1
|
Aksoy O, Lind J, Sunder-Plaßmann V, Vallet S, Podar K. Bone marrow microenvironment- induced regulation of Bcl-2 family members in multiple myeloma (MM): Therapeutic implications. Cytokine 2023; 161:156062. [PMID: 36332463 DOI: 10.1016/j.cyto.2022.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
In Multiple Myeloma (MM) the finely tuned homeostasis of the bone marrow (BM) microenvironment is disrupted. Evasion of programmed cell death (apoptosis) represents a hallmark of cancer. Besides genetic aberrations, the supportive and protective MM BM milieu, which is constituted by cytokines and growth factors, intercellular and cell: extracellular matrix (ECM) interactions and exosomes, in particular, plays a key role in the abundance of pro-survival members of the Bcl-2 family (i.e., Mcl-1, Bcl-2, and Bcl-xL) in tumor cells. Moreover, microenvironmental cues have also an impact on stability- regulating post-translational modifications of anti-apoptotic proteins including de/phosphorylation, polyubiquitination; on their intracellular binding affinities, and localization. Advances of our molecular knowledge on the escape of cancer cells from apoptosis have informed the development of a new class of small molecules that mimic the action of BH3-only proteins. Indeed, approaches to directly target anti-apoptotic Bcl-2 family members are among today's most promising therapeutic strategies and BH3-mimetics (i.e., venetoclax) are currently revolutionizing not only the treatment of CLL and AML, but also hold great therapeutic promise in MM. Furthermore, approaches that activate apoptotic pathways indirectly via modification of the tumor microenvironment have already entered clinical practice. The present review article will summarize our up-to-date knowledge on molecular mechanisms by which the MM BM microenvironment, cytokines, and growth factors in particular, mediates tumor cell evasion from apoptosis. Moreover, it will discuss some of the most promising science- derived therapeutic strategies to overcome Bcl-2- mediated tumor cell survival in order to further improve MM patient outcome.
Collapse
Affiliation(s)
- Osman Aksoy
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Judith Lind
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Vincent Sunder-Plaßmann
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Sonia Vallet
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
| | - Klaus Podar
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria.
| |
Collapse
|
2
|
Gupta VA, Ackley J, Kaufman JL, Boise LH. BCL2 Family Inhibitors in the Biology and Treatment of Multiple Myeloma. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2021; 11:11-24. [PMID: 33737856 PMCID: PMC7965688 DOI: 10.2147/blctt.s245191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Although much progress has been made in the treatment of multiple myeloma, the majority of patients fail to be cured and require numerous lines of therapy. Inhibitors of the BCL2 family represent an exciting new class of drugs with a novel mechanism of action that are likely to have activity as single agents and in combination with existing myeloma therapies. The BCL2 proteins are oncogenes that promote cell survival and are frequently upregulated in multiple myeloma, making them attractive targets. Venetoclax, a BCL2 specific inhibitor, is furthest along in development and has shown promising results in a subset of myeloma characterized by the t(11;14) translocation. Combining venetoclax with proteasome inhibitors and monoclonal antibodies has improved responses in a broader group of patients, but has come at the expense of a toxicity safety signal that requires additional follow-up. MCL1 inhibitors are likely to be effective in a broader range of patients and are currently in early clinical trials. This review will cover much of what is known about the biology of these drugs, biomarkers that predict response, mechanisms of resistance, and unanswered questions as they pertain to multiple myeloma.
Collapse
Affiliation(s)
- Vikas A Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - James Ackley
- Cancer Biology Graduate Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Zhu PJ, Yu ZZ, You QD, Jiang ZY. Myeloid cell leukemin-1 inhibitors: a growing arsenal for cancer therapy. Drug Discov Today 2020; 25:1873-1882. [PMID: 32771436 DOI: 10.1016/j.drudis.2020.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/12/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
B-cell lymphoma-2 (Bcl-2) family proteins, comprising proapoptotic proteins (Bax and Bak), antiapoptotic proteins (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, and A1) and BCL-2 homology domain 3 (BH3)-only proteins (Bid, Noxa, and Puma), have long been identified as pivotal apoptosis regulators. As an antiapoptotic member, myeloid cell leukemin-1 (Mcl-1) can bind with proapoptotic proteins and inhibit apoptosis. Mcl-1 is frequently overexpressed and closely associated with oncogenesis and poor prognosis in several cancers, posing a tremendous obstacle for cancer therapy. Recently, an increasing number of Mcl-1-selective small-molecule inhibitors have entered preclinical studies and advanced into clinical trials. In this review, we briefly introduce the role of Mcl-1 in apoptosis and highlight the recent development of Mcl-1 small-molecule inhibitors.
Collapse
Affiliation(s)
- Peng-Ju Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Ze-Zhou Yu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Teh CE, Gong JN, Segal D, Tan T, Vandenberg CJ, Fedele PL, Low MSY, Grigoriadis G, Harrison SJ, Strasser A, Roberts AW, Huang DCS, Nolan GP, Gray DHD, Ko ME. Deep profiling of apoptotic pathways with mass cytometry identifies a synergistic drug combination for killing myeloma cells. Cell Death Differ 2020; 27:2217-2233. [PMID: 31988495 PMCID: PMC7308383 DOI: 10.1038/s41418-020-0498-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma is an incurable and fatal cancer of immunoglobulin-secreting plasma cells. Most conventional therapies aim to induce apoptosis in myeloma cells but resistance to these drugs often arises and drives relapse. In this study, we sought to identify the best adjunct targets to kill myeloma cells resistant to conventional therapies using deep profiling by mass cytometry (CyTOF). We validated probes to simultaneously detect 26 regulators of cell death, mitosis, cell signaling, and cancer-related pathways at the single-cell level following treatment of myeloma cells with dexamethasone or bortezomib. Time-resolved visualization algorithms and machine learning random forest models (RFMs) delineated putative cell death trajectories and a hierarchy of parameters that specified myeloma cell survival versus apoptosis following treatment. Among these parameters, increased amounts of phosphorylated cAMP response element-binding protein (CREB) and the pro-survival protein, MCL-1, were defining features of cells surviving drug treatment. Importantly, the RFM prediction that the combination of an MCL-1 inhibitor with dexamethasone would elicit potent, synergistic killing of myeloma cells was validated in other cell lines, in vivo preclinical models and primary myeloma samples from patients. Furthermore, CyTOF analysis of patient bone marrow cells clearly identified myeloma cells and their key cell survival features. This study demonstrates the utility of CyTOF profiling at the single-cell level to identify clinically relevant drug combinations and tracking of patient responses for future clinical trials.
Collapse
Affiliation(s)
- Charis E Teh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jia-Nan Gong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Tania Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pasquale L Fedele
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Monash Haematology, Monash Health, Clayton, VIC, Australia
| | - Michael S Y Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Monash Haematology, Monash Health, Clayton, VIC, Australia
| | - George Grigoriadis
- Monash Haematology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Simon J Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew W Roberts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Garry P Nolan
- Baxter Laboratory for Stem Cell Biology, Stanford School of Medicine, Stanford, CA, USA.
- Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA.
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Melissa E Ko
- Baxter Laboratory for Stem Cell Biology, Stanford School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Luo Y, Hua T, You X, Lou J, Yang X, Tang N. Effects of MiR-107 on The Chemo-drug Sensitivity of Breast Cancer Cells. Open Med (Wars) 2019; 14:59-65. [PMID: 31346547 PMCID: PMC6642800 DOI: 10.1515/med-2019-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Background A growing body of evidence indicates that aberrant expression of miR-107 plays a core role in cancers. This study aims to demonstrate the function of miR-107 and its roles in chemo-drug resistance in breast cancer cells. Methodology CCK-8 assays were carried out to test the effect of miR-107 mimics on the proliferation of MCF-7 cells. The apoptosis level of each group was detected by flow cytometry. miR-107 level, mRNA levels of Bcl-2/Bax and TRIAP1 were detected by quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis. Protein levels of Bcl-2/Bax, p-Akt/Akt in MCF-7 cells were detected by using Western Blot. Lastly, the dual luciferase reporter gene assay system was used to confirm interaction between miR-107 and its target gene TRIAP1. Results CCK-8 assays indicated that miR-107 mimics augmented Taxol-induced cell viability inhibition. Flow cytometry showed that miR-107 mimics augmented Taxol-induced elevation of cell apoptosis. qRT-PCR analysis revealed that miR-107 mimics inhibited the mRNA expression of Bcl-2 and induced the mRNA level of Bax. Western Blotting indicated that miR-107 mimics inhibited the expression of proteins Bcl-2 and p-Akt, and induced the expression of Bax, while showing no significant effects on Akt. The relative luciferase activity revealed that oncogene TRIAP1 is a potential target gene of miR-107. Conclusions miR-107 plays a role in regulating chemo-drug sensitivity in mammary cancer cell by targeting TRIAP1.
