1
|
Yadav SA, Vats VK, Sharma R, Mukherjee A, Satpati D. Influence of PEGylation on HER2-targeting retro A9 peptide analogue. Nucl Med Biol 2024; 138-139:108963. [PMID: 39383591 DOI: 10.1016/j.nucmedbio.2024.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Elevated levels of HER2 receptor in breast cancer can be targeted through receptor-specific peptides for precise detection and therapy by nuclear medicine approach. Previously reported retro analogue of A9 peptide had shown HER2-specificity with promising pharmacokinetic features. Hence, with an aim of further improving the circulation time of rL-A9 radiopeptide, long polyethylene glycol chain (PEG12) was introduced at the N-terminus of the peptide during solid phase synthesis and influence of PEGylation on biological profile was studied. [177Lu]Lu-DOTA-PEG12-rL-A9 demonstrated high specific cellular uptake (5.94 ± 0.09 %) in HER2-expressing human breast carcinoma SKBR3 cells and low nanomolar binding affinity (Kd = 34.58 ± 12.78 nM). Uptake in SKBR3 tumors induced in female SCID mice was higher at all the time points investigated (3, 24, 48 h) in comparison to the non-PEGylated radiopeptide, [177Lu]Lu-DOTA-rL-A9. Blocking studies led to 51 % reduction in accumulation of radioactivity in the tumor indicating specificity of the radiopeptide. Improved tumor-to-stomach and tumor-to-intestine ratios for [177Lu]Lu-DOTA-PEG12-rL-A9 compared to [177Lu]Lu-DOTA-rL-A9 at 48 h shall pave the way for better contrast and delineation of metastatic sites.
Collapse
Affiliation(s)
| | - V Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
2
|
Ducharme M, Hall L, Eckenroad W, Cingoranelli SJ, Houson HA, Jaskowski L, Hunter C, Larimer BM, Lapi SE. Evaluation of [ 89Zr]Zr-DFO-2Rs15d Nanobody for Imaging of HER2-Positive Breast Cancer. Mol Pharm 2023; 20:4629-4639. [PMID: 37552575 PMCID: PMC11606513 DOI: 10.1021/acs.molpharmaceut.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
One of the most aggressive forms of breast cancer involves the overexpression of human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in ∼25% of all breast cancers and is associated with increased proliferation, increased rates of metastasis, and poor prognosis. Treatment for HER2-positive breast cancer has vastly improved since the development of the monoclonal antibody trastuzumab (Herceptin) as well as other biological constructs. However, patients still commonly develop resistance, illustrating the need for newer therapies. Nanobodies have become an important focus for potential development as HER2-targeting imaging agents and therapeutics. Nanobodies have many favorable characteristics, including high stability in heat and nonphysiological pH, while maintaining their low-nanomolar affinity for their designed targets. Specifically, the 2Rs15d nanobody has been developed for targeting HER2 and has been evaluated as a diagnostic imaging agent for single-photon emission computed tomography (SPECT) and positron emission tomography (PET). While a construct of 2Rs15d with the positron emitter 68Ga is currently in phase I clinical trials, the only PET images acquired in preclinical or clinical research have been within 3 h postinjection. We evaluated our in-house produced 2Rs15d nanobody, conjugated with the chelator deferoxamine (DFO), and radiolabeled with 89Zr for PET imaging up to 72 h postinjection. [89Zr]Zr-DFO-2Rs15d demonstrated high stability in both phosphate-buffered saline (PBS) and human serum. Cell binding studies showed high binding and specificity for HER2, as well as prominent internalization. Our in vivo PET imaging confirmed high-quality visualization of HER2-positive tumors up to 72 h postinjection, whereas HER2-negative tumors were not visualized. Subsequent biodistribution studies quantitatively supported the significant HER2-positive tumor uptake compared to the negative control. Our studies fill an important gap in understanding the imaging and binding properties of the 2Rs15d nanobody at extended time points. As many therapeutic radioisotopes have single or multiday half-lives, this information will directly benefit the potential of the radiotherapy development of 2Rs15d for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Lucinda Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Whitney Eckenroad
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Luke Jaskowski
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Chanelle Hunter
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Benjamin M Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| |
Collapse
|
3
|
Cavallaro PA, De Santo M, Belsito EL, Longobucco C, Curcio M, Morelli C, Pasqua L, Leggio A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2476. [PMID: 37686984 PMCID: PMC10490457 DOI: 10.3390/nano13172476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Breast cancer represents the most common cancer type and one of the major leading causes of death in the female worldwide population. Overexpression of HER2, a transmembrane glycoprotein related to the epidermal growth factor receptor, results in a biologically and clinically aggressive breast cancer subtype. It is also the primary driver for tumor detection and progression and, in addition to being an important prognostic factor in women diagnosed with breast cancer, HER2 is a widely known therapeutic target for drug development. The aim of this review is to provide an updated overview of the main approaches for the diagnosis and treatment of HER2-positive breast cancer proposed in the literature over the past decade. We focused on the different targeting strategies involving antibodies and peptides that have been explored with their relative outcomes and current limitations that need to be improved. The review also encompasses a discussion on targeted peptides acting as probes for molecular imaging. By using different types of HER2-targeting strategies, nanotechnology promises to overcome some of the current clinical challenges by developing novel HER2-guided nanosystems suitable as powerful tools in breast cancer imaging, targeting, and therapy.
Collapse
Affiliation(s)
- Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Emilia Lucia Belsito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Camilla Longobucco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| |
Collapse
|
4
|
Kumar Sharma A, Satpati D, Sharma R, Das A, Dev Sarma H, Mukherjee A. Targeting HER2-Receptors with 177Lu-Labeled Triazole Stapled Cyclic Peptidomimetic. Bioorg Chem 2023; 135:106503. [PMID: 37037128 DOI: 10.1016/j.bioorg.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
In this study on-resin Cu(I)-catalyzed click reaction was performed to synthesize triazole-stapled cyclic peptidomimetic, DOTA-c[TZ]A9 targeting HER2 receptor expression in breast cancers. Spectroscopic (circular dichroism) and docking analysis provided evidence of enhanced helicity and secondary structure stabilization along with improved HER2 affinity in comparison to the corresponding linear peptide, DOTA-[Pra1, Aza7]A9. 177Lu-labeled cyclic peptide, 177Lu-DOTA-c[TZ]A9 displayed higher in vitro serum stability and in vivo metabolic stability and better HER2 binding affinity {Kd of 16.93 ± 3.02 nM} than the linear counterpart, [177Lu]DOTA-[Pra1, Aza7]A9 {Kd of 26.28 ± 2.87 nM}. Biodistribution profile in SKBR3 tumor bearing SCID mice demonstrated elevated radioactivity levels and prolonged retention of cyclic peptide in the tumor compared to the linear peptide. Thus, solid phase click cyclization technique can be extended towards preparation of triazole-stapled peptides targeting different receptors with improved stability and efficacy.
