1
|
Alberto S, Ordonez AA, Arjun C, Aulakh GK, Beziere N, Dadachova E, Ebenhan T, Granados U, Korde A, Jalilian A, Lestari W, Mukherjee A, Petrik M, Sakr T, Cuevas CLS, Welling MM, Zeevaart JR, Jain SK, Wilson DM. The Development and Validation of Radiopharmaceuticals Targeting Bacterial Infection. J Nucl Med 2023; 64:1676-1682. [PMID: 37770110 PMCID: PMC10626374 DOI: 10.2967/jnumed.123.265906] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
The International Atomic Energy Agency organized a technical meeting at its headquarters in Vienna, Austria, in 2022 that included 17 experts representing 12 countries, whose research spanned the development and use of radiolabeled agents for imaging infection. The meeting focused largely on bacterial pathogens. The group discussed and evaluated the advantages and disadvantages of several radiopharmaceuticals, as well as the science driving various imaging approaches. The main objective was to understand why few infection-targeted radiotracers are used in clinical practice despite the urgent need to better characterize bacterial infections. This article summarizes the resulting consensus, at least among the included scientists and countries, on the current status of radiopharmaceutical development for infection imaging. Also included are opinions and recommendations regarding current research standards in this area. This and future International Atomic Energy Agency-sponsored collaborations will advance the goal of providing the medical community with innovative, practical tools for the specific image-based diagnosis of infection.
Collapse
Affiliation(s)
- Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome "Sapienza," Rome, Italy
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chanda Arjun
- Radiopharmaceutical Program, Board of Radiation and Isotope Technology, Mumbai, India
| | - Gurpreet Kaur Aulakh
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Ulises Granados
- Department of Nuclear Medicine, Hospital Internacional de Colombia-Fundación Cardiovascular de Colombia, Piedecuesta, Colombia
| | - Aruna Korde
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Amirreza Jalilian
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Wening Lestari
- National Nuclear Energy Agency, South Tangerang, Indonesia
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Milos Petrik
- Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tamer Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Jan Rijn Zeevaart
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
2
|
Rivas M, Debnath S, Giri S, Noffel YM, Sun X, Gevorgyan V. One-Pot Formal Carboradiofluorination of Alkenes: A Toolkit for Positron Emission Tomography Imaging Probe Development. J Am Chem Soc 2023; 145:19265-19273. [PMID: 37625118 PMCID: PMC10760797 DOI: 10.1021/jacs.3c04548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the first one-pot formal alkene carboradiofluorination reaction employing easily accessible alkenes as both prosthetic group precursors and coupling partners. The methodology features rapid sequential Markovnikov-selective iodofluorination and photoinduced Pd(0/I/II)-catalyzed alkyl Heck reaction as a mild and robust fluorine-18 (18F) radiochemical approach for positron emission tomography (PET) imaging probe development. A new class of prosthetic groups for PET imaging probe synthesis was isolated as iodofluorinated intermediates in moderate to excellent yields. The one-pot formal alkenylfluorination reaction was carried out to produce over 30 analogues of a wide range of bioactive molecules. Further application of the Pd(0/I/II) manifold in PET probe development was illustrated by the direct carbo(radio)fluorination of electron-rich alkenes. The methods were successfully translated to radiolabel a broad scope of medicinally relevant small molecules in generally good radiochemical conversion. The protocol was further optimized to accommodate no-carrier-added conditions with similar efficiency for future (pre)clinical translation. Moreover, the radiosynthesis of prosthetic groups was automated in a radiochemistry module to facilitate its practical use in multistep radiochemical reactions.