Collapse
Affiliation(s)
- Yong Luo
- Breast and Thyroid Surgery, Ningbo Medical Center LiHuili Eastern Hospital, Ningbo 315000, Zhejiang, China
| | - Tebo Hua
- Breast and Thyroid Surgery, Ningbo Medical Center LiHuili Eastern Hospital, Ningbo 315000, Zhejiang, China
| | - Xia You
- Department Of Quality Control, Mindong Hospital Affiliated to Fujian Medical University, Fu'an 355000, Fujian, China
| | - Jinfeng Lou
- Department Of Quality Control, Mindong Hospital Affiliated to Fujian Medical University, Fu'an 355000, Fujian, China
| | - Xuxiong Yang
- Oncological Surgery, Mindong Hospital Affiliated to Fujian Medical University, Fu'an 355000, Fujian, China
| | - Ningwen Tang
- Mindong Hospital Affiliated to Fujian Medical University, NO. 89 Heshan Road, Fu'an 355000, Fujian, China
| |
Collapse
|
6
|
Chang CW, Chen YS, Chen CC, Chan IO, Chen CC, Sheu SJ, Lin TW, Chou SH, Liu CJ, Lee TC, Lo JF. Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and src activity using an active component of antrodia cinnamomea mycelia. Oncotarget 2018; 7:73016-73031. [PMID: 27682875 PMCID: PMC5341960 DOI: 10.18632/oncotarget.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purified from Antrodia cinnamomea Mycelia extract (ACME), effectively abrogated the ALDH activity and abolished the CICs in head and neck squamous cell carcinoma cells (HNSCCs). Consequently, YMGKI-2 treatment suppressed self-renewal ability and expression of stemness signature genes (Oct-4 and Nanog) of sphere cells with enriched CICs. Moreover, YMGKI-2 treated sphere cells displayed reduction of CICs properties and promotion of cell differentiation, but not significant cytotoxicity. YMGKI-2 treatment also attenuated the tumorigenicity of HNSCC cells in vivo. Mechanistically, treatment of YMGKI-2 resulted in inactivation of STAT3 and Src. Lastly, combinatorial treatments with YMGKI-2 and standard chemotherapeutic drugs (cisplatin or Fluorouracil) restored the chemosensivity on sphere cells and cisplatin-resistant HNSCC cells. Together, we demonstrate that YMGKI-2 treatment effectively induces differentiation and reduces tumorigenicity of CICs. Further, combined treatment of YMGKI-2 and conventional chemotherapy can overcome chemoresistance. These results suggest that YMGKI-2 treatment may be used to improve future clinical responses in head and neck cancer treatment through targeting CICs.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Syuan Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chih Chen
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Ik-On Chan
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Chinese Medical Science and Institute of Medical Science, China Medical University, Taichung, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
8
|
Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochem Soc Trans 2016; 44:371-6. [PMID: 27068942 DOI: 10.1042/bst20150253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/15/2022]
Abstract
Chimaeric antigen receptor (CAR) T-cells have shown impressive results in patients with B-cell leukaemia. Yet, in patients with lymphoma durable responses are still rare and heavy preconditioning required. Apoptosis resistance is considered a hallmark of cancer, often conveyed by a halted apoptosis signalling. Tumours regularly skew the balance of the components of the apoptotic machinery either through up-regulating anti-apoptotic proteins or silencing pro-apoptotic ones. Malignant B-cells frequently up-regulate anti-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins leading to therapy resistance. CAR T-cells kill tumour cells via apoptosis induction and their efficacy may be affected by the level of Bcl-2 family proteins. Hence, there is an interesting possibility to increase the effect of CAR T-cell therapy by combining it with apoptosis inhibitor blockade agents. Compounds that inhibit Bcl-2, B-cell lymphoma extra large (Bcl-xL) and Bcl-2-like protein 2 (Bcl-w), can restore execution of apoptosis in tumour cells or sensitize them to other apoptosis-dependent treatments. Hence, there is a great interest to combine such agents with CAR T-cell therapy to potentiate the effect of CAR T-cell killing. This review will focus on the potential of targeting the apoptotic machinery to sensitize tumour cells to CAR T-cell killing.
Collapse
|
9
|
Kim LH, Shin JA, Jang B, Yang IH, Won DH, Jeong JH, Chung TH, Cho NP, Cho SD. Sorafenib potentiates ABT-737-induced apoptosis in human oral cancer cells. Arch Oral Biol 2016; 73:1-6. [PMID: 27632413 DOI: 10.1016/j.archoralbio.2016.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/14/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The mimetic BH3 ABT-737, a potent inhibitor of anti-apoptotic Bcl-2 family proteins, has potential as anti-cancer drug in many cancers. Recently, patients treated with ABT-737 have developed drug tolerance during cancer therapy. Therefore, we examined whether ABT-737 is effective in killing MC-3 and HSC-3 human oral cancer cells either alone or in combination with the oncogenic kinase inhibitor, sorafenib. DESIGN The potentiating activities of sorafenib in ABT-737-induced apoptosis were determined using trypan blue exclusion assay, DAPI staining, cell viability assay and Western blot analysis. RESULTS Combined use of ABT-737 and sorafenib synergistically suppressed cell viability and induced apoptosis compared with either compound individually. The combination of ABT-737 and sorafenib altered only Bax and Bak proteins and their activations, resulting in mitochondrial translocation of Bax from the cytosol. Additionally, combination treatment-mediated apoptosis may be correlated with ERK and STAT3 pathways. CONCLUSIONS These results suggest that sorafenib may effectively overcome ABT-737 resistance to apoptotic cell death, which can be a new potential chemotherapeutic strategy against human oral cancer.
Collapse
Affiliation(s)
- Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Ji-Ae Shin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Alkek Building for Biomedical Research, Houston, TX, 77030, USA
| | - Boonsil Jang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Dong-Hoon Won
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Joseph H Jeong
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tae-Ho Chung
- Department of Animal Resources Science, Joongbu University, Chungnam, 32713, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
10
|
Lavik AR, Zhong F, Chang MJ, Greenberg E, Choudhary Y, Smith MR, McColl KS, Pink J, Reu FJ, Matsuyama S, Distelhorst CW. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget 2016; 6:27388-402. [PMID: 26317541 PMCID: PMC4694997 DOI: 10.18632/oncotarget.4489] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
Bcl-2 inhibits apoptosis by two distinct mechanisms but only one is targeted to treat Bcl-2-positive malignancies. In this mechanism, the BH1-3 domains of Bcl-2 form a hydrophobic pocket, binding and inhibiting pro-apoptotic proteins, including Bim. In the other mechanism, the BH4 domain mediates interaction of Bcl-2 with inositol 1,4, 5-trisphosphate receptors (IP3Rs), inhibiting pro-apoptotic Ca2+ signals. The current anti-Bcl-2 agents, ABT-263 (Navitoclax) and ABT-199 (Venetoclax), induce apoptosis by displacing pro-apoptotic proteins from the hydrophobic pocket, but do not inhibit Bcl-2-IP3R interaction. Therefore, to target this interaction we developed BIRD-2 (Bcl-2 IP3 Receptor Disruptor-2), a decoy peptide that binds to the BH4 domain, blocking Bcl-2-IP3R interaction and thus inducing Ca2+-mediated apoptosis in chronic lymphocytic leukemia, multiple myeloma, and follicular lymphoma cells, including cells resistant to ABT-263, ABT-199, or the Bruton’s tyrosine kinase inhibitor Ibrutinib. Moreover, combining BIRD-2 with ABT-263 or ABT-199 enhances apoptosis induction compared to single agent treatment. Overall, these findings provide strong rationale for developing novel therapeutic agents that mimic the action of BIRD-2 in targeting the BH4 domain of Bcl-2 and disrupting Bcl-2-IP3R interaction.
Collapse
Affiliation(s)
- Andrew R Lavik
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Fei Zhong
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Ming-Jin Chang
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Edward Greenberg
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA.,Department of Medicine, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuvraj Choudhary
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Mitchell R Smith
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Karen S McColl
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - John Pink
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Frederic J Reu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Shigemi Matsuyama
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Clark W Distelhorst
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Lee T, Paquet M, Larsson O, Pelletier J. Tumor cell survival dependence on the DHX9 DExH-box helicase. Oncogene 2016; 35:5093-105. [PMID: 26973242 PMCID: PMC5023453 DOI: 10.1038/onc.2016.52] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 12/23/2022]
Abstract
The ATP-dependent DExH/D-box helicase DHX9 is a key participant in a number of gene regulatory steps, including transcriptional, translational, microRNA-mediated control, DNA replication, and maintenance of genomic stability. DHX9 has also been implicated in tumor cell maintenance and drug response. Here, we report that inhibition of DHX9 expression is lethal to human cancer cell lines and murine Eµ−Myc lymphomas. Using a novel conditional shDHX9 mouse model, we demonstrate that sustained and prolonged (6 months) suppression of DHX9 does not result in any deleterious effects at the organismal level. Body weight, blood biochemistry, and histology of various tissues were comparable to control mice. Global gene expression profiling revealed that although reduction of DHX9 expression resulted in multiple transcriptome changes, these were relatively benign and did not lead to any discernible phenotype. Our results demonstrate a robust tolerance for systemic DHX9 suppression in vivo and support the targeting of DHX9 as an effective and specific chemotherapeutic approach.
Collapse
Affiliation(s)
- T Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - M Paquet
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec
| | - O Larsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - J Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Punnoose EA, Leverson JD, Peale F, Boghaert ER, Belmont LD, Tan N, Young A, Mitten M, Ingalla E, Darbonne WC, Oleksijew A, Tapang P, Yue P, Oeh J, Lee L, Maiga S, Fairbrother WJ, Amiot M, Souers AJ, Sampath D. Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models. Mol Cancer Ther 2016; 15:1132-44. [DOI: 10.1158/1535-7163.mct-15-0730] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022]
|
13
|
Sobhani M, Abdi J, Manujendra SN, Chen C, Chang H. PRIMA-1Met induces apoptosis in Waldenström's Macroglobulinemia cells independent of p53. Cancer Biol Ther 2016; 16:799-806. [PMID: 25803193 DOI: 10.1080/15384047.2015.1026482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PRIMA-1Met has shown promising preclinical activity in various cancer types. However, its effect on Waldenström's Macroglobulinemia (WM) cells as well as its exact mechanism of action is still elusive. In this study, we evaluated the anti- tumor activity of PRIMA-1Met alone and in combination with dexamethasone or bortezomib in WM cell lines and primary samples. Treatment of WM cells with PRIMA-1Met resulted in induction of apoptosis, inhibition of migration and suppression of colony formation. Upon PRIMA-1Met treatment, p73 was upregulated and Bcl-xL was down-regulated while no significant change in expression of p53 was observed. Furthermore, siRNA knockdown of p53 in WM cell line did not influence the PRIMA-1Met-induced apoptotic response whereas silencing of p73 inhibited latter response in WM cells. Importantly, combined treatment of BCWM-1 cells with PRIMA-1Met and dexamethasone or bortezomib induced synergistic reduction in cell survival. Our study provides insights into the mechanisms of anti-WM activity of PRIMA-1Met and supports further clinical evaluation of PRIMA-1Met as a potential novel therapeutic intervention in WM.
Collapse
Affiliation(s)
- Mona Sobhani
- a Division of Molecular and Cellular Biology; Toronto General Hospital Research Institute ; Toronto , Ontario , Canada
| | | | | | | | | |
Collapse
|
14
|
Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 2016; 16:2129-44. [PMID: 25824729 DOI: 10.7314/apjcp.2015.16.6.2129] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.
Collapse
Affiliation(s)
- Samira Goldar
- Department of Biochemistry and Clinical Labratorary, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
15
|
Baranski Z, de Jong Y, Ilkova T, Peterse EF, Cleton-Jansen AM, van de Water B, Hogendoorn PC, Bovée JV, Danen EH. Pharmacological inhibition of Bcl-xL sensitizes osteosarcoma to doxorubicin. Oncotarget 2015; 6:36113-25. [PMID: 26416351 PMCID: PMC4742165 DOI: 10.18632/oncotarget.5333] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
High-grade conventional osteosarcoma is the most common primary bone tumor. Prognosis for osteosarcoma patients is poor and resistance to chemotherapy is common. We performed an siRNA screen targeting members of the Bcl-2 family in human osteosarcoma cell lines to identify critical regulators of osteosarcoma cell survival. Silencing the anti-apoptotic family member Bcl-xL but also the pro-apoptotic member Bak using a SMARTpool of siRNAs as well as 4/4 individual siRNAs caused loss of viability. Loss of Bak impaired cell cycle progression and triggered autophagy. Instead, silencing Bcl-xL induced apoptotic cell death. Bcl-xL was expressed in clinical osteosarcoma samples but mRNA or protein levels did not significantly correlate with therapy response or survival. Nevertheless, pharmacological inhibition of a range of Bcl-2 family members showed that inhibitors targeting Bcl-xL synergistically enhanced the response to the chemotherapeutic agent, doxorubicin. Indeed, in osteosarcoma cells strongly expressing Bcl-xL, the Bcl-xL-selective BH3 mimetic, WEHI-539 potently enhanced apoptosis in the presence of low doses of doxorubicin. Our results identify Bcl-xL as a candidate drug target for sensitization to chemotherapy in patients with osteosarcoma.
Collapse
Affiliation(s)
- Zuzanna Baranski
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Yvonne de Jong
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Elisabeth F.P. Peterse
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Bob van de Water
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | | | - Judith V.M.G. Bovée
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik H.J. Danen
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Farsinejad S, Gheisary Z, Ebrahimi Samani S, Alizadeh AM. Mitochondrial targeted peptides for cancer therapy. Tumour Biol 2015; 36:5715-25. [DOI: 10.1007/s13277-015-3719-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/24/2015] [Indexed: 12/16/2022] Open
|
17
|
Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells. Mutat Res 2015; 777:23-32. [PMID: 25916945 DOI: 10.1016/j.mrfmmm.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict some cancer survivors treated with conventional DNA-damaging anti-cancer therapies.
Collapse
|
18
|
The role of BH3-mimetic drugs in the treatment of pediatric hepatoblastoma. Int J Mol Sci 2015; 16:4190-208. [PMID: 25690034 PMCID: PMC4346952 DOI: 10.3390/ijms16024190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Pediatric hepatoblastoma (HB) is commonly treated by neoadjuvant chemotherapy and surgical tumor resection according to international multicenter trial protocols. Complete tumor resection is essential and survival rates up to 95% have now been achieved in those tumors classified as standard-risk HB. Drug resistance and occurrence of metastases remain the major challenges in the treatment of HB, especially in high-risk tumors. These conditions urgently require the development of alternative therapeutic strategies. One of those alternatives is the modulation of apoptosis in HB cells. HBs regularly overexpress anti-apoptotic proteins of the Bcl-family in comparison to healthy liver tissue. This fact may contribute to the development of chemoresistance of HB cells. Synthetic small inhibitory molecules with BH3-mimetic effects, such as ABT-737 and obatoclax, enhance the susceptibility of tumor cells to different cytotoxic drugs and thereby affect initiator proteins of the apoptosis cascade via the intrinsic pathway. Besides additive effects on HB cell viability when used in combination with cytotoxic drugs, BH3-mimetics also play a role in preventing metastasation by reducing adhesion and inhibiting cell migration abilities. Presumably, including additive BH3-mimetic drugs into existing therapeutic regimens in HB patients might allow dose reduction of established cytotoxic drugs and thereby associated immanent side effects, while maintaining the antitumor activity. Furthermore, reduction of tumor growth and inhibition of tumor cell dissemination may facilitate complete surgical tumor resection, which is mandatory in this tumor type resulting in improved survival rates in high-risk HB. Currently, there are phase I and phase II clinical trials in several cancer entities using this potential target. This paper reviews the available literature regarding the use of BH3-mimetic drugs as single agents or in combination with chemotherapy in various malignancies and focuses on results in HB cells.
Collapse
|
19
|
Bieghs L, Lub S, Fostier K, Maes K, Van Valckenborgh E, Menu E, Johnsen HE, Overgaard MT, Larsson O, Axelson M, Nyegaard M, Schots R, Jernberg-Wiklund H, Vanderkerken K, De Bruyne E. The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget 2014; 5:11193-208. [PMID: 25008202 PMCID: PMC4294345 DOI: 10.18632/oncotarget.1933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/30/2014] [Indexed: 12/22/2022] Open
Abstract
The ABT-analogous 737, 263 and 199 are BH3 mimetics showing potent anti-myeloma (MM) activity, but only on defined molecular subgroups of MM patients presenting a Bcl-2high/Mcl-1low profile. IGF-1 is a major survival factor in MM regulating the expression of Bcl-2 proteins and might therefore be a resistance factor to these ABT-analogous. We first show that IGF-1 protected human MM cell lines (HMCLs) against ABT-737. Concurrently, the IGF-1 receptor inhibitor picropodophyllin (PPP) synergistically sensitized HMCL, primary human MM and murine 5T33MM cells to ABT-737 and ABT-199 by further decreasing cell viability and enhancing apoptosis. Knockdown of Bcl-2 by shRNA protected MM cells to ABT-737, while Mcl-1 shRNA sensitized the cells. PPP overcame the Bcl-2 dependency of ABT-737, but failed to completely overcome the protective effect of Mcl-1. In vivo, co-treatment of 5T33MM bearing mice significantly decreased tumor burden and prolonged overall survival both in a prophylactic and therapeutic setting. Interestingly, proteasome inhibitor resistant CD138- 5T33MM cells were more sensitive to ABT-737, whereas PPP alone targeted the CD138+ cells more effectively. After co-treatment, both subpopulations were targeted equally. Together, the combination of an IGF-1R inhibitor and an ABT-analogue displays synergistic anti-myeloma activity providing the rational for further (pre)clinical testing.
Collapse
Affiliation(s)
- Liesbeth Bieghs
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Haematology, Aalborg Hospital, Aalborg University, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Susanne Lub
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karel Fostier
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hans E. Johnsen
- Department of Haematology, Aalborg Hospital, Aalborg University, Denmark
| | | | - Olle Larsson
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Magnus Axelson
- Department of Clinical Chemistry, Karolinska Hospital, Stockholm, Sweden
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rik Schots
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
20
|
Giedt RJ, Sprachman MM, Yang KS, Weissleder R. Imaging cellular distribution of Bcl inhibitors using small molecule drug conjugates. Bioconjug Chem 2014; 25:2081-5. [PMID: 25333750 PMCID: PMC4240345 DOI: 10.1021/bc500433k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Overexpression of anti-apoptotic
proteins such as Bcl-2 is a cellular
mechanism to evade apoptosis; consequently, Bcl-2 inhibitors are being
developed as anticancer agents. In this work, we have synthesized
a fluorescent version of ABT-199 in an effort to visualize a drug
surrogate by high resolution imaging. We show that this fluorescent
conjugate has comparable Bcl-2 binding efficacy and cell line potency
to the parent compound and can be used as an imaging agent in several
cancer cell types. We anticipate that this agent will be a valuable
tool for studying the single-cell distribution and pharmacokinetics
of ABT-199 as well the broader group of BH3-mimetics.
Collapse
Affiliation(s)
- Randy J Giedt
- Center for Systems Biology, Massachusetts General Hospital , 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | | | | | | |
Collapse
|
21
|
Biased and unbiased strategies to identify biologically active small molecules. Bioorg Med Chem 2014; 22:4474-89. [DOI: 10.1016/j.bmc.2014.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
|
22
|
Mohana-Kumaran N, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Res 2014; 27:525-39. [PMID: 24655414 DOI: 10.1111/pcmr.12242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small-molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL-2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3- or SMAC-mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3-mimetics indicate that the antiapoptotic BCL-2 protein MCL-1 and its antagonist NOXA are particularly important regulators of BCL-2 family signaling, while SMAC-mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF-inhibitors, which have already revolutionized melanoma treatment, are a clear priority.
Collapse
Affiliation(s)
- Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, NSW, Australia; School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
23
|
Némati F, de Montrion C, Lang G, Kraus-Berthier L, Carita G, Sastre-Garau X, Berniard A, Vallerand D, Geneste O, de Plater L, Pierré A, Lockhart B, Desjardins L, Piperno-Neumann S, Depil S, Decaudin D. Targeting Bcl-2/Bcl-XL induces antitumor activity in uveal melanoma patient-derived xenografts. PLoS One 2014; 9:e80836. [PMID: 24454684 PMCID: PMC3890263 DOI: 10.1371/journal.pone.0080836] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Uveal melanoma (UM) is associated with a high risk of metastases and lack of efficient therapies. Reduced capacity for apoptosis induction by chemotherapies is one obstacle to efficient treatments. Human UM is characterized by high expression of the anti-apoptotic protein Bcl-2. Consequently, regulators of apoptosis such as Bcl-2 family inhibitors may constitute an attractive approach to UM therapeutics. In this aim, we have investigated the efficacy of the Bcl-2/Bcl-XL inhibitor S44563 on 4 UM Patient-Derived Xenografts (PDXs) and derived-cell lines. EXPERIMENTAL DESIGN Four well characterized UM PDXs were used for in vivo experiments. S44563 was administered alone or combined with fotemustine either concomitantly or after the alkylating agent. Bcl-2, Bcl-XL, and Mcl-1 expressions after S44563 administration were evaluated by immunohistochemistry (IHC). RESULTS S44563 administered alone by at 50 and 100 mg/kg i.p. induced a significant tumour growth inhibition in only one xenograft model with a clear dose effect. However, when S44563 was concomitantly administered with fotemustine, we observed a synergistic activity in 3 out of the 4 tested models. In addition, S44563 administered after fotemustine induced a tumour growth delay in 2 out of 3 tested xenografts. Finally, IHC analyses showed that Bcl-2, Bcl-XL, and Mcl-1 expression were not modified after S44563 administration. CONCLUSION The novel anti-apoptotic experimental compound S44563, despite a relative low efficacy when administered alone, increased the efficacy of fotemustine in either concomitant or sequential combinations or indeed subsequent to fotemustine. These data support further exploration of potential therapeutic effect of Bcl-2/Bcl-xl inhibition in human UM.
Collapse
Affiliation(s)
- Fariba Némati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | | | - Guillaume Lang
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | | | - Guillaume Carita
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | | | - Aurélie Berniard
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | - David Vallerand
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | - Olivier Geneste
- I.R.I.S., Institut de Recherches International Servier, Suresnes, France
| | - Ludmilla de Plater
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
| | - Alain Pierré
- I.D.R.S., Institut de Recherches Servier, Croissy, France
| | - Brian Lockhart
- I.D.R.S., Institut de Recherches Servier, Croissy, France
| | | | | | - Stéphane Depil
- I.D.R.S., Institut de Recherches Servier, Croissy, France
- I.R.I.S., Institut de Recherches International Servier, Suresnes, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| |
Collapse
|
24
|
Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma. Cell Death Dis 2013; 4:e798. [PMID: 24030150 PMCID: PMC3789166 DOI: 10.1038/cddis.2013.306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/13/2013] [Accepted: 07/15/2013] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.
Collapse
|
25
|
Saha MN, Jiang H, Yang Y, Reece D, Chang H. PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa. Mol Cancer Ther 2013; 12:2331-41. [PMID: 24030633 DOI: 10.1158/1535-7163.mct-12-1166] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeting p53 by the small-molecule PRIMA-1(Met)/APR-246 has shown promising preclinical activity in various cancer types. However, the mechanism of PRIMA-1(Met)-induced apoptosis is not completely understood and its effect on multiple myeloma cells is unknown. In this study, we evaluated antitumor effect of PRIMA-1(Met) alone or its combination with current antimyeloma agents in multiple myeloma cell lines, patient samples, and a mouse xenograft model. Results of our study showed that PRIMA-1(Met) decreased the viability of multiple myeloma cells irrespective of p53 status, with limited cytotoxicity toward normal hematopoietic cells. Treatment of multiple myeloma cells with PRIMA-1(Met) resulted in induction of apoptosis, inhibition of colony formation, and migration. PRIMA-1(Met) restored wild-type conformation of mutant p53 and induced activation of p73 upregulating Noxa and downregulating Mcl-1 without significant modulation of p53 level. siRNA-mediated silencing of p53 showed a little effect on apoptotic response of PRIMA-1(Met), whereas knockdown of p73 led to substantial attenuation of apoptotic activity in multiple myeloma cells, indicating that PRIMA-1(Met)-induced apoptosis is, at least in part, p73-dependent. Importantly, PRIMA-1(Met) delayed tumor growth and prolonged survival of mice bearing multiple myeloma tumor. Furthermore, combined treatment of PRIMA-1(Met) with dexamethasone or doxorubicin displayed synergistic effects in both multiple myeloma cell lines and primary multiple myeloma samples. Consistent with our in vitro observations, cotreatment with PRIMA-1(Met) and dexamethasone resulted in enhanced antitumor activity in vivo. Our study for the first time shows antimyeloma activity of PRIMA-1(Met) and provides the rationale for its clinical evaluation in patients with multiple myeloma, including the high-risk group with p53 mutation/deletion.
Collapse
Affiliation(s)
- Manujendra N Saha
- Corresponding Author: Hong Chang, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, ON M5G 2C4, Canada.
| | | | | | | | | |
Collapse
|
26
|
Shigemi H, Yamauchi T, Tanaka Y, Ueda T. Novel leukemic cell lines resistant to clofarabine by mechanisms of decreased active metabolite and increased antiapoptosis. Cancer Sci 2013; 104:732-9. [PMID: 23421409 DOI: 10.1111/cas.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 01/01/2023] Open
Abstract
Clofarabine (CAFdA) is incorporated into leukemic cells by human equilibrative nucleoside transporters (hENT) 1 and 2 and human concentrative nucleoside transporter (hCNT) 3. CAFdA is then phosphorylated to the active metabolite CAFdA triphosphate (CAFdATP) by deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Two novel CAFdA-resistant variants were established and their mechanism of resistance was elucidated. The two variants (HL/CAFdA20, HL/CAFdA80) were 20-fold and 80-fold more CAFdA-resistant than HL-60, respectively. mRNA levels of hENT1, hENT2 and hCNT3 were 53.9, 41.8 and 17.7% in HL/CAFdA20, and 30.8, 13.9 and 7.9% in HL/CAFdA80, respectively, compared with HL-60. Thus, the total nucleoside transport capacity of CAFdA was reduced in both variants. dCK protein levels were 1/2 in HL/CAFdA20 and 1/8 in HL/CAFdA80 of that of HL-60. dGK protein levels were 1/2 and 1/3, respectively. CAFdATP production after 4-h incubation with 10 μM CAFdA was 20 pmol/10(7) cells in HL/CAFdA20 and 3 pmol/10(7) cells in HL/CAFdA80 compared with 63 pmol/10(7) cells in HL-60. The decreased CAFdATP production attenuated drug incorporation into both mitochondrial and nuclear DNA. In addition, the two variants were resistant to CAFdA-induced apoptosis due to Bcl2 overexpression and decreased Bim. A Bcl2 inhibitor, ABT737, acted synergistically with CAFdA to inhibit the growth with combination index values of 0.27 in HL/CAFdA20 and 0.23 in HL/CAFdA80, compared with 0.65 in HL-60. Thus, the mechanism of resistance primarily included not only reduced CAFdATP production, but also increased antiapoptosis. The combination of CAFdA and ABT737 may be effective against CAFdA resistance.
Collapse
Affiliation(s)
- Hiroko Shigemi
- Division of Hematology and Oncology, University of Fukui, Eiheiji, Japan
| | | | | | | |
Collapse
|
27
|
Wendt MD. Discovery of ABT-263, a Bcl-family protein inhibitor: observations on targeting a large protein-protein interaction. Expert Opin Drug Discov 2013; 3:1123-43. [PMID: 23506184 DOI: 10.1517/17460441.3.9.1123] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The discovery of ABT-263, a rationally designed Bcl-2/Bcl-xL inhibitor at present in Phase I clinical trials for cancer, is described. Emphasis is placed on the specific hurdles overcome throughout the discovery process that relate to the nature of the targeted protein-protein interaction (PPI). OBJECTIVE/METHODS This review draws on observations from the experience of discovering ABT-263 and discusses them within the framework of the larger issue of discovering drugs targeting PPIs. Issues discussed include the 'hot spot' paradigm, hit and lead generation, serum protein binding, structure-based design, and in particular, hydrophobicity and molecular size and their relation to pharmacokinetic/pharmacodynamic properties. RESULTS/CONCLUSION Approaches to understanding obstacles thought of as being specifically attached to PPIs, and existing techniques to combat these obstacles, were very helpful in overcoming them. The example of ABT-263 provides evidence that the larger family of PPI targets is more tractable than may have been thought.
Collapse
Affiliation(s)
- Michael D Wendt
- Abbott Laboratories, Cancer Research, Global Pharmaceutical R&D, Dept R4N6, Bldg. AP10-3, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA +1 847 937 9305 ; +1 847 938 1004 ;
| |
Collapse
|
28
|
Tassone P, Neri P, Burger R, Di Martino MT, Leone E, Amodio N, Caraglia M, Tagliaferri P. Mouse models as a translational platform for the development of new therapeutic agents in multiple myeloma. Curr Cancer Drug Targets 2013; 12:814-22. [PMID: 22671927 PMCID: PMC3587184 DOI: 10.2174/156800912802429292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/25/2011] [Accepted: 12/08/2011] [Indexed: 12/22/2022]
Abstract
Mouse models of multiple myeloma (MM) are basic tools for translational research and play a fundamental role in the development of new therapeutics against plasma cell malignancies. All available models, including transplantable murine tumors in syngenic mice, xenografts of established human cell lines in immunocompromised mice and transgenic models that mirror specific steps of MM pathogenesis, have demonstrated some weaknesses in predicting clinical results, particularly for new drugs targeting the human bone marrow microenvironment (huBMM). The recent interest to models recapitulating the in vivo growth of primary MM cells in a human (SCID-hu) or humanized (SCID-synth-hu) host recipient has provided powerful platforms for the investigation of new compounds targeting MM and/or its huBMM. Here, we review and discuss strengths and weaknesses of the key in vivo models that are currently utilized in the MM preclinical investigation.
Collapse
Affiliation(s)
- P Tassone
- Medical Oncology, Magna Græcia University, Viale Europa, Campus Salvatore Venuta, 88100 Catanzaro, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu Q, Wang HG. Anti-cancer drug discovery and development: Bcl-2 family small molecule inhibitors. Commun Integr Biol 2013; 5:557-65. [PMID: 23336025 PMCID: PMC3541322 DOI: 10.4161/cib.21554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deregulated apoptosis is a hallmark of cancer, and the B-cell lymphoma-2 (Bcl-2) family of proteins is pivotal to mediating the intrinsic pathway of this process. Recent advances have yielded both pan-Bcl-2 small molecule inhibitors (SMIs) that inhibit both the Bcl-2 and the Mcl-1 arm of the Bcl-2 family anti-apoptotic proteins, as well as selective SMIs to differentially target the two arms. Of these SMIs, ABT-263 (navitoclax), AT-101 [(-)-gossypol], and obatoclax (GX15-070) are currently in clinical trials for multiple cancers. While pan-Bcl-2 inhibitors such as AT-101 and obatoclax can be more toxic for inhibiting all members of the anti-apoptotic Bcl-2 family of proteins, resistance can quickly develop for ABT-263, a selective Bcl-2 inhibitor. In this article, we discuss the current status of Bcl-2 family SMIs in preclinical and clinical development. As Mcl-1 upregulation is a major mechanism of ABT-263 resistance, Mcl-1-specific inhibitors are expected to be efficacious both in combination/sequential treatments and as a single agent against cancers resistant to ABT-263.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania University College of Medicine; Hershey, PA USA
| | | |
Collapse
|
30
|
Wang H, Yang YB, Shen HM, Gu J, Li T, Li XM. ABT-737 induces Bim expression via JNK signaling pathway and its effect on the radiation sensitivity of HeLa cells. PLoS One 2012; 7:e52483. [PMID: 23285061 PMCID: PMC3527555 DOI: 10.1371/journal.pone.0052483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/19/2012] [Indexed: 01/16/2023] Open
Abstract
ABT-737 is a BH3 mimetic small molecule inhibitor that can effectively inhibit the activity of antiapoptotic Bcl-2 family proteins including Bcl2, Bcl-xL and Bcl-w, and further enhances the effect of apoptosis by activating the proapoptotic proteins (t-Bid, Bad, Bim). In this study, we demonstrate that ABT-737 improved the radiation sensitivity of cervical cancer HeLa cells and thereby provoked cell apoptosis. Our results show that ABT-737 inhibited HeLa cell proliferation and activated JNK and its downstream target c-Jun, which caused the up-regulation of Bim expression. Blockade of JNK/c-Jun signaling pathway resulted in significant down-regulation of ABT-737-induced Bim mRNA and protein expression level. Also, ABT-737 could evoke the Bim promoter activity, and enhance the radiation sensitivity of HeLa cells via JNK/c-Jun and Bim signaling pathway. Our data imply that combination of ABT-737 and conventional radiation therapy might represent a highly effective therapeutic approach for future treatment of cervical cancer.