Collapse
|
5
|
Evaluation of 68Ga-Radiolabeled Peptides for HER2 PET Imaging. Diagnostics (Basel) 2022; 12:diagnostics12112710. [PMID: 36359554 PMCID: PMC9689602 DOI: 10.3390/diagnostics12112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
One in eight women will be diagnosed with breast cancer in their lifetime and approximately 25% of those cases will be HER2-positive. Current methods for diagnosing HER2-positive breast cancer involve using IHC and FISH from suspected cancer biopsies to quantify HER2 expression. HER2 PET imaging could potentially increase accuracy and improve the diagnosis of lesions that are not available for biopsies. Using two previously discovered HER2-targeting peptides, we modified each peptide with the chelator DOTA and a PEG2 linker resulting in DOTA-PEG2-GSGKCCYSL (P5) and DOTA-PEG2-DTFPYLGWWNPNEYRY (P6). Each peptide was labeled with 68Ga and was evaluated for HER2 binding using in vitro cell studies and in vivo tumor xenograft models. Both [68Ga]P5 and [68Ga]P6 showed significant binding to HER2-positive BT474 cells versus HER2-negative MDA-MB-231 cells ([68Ga]P5; 0.68 ± 0.20 versus 0.47 ± 0.05 p < 0.05 and [68Ga]P6; 0.55 ± 0.21 versus 0.34 ± 0.12 p < 0.01). [68Ga]P5 showed a higher percent injected dose per gram (%ID/g) binding to HER2-positive tumors two hours post-injection compared to HER2-negative tumors (0.24 ± 0.04 versus 0.12 ± 0.06; p < 0.05), while the [68Ga]P6 peptide showed significant binding (0.98 ± 0.22 versus 0.51 ± 0.08; p < 0.05) one hour post-injection. These results lay the groundwork for the use of peptides to image HER2-positive breast cancer.
Collapse
|
6
|
Sharma AK, Sharma R, Vats K, Sarma HD, Mukherjee A, Das T, Satpati D. Synthesis and comparative evaluation of 177Lu-labeled PEG and non-PEG variant peptides as HER2-targeting probes. Sci Rep 2022; 12:15720. [PMID: 36127494 PMCID: PMC9489682 DOI: 10.1038/s41598-022-19201-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Highest global cancer incidence of female breast cancer is a matter of great concern. HER2-positive breast cancers have high mortality rate hence detection at an early stage is vital for successful treatment, improved cancer care and survival rate. Radiolabeled peptides have emerged as new alternatives to radiolabeled antibodies to overcome the limitations of slow clearance and uptake in non-target tissues. Herein, DOTA-A9 peptide and its pegylated variant were constructed on solid phase and radiolabeled with [177Lu]LuCl3. [177Lu]DOTA-A9 and [177Lu]DOTA-PEG4-A9 displayed high binding affinity (Kd = 48.4 ± 1.4 and 55.7 ± 12.3 nM respectively) in human breast carcinoma SKBR3 cells. Two radiopeptides exhibited renal excretion and rapid clearance from normal organs. Uptake in SKBR3 tumor and tumor-to-background ratios were significantly higher (p < 0.05) for [177Lu]DOTA-PEG4-A9 at the three time points investigated. Xenografts could be clearly visualized by [177Lu]DOTA-PEG4-A9 in SPECT images at 3, 24 and 48 h p.i. indicating the potential for further exploration as HER2-targeting probe. The encouraging in vivo profile of PEG construct, [177Lu]DOTA-PEG4-A9 incentivizes future studies for clinical applications.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
7
|
Selection of Cancer Stem Cell-Targeting Agents Using Bacteriophage Display. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2394:787-810. [PMID: 35094358 DOI: 10.1007/978-1-0716-1811-0_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is a growing need to develop tumor targeting agents for aggressive cancers. Aggressive cancers frequently relapse and are resistant to various therapies. Cancer stem cells (CSCs) are believed to be the cause of relapse and the aggressive nature of many cancers. Targeting CSCs could lead to novel diagnostic and treatment options. Bacteriophage (phage) display is a powerful tool developed by George Smith in 1985 to aid in the discovery of CSC targeting agents. Phage display selections are typically performed in vitro against an immobilized target. There are inherent disadvantages with this technique that can be circumvented by performing phage display selections in vivo. However, in vivo phage display selections present new challenges. A combination of both in vitro and in vivo selections, however, can take advantage of both selection methods. In this chapter, we discuss in detail how to isolate a CSC like population of cells from an aggressive cancer cell line, perform in vivo and in vitro phage display selections against the CSCs, and then characterize the resulting phage/peptides for further use as a diagnostic and therapeutic tool.
Collapse
|
8
|
Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103645. [PMID: 34914854 PMCID: PMC8811829 DOI: 10.1002/advs.202103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Bacteriophages, also known as phages, are specific antagonists against bacteria. T7 phage has drawn massive attention in precision medicine owing to its distinctive advantages, such as short replication cycle, ease in displaying peptides and proteins, high stability and cloning efficiency, facile manipulation, and convenient storage. By introducing foreign gene into phage DNA, T7 phage can present foreign peptides or proteins site-specifically on its capsid, enabling it to become a nanoparticle that can be genetically engineered to screen and display a peptide or protein capable of recognizing a specific target with high affinity. This review critically introduces the biomedical use of T7 phage, ranging from the detection of serological biomarkers and bacterial pathogens, recognition of cells or tissues with high affinity, design of gene vectors or vaccines, to targeted therapy of different challenging diseases (e.g., bacterial infection, cancer, neurodegenerative disease, inflammatory disease, and foot-mouth disease). It also discusses perspectives and challenges in exploring T7 phage, including the understanding of its interactions with human body, assembly into scaffolds for tissue regeneration, integration with genome editing, and theranostic use in clinics. As a genetically modifiable biological nanoparticle, T7 phage holds promise as biomedical imaging probes, therapeutic agents, drug and gene carriers, and detection tools.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yan Li
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
- Department of Chemistry and BiochemistryStephenson Life Science Research CenterInstitute for Biomedical Engineering, Science and TechnologyUniversity of Oklahoma101 Stephenson ParkwayNormanOklahoma73019‐5251USA
| |
Collapse
|
9
|
Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules 2021; 26:molecules26216482. [PMID: 34770887 PMCID: PMC8588233 DOI: 10.3390/molecules26216482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
As the most frequently occurring cancer worldwide, breast cancer (BC) is the leading cause of cancer-related death in women. The overexpression of HER2 (human epidermal growth factor receptor 2) is found in about 15% of BC patients, and it is often associated with a poor prognosis due to the effect on cell proliferation, migration, invasion, and survival. As a result of the heterogeneity of BC, molecular imaging with HER2 probes can non-invasively, in real time, and quantitatively reflect the expression status of HER2 in tumors. This will provide a new approach for patients to choose treatment options and monitor treatment response. Furthermore, radionuclide molecular imaging has the potential of repetitive measurements, and it can help solve the problem of heterogeneous expression and conversion of HER2 status during disease progression or treatment. Different imaging probes of targeting proteins, such as monoclonal antibodies, antibody fragments, nanobodies, and affibodies, are currently in preclinical and clinical development. Moreover, in recent years, HER2-specific peptides have been widely developed for molecular imaging techniques for HER2-positive cancers. This article summarized different types of molecular probes targeting HER2 used in current clinical applications and the developmental trend of some HER2-specific peptides.