Collapse
Affiliation(s)
- Mónica Rivas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sashi Debnath
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sachin Giri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yusuf M Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xiankai Sun
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
3
|
Ashique S, Anand K. Radiolabelled Extracellular Vesicles as Imaging Modalities for Precise Targeted Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15051426. [PMID: 37242668 DOI: 10.3390/pharmaceutics15051426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (ECVs) have been abandoned as bio-inspired drug delivery systems (DDS) in the biomedical field. ECVs have a natural ability to cross over extracellular and intracellular barriers, making them superior to manufactured nanoparticles. Additionally, they have the ability to move beneficial biomolecules among far-flung bodily cells. These advantages and the accomplishment of favorable in vivo results convincingly show the value of ECVs in medication delivery. The usage of ECVs is constantly being improved, as it might be difficult to develop a consistent biochemical strategy that is in line with their useful clinical therapeutic uses. Extracellular vesicles (ECVs) have the potential to enhance the therapy of diseases. Imaging technologies, particularly radiolabelled imaging, have been exploited for non-invasive tracking to better understand their in vivo activity.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
4
|
The new era of bio-molecular imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) in neurosurgery of gliomas. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Desai P, Rimal R, Sahnoun SEM, Mottaghy FM, Möller M, Morgenroth A, Singh S. Radiolabeled Nanocarriers as Theranostics-Advancement from Peptides to Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200673. [PMID: 35527333 DOI: 10.1002/smll.202200673] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Endogenous targeted radiotherapy is emerging as an integral modality to treat a variety of cancer entities. Nevertheless, despite the positive clinical outcome of the treatment using radiolabeled peptides, small molecules, antibodies, and nanobodies, a high degree of hepatotoxicity and nephrotoxicity still persist. This limits the amount of dose that can be injected. In an attempt to mitigate these side effects, the use of nanocarriers such as nanoparticles (NPs), dendrimers, micelles, liposomes, and nanogels (NGs) is currently being explored. Nanocarriers can prolong circulation time and tumor retention, maximize radiation dosage, and offer multifunctionality for different targeting strategies. In this review, the authors first provide a summary of radiation therapy and imaging and discuss the new radiotracers that are used preclinically and clinically. They then highlight and identify the advantages of radio-nanomedicine and its potential in overcoming the limitations of endogenous radiotherapy. Finally, the review points to the ongoing efforts to maximize the use of radio-nanomedicine for efficient clinical translation.
Collapse
Affiliation(s)
- Prachi Desai
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Rahul Rimal
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, School for Cardiovascular Diseases (CARIM) and School of oncology (GROW), Maastricht University, Maastricht, 6229 HX, The Netherlands
| | - Martin Möller
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
| | - Smriti Singh
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
- Max-Planck-Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Fournier L, de Geus-Oei LF, Regge D, Oprea-Lager DE, D’Anastasi M, Bidaut L, Bäuerle T, Lopci E, Cappello G, Lecouvet F, Mayerhoefer M, Kunz WG, Verhoeff JJC, Caruso D, Smits M, Hoffmann RT, Gourtsoyianni S, Beets-Tan R, Neri E, deSouza NM, Deroose CM, Caramella C. Twenty Years On: RECIST as a Biomarker of Response in Solid Tumours an EORTC Imaging Group - ESOI Joint Paper. Front Oncol 2022; 11:800547. [PMID: 35083155 PMCID: PMC8784734 DOI: 10.3389/fonc.2021.800547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations. While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for response classification within thus partly circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to individual cases. As reproducibility of RECIST measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted. There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be overcome, and human adjudications may be required.
Collapse
Affiliation(s)
- Laure Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Université de Paris, Assistance Publique–Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Department of Radiology, Paris Cardiovascular Research Center (PARCC) Unité Mixte de Recherche (UMRS) 970, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Daniele Regge
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Daniela-Elena Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers [Vrije Universiteit (VU) University], Amsterdam, Netherlands
| | - Melvin D’Anastasi
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Tobias Bäuerle
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine Unit, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) – Humanitas Research Hospital, Milan, Italy
| | - Giovanni Cappello
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Frederic Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marius Mayerhoefer
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang G. Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Joost J. C. Verhoeff
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Damiano Caruso
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Marion Smits
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
- Brain Tumour Centre, Erasmus Medical Centre (MC) Cancer Institute, Rotterdam, Netherlands
| | - Ralf-Thorsten Hoffmann
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl-Gustav-Carus Technical University Dresden, Dresden, Germany
| | - Sofia Gourtsoyianni
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
| | - Regina Beets-Tan
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- School For Oncology and Developmental Biology (GROW) School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Emanuele Neri
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, United States
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph Centre International des Cancers Thoraciques, Université Paris-Saclay, Le Plessis-Robinson, France
| |
Collapse
|
7
|
Bailey JJ, Wuest M, Wagner M, Bhardwaj A, Wängler C, Wängler B, Valliant JF, Schirrmacher R, Wuest F. Synthesis and Preclinical Evaluation of [ 18F]SiFA-PSMA Inhibitors in a Prostate Cancer Model. J Med Chem 2021; 64:15671-15689. [PMID: 34672630 DOI: 10.1021/acs.jmedchem.1c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) with gallium-68 (68Ga) and fluorine-18 (18F) radiotracers has aroused tremendous interest over the past few years. The use of organosilicon-[18F]fluoride acceptors (SiFA) conjugated to urea-based peptidomimetic PSMA inhibitors provides a "kit-like" multidose synthesis technology. Nine novel 18F-labeled SiFA-bearing PSMA inhibitors with different linker moieties were synthesized and analyzed for their in vitro binding against [125I]I-TAAG-PSMA in LNCaP cells. IC50 values ranged from 58-570 nM. Among all compounds, [18F]SiFA-Asp2-PEG3-PSMA (IC50 = 125 nM) showed the highest tumor uptake in LNCaP tumors (SUV60min 0.73). A substantial increase in molar activity (Am) (from 7.5 ± 0.5 to 86 ± 3 GBq/μmol) led to a significant increase in LNCaP tumor uptake (SUV60min 1.18; Δ 0.45 corresponding to +62%). In vivo blocking with DCFPyL resulted in -32% uptake after 60 min. The SiFA-isotopic exchange chemistry offers a method that is readily adaptable for a "kit-type" labeling procedure and clinical translation.
Collapse
Affiliation(s)
- Justin J Bailey
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Michael Wagner
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Carmen Wängler
- Clinic of Radiology and Nuclear Medicine, Biomedical Chemistry and Clinic of Radiology and Nuclear Medicine, Molecular Imaging and Radiochemistry, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Bjoern Wängler
- Clinic of Radiology and Nuclear Medicine, Biomedical Chemistry and Clinic of Radiology and Nuclear Medicine, Molecular Imaging and Radiochemistry, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4K1, Canada
| | - Ralf Schirrmacher
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
8
|
Machado JF, Correia JDG, Morais TS. Emerging Molecular Receptors for the Specific-Target Delivery of Ruthenium and Gold Complexes into Cancer Cells. Molecules 2021; 26:3153. [PMID: 34070457 PMCID: PMC8197480 DOI: 10.3390/molecules26113153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cisplatin and derivatives are highly effective in the treatment of a wide range of cancer types; however, these metallodrugs display low selectivity, leading to severe side effects. Additionally, their administration often results in the development of chemoresistance, which ultimately results in therapeutic failure. This scenario triggered the study of other transition metals with innovative pharmacological profiles as alternatives to platinum, ruthenium- (e.g., KP1339 and NAMI-A) and gold-based (e.g., Auranofin) complexes being among the most advanced in terms of clinical evaluation. Concerning the importance of improving the in vivo selectivity of metal complexes and the current relevance of ruthenium and gold metals, this review article aims to survey the main research efforts made in the past few years toward the design and biological evaluation of target-specific ruthenium and gold complexes. Herein, we give an overview of the inorganic and organometallic molecules conjugated to different biomolecules for targeting membrane proteins, namely cell adhesion molecules, G-protein coupled receptors, and growth factor receptors. Complexes that recognize the progesterone receptors or other targets involved in metabolic pathways such as glucose transporters are discussed as well. Finally, we describe some complexes aimed at recognizing cell organelles or compartments, mitochondria being the most explored. The few complexes addressing targeted gene therapy are also presented and discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Tânia S. Morais
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
9
|
Molecular Imaging of Gene Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Betzer O, Barnoy E, Sadan T, Elbaz I, Braverman C, Liu Z, Popovtzer R. Advances in imaging strategies for in vivo tracking of exosomes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1594. [PMID: 31840427 DOI: 10.1002/wnan.1594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Exosomes have many biological functions as short- and long distance nanocarriers for cell-to-cell communication. They allow the exchange of complex information between cells, and thereby modulate various processes such as homeostasis, immune response and angiogenesis, in both physiological and pathological conditions. In addition, due to their unique abilities of migration, targeting, and selective internalization into specific cells, they are promising delivery vectors. As such, they provide a potentially new field in diagnostics and treatment, and may serve as an alternative to cell-based therapeutic approaches. However, a major drawback for translating exosome treatment to the clinic is that current understanding of these endogenous vesicles is insufficient, especially in regards to their in vivo behavior. Tracking exosomes in vivo can provide important knowledge regarding their biodistribution, migration abilities, toxicity, biological role, communication capabilities, and mechanism of action. Therefore, the development of efficient, sensitive and biocompatible exosome labeling and imaging techniques is highly desired. Recent studies have developed different methods for exosome labeling and imaging, which have allowed for in vivo investigation of their bio-distribution, physiological functions, migration, and targeting mechanisms. These improved imaging capabilities are expected to greatly advance exosome-based nanomedicine applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Oshra Betzer
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials Bar-Ilan University, Ramat Gan, Israel.,Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Soochow University, Suzhou, China
| | - Eran Barnoy
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Sadan
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials Bar-Ilan University, Ramat Gan, Israel
| | - Idan Elbaz
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials Bar-Ilan University, Ramat Gan, Israel
| | - Cara Braverman
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials Bar-Ilan University, Ramat Gan, Israel
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Soochow University, Suzhou, China
| | - Rachela Popovtzer
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Sengupta S, Asha Krishnan M, Chattopadhyay S, Chelvam V. Comparison of prostate-specific membrane antigen ligands in clinical translation research for diagnosis of prostate cancer. Cancer Rep (Hoboken) 2019; 2:e1169. [PMID: 32721116 DOI: 10.1002/cnr2.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA), overexpressed on prostate cancer (PCa), is a well-characterized cell surface protein to selectively diagnose PCa. PSMA's unique characteristics and its 1000-fold higher expression in PCa compared with other tissues renders it as a suitable biomarker for detection of PCa in its early stage. In this report, we critically analyze and recommend the requirements needed for the development of variety of PSMA-targeted molecular imaging agents based on antibodies, small molecule ligands, peptides, and aptamers. The targeting moieties are either conjugated to radionuclear isotopes or near-infrared agents for efficient diagnosis of PCa. RECENT FINDINGS From the analysis, it was found that several small molecule-derived PCa imaging agents are approved for clinical trials in Europe and the United States, and few are already in the clinical use for diagnosis of PCa. Even though 111In-labeled capromab pendetide was approved by the Food and Drug Administration (FDA) and other engineered antibodies are available for detection of PCa, but high production cost, low shelf life (less than 1 month at 4°C), possibility of human immuno reactions, and low blood clearance rate necessitated a need for developing new imaging agents, which are serum stable, cost-effective, and possesses longer shelf life (6 months), have fast clearance rate from nontargeted tissues during the diagnosis process. It is found that small molecule ligand-derived imaging agents possesses most of the desired properties expected for an ideal diagnostic agent when compared with other targeting moieties. CONCLUSION This report discusses in detail the homing moieties used in the development of targeted diagnostic tools for detection of PCa. The merits and demerits of monoclonal antibodies, small molecule ligands, peptides, and aptamers for imaging of PCa and intraoperative guided surgery are extensively analyzed. Among all, urea-based ligands were found to be most successful in preclinical and clinical trials and show a major promise for future commercialization.
Collapse
Affiliation(s)
- Sagnik Sengupta
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India
| | - Mena Asha Krishnan
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sudeshna Chattopadhyay
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India.,Discipline of Physics, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India.,Discipline of Metallurgy Engineering and Material Science, School of Engineering, Indian Institute of Technology Indore, Indore, India
| | - Venkatesh Chelvam
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India.,Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
13
|
Franco Machado J, Silva RD, Melo R, G Correia JD. Less Exploited GPCRs in Precision Medicine: Targets for Molecular Imaging and Theranostics. Molecules 2018; 24:E49. [PMID: 30583594 PMCID: PMC6337414 DOI: 10.3390/molecules24010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Precision medicine relies on individually tailored therapeutic intervention taking into account individual variability. It is strongly dependent on the availability of target-specific drugs and/or imaging agents that recognize molecular targets and patient-specific disease mechanisms. The most sensitive molecular imaging modalities, Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), rely on the interaction between an imaging radioprobe and a target. Moreover, the use of target-specific molecular tools for both diagnostics and therapy, theranostic agents, represent an established methodology in nuclear medicine that is assuming an increasingly important role in precision medicine. The design of innovative imaging and/or theranostic agents is key for further accomplishments in the field. G-protein-coupled receptors (GPCRs), apart from being highly relevant drug targets, have also been largely exploited as molecular targets for non-invasive imaging and/or systemic radiotherapy of various diseases. Herein, we will discuss recent efforts towards the development of innovative imaging and/or theranostic agents targeting selected emergent GPCRs, namely the Frizzled receptor (FZD), Ghrelin receptor (GHSR-1a), G protein-coupled estrogen receptor (GPER), and Sphingosine-1-phosphate receptor (S1PR). The pharmacