseghian CM, Parikh NU, Wu JY, Jiang ZQ, Henderson L, Tian F, Pastor B, Ychou M, Raghav K, Dasari A, Fogelman DR, Katsiampoura AD, Menter DG, Wolff RA, Eng C, Overman MJ, Thierry AR, Gallick GE, Kopetz S. Dual Inhibition of EGFR and c-Src by Cetuximab and Dasatinib Combined with FOLFOX Chemotherapy in Patients with Metastatic Colorectal Cancer. Clin Cancer Res 2017; 23:4146-4154. [PMID: 28280091 DOI: 10.1158/1078-0432.ccr-16-3138] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2016] [Revised: 01/10/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Purpose: Aberrant activation of the intracellular tyrosine kinase Src has been implicated as a mechanism of acquired chemotherapy resistance in metastatic colorectal cancer (mCRC). Here, the oral tyrosine kinase Src inhibitor, dasatinib, was investigated in combination with FOLFOX and cetuximab.Experimental Design: We performed a phase IB/II study of 77 patients with previously treated mCRC. Primary objectives were to determine the maximum tolerated dose, dose-limiting toxicities (DLT), pharmacodynamics, and efficacy. Using a 3 + 3 design, patients received FOLFOX6 with cetuximab and escalating doses of dasatinib (100, 150, 200 mg daily), followed by a 12-patient expansion cohort at 150 mg. Phase II studies evaluated FOLFOX plus dasatinib 100 mg in KRAS c12/13mut patients or in combination with cetuximab if KRAS c12/13WT FAK and paxillin were utilized as surrogate blood biomarkers of Src inhibition, and paired biopsies of liver metastases were obtained in patients in the expansion cohort.Results: In phase IB, the DLTs were grade 3/4 fatigue (20%) and neutropenia (23%). In phase II, grade 3/4 fatigue (23%) and pleural effusions (11%) were present. Response rates were 20% (6 of 30) in the phase IB escalation and expansion cohort and 13% (3 of 24) and 0% (0 of 23) in the KRAS c12/13WT and mutant cohorts of phase II, respectively. Median progression-free survival was 4.6, 2.3, and 2.3 months, respectively. There was no evidence of Src inhibition based on surrogate blood biomarkers or paired tumor biopsies.Conclusions: The combination of dasatinib plus FOLFOX with or without cetuximab showed only modest clinical activity in refractory colorectal cancer. This appears to be primarily due to a failure to fully inhibit Src at the achievable doses of dasatinib. The combination of dasatinib plus FOLFOX with or without cetuximab did not show meaningful clinical activity in refractory colorectal cancer due to failure to fully inhibit Src. Clin Cancer Res; 23(15); 4146-54. ©2017 AACR.
Collapse
Affiliation(s)
- Christine M Parseghian
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Nila U Parikh
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ji Yuan Wu
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi-Qin Jiang
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Henderson
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Tian
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brice Pastor
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Marc Ychou
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Fogelman
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anastasia D Katsiampoura
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cathy Eng
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alain R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Gary E Gallick
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
38
|
Abstract
The ErbB receptor family, also known as the EGF receptor family or type I receptor family, includes the epidermal growth factor (EGF) receptor (EGFR) or ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Among all RTKs, EGFR was the first RTK identified and the first one linked to cancer. Thus, EGFR has also been the most intensively studied among all RTKs. ErbB receptors are activated after homodimerization or heterodimerization. The ErbB family is unique among the various groups of receptor tyrosine kinases (RTKs) in that ErbB3 has impaired kinase activity, while ErbB2 does not have a direct ligand. Therefore, heterodimerization is an important mechanism that allows the activation of all ErbB receptors in response to ligand stimulation. The activated ErbB receptors bind to many signaling proteins and stimulate the activation of many signaling pathways. The specificity and potency of intracellular signaling pathways are determined by positive and negative regulators, the specific composition of activating ligand(s), receptor dimer components, and the diverse range of proteins that associate with the tyrosine phosphorylated C-terminal domain of the ErbB receptors. ErbB receptors are overexpressed or mutated in many cancers, especially in breast cancer, ovarian cancer, and non-small cell lung cancer. The overexpression and overactivation of ErbB receptors are correlated with poor prognosis, drug resistance, cancer metastasis, and lower survival rate. ErbB receptors, especially EGFR and ErbB2 have been the primary choices as targets for developing cancer therapies.