Collapse
Affiliation(s)
- Huan Wang
- Gynecology Department, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue-Bo Yang
- Gynecology Department, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui-Min Shen
- Gynecology Department, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Gu
- Gynecology Department, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tian Li
- Gynecology Department, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Mao Li
- Gynecology Department, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
LIEBER JUSTUS, DEWERTH ALEXANDER, WENZ JULIA, KIRCHNER BETTINA, EICHER CARMEN, WARMANN STEVENW, FUCHS JÖRG, ARMEANU-EBINGER SORIN. Increased efficacy of CDDP in a xenograft model of hepatoblastoma using the apoptosis sensitizer ABT-737. Oncol Rep 2012; 29:646-52. [DOI: 10.3892/or.2012.2150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/19/2012] [Indexed: 11/05/2022] Open
|
32
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2012; 17:61-75. [PMID: 23173842 DOI: 10.1517/14728222.2013.733001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation. AREAS COVERED This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors (SMIs) and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics. EXPERT OPINION Strategies to specifically identify and inhibit critical determinants that promote therapy resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying SMIs with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
Collapse
Affiliation(s)
- Shibu Thomas
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kharaziha P, De Raeve H, Fristedt C, Li Q, Gruber A, Johnsson P, Kokaraki G, Panzar M, Laane E, Osterborg A, Zhivotovsky B, Jernberg-Wiklund H, Grandér D, Celsing F, Björkholm M, Vanderkerken K, Panaretakis T. Sorafenib has potent antitumor activity against multiple myeloma in vitro, ex vivo, and in vivo in the 5T33MM mouse model. Cancer Res 2012; 72:5348-62. [PMID: 22952216 DOI: 10.1158/0008-5472.can-12-0658] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the expansion of clonal plasma blasts/plasma cells within the bone marrow that relies on multiple signaling cascades, including tyrosine kinase activated pathways, to proliferate and evade cell death. Despite emerging new treatment strategies, multiple myeloma remains at present incurable. Thus, novel approaches targeting several signaling cascades by using the multi-tyrosine kinase inhibitor (TKI), sorafenib, seem a promising treatment approach for multiple myeloma. Here, we show that sorafenib induces cell death in multiple myeloma cell lines and in CD138(+)-enriched primary multiple myeloma patient samples in a caspase-dependent and -independent manner. Furthermore, sorafenib has a strong antitumoral and -angiogenic activity in the 5T33MM mouse model leading to increased overall survival. Multiple myeloma cells undergo autophagy in response to sorafenib, and inhibition of this cytoprotective pathway potentiated the efficacy of this TKI. Mcl-1, a survival factor in multiple myeloma, is downregulated at the protein level by sorafenib allowing for the execution of cell death, as ectopic overexpression of this protein protects multiple myeloma cells. Concomitant targeting of Mcl-1 by sorafenib and of Bcl-2/Bcl-xL by the antagonist ABT737 improves the efficacy of sorafenib in multiple myeloma cell lines and CD138(+)-enriched primary cells in the presence of bone marrow stromal cells. Altogether, our data support the use of sorafenib as a novel therapeutic modality against human multiple myeloma, and its efficacy may be potentiated in combination with ABT737.
Collapse
Affiliation(s)
- Pedram Kharaziha
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska University Hospital Solna, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Premkumar DR, Jane EP, DiDomenico JD, Vukmer NA, Agostino NR, Pollack IF. ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation, and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines. J Pharmacol Exp Ther 2012; 341:859-72. [PMID: 22393246 DOI: 10.1124/jpet.112.191536] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We observed that glioma cells are differentially sensitive to N-{4-[4-(4'-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-4-(3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide (ABT-737) and administration of ABT-737 at clinically achievable doses failed to induce apoptosis. Although elevated Bcl-2 levels directly correlated with sensitivity to ABT-737, overexpression of Bcl-2 did not influence sensitivity to ABT-737. To understand the molecular basis for variable and relatively modest sensitivity to the Bcl-2 homology domain 3 mimetic drug ABT-737, the abundance of Bcl-2 family members was assayed in a panel of glioma cell lines. Bcl-2 family member proteins, Bcl-xL, Bcl-w, Mcl-1, Bax, Bak, Bid, and Noxa, were found to be expressed ubiquitously at similar levels in all cell lines tested. We then examined the contribution of other apoptosis-resistance pathways to ABT-737 resistance. Bortezomib, an inhibitor of nuclear factor-kappaB (NF-κB), was found to enhance sensitivity of ABT-737 in phosphatase and tensin homolog on chromosome 10 (PTEN)-wild type, but not PTEN-mutated glioma cell lines. We therefore investigated the association between phosphatidylinositol 3-kinase (PI3K)/Akt activation and resistance to the combination of ABT-737 and bortezomib in PTEN-deficient glioma cells. Genetic and pharmacological inhibition of PI3K inhibition sensitized PTEN-deficient glioma cells to bortezomib- and ABT-737-induced apoptosis by increasing cleavage of Bid protein, activation and oligomerization of Bax, and loss of mitochondrial membrane potential. Our data further suggested that PI3K/Akt-dependent protection may occur upstream of the mitochondria. This study demonstrates that interference with multiple apoptosis-resistance signaling nodes, including NF-κB, Akt, and Bcl-2, may be required to induce apoptosis in highly resistant glioma cells, and therapeutic strategies that target the PI3K/Akt pathway may have a selective role for cancers lacking PTEN function.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE Drug resistance remains a major challenge for the treatment of high-risk hepatoblastoma (HB). To enhance effectiveness of chemotherapy we modulate apoptosis in HB cells in vitro. METHODS Viability was monitored in HB cells (HuH6, HepT1) and fibroblasts in monolayer and spheroid cultures treated with ABT-737, obatoclax, HA14-1, and TW-37 and each in combination with CDDP, etoposide, irinotecan, paclitaxel, and DOXO in a MTT assay. Western blot analyses were performed to determine expressions of pro- and anti-apoptotic proteins. RESULTS Obatoclax and ABT-737 led to a dose-dependent decrease of viability in HB cells at concentrations above 0.3 μM. TW-37 and HA14-1 were less effective. ABT-737 and obatoclax had additive effects when combined with CDDP, etoposide, irinotecan, paclitaxel, or DOXO. This was also observed for fibroblast, however, for higher drug concentrations. In spheroid cultures, relative expression of Bcl-XL was increased, Bax was decreased, Mcl-1 was low, and Bcl-2 was not detected compared to 2D cultures, denoting an anti-apoptotic state in spheroids. Obatoclax and ABT-737 have overcome the resistance to CDDP. HuH6 cells have shown higher susceptability for apoptosis sensitizers than HepT1. CONCLUSION The data provide evidence that ABT-737 and obatoclax might improve treatment results in children with HB.
Collapse
|
36
|
|
37
|
Bajwa N, Liao C, Nikolovska-Coleska Z. Inhibitors of the anti-apoptotic Bcl-2 proteins: a patent review. Expert Opin Ther Pat 2011; 22:37-55. [PMID: 22195752 DOI: 10.1517/13543776.2012.644274] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The B-cell lymphoma-2 (Bcl-2) family of proteins is central to the regulation of apoptosis, which is vital for proper tissue development and cellular homeostasis. Anti-apoptotic proteins, members of the Bcl-2 family, are an important survival factor for many cancers and their overexpression has been associated with tumor initiation, progression, and resistance to current anticancer therapies. Therefore, strategies seeking to antagonize the function of Bcl-2 anti-apoptotic proteins have been extensively studied for developing a novel cancer therapy. AREAS COVERED This review covers research and patent literature of the last 15 years dealing with the discovery and development of inhibitors of the Bcl-2 protein family. EXPERT OPINION The feasibility of disrupting protein-protein interactions between anti-apoptotic and pro-apoptotic proteins, members of the Bcl-2 family, using peptidomimetics and small-molecule inhibitors has been successfully established. Three small-molecule inhibitors have entered human clinical trials, which will allow the evaluation of this potential therapeutic approach in cancer patients. It will be important to gain a better understanding of pan and selective Bcl-2 inhibitors in order to facilitate future drug design efforts.
Collapse
Affiliation(s)
- Naval Bajwa
- University of Michigan, Medical School, Department of Pathology, 4510E MSRB I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
38
|
Ailawadhi S, Miecznikowski J, Gaile DP, Wang D, Sher T, Mulligan G, Bryant B, Wilding GE, Mashtare T, Stein L, Masood A, Neuwirth R, Lee KP, Chanan-Khan A. Bortezomib mitigates adverse prognosis conferred by Bcl-2 overexpression in patients with relapsed/refractory multiple myeloma. Leuk Lymphoma 2011; 53:1174-82. [DOI: 10.3109/10428194.2011.637212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sikander Ailawadhi
- Division of Hematology, University of Southern California,
Los Angeles, CA, USA
| | | | | | - Dongliang Wang
- Department of Medicine, Roswell Park Cancer Institute,
Buffalo, NY, USA
| | - Taimur Sher
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University,
Syracuse, NY, USA
| | | | - Barb Bryant
- Millennium Pharmaceuticals,
Cambridge, MA, USA
| | | | | | | | - Aisha Masood
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University,
Syracuse, NY, USA
| | | | - Kelvin P. Lee
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University,
Syracuse, NY, USA
| | - Asher Chanan-Khan
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University,
Syracuse, NY, USA
| |
Collapse
|
39
|
van Oosterwijk JG, Herpers B, Meijer D, Briaire-de Bruijn IH, Cleton-Jansen AM, Gelderblom H, van de Water B, Bovée JVMG. Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance. Ann Oncol 2011; 23:1617-26. [PMID: 22112972 DOI: 10.1093/annonc/mdr512] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chondrosarcomas are malignant cartilage-forming tumors notorious for their resistance to conventional chemo- and radiotherapy. Postulated explanations describe the inaccessibility due to abundant hyaline cartilaginous matrix, presence of multidrug resistance (MDR) pumps, and expression of anti-apoptotic BCL-2 family members. MATERIALS AND METHODS We studied the sensitivity of chondrosarcoma cell lines (SW1353, CH2879, JJ012, OUMS27) and two primary cultures for doxorubicin and cisplatin. We examined the role of extracellular matrix using three-dimensional (3D) pellet models and MDR pump activity using fluorescence-activated cell sorter analysis. The role of BCL-2 family members was investigated using the BH3 mimetic ABT-737. RESULTS Chondrosarcoma cells showed highest resistance to cisplatin. 3D cell pellets, morphologically strongly resembling chondrosarcoma in vivo, confirmed nuclear incorporation of doxorubicin. MDR pump activity was heterogeneous among cultures. Chondrosarcoma cells responded to ABT-737 and combination with doxorubicin led to complete loss of cell viability and apoptosis with cytochrome C release. CONCLUSIONS Despite MDR pump activity and abundance of hyaline cartilaginous matrix, doxorubicin is able to accumulate in the cell nuclei. By repairing the apoptotic machinery, we were able to sensitize chondrosarcoma cells to doxorubicin and cisplatin, indicating an important role for BCL-2 family members in chemoresistance and a promising new treatment strategy for inoperable chondrosarcoma.
Collapse
Affiliation(s)
- J G van Oosterwijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
AbstractMultiple myeloma is a plasma cell malignancy that is heterogeneous with respect to its causative molecular abnormalities and the treatment response of patients. The Bcl-2 protein family is critical for myeloma cell survival. ABT-737 is a cell-permeant compound that binds to Bcl-2 and Bcl-xL but not to Mcl-1. Using a myeloma cell line collection (n = 25) representative of different molecular translocations, we showed that ABT-737 effectively kills a subset of cell lines (n = 6), with a median lethal dose ranging from 7 ± 0.4nM to 150 ± 7.5nM. Of interest, all sensitive cell lines harbored a t(11;14). We demonstrated that ABT-737–sensitive and ABT-737–resistant cell lines could be differentiated by the BCL2/MCL1 expression ratio. A screen of a public expression database of myeloma patients indicates that the BCL2/MCL1 ratio of t(11;14) and hyperdiploid patients was significantly higher than in all other groups (P < .001). ABT-737 first induced the disruption of Bcl-2/Bax, Bcl-2/Bik, or Bcl-2/Puma complexes, followed by the disruption of Bcl-2 heterodimers with Bak and Bim. Altogether, the identification of a subset of cell lines and primary cells effectively killed by ABT-737 alone supported the evaluation of ABT-263, an orally active counterpart to ABT-737, for the treatment of t(11;14) and hyperdiploid groups of myeloma harboring a Bcl-2high/Mcl-1low profile.
Collapse
|
41
|
Allaman-Pillet N, Oberson A, Munier F, Schorderet DF. The Bcl-2/Bcl-XL inhibitor ABT-737 promotes death of retinoblastoma cancer cells. Ophthalmic Genet 2011; 34:1-13. [PMID: 21955141 DOI: 10.3109/13816810.2011.615077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Retinoblastoma is a malignant tumor that usually develops in early childhood. During retinoblastoma spreading, RB1 gene inactivation is followed by additional genomic modifications which progressively lead to resistance of tumor cells to death. Drugs that act at downstream levels of death signaling pathways should therefore be interesting in killing retinoblastoma cells. ABT-737, a BH3 mimetic molecule effective at the mitochondrial level, has been shown to induce apoptosis in different human tumoral cell lines as well as in primary patient-derived cells, and in a mouse xenograph model. METHODS In this report, we analyzed the pro-death effect of ABT-737 on two human retinoblastoma cell lines, Y79 and WERI-Rb, as well as on the mouse photoreceptor cell line 661W. RESULTS We observed that ABT-737 was very effective as a single agent in inducing human WERI-Rb cells apoptosis without affecting the mouse 661W photoreceptor cells. However human Y79 cells were resistant to ABT-737, as a probable consequence of the absence of Bax. The high sensitivity of WERI-Rb to ABT-737 can be increased by downregulating Mcl-1 using the proteasome inhibitor MG-132. Preliminary analysis in primary mouse retinoblastoma tumoral cell lines predicts high sensitivity to ABT-737. CONCLUSION Our data suggest that ABT-737 or related compounds could be a highly effective drug in the treatment of some retinoblastomas.
Collapse
|
42
|
Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel A, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146:904-17. [PMID: 21889194 PMCID: PMC3187920 DOI: 10.1016/j.cell.2011.08.017] [Citation(s) in RCA: 2258] [Impact Index Per Article: 173.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.
Collapse
Affiliation(s)
- Jake E. Delmore
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Ghayas C. Issa
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Madeleine E. Lemieux
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, 450 Brookline Avenue, Boston, MA 02215
| | - Peter B. Rahl
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Junwei Shi
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Hannah M. Jacobs
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Efstathios Kastritis
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Timothy Gilpatrick
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Ronald M. Paranal
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Anna Schinzel
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Michael R. McKeown
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Timothy P. Heffernan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Christopher R. Vakoc
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - P. Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - William C. Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Andrew L. Kung
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, 450 Brookline Avenue, Boston, MA 02215
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| |
Collapse
|
43
|
Novel therapies in MM: from the aspect of preclinical studies. Int J Hematol 2011; 94:344-354. [PMID: 21881879 DOI: 10.1007/s12185-011-0917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
During the last decade, thalidomide, lenalidomide, and bortezomib have been approved by the US Food and Drug Administration for the treatment of MM; however, MM remains incurable. The development and progression of multiple myeloma (MM) is a complex multi-step process involving genetic abnormalities in tumor cells at both early and late stages. Moreover, soluble factors and cell-cell contact within the tumor bone marrow (BM) microenvironment promotes MM cell growth, survival, and drug resistance. A number of novel agents targeting both tumor cells and growth factors in the BM milieu have been developed. Currently they are under evaluation in preclinical studies, as single agents and/or in combination, to improve outcome of MM patients.
Collapse
|
44
|
Lieber J, Eicher C, Wenz J, Kirchner B, Warmann SW, Fuchs J, Armeanu-Ebinger S. The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma. BMC Cancer 2011; 11:362. [PMID: 21854558 PMCID: PMC3176244 DOI: 10.1186/1471-2407-11-362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/19/2011] [Indexed: 01/28/2023] Open
Abstract
Background The primary goal of current chemotherapy in hepatoblastoma (HB) is reduction of tumour volume and vitality to enable complete surgical resection and reduce risk of recurrence or metastatic disease. Drug resistance remains a major challenge for HB treatment. In some malignancies inhibition of anti-apoptotic pathways using small BH3 mimetic molecules like ABT-737 shows synergistic effects in combination with cystotoxic agents in vitro. Now we analysed toxicology and synergistic effects of this approach in HB cells and HB xenografts. Methods Viability was monitored in HB cells (HUH6 and HepT1) and fibroblasts treated with paclitaxel, ABT-737 and a combination of both in a MTT assay. HUH6 xenotransplants in NOD/LtSz-scid IL2Rγnull mice (NSG) were treated accordingly. Tumour volume and body weight were monitored. Xenografted tumours were analysed by histology and immunohistochemistry (Ki-67 and TUNEL assay). Results ABT-737 reduced viability in HUH6 and HepT1 cells cultures at concentrations above 1 μM and also enhanced the cytotoxic effect of paclitaxel when used in combination. Thereby paclitaxel could be reduced tenfold to achieve similar reduction of viability of tumour cells. In contrast no toxicity in fibroblasts was observed at the same regiments. Subcutaneous HB (HUH6) treated with paclitaxel (12 mg/kg body weight, n = 7) led to delayed tumour growth in the beginning of the experiment. However, tumour volume was similar to controls (n = 5) at day 25. Combination treatment with paclitaxel and ABT-737 (100 mg/kg, n = 8) revealed significantly 10 fold lower relative tumour volumes compared to control and paclitaxel groups. Paclitaxel dependent toxicity was observed in this mice strain. Conclusions Our results demonstrate enhancement of chemotherapy by using modulators of apoptosis. Further analyses should include improved pharmacological formulations of paclitaxel and BH3 mimetics in order to reduce toxicological effects. Sensitising HB to apoptosis may also render resistant HB susceptible to established chemotherapy regimens.
Collapse
Affiliation(s)
- Justus Lieber
- Department of Paediatric Surgery and Paediatric Urology, University Children's Hospital, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood 2011; 118:1329-39. [PMID: 21659544 DOI: 10.1182/blood-2011-01-327197] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dependence on Bcl-2 proteins is a common feature of cancer cells and provides a therapeutic opportunity. ABT-737 is an antagonist of antiapoptotic Bcl-2 proteins and therefore is a good predictor of Bcl-x(L)/Bcl-2 dependence. Surprisingly, analysis of Mcl-1-dependent multiple myeloma cell lines revealed codependence on Bcl-2/Bcl-x(L) in half the cells tested. Codependence is not predicted by the expression level of antiapoptotic proteins, rather through interactions with Bim. Consistent with these findings, acquired resistance to ABT-737 results in loss of codependence through redistribution of Bim to Mcl-1. Overall, these results suggest that complex interactions, and not simply expression patterns of Bcl-2 proteins, need to be investigated to understand Bcl-2 dependence and how to better use agents, such as ABT-737.
Collapse
|
46
|
Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI, Nefedova Y. Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther 2011; 9:3200-9. [PMID: 21159606 DOI: 10.1158/1535-7163.mct-10-0372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling through the receptor/transcriptional regulator Notch plays an important role in tumor cell survival. Recent studies have demonstrated that pharmacological inhibition of the Notch pathway with γ-secretase inhibitor (GSI) induces apoptosis of multiple myeloma (MM) cells via upregulation of the proapoptotic protein Noxa. ABT-737, a novel BH3 mimetic, was shown to block Bcl-2 and Bcl-xL and induce MM cell apoptosis. Here, we investigated whether the inhibition of Notch signaling could enhance the proapoptotic effect of ABT-737. The antimyeloma effect of ABT-737 on MM cell lines or primary cells was substantially increased by the addition of Notch inhibitor. The synergistic effect of the GSI+ABT-737 combination was mediated by activation of Bak and Bax and release of cytochrome c. While toxic for MM cells, the combination of GSI and ABT-737 did not affect survival of peripheral blood mononuclear cells isolated from healthy donors. In vivo experiments using xenograft and SCID-hu models of MM demonstrated a significant antitumor effect of the GSI/ABT-737 combination as compared to the effect of Notch or Bcl-2/Bcl-xL inhibitors alone. Thus, this drug combination may be therapeutically beneficial for patients with MM.
Collapse
Affiliation(s)
- Ming Li
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Peixoto PM, Dejean LM, Kinnally KW. The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion 2011; 12:14-23. [PMID: 21406252 DOI: 10.1016/j.mito.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/23/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Mitochondria communicate with the rest of the cell through channels located in their inner and outer membranes. Most of the time, the message is encoded by the flow of anions and cations e.g., through VDAC and PTP, respectively. However, proteins are also both imported and exported across the mitochondrial membranes e.g., through TOM and MAC, respectively. Transport through mitochondrial channels is exquisitely regulated and controls a myriad of processes; from energy production to cell death. Here, we examine the role of some of the mitochondrial channels involved in neurodegeneration, ischemia-reperfusion injury and cancer in the context of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Pablo M Peixoto
- New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, United States
| | | | | |
Collapse
|
48
|
Small-molecule inhibitors reveal a new function for Bcl-2 as a proangiogenic signaling molecule. Curr Top Microbiol Immunol 2011; 348:115-37. [PMID: 20941592 PMCID: PMC3812667 DOI: 10.1007/82_2010_109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer has a complex etiology and displays a wide range of cellular escape pathways that allow it to circumvent treatment. Signaling molecules functionally downstream of the circumvented pathways, and particularly at checkpoints where several of these pathways intersect, provide valuable targets for the development of novel anti-cancer drugs. Bcl-2, a pro-survival signaling molecule, is one such protein. This review examines the efficacy, potency, and function of several small molecule inhibitor drugs targeted to the Bcl-2 family of proteins. The review focuses on the compounds with most available data within the literature and discusses both the anti-cancer and the recently unveiled anti-angiogenic potential of this new class of drugs.
Collapse
|
49
|
Dalafave D. Design of Druglike Small Molecules for Possible Inhibition of Antiapoptotic BCL-2, BCL-W, and BFL-1 Proteins. Biomed Eng Comput Biol 2010. [DOI: 10.4137/becb.s5575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
New druglike small molecules with possible anticancer applications were computationally designed. The molecules formed stable complexes with antiapoptotic BCL-2, BCL-W, and BFL-1 proteins. These findings are novel because, to the best of the author's knowledge, molecules that bind all three of these proteins are not known. A drug based on them should be more economical and better tolerated by patients than a combination of drugs, each targeting a single protein. The calculated drug-related properties of the molecules were similar to those found in most commercial drugs. The molecules were designed and evaluated following a simple, yet effective procedure. The need for substantial computational resources often precludes researchers in many countries and small institutions from participating in the field. The procedure presented here offsets the problem by reducing the cost of involvement. The procedure can be used efficiently in the early phases of drug discovery to evaluate promising lead compounds in time- and cost-effective ways.
Collapse
Affiliation(s)
- D.S. Dalafave
- Physics Department, The College of New Jersey, Ewing, New Jersey, 08628 USA
| |
Collapse
|
50
|
Dalafave DS, Prisco G. Inhibition of Antiapoptotic BCL-XL, BCL-2, and MCL-1 Proteins by Small Molecule Mimetics. Cancer Inform 2010; 9:169-77. [PMID: 20838611 PMCID: PMC2935820 DOI: 10.4137/cin.s5065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Informatics and computational design methods were used to create new molecules that could potentially bind antiapoptotic proteins, thus promoting death of cancer cells. Apoptosis is a cellular process that leads to the death of damaged cells. Its malfunction can cause cancer and poor response to conventional chemotherapy. After being activated by cellular stress signals, proapoptotic proteins bind antiapoptotic proteins, thus allowing apoptosis to go forward. An excess of antiapoptotic proteins can prevent apoptosis. Designed molecules that mimic the roles of proapoptotic proteins can promote the death of cancer cells. The goal of our study was to create new putative mimetics that could simultaneously bind several antiapoptotic proteins. Five new small molecules were designed that formed stable complexes with BCL-2, BCL-XL, and MCL-1 antiapoptotic proteins. These results are novel because, to our knowledge, there are not many, if any, small molecules known to bind all three proteins. Drug-likeness studies performed on the designed molecules, as well as previous experimental and preclinical studies on similar agents, strongly suggest that the designed molecules may indeed be promising drug candidates. All five molecules showed “drug-like” properties and had overall drug-likeness scores between 81% and 96%. A single drug based on these mimetics should cost less and cause fewer side effects than a combination of drugs each aimed at a single protein. Computer-based molecular design promises to accelerate drug research by predicting potential effectiveness of designed molecules prior to laborious experiments and costly preclinical trials.
Collapse
Affiliation(s)
- D S Dalafave
- Physics Department, The College of New Jersey, Ewing, NJ, USA
| | | |
Collapse
|