Collapse
|
10
|
Yu S, Lu Y, Su A, Chen J, Li J, Zhou B, Liu X, Xia Q, Li Y, Li J, Huang M, Ye Y, Zhao Q, Jiang S, Yan X, Wang X, Di C, Pan J, Su S. A CD10-OGP Membrane Peptolytic Signaling Axis in Fibroblasts Regulates Lipid Metabolism of Cancer Stem Cells via SCD1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101848. [PMID: 34363355 PMCID: PMC8498877 DOI: 10.1002/advs.202101848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) consist of heterogeneous subpopulations that play a critical role in the dynamics of the tumor microenvironment. The extracellular signals of CAFs have been attributed to the extracellular matrix, cytokines, cell surface checkpoints, and exosomes. In the present study, it is demonstrated that the CD10 transmembrane hydrolase expressed on a subset of CAFs supports tumor stemness and induces chemoresistance. Mechanistically, CD10 degenerates an antitumoral peptide termed osteogenic growth peptide (OGP). OGP restrains the expression of rate-limiting desaturase SCD1 and inhibits lipid desaturation, which is required for cancer stem cells (CSCs). Targeting CD10 significantly improves the efficacy of chemotherapy in vivo. Clinically, CD10-OGP signals are associated with the response to neoadjuvant chemotherapy in patients with breast cancer. The collective data suggest that a nexus between the niche and lipid metabolism in CSCs is a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shubin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - An Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yihong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yingying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qiyi Zhao
- Department of Infectious Diseasesthe Third Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver Disease Researchthe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Key Laboratory of Tropical Disease Control (Sun Yat‐sen University)Ministry of EducationGuangzhouGuangdong510080China
| | - Sushi Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xiaoqing Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Can Di
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiayao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Department of Infectious Diseasesthe Third Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510630China
- Department of ImmunologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
11
|
Abstract
Breast cancer continues to be the most lethal cancer type in women and one of the most diagnosed. Understanding Breast cancer receptor status is one of the most vital processes for determining treatment options. One type of breast cancer, human epidermal growth factor receptor 2 (HER2) positive, has approved receptor-based therapies including trastuzumab and pertuzumab that can significantly increase the likelihood of survival. Current methods to determine HER2 status include biopsies with immunohistochemical staining and/or fluorescence in situ hybridization. However, positron emission tomography (PET) imaging techniques using 89Zr-trastuzumab or 89Zr-pertuzumab are currently in clinical trials for a non-invasive, full body diagnostic approach. Although the antibodies have strong specificity to the HER2 positive lesions, challenges involving long post-injection time for imaging due to the blood circulation of the antibodies and matching of long-live isotopes leading to increased dose to the patient leave opportunities for alternative PET imaging probes. Peptides have been shown to allow for shorter injection-to-imaging time and can be used with shorter lived isotopes. HER2 specific peptides under development will help improve the diagnosis and potentially therapy options for HER2 positive breast cancer. Peptides showing specificity for HER2 could start widespread development of molecular imaging techniques for HER2 positive cancers.
Collapse
Affiliation(s)
- Maxwell Ducharme
- Department of Radiology, 9968University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Lapi
- Department of Radiology, 9968University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Beheshtirouy S, Mirzaei F, Eyvazi S, Tarhriz V. Recent Advances in Therapeutic Peptides for Breast Cancer Treatment. Curr Protein Pept Sci 2021; 22:74-88. [PMID: 33208071 DOI: 10.2174/1389203721999201117123616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer is a heterogeneous malignancy and is the second leading cause of mortality among women around the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapeutic approaches for the treatment of this malignancy. Among the novel methods, therapeutic peptides that target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acid monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides, such as specific binding on tumor cells surface, low molecular weight, and low toxicity on normal cells, make the peptides appealing therapeutic agents against solid tumors, particularly breast cancer. Also, the National Institutes of Health (NIH) describes therapeutic peptides as a suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells that can be used in the treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines that have been developed for the treatment of breast cancer.
Collapse
Affiliation(s)
- Samad Beheshtirouy
- Department of Cardiothoracic Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Mirzaei
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Khan NU, Ni J, Ju X, Miao T, Chen H, Han L. Escape from abluminal LRP1-mediated clearance for boosted nanoparticle brain delivery and brain metastasis treatment. Acta Pharm Sin B 2021; 11:1341-1354. [PMID: 34094838 PMCID: PMC8148067 DOI: 10.1016/j.apsb.2020.10.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer brain metastases (BCBMs) are one of the most difficult malignancies to treat due to the intracranial location and multifocal growth. Chemotherapy and molecular targeted therapy are extremely ineffective for BCBMs due to the inept brain accumulation because of the formidable blood‒brain barrier (BBB). Accumulation studies prove that low density lipoprotein receptor-related protein 1 (LRP1) is promising target for BBB transcytosis. However, as the primary clearance receptor for amyloid beta and tissue plasminogen activator, LRP1 at abluminal side of BBB can clear LRP1-targeting therapeutics. Matrix metalloproteinase-1 (MMP1) is highly enriched in metastatic niche to promote growth of BCBMs. Herein, it is reported that nanoparticles (NPs-K-s-A) tethered with MMP1-sensitive fusion peptide containing HER2-targeting K and LRP1-targeting angiopep-2 (A), can surmount the BBB and escape LRP1-mediated clearance in metastatic niche. NPs-K-s-A revealed infinitely superior brain accumulation to angiopep-2-decorated NPs-A in BCBMs bearing mice, while comparable brain accumulation in normal mice. The delivered doxorubicin and lapatinib synergistically inhibit BCBMs growth and prolongs survival of mice bearing BCBMs. Due to the efficient BBB penetration, special and remarkable clearance escape, and facilitated therapeutic outcome, the fusion peptide-based drug delivery strategy may serve as a potential approach for clinical management of BCBMs.
Collapse
Key Words
- 231Br, MDA-MB-231Br-HER2
- A, angiopep-2
- AUC0‒t, area under the curve from zero to time t
- Abluminal LRP1
- Amyloid beta
- Aβ, amyloid beta
- BBB, blood‒brain barrier
- BCBMs, breast cancer brain metastases
- BMECs, brain microvascular endothelial cells
- Blood‒brain barrier
- Brain clearance
- Breast cancer brain metastases
- CI, combination index
- CL, clearance
- DMEM, Dulbecco's modified eagle medium
- DMSO, dimethyl sulfoxide
- DOX, doxorubicin
- FBS, fetal bovine serum
- Fa, the fraction of tumor cells affected
- Fusion peptide
- K, KAAYSL
- LAP, lapatinib
- LRP1, low density lipoprotein receptor-related protein 1
- MAL-PEG-SCM, maleimide polyethylene glycol succinimidyl carboxymethyl ester
- MCM, MDA-MB-231Br-HER2 conditioned medium
- MMP
- MMP1, matrix metalloproteinase-1
- MRT0‒t, mean residence time from zero to time t
- NPs, nanoparticles
- Nanoparticles
- PLGA, poly(lactic-co-glycolic acid)
- PLGA-PLL, poly(lactic-co-glycolic acid)-poly(ε-carbobenzoxy-l-lysine)
- PLL, poly(ε-carbobenzoxy-l-lysine)
- PVA, polyvinyl alcohol
- SDS, sodium dodecyl sulfate
- i, insensitive GDQGIAGF
- s, sensitive VPMS-MRGG
- t1/2, half time
- tPA, tissue plasminogen activator
Collapse
|
14
|
Piramoon M, Khodadust F, Hosseinimehr SJ. Radiolabeled nanobodies for tumor targeting: From bioengineering to imaging and therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188529. [PMID: 33647388 DOI: 10.1016/j.bbcan.2021.188529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
So far, numerous molecules and biomolecules have been evaluated for tumor targeting purposes for radionuclide-based imaging and therapy modalities. Due to the high affinity and specificity against tumor antigens, monoclonal antibodies are appropriate candidates for tumor targeting. However, their large size prevents their comprehensive application in radionuclide-based tumor imaging or therapy, since it leads to their low tumor penetration, low blood clearance, and thus inappropriate tumor-to-background ratio. Nowadays, the variable domain of heavy-chain antibodies from the Camelidae family, known as nanobodies (Nbs), turn into exciting candidates for medical research. Considering several innate advantages of these new tumor-targeting agents, including excellent affinity and specificity toward antigen, high solubility, high stability, fast washout from blood, convenient production, ease of selection, and low immunogenicity, it assumes that they may overcome generic problems of monoclonal antibodies, their fragments, and other vectors used for tumor imaging/therapy. After three decades of Nbs discovery, the increasing number of their preclinical and clinical investigations, which have led to outstanding results, confirm their application for tumor targeting purposes. This review describes Nbs characteristics, the diagnostic and therapeutic application of their radioconjugates, and their recent advances.
Collapse
Affiliation(s)
- Majid Piramoon
- Department of Medicinal Chemistry and Radiopharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
15
|
Cao R, Liu H, Cheng Z. Radiolabeled Peptide Probes for Liver Cancer Imaging. Curr Med Chem 2021; 27:6968-6986. [PMID: 32196443 DOI: 10.2174/0929867327666200320153837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Liver cancer/Hepatocellular Carcinoma (HCC) is a leading cause of cancer death and represents an important cause of mortality worldwide. Several biomarkers are overexpressed in liver cancer, such as Glypican 3 (GPC3) and Epidermal Growth Factor Receptor (EGFR). These biomarkers play important roles in the progression of tumors and could serve as imaging and therapeutic targets for this disease. Peptides with adequate stability, receptor binding properties, and biokinetic behavior have been intensively studied for liver cancer imaging. A great variety of them have been radiolabeled with clinically relevant radionuclides for liver cancer diagnosis, and many are promising imaging and therapeutic candidates for clinical translation. Herein, we summarize the advancement of radiolabeled peptides for the targeted imaging of liver cancer.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Zhen Cheng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Bio-X Program and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA, 94305, United States
| |
Collapse
|
16
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021; 329:624-644. [PMID: 33010333 PMCID: PMC8082750 DOI: 10.1016/j.jconrel.2020.09.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Clinically efficacious medication in anticancer therapy has been successfully designed with liposome-based nanomedicine. The liposomal formulation in cancer drug delivery can be facilitated with a functionalized peptide that mediates the specific drug delivery opportunities with increased drug penetrability, specific accumulation in the targeted site, and enhanced therapeutic efficacy. This review aims to focus on recent advances in peptide-functionalized liposomal formulation techniques in cancer diagnosis and treatment regarding recently published literature. It also will highlight different aspects of novel liposomal formulation techniques that incorporate surface functionalization with peptides for better anticancer effect and current challenges in peptide-functionalized liposomal drug formulation.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
18
|
Ni J, Miao T, Su M, Khan NU, Ju X, Chen H, Liu F, Han L. PSMA-targeted nanoparticles for specific penetration of blood-brain tumor barrier and combined therapy of brain metastases. J Control Release 2021; 329:934-947. [DOI: 10.1016/j.jconrel.2020.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
19
|
Luca SD, Verdoliva V, Saviano M. Peptide Ligands Specifically Targeting HER2 Receptor and the Role Played by a Synthetic Model System of the Receptor Extracellular Domain: Hypothesized Future Perspectives. J Med Chem 2020; 63:15333-15343. [PMID: 33226807 DOI: 10.1021/acs.jmedchem.0c01340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A short (Fab)trastuzumab-derived peptide specific for HER2 receptor was identified. Its affinity for the model system HER2-DIVMP was found in a nanomolar range. The structural determinants responsible for the interaction between this ligand (A9) and HER2-DIVMP were investigated by both computational and NMR analysis. Next, the possibility of using A9 as HER2- specific probe for the nuclear medicine imaging was evaluated by conjugating A9 with the DTPA chelator and radiolabeling it with 111In. The developed probe retained a nanomolar affinity to HER2-overexpressing cancer cells, however, some unspecific binding also occurred. The peptide internalization into cells by receptor-mediated endocytosis was also studied. Future perspectives are aimed at using A9 as a probe for molecular imaging diagnostics as well as active targeting of anticancer drugs. Lead structure optimization is needed to minimize the percentage of A9 unspecific binding and to increase the binding affinity to the receptor.
Collapse
Affiliation(s)
- Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy
| |
Collapse
|
20
|
Kadonosono T, Yimchuen W, Ota Y, See K, Furuta T, Shiozawa T, Kitazawa M, Goto Y, Patil A, Kuchimaru T, Kizaka-Kondoh S. Design Strategy to Create Antibody Mimetics Harbouring Immobilised Complementarity Determining Region Peptides for Practical Use. Sci Rep 2020; 10:891. [PMID: 31964960 PMCID: PMC6972867 DOI: 10.1038/s41598-020-57713-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/06/2020] [Indexed: 01/25/2023] Open
Abstract
Monoclonal antibodies (mAbs) are attractive therapeutics for treating a wide range of human disorders, and bind to the antigen through their complementarity-determining regions (CDRs). Small stable proteins containing structurally retained CDRs are promising alternatives to mAbs. In this report, we present a method to create such proteins, named fluctuation-regulated affinity proteins (FLAPs). Thirteen graft acceptor (GA) sites that efficiently immobilise the grafted peptide structure were initially selected from six small protein scaffolds by computational identification. Five CDR peptides extracted by binding energy calculations from mAbs against breast cancer marker human epithelial growth factor receptor type 2 (HER2) were then grafted to the selected scaffolds. The combination of five CDR peptides and 13 GA sites in six scaffolds revealed that three of the 65 combinations showed specific binding to HER2 with dissociation constants (KD) of 270–350 nM in biolayer interferometry and 24–65 nM in ELISA. The FLAPs specifically detected HER2-overexpressing cancer cells. Thus, the present strategy is a promising and practical method for developing small antibody mimetics.
Collapse
Affiliation(s)
- Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Wanaporn Yimchuen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tadashi Shiozawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Maika Kitazawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yu Goto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Akash Patil
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
21
|
Ahmadpour S, Hosseinimehr SJ. Recent developments in peptide-based SPECT radiopharmaceuticals for breast tumor targeting. Life Sci 2019; 239:116870. [DOI: 10.1016/j.lfs.2019.116870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
22
|
Ovarian Cancer Targeting Phage for In Vivo Near-Infrared Optical Imaging. Diagnostics (Basel) 2019; 9:diagnostics9040183. [PMID: 31717613 PMCID: PMC6963815 DOI: 10.3390/diagnostics9040183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is often diagnosed at late stages due to current inadequate detection. Therefore, the development of new detection methods of ovarian cancer is needed. This may be achieved by phage nanoparticles that display targeting peptides for optical imaging. Here, two such phage clones are reported. Ovarian cancer binding and specificity of phage clones (pJ18, pJ24) and peptides (J18, J24) were investigated using fluorescent microscopy and modified ELISA. Further, AF680-labeled phage particles were subjected to biodistribution and optical imaging studies in SKOV-3 xenografted mice. Fluorescent microscopy and ELISA of phage and peptides showed significantly increased binding to SKOV-3 cells compared to controls. Additionally, these studies revealed that J18 exhibits specificity for ovarian cancer SKOV-3 and OVCAR-3 cell lines. Further, peptides displayed increased SKOV-3 binding compared to N35 (non-relevant peptide) with EC50 values of 22.2 ± 10.6 μM and 29.0 ± 6.9 (mean ± SE), respectively. Biodistribution studies of AF680-labeled phage particles showed tumor uptake after 4 h and excretion through the reticuloendothelial system. Importantly, SKOV-3 tumors were easily localized by optical imaging after 2 h and 4 h and displayed good tumor-to-background contrast. The fluorescent tumor signal intensity was significantly higher for pJ18 compared to wild type (WT) after 2 h.
Collapse
|
23
|
Smith GP. Phage Display: Simple Evolution in a Petri Dish (Nobel Lecture). Angew Chem Int Ed Engl 2019; 58:14428-14437. [PMID: 31529666 DOI: 10.1002/anie.201908308] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 11/10/2022]
Abstract
Playing with evolution: In his Nobel lecture, George P. Smith reconstructs the story of the phage-display idea as he personally experienced it. The development of this technique is a case study in how a scientific advance emerges gradually in incremental steps within overlapping global scientific communities.
Collapse
Affiliation(s)
- George P Smith
- University of Missouri, Division of Biological Sciences, Tucker Hall, Columbia, MO, 65211-7400, USA
| |
Collapse
|
24
|
Smith GP. Phagen‐Display: Einfache Evolution in der Petrischale (Nobel‐Vortrag). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- George P. Smith
- University of Missouri Division of Biological Sciences Tucker Hall Columbia MO 65211-7400 USA
| |
Collapse
|
25
|
Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Indexed: 05/22/2023]
Abstract
Peptide-based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self-assembly strategy is introduced to construct peptide-based nanomaterials, which can form well-controlled superstructures with high stability and multivalent effect. More recently, peptide-based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide-based materials, from molecular building block peptides and self-assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide-based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self-assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
26
|
Aligholikhamseh N, Ahmadpour S, Khodadust F, Abedi SM, Hosseinimehr SJ. 99mTc-HYNIC-(Ser)3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in several cancers. Today’s tumor targeting is receiving more attention due to its specificity to target receptor-dependent cancers. The aim of this study was to evaluate the 99mTc-HYNIC-(tricine)-(Ser)3-LTVPWY peptide for tumor targeting and imaging with overexpression of HER2. HYNIC-(Ser)3-LTVPWY peptide was labeled with 99mTc using tricine as a co-ligand at room temperature. Specific binding of this radiolabeled peptide was assessed on four cancer cell lines with different levels of HER2 receptor expression. Also the affinity of 99mTc-HYNIC-(tricine)-(Ser)3-LTVPWY peptide to the HER2 receptor was evaluated in the SKOV-3 cell line. Biodistribution study of this radiolabeled peptide was performed in SKOV-3 tumor bearing nude mice. The HYNIC conjugated peptide was simply labeled with 99mTc radionuclide with high labeling efficiency about 98±1% showing favorable stability in normal saline and human serum. In the presence of unlabeled peptide as competitor, the HER2 binding capacity of the radiolabeled peptide reduced (approximately five-fold). The KD and Bmax values were found 2.6±0.5 nM and (2.6±0.1)×106, respectively. The tumor/muscle ratios for this radiotracer were determined 1.17±0.77, 1.15±0.32 and 2.65±0.32 at 1, 2 and 4 h after injection, respectively. Presaturation of HER2 receptors in SKOV-3 xenografted nude mice showed a reduction in the tumor/muscle ratio confirming in vivo specificity of the peptide. According to SPECT imaging, the tumor was visualized in mouse after 4 h postinjection of radiolabeled peptide. 99mTc-HYNIC-(tricine)-(Ser)3-LTVPWY peptide exhibited overexpressed HER2 tumor targeting.
Collapse
Affiliation(s)
- Nazan Aligholikhamseh
- Department of Radiopharmacy, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Sajjad Ahmadpour
- Department of Radiopharmacy, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy , Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran , Tel./Fax: +98-11- 33543083, E-mail:
| |
Collapse
|
27
|
Peng Y, Prater AR, Deutscher SL. Targeting aggressive prostate cancer-associated CD44v6 using phage display selected peptides. Oncotarget 2017; 8:86747-86768. [PMID: 29156833 PMCID: PMC5689723 DOI: 10.18632/oncotarget.21421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
There is a crucial need to identify new biomarkers associated with aggressive prostate cancer (PCa) including those associated with cancer stem cells (CSCs). CD44v6, generated by alternative splicing of CD44, has been proposed as a CSC biomarker due to its correlation with aggressive PCa disease. We hypothesized that phage display selected peptides that target CD44v6 may serve as theranostic agents for aggressive PCa. Here, a 15 amino acid peptide ("PFT") was identified by affinity selection against a peptide derived from the v6 region of CD44v6. Synthesized PFT exhibited specific binding to CD44v6 with an equilibrium dissociation constant (Kd) of 743.4 nM. PFT also bound CD44v6 highly expressed on human PCa cell lines. Further, an aggressive form of PCa cells (v6A3) was isolated and tagged by a novel CSC reporter vector. The v6A3 cells had a CSC-like phenotype including enriched CD44v6 expression, enhanced clonogenicity, resistance to chemotherapeutics, and generation of heterogeneous offspring. PFT exhibited preferential binding to v6A3 cells compared to parental cells. Immunohistofluorescence studies with human PCa tissue microarrays (TMA) indicated that PFT was highly accurate in detecting CD44v6-positive aggressive PCa cells, and staining positivity was significantly higher in late stage, metastatic and higher-grade samples. Taken together, this study provides for the first time phage display selected peptides that target CD44v6 overexpressed on PCa cells. Peptide PFT may be explored as an aid in the diagnosis and therapy of advanced PCa disease.
Collapse
Affiliation(s)
- Ying Peng
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Austin R Prater
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Susan L Deutscher
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
28
|
Abstract
Molecular imaging allows for the visualization of changes at the cellular level in diseases such as cancer. A successful molecular imaging agent must rely on disease-selective targets and ligands that specifically interact with those targets. Unfortunately, the translation of novel target-specific ligands into the clinic has been frustratingly slow with limitations including the complex design and screening approaches for ligand identification, as well as their subsequent optimization into useful imaging agents. This review focuses on combinatorial library approaches towards addressing these two challenges, with particular focus on phage display and one-bead one-compound (OBOC) libraries. Both of these peptide-based techniques have proven successful in identifying new ligands for cancer-specific targets and some of the success stories will be highlighted. New developments in screening methodology and sequencing technology have pushed the bounds of phage display and OBOC even further, allowing for even faster and more robust discovery of novel ligands. The combination of multiple high-throughput technologies will not only allow for more accurate identification, but also faster affinity maturation, while overall streamlining the process of translating novel ligands into clinical imaging agents.
Collapse
|
29
|
Camacho X, Machado CL, García MF, Gambini JP, Banchero A, Fernández M, Oddone N, Bertolini Zanatta D, Rosal C, Buchpiguel CA, Chammas R, Riva E, Cabral P. Technetium-99m- or Cy7-Labeled Rituximab as an Imaging Agent for Non-Hodgkin Lymphoma. Oncology 2017; 92:229-242. [DOI: 10.1159/000452419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023]
|
30
|
Sabahnoo H, Noaparast Z, Abedi SM, Hosseinimehr SJ. New small 99mTc-labeled peptides for HER2 receptor imaging. Eur J Med Chem 2017; 127:1012-1024. [DOI: 10.1016/j.ejmech.2016.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/19/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
|
31
|
Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017; 110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
32
|
Ringhieri P, Mannucci S, Conti G, Nicolato E, Fracasso G, Marzola P, Morelli G, Accardo A. Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. Int J Nanomedicine 2017; 12:501-514. [PMID: 28144135 PMCID: PMC5245980 DOI: 10.2147/ijn.s113607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mixed liposomes, obtained by coaggregation of 1,2-dioleoyl-sn-glycero-3-phosphocholine and of the synthetic monomer containing a gadolinium complex ([C18]2DTPA[Gd]) have been prepared. Liposomes externally decorated with KCCYSL (P6.1 peptide) sequence in its monomeric, dimeric, and tetrameric forms are studied as target-selective delivery systems toward cancer cells overexpressing human epidermal growth factor receptor-2 (HER-2) receptors. Derivatization of liposomal surface with targeting peptides is achieved using the postmodification method: the alkyne-peptide derivative Pra-KCCYSL reacts, through click chemistry procedures, with a synthetic surfactant modified with 1, 2, or 4 azido moieties previously inserted in liposome formulation. Preliminary in vitro data on MDA-MB-231 and BT-474 cells indicated that liposomes functionalized with P6.1 peptide in its tetrameric form had better binding to and uptake into BT-474 cells compared to liposomes decorated with monomeric or dimeric versions of the P6.1 peptide. BT-474 cells treated with liposomes functionalized with the tetrameric form of P6.1 showed high degree of liposome uptake, which was comparable with the uptake of anti-HER-2 antibodies such as Herceptin. Moreover, magnetic MRI experiments have demonstrated the potential of liposomes to act as MRI contrast agents.
Collapse
Affiliation(s)
- Paola Ringhieri
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| | | | - Giamaica Conti
- Department of Neurological Biomedical and Movement Sciences
| | - Elena Nicolato
- Department of Neurological Biomedical and Movement Sciences
| | | | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| |
Collapse
|
33
|
Sempkowski M, Zhu C, Menzenski MZ, Kevrekidis IG, Bruchertseifer F, Morgenstern A, Sofou S. Sticky Patches on Lipid Nanoparticles Enable the Selective Targeting and Killing of Untargetable Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8329-8338. [PMID: 27468779 DOI: 10.1021/acs.langmuir.6b01464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective targeting by uniformly functionalized nanoparticles is limited to cancer cells expressing at least two copies of targeted receptors per nanoparticle footprint (approximately ≥2 × 10(5) receptor copies per cell); such a receptor density supports the required multivalent interaction between the neighboring receptors and the ligands from a single nanoparticle. To enable selective targeting below this receptor density, ligands on the surface of lipid vesicles were displayed in clusters that were designed to form at the acidic pH of the tumor interstitium. Vesicles with clustered HER2-targeting peptides within such sticky patches (sticky vesicles) were compared to uniformly functionalized vesicles. On HER2-negative breast cancer cells MDA-MB-231 and MCF7 {expressing (8.3 ± 0.8) × 10(4) and (5.4 ± 0.9) × 10(4) HER2 copies per cell, respectively}, only the sticky vesicles exhibited detectable specific targeting (KD ≈ 49-69 nM); dissociation (0.005-0.009 min(-1)) and endocytosis rates (0.024-0.026 min(-1)) were independent of HER2 expression for these cells. MDA-MB-231 and MCF7 were killed only by sticky vesicles encapsulating doxorubicin (32-40% viability) or α-particle emitter (225)Ac (39-58% viability) and were not affected by uniformly functionalized vesicles (>80% viability). Toxicities on cardiomyocytes and normal breast cells (expressing HER2 at considerably lower but not insignificant levels) were not observed, suggesting the potential of tunable clustered ligand display for the selective killing of cancer cells with low receptor densities.
Collapse
Affiliation(s)
| | | | | | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Program in Applied and Computational Mathematics, Princeton University , A319 Engineering Quad, Princeton, New Jersey 08544, United States
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements , P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements , P.O. Box 2340, D-76125 Karlsruhe, Germany
| | | |
Collapse
|
34
|
Zhang T, Cui H, Fang CY, Cheng K, Yang X, Chang HC, Forrest ML. Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine (Lond) 2015; 10:573-87. [PMID: 25723091 DOI: 10.2217/nnm.14.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim is to develop irradiated nanodiamonds (INDs) as a molecularly targeted contrast agent for high-resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. The surface of acid treated radiation-damaged nanodiamonds was grafted with PEG to improve its stability and circulation time in blood, followed by conjugation to an anti-HER2 peptide with a final nanoparticle size of approximately 92 nm. Immunocompetent mice bearing orthotopic HER2-positive or negative tumors were administered INDs and PA imaged using an 820-nm near-infrared laser. PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 h. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are nontoxic. PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high-resolution (sub-mm) and phenotype-specific monitoring of cancer growth.
Collapse
Affiliation(s)
- Ti Zhang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Guan L, Rizzello L, Battaglia G. Polymersomes and their applications in cancer delivery and therapy. Nanomedicine (Lond) 2015; 10:2757-80. [DOI: 10.2217/nnm.15.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polymersomes have been proposed as a platform for drug delivery systems since late 90s. They are exploited to deliver hydrophilic and/or hydrophobic therapeutic and diagnostic agents. The relatively robust membrane, the colloidal stability, along with a significant biocompatibility and easy ligands conjugation methods make polymersomes primary candidates for therapeutic drugs delivery in cancer clinical treatments. In addition, they represent an optimal choice as imaging tools in noninvasive diagnostic. As a result, polymersomes have been proposed and widely studied for anticancer treatments. However, there are not sufficient clinic translation data of human studies yet. In this critical review, we will discuss such topics, focusing on the self-assembly of membrane-forming copolymers, on their tunable physicochemical properties and on the consequential applications of these biocompatible polymersomes in drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Lijuan Guan
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK
| | - Loris Rizzello
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
36
|
Multiple Bacteriophage Selection Strategies for Improved Affinity of a Peptide Targeting ERBB2. Int J Pept Res Ther 2015; 21:383-392. [PMID: 26561487 DOI: 10.1007/s10989-015-9467-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Due to the heterogeneity of ERBB2-expression between tumors and over the course of treatment, a non-invasive molecular imaging agent is needed to accurately detect overall ERBB2 status. Peptides are a highly advantageous platform for molecular imaging, since they have excellent tumor penetration and rapid pharmacokinetics. One limitation of peptides however, is their traditionally low target affinity, and consequently, tumor uptake. The peptide KCCYSL was previously selected from a bacteriophage (phage) display library to bind ERBB2 and did so with moderate affinity of 295 nM. In order to enhance tumor uptake and clinical utility of the peptide, a novel phage microlibrary was created by flanking the parent sequence with random amino acids, followed by reselection using parallel strategies for high affinity and specific ERBB2 binding in an attempt to affinity maturate the peptide. One limitation of traditional phage display selections is difficulty in releasing the highest affinity phages from the target by incubation of acidic buffer. In an attempt to recover high affinity second-generation peptides from the ERBB2 microlibrary, two elution strategies, sonication and target elution, were undertaken. Sonication resulted in an approximately 50-fold enhancement in recovered phage per round of selection in comparison to target elution. Despite the differences in elution efficiency, the affinities of phage-displayed peptides selected from either strategy were relatively similar. Although both selections yielded peptides with significantly improved affinity in comparison to KCCYSL, the improvements were modest, most likely because the parental peptide binding cannot be improved by additional amino acids.
Collapse
|
37
|
Cai H, Singh AN, Sun X, Peng F. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging. J Fluoresc 2015; 25:113-7. [PMID: 25620472 DOI: 10.1007/s10895-014-1486-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron emitting radionuclide.
Collapse
Affiliation(s)
- Huawei Cai
- Department of Radiology, University of Texas Southwestern Medical Center, 2201 Inwood Road, Dallas, TX, 75390, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Kadonosono T, Yabe E, Furuta T, Yamano A, Tsubaki T, Sekine T, Kuchimaru T, Sakurai M, Kizaka-Kondoh S. A fluorescent protein scaffold for presenting structurally constrained peptides provides an effective screening system to identify high affinity target-binding peptides. PLoS One 2014; 9:e103397. [PMID: 25084350 PMCID: PMC4118881 DOI: 10.1371/journal.pone.0103397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131-L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides.
Collapse
Affiliation(s)
- Tetsuya Kadonosono
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Etsuri Yabe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama City, Japan
| | - Akihiro Yamano
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Takuya Tsubaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Takuya Sekine
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Takahiro Kuchimaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama City, Japan
| | - Shinae Kizaka-Kondoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
- * E-mail:
| |
Collapse
|
40
|
Newton-Northup JR, Dickerson MT, Kumar SR, Smith GP, Quinn TP, Deutscher SL. In Vivo Bacteriophage Peptide Display to Tailor Pharmacokinetics of Biological Nanoparticles. Mol Imaging Biol 2014; 16:854-64. [DOI: 10.1007/s11307-014-0762-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Affinity Maturation of an ERBB2-Targeted SPECT Imaging Peptide by In Vivo Phage Display. Mol Imaging Biol 2014; 16:449-58. [DOI: 10.1007/s11307-014-0724-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
43
|
|
44
|
Zhang T, Cui H, Fang CY, Jo J, Yang X, Chang HC, Forrest ML. In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8815. [PMID: 25620857 DOI: 10.1117/12.2027253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiation-damaged nanodiamonds (NDs) are ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their good biocompatibility and high optical absorbance in the near-infrared (NIR) range. Acid treated NDs are oxidized to form carboxyl groups on the surface, functionalized with polyethylene glycol (PEG) and human epidermal growth factor receptor 2 (HER2) targeting ligand for breast cancer tumor imaging. Because of the specific binding of the ligand conjugated NDs to the HER2-overexpressing murine breast cancer cells (4T1.2 neu), the tumor tissues are significantly delineated from the surrounding normal tissue at wavelength of 820 nm under the PA imaging modality. Moreover, HER2 targeted NDs (HER2-PEG-NDs) result in higher accumulation in HER2 positive breast tumors as compared to non-targeted NDs after intravenous injection (i.v.). Longer retention time of HER-PEG-NDs is observed in HER2 overexpressing tumor model than that in negative tumor model (4T1.2). This demonstrates that targeting moiety conjugated NDs have great potential for the sensitive detection of cancer tumors and provide an attractive delivery strategy for anti-cancer drugs.
Collapse
Affiliation(s)
- Ti Zhang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS USA 66045
| | - Huizhong Cui
- Department of Mechanical Engineering, Bioengineering Research Center, The University of Kansas, Lawrence, KS USA 66045
| | - Chia-Yi Fang
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, Taiwan 10617
| | - Janggun Jo
- Department of Mechanical Engineering, Bioengineering Research Center, The University of Kansas, Lawrence, KS USA 66045
| | - Xinmai Yang
- Department of Mechanical Engineering, Bioengineering Research Center, The University of Kansas, Lawrence, KS USA 66045
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, Taiwan 10617
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS USA 66045
| |
Collapse
|
45
|
Pearson RT, Avila-Olias M, Joseph AS, Nyberg S, Battaglia G. Smart Polymersomes: Formation, Characterisation and Applications. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The term polymersome, which refers to a fully synthetic polymeric vesicle, became commonplace around the turn of the millennium. Since then these highly intriguing structures have been at the center of multi-disciplinary research, bridging the fields of nanotechnology, chemistry, physics, biology, medicine and imaging and, more recently, pioneering the field of synthetic biology. As structures they offer greater control into understanding the relationship between amphiphile properties and membrane curvature. Moreover, as delivery vectors for therapeutic and diagnostic compounds they enable greater efficiency of current therapies and targeted delivery. With the rising costs of both healthcare and drug development, polymersomes and nanomedicine are well placed to combat these modern-day problems. This chapter provides an overview of the approaches to prepare and to characterize polymersomes as well as their applications in biomedicine, highlighting recent achievements in the stimuli-responsive drug delivery field.
Collapse
Affiliation(s)
- R. T. Pearson
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - M. Avila-Olias
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - A. S. Joseph
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - S. Nyberg
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - G. Battaglia
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| |
Collapse
|
46
|
Fluorescence study for selecting specific ligands toward HER2 receptor: An example of receptor fragment approach. Eur J Med Chem 2013; 61:116-21. [DOI: 10.1016/j.ejmech.2012.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 12/14/2022]
|
47
|
Camacho X, García MF, Calzada V, Fernández M, Chabalgoity JA, Moreno M, Barbosa de Aguiar R, Alonso O, Gambini JP, Chammas R, Cabral P. [(99m)Tc(CO)(3)]-radiolabeled bevacizumab: in vitro and in vivo evaluation in a melanoma model. Oncology 2013; 84:200-9. [PMID: 23328435 DOI: 10.1159/000338961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/19/2012] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Vascular endothelial growth factor (VEGF) is one of the classic factors to tumor-induced angiogenesis in several tumor types, including melanoma. Bevacizumab, a monoclonal antibody against VEGF, could be used as an imaging tool in preclinical studies. OBJECTIVE To radiolabel bevacizumab with [(99m)Tc(CO)3(OH2)3](+) and evaluate it in vivo and in vitro for melanoma imaging properties. METHODS Bevacizumab was radiolabeled with [(99m)Tc(CO)3(OH2)3](+) ion in saline. The radiochemical stability of the labeled antibody was assessed. The biodistribution and scintigraphy imaging of the radiolabeled antibody were evaluated in normal C57BL/6J mice and in C57BL/6J mice bearing murine B16F1 melanoma tumors. Immunoreactivity of bevacizumab to murine tumors was determined from direct immunofluorescence and immunoblotting assays. RESULTS We demonstrate that (99m)Tc(CO)3-bevacizumab was stable. In vivo biodistribution studies revealed that tumor uptake of (99m)Tc(CO)3-bevacizumab was 2.64 and 2.51 %ID/g at 4 and 24 h postinjection. Scintigraphy image studies showed tumor selective uptake of (99m)Tc(CO)3-bevacizumab in the tumor-bearing mice. This affinity was confirmed by immunoassays performed on B16F10 tumor samples. CONCLUSIONS (99m)Tc(CO)3-bevacizumab could be used as an approach for tumor nuclear imaging in preclinical studies. This should be useful to provide insights into the angiogenic stimulus before and after chemotherapy, which might help improve current antitumor therapy.
Collapse
Affiliation(s)
- Ximena Camacho
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bandekar A, Zhu C, Gomez A, Menzenski MZ, Sempkowski M, Sofou S. Masking and Triggered Unmasking of Targeting Ligands on Liposomal Chemotherapy Selectively Suppress Tumor Growth in Vivo. Mol Pharm 2012; 10:152-60. [DOI: 10.1021/mp3002717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amey Bandekar
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | - Charles Zhu
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | - Ana Gomez
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | | | - Michelle Sempkowski
- Department of Biomedical Engineering,
The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Stavroula Sofou
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| |
Collapse
|
49
|
Phage displayed peptides/antibodies recognizing growth factors and their tyrosine kinase receptors as tools for anti-cancer therapeutics. Int J Mol Sci 2012; 13:5254-5277. [PMID: 22606042 PMCID: PMC3344278 DOI: 10.3390/ijms13045254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/09/2012] [Accepted: 04/20/2012] [Indexed: 12/21/2022] Open
Abstract
The basic idea of displaying peptides on a phage, introduced by George P. Smith in 1985, was greatly developed and improved by McCafferty and colleagues at the MRC Laboratory of Molecular Biology and, later, by Barbas and colleagues at the Scripps Research Institute. Their approach was dedicated to building a system for the production of antibodies, similar to a naïve B cell repertoire, in order to by-pass the standard hybridoma technology that requires animal immunization. Both groups merged the phage display technology with an antibody library to obtain a huge number of phage variants, each of them carrying a specific antibody ready to bind its target molecule, allowing, later on, rare phage (one in a million) to be isolated by affinity chromatography. Here, we will briefly review the basis of the technology and the therapeutic application of phage-derived bioactive molecules when addressed against key players in tumor development and progression: growth factors and their tyrosine kinase receptors.
Collapse
|
50
|
Improving the quantitation accuracy in noninvasive small animal single photon emission computed tomography imaging. Nucl Med Biol 2011; 38:843-8. [DOI: 10.1016/j.nucmedbio.2011.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/05/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|