Collapse
Affiliation(s)
- Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 835 MSB, 114 St NW, Edmonton, AB, Canada, T6G 2H7.
| |
Collapse
|
39
|
Ismail NS, Ali EM, Ibrahim DA, Serya RA, Abou El Ella DA. Pyrazolo[3,4-d]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
|
40
|
Chatterji T, Varkaris AS, Parikh NU, Song JH, Cheng CJ, Schweppe RE, Alexander S, Davis JW, Troncoso P, Friedl P, Kuang J, Lin SH, Gallick GE. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells. Oncotarget 2016; 6:10175-94. [PMID: 25868388 PMCID: PMC4496348 DOI: 10.18632/oncotarget.3391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2014] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.
Collapse
Affiliation(s)
- Tanushree Chatterji
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Andreas S Varkaris
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Stephanie Alexander
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cell Biology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| |
Collapse
|
41
|
Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur J Med Chem 2016; 112:298-346. [PMID: 26907156 DOI: 10.1016/j.ejmech.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
Kinases control a diverse set of cellular processes comprising of reversible phosphorylation of proteins. Protein kinases play a pivotal role in human tumor cell proliferation, migration and survival of neoplasia. In the recent past, purine based molecules have emerged as significantly potent kinase inhibitors. In view of their promising potential for the inhibition of kinases, this review article focuses on purines which have progressed as kinase inhibitors during the last five years. A detailed account of the design strategies employed for the synthesis of purine analogs exerting inhibitory effects on diverse kinases has been presented. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the purine analogs for kinase inhibition. The interactions with the amino acid residues responsible for kinase inhibitory potential of purine based molecules have also been discussed. In this assemblage, purine based protein kinase inhibitors patented in the past have also been summarized in the tabular form. This compilation will be of great interest for the researchers working in the area of protein kinase inhibitors.
Collapse
|
42
|
Saeed M, Jacob S, Sandjo LP, Sugimoto Y, Khalid HE, Opatz T, Thines E, Efferth T. Cytotoxicity of the Sesquiterpene Lactones Neoambrosin and Damsin from Ambrosia maritima Against Multidrug-Resistant Cancer Cells. Front Pharmacol 2015; 6:267. [PMID: 26617519 PMCID: PMC4637410 DOI: 10.3389/fphar.2015.00267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance is a prevailing phenomenon leading to chemotherapy treatment failure in cancer patients. In the current study two known cytotoxic pseudoguaianolide sesquiterpene lactones; neoambrosin (1) and damsin (2) that circumvent MDR were identified. The two cytotoxic compounds were isolated using column chromatography, characterized using 1D and 2D NMR, MS, and compared with literature values. The isolated compounds were investigated for their cytotoxic potential using resazurin assays and thereafter confirmed with immunoblotting and in silico studies. MDR cells overexpressing ABC transporters (P-glycoprotein, BCRP, ABCB5) did not confer cross-resistance toward (1) and (2), indicating that these compounds are not appropriate substrates for any of the three ABC transporters analyzed. Resistance mechanisms investigated also included; the loss of the functions of the TP53 and the mutated EGFR. The HCT116 p53-/- cells were sensitive to 1 but resistant to 2. It was interesting to note that resistant cells transfected with oncogenic ΔEGFR exhibited hypersensitivity CS toward (1) and (2) (degrees of resistances were 0.18 and 0.15 for (1) and (2), respectively). Immunoblotting and in silico analyses revealed that 1 and 2 silenced c-Src kinase activity. It was hypothesized that inhibition of c-Src kinase activity may explain CS in EGFR-transfected cells. In conclusion, the significant cytotoxicity of 1 and 2 against different drug-resistant tumor cell lines indicate that they may be promising candidates to treat refractory tumors.
Collapse
Affiliation(s)
- Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Stefan Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung Kaiserslautern, Germany
| | - Louis P Sandjo
- Department of Pharmaceutical Sciences, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina Florianópolis, Brazil ; Institute of Organic Chemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University Tokyo, Japan
| | - Hassan E Khalid
- Department of Pharmacognosy, University of Khartoum Khartoum, Sudan
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung Kaiserslautern, Germany ; Institute of Biotechnology and Drug Research, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| |
Collapse
|
43
|
Machiyama H, Yamaguchi T, Sawada Y, Watanabe TM, Fujita H. SH3 domain of c-Src governs its dynamics at focal adhesions and the cell membrane. FEBS J 2015; 282:4034-55. [DOI: 10.1111/febs.13404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Yasuhiro Sawada
- Research Institute; National Rehabilitation Center for Persons with Disabilities; Saitama Japan
| | - Tomonobu M. Watanabe
- Immunology Frontier Research Center; Osaka University; Suita Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| | - Hideaki Fujita
- Immunology Frontier Research Center; Osaka University; Suita Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| |
Collapse
|
44
|
Sievers E, Trautmann M, Kindler D, Huss S, Gruenewald I, Dirksen U, Renner M, Mechtersheimer G, Pedeutour F, Åman P, Nishio J, Schildhaus HU, Kirfel J, Schirmacher P, Wardelmann E, Buettner R, Hartmann W. SRC inhibition represents a potential therapeutic strategy in liposarcoma. Int J Cancer 2015; 137:2578-88. [PMID: 26084847 DOI: 10.1002/ijc.29645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2014] [Accepted: 06/03/2015] [Indexed: 11/11/2022]
Abstract
Liposarcomas (LS) are the most common malignant mesenchymal tumors, with an overall long-term mortality rate of 60%. LS comprise three major subtypes, i.e., well-differentiated/dedifferentiated liposarcoma (WDLS/DDLS), myxoid/round cell liposarcoma (MLS) and pleomorphic liposarcoma (PLS). Aiming at the preclinical identification of novel therapeutic options, we here investigate the functional significance of SRC in primary human LS and in LS-derived cell lines. Immunohistochemical and Western blot analyses reveal relevant levels of activated p-(Tyr416)-SRC in LS of the different subtypes with particular activation in MLS and PLS. Dysregulation of the SRC modifiers CSK and PTP1B was excluded as major reason for the activation of the kinase. Consistent siRNA-mediated knockdown of SRC or inhibition by the SRC inhibitor Dasatinib led to decreased proliferation of LS cell lines of the different subtypes, with MLS cells reacting particularly sensitive in MTT assays. Flow cytometric analyses revealed that this effect was due to a significant decrease in mitotic activity and an induction of apoptosis. SRC inhibition by Dasatinib resulted in dephosphorylation of SRC itself, its interacting partners FAK and IGF-IR as well as its downstream target AKT. Consistent with a particular role of SRC in cell motility, Dasatinib reduced the migratory and invasive potential of MLS cells in Boyden chamber and Matrigel chamber assays. In summary, we provide evidence that SRC activation plays an important role in LS biology and therefore represents a potential therapeutic target, particularly in MLS and PLS.
Collapse
Affiliation(s)
- Elisabeth Sievers
- Department of Pathology, University Hospital Cologne, Cologne, Germany.,Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Marcel Trautmann
- Department of Pathology, University Hospital Cologne, Cologne, Germany.,Department of Pathology, University Hospital Muenster, Muenster, Germany
| | - Dagmar Kindler
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Sebastian Huss
- Department of Pathology, University Hospital Muenster, Muenster, Germany
| | - Inga Gruenewald
- Department of Pathology, University Hospital Muenster, Muenster, Germany
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Marcus Renner
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Florence Pedeutour
- Laboratory of Solid Tumors Genetics, Nice University Hospital, Nice, France
| | - Pierre Åman
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Jun Nishio
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Jutta Kirfel
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Peter Schirmacher
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Wardelmann
- Department of Pathology, University Hospital Cologne, Cologne, Germany.,Department of Pathology, University Hospital Muenster, Muenster, Germany
| | - Reinhard Buettner
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Wolfgang Hartmann
- Department of Pathology, University Hospital Cologne, Cologne, Germany.,Department of Pathology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
45
|
Abstract
Deranged pathway activation and KIT mutations occur in numerous solid and haematological malignancies, with gain-of-function mutations being the most common demonstrable abnormality. Through a complex series of interactions, activation of the KIT receptor tyrosine kinase leads to cell survival, evasion of apoptosis, angiogenesis, dysregulated cell cycle control and promotion of tumourigenesis. The KIT receptor tyrosine kinase is a well-studied therapeutic target in human malignancies. The KIT mutational status of a neoplasm plays an important role in predicting the response to targeted therapies. In this article we outline the structure, function and mutations of the KIT gene, its role in various neoplasms, therapeutic impacts and the role that these play in clinical patient outcome.
Collapse
Affiliation(s)
- Riyaadh Roberts
- Division of Anatomical Pathology, University of Cape Town and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
46
|
Lewis-Tuffin LJ, Feathers R, Hari P, Durand N, Li Z, Rodriguez FJ, Bakken K, Carlson B, Schroeder M, Sarkaria JN, Anastasiadis PZ. Src family kinases differentially influence glioma growth and motility. Mol Oncol 2015; 9:1783-98. [PMID: 26105207 DOI: 10.1016/j.molonc.2015.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
Src-family kinase (SFK) signaling impacts multiple tumor-related properties, particularly in the context of the brain tumor glioblastoma. Consequently, the pan-SFK inhibitor dasatinib has emerged as a therapeutic strategy, despite physiologic limitations to its effectiveness in the brain. We investigated the importance of individual SFKs (Src, Fyn, Yes, and Lyn) to glioma tumor biology by knocking down individual SFK expression both in culture (LN229, SF767, GBM8) and orthotopic xenograft (GBM8) contexts. We evaluated the effects of these knockdowns on tumor cell proliferation, migration, and motility-related signaling in culture, as well as overall survival in the orthotopic xenograft model. The four SFKs differed significantly in their importance to these properties. In culture, Src, Fyn, and Yes knockdown generally reduced growth and migration and altered motility-related phosphorylation patterns while Lyn knockdown did so to a lesser extent. However the details of these effects varied significantly depending on the cell line: in no case were conclusions about the role of a particular SFK applicable to all of the measures or all of the cell types examined. In the orthotopic xenograft model, mice implanted with non-target or Src or Fyn knockdown cells showed no differences in survival. In contrast, mice implanted with Yes knockdown cells had longer survival, associated with reduced tumor cell proliferation. Those implanted with Lyn knockdown cells had shorter survival, associated with higher overall tumor burden. Together, our results suggest that Yes signaling directly affects tumor cell biology in a pro-tumorigenic manner, while Lyn signaling affects interactions between tumor cells and the microenvironment in an anti-tumor manner. In the context of therapeutic targeting of SFKs, these results suggest that pan-SFK inhibitors may not produce the intended therapeutic benefit when Lyn is present.
Collapse
Affiliation(s)
- Laura J Lewis-Tuffin
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Ryan Feathers
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Priya Hari
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Nisha Durand
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Zhimin Li
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21231, USA
| | - Katie Bakken
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brett Carlson
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Panos Z Anastasiadis
- Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
| |
Collapse
|
47
|
Lin SY, Chang HH, Lai YH, Lin CH, Chen MH, Chang GC, Tsai MF, Chen JJW. Digoxin Suppresses Tumor Malignancy through Inhibiting Multiple Src-Related Signaling Pathways in Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0123305. [PMID: 25955608 PMCID: PMC4425490 DOI: 10.1371/journal.pone.0123305] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer is the predominant type of lung cancer, resulting in high mortality worldwide. Digoxin, a cardiac glycoside, has recently been suggested to be a novel chemotherapeutic agent. Src is an oncogene that plays an important role in cancer progression and is therefore a potential target for cancer therapy. Here, we investigated whether digoxin could suppress lung cancer progression through the inhibition of Src activity. The effects of digoxin on lung cancer cell functions were investigated using colony formation, migration and invasion assays. Western blotting and qPCR assays were used to analyze the mRNA and protein expression levels of Src and its downstream proteins, and a cell viability assay was used to measure cellular cytotoxicity effects. The results of the cell function assays revealed that digoxin inhibited the proliferation, invasion, migration, and colony formation of A549 lung cancer cells. Similar effects of digoxin were also observed in other lung cancer cell lines. Furthermore, we found that digoxin significantly suppressed Src activity and its protein expression in a dose- and time-dependent manner as well as reduced EGFR and STAT3 activity. Our data suggest that digoxin is a potential anticancer agent that may suppress lung cancer progression through inhibiting Src and the activity of related proteins.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsiu-Hui Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Hua Lai
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Hsuan Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-Feng Tsai
- Department of Molecular Biotechnology, Dayeh University, Changhua, Taiwan
- * E-mail: (MFT); (JJWC)
| | - Jeremy J. W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (MFT); (JJWC)
| |
Collapse
|
48
|
Tabariès S, Annis MG, Hsu BE, Tam CE, Savage P, Park M, Siegel PM. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. Oncotarget 2015; 6:9476-87. [PMID: 25823815 PMCID: PMC4496232 DOI: 10.18632/oncotarget.3269] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2015] [Accepted: 01/31/2015] [Indexed: 12/30/2022] Open
Abstract
Claudin-2 enhances breast cancer liver metastasis and promotes the development of colorectal cancers. The objective of our current study is to define the regulatory mechanisms controlling Claudin-2 expression in breast cancer cells. We evaluated the effect of several Src Family Kinase (SFK) inhibitors or knockdown of individual SFK members on Claudin-2 expression in breast cancer cells. We also assessed the potential effects of pan-SFK and SFK-selective inhibitors on the formation of breast cancer liver metastases. This study reveals that pan inhibition of SFK signaling pathways significantly elevated Claudin-2 expression levels in breast cancer cells. In addition, our data demonstrate that pan-SFK inhibitors can enhance breast cancer metastasis to the liver. Knockdown of individual SFK members reveals that loss of Yes or Fyn induces Claudin-2 expression; whereas, diminished Lyn levels impairs Claudin-2 expression in breast cancer cells. The Lyn-selective kinase inhibitor, Bafetinib (INNO-406), acts to reduce Claudin-2 expression and suppress breast cancer liver metastasis. Our findings may have major clinical implications and advise against the treatment of breast cancer patients with broad-acting SFK inhibitors and support the use of Lyn-specific inhibitors.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Carcinoma/genetics
- Carcinoma/prevention & control
- Carcinoma/secondary
- Cell Line, Tumor
- Claudins/biosynthesis
- Claudins/genetics
- Dasatinib/pharmacology
- Dasatinib/therapeutic use
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/prevention & control
- Liver Neoplasms/secondary
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Promoter Regions, Genetic
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-fos/physiology
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Signal Transduction
- Transcription Factor AP-1/physiology
- Transcription, Genetic
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Medicine, McGill University, Montréal, Québec, Canada, H3A 1A3
| | - Matthew G. Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Medicine, McGill University, Montréal, Québec, Canada, H3A 1A3
| | - Brian E. Hsu
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Medicine, McGill University, Montréal, Québec, Canada, H3A 1A3
| | - Christine E. Tam
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Medicine, McGill University, Montréal, Québec, Canada, H3A 1A3
| | - Paul Savage
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Medicine, McGill University, Montréal, Québec, Canada, H3A 1A3
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Medicine, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Oncology, McGill University, Montréal, Québec, Canada, H3A 1A3
| | - Peter M. Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Medicine, McGill University, Montréal, Québec, Canada, H3A 1A3
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3A 1A3
| |
Collapse
|
49
|
Zhou C, Ji J, Shi M, Yang L, Yu Y, Liu B, Zhu Z, Zhang J. Suberoylanilide hydroxamic acid enhances the antitumor activity of oxaliplatin by reversing the oxaliplatin‑induced Src activation in gastric cancer cells. Mol Med Rep 2014; 10:2729-35. [PMID: 25199623 DOI: 10.3892/mmr.2014.2548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2013] [Accepted: 05/29/2014] [Indexed: 11/06/2022] Open
Abstract
Oxaliplatin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as vorinostat, are potent antitumor agents. The aim of this study was to investigate the effect of SAHA on the antitumor efficacy of oxaliplatin in gastric cancer and the interaction between oxaliplatin and SAHA. Cell growth inhibition was evaluated using Cell Counting Kit‑8 and colony formation assays. Xenografts established in nude mice were used to assess tumor growth in vivo. Western blot analysis was used to detect the expression of acetyl‑histone H3, phosphorylated histone H2AX (γH2AX), B‑cell lymphoma 2 (Bcl‑2), cleaved caspase‑3, cleaved poly (ADP‑ribose) polymerase (PARP), phosphorylated- (p-)Src, Src, Akt and p‑Akt in gastric cancer cells. The in vitro growth of SGC‑7901, Hs746T and MKN28 gastric cancer cells was found to be dose‑dependently inhibited by oxaliplatin and SAHA. Furthermore, combined treatment was observed to be more effective in inhibiting cancer cell growth and colony formation than monotherapy. Similar effects were found in the xenografts. A positive interaction was identified between oxaliplatin and SAHA (between‑subject effects of oxaliplatin and SAHA, P<0.001). In addition, combined exposure to oxaliplatin and SAHA increased γH2AX expression and decreased Bcl‑2 expression. The expression of cleaved caspase‑3 and PARP was also increased with combination treatment. Oxaliplatin‑induced Src phosphorylation was detected in gastric cancer cells, as we have previously reported. However, this effect was inhibited by SAHA. The oxaliplatin‑induced Src phosphorylation was not impaired with Akt inhibition. In conclusion, oxaliplatin and SAHA exhibited a positive interaction when used in combination and were found to suppress gastric cancer cell survival and growth. The reversal of oxaliplatin‑induced Src activation may be responsible for this positive interaction.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Ji
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Min Shi
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Liu Yang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingyan Yu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Bingya Liu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Zhang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
50
|
Baro M, de Llobet LI, Figueras A, Skvortsova I, Mesia R, Balart J. Dasatinib worsens the effect of cetuximab in combination with fractionated radiotherapy in FaDu- and A431-derived xenografted tumours. Br J Cancer 2014; 111:1310-8. [PMID: 25077442 PMCID: PMC4183853 DOI: 10.1038/bjc.2014.432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Revised: 06/02/2014] [Accepted: 07/09/2014] [Indexed: 12/24/2022] Open
Abstract
Background: Cetuximab is often combined with radiotherapy in advanced SCCHN. Alternative routes bypassing inhibition of EGFR with cetuximab may overshadow the efficacy of this combination. We undertook this study to investigate a possible role of dasatinib in this scenario. Methods: The SCC5, SCC25, SCC29, FaDu and A431 cell lines were assessed in vitro for cell proliferation under cetuximab and dasatinib treatments. In FaDu and A431 cells, dasatinib plus cetuximab resulted in higher proliferation than cetuximab alone. Then, FaDu and A431 cells were implanted into subcutaneous tissue of athymic mice that were irradiated with 30 Gy in 10 fractions over 2 weeks, and treated with cetuximab and dasatinib. Tumour growth, DNA synthesis and angiogenesis were determined. The EGFR, RAS-GTP activity, phosphorylated AKT, ERK1/2, SRC protein levels and VEGF secretion were determined in vitro. Results: The addition of dasatinib to cetuximab and radiotherapy increased tumour growth, DNA synthesis and angiogenesis that were associated with RAS, AKT and ERK1/2 activation, and SRC inhibition in FaDu and A431 cells. Conclusions: In xenografts derived from these two cell lines, dasatinib did not improve the efficacy of cetuximab combined with radiotherapy. On the contrary, it worsened tumour control achieved by the combination of these two treatments.
Collapse
Affiliation(s)
- M Baro
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - L I de Llobet
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - A Figueras
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - I Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - R Mesia
- Department of Medical Oncology, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - J Balart
- 1] Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain [2] Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| |
Collapse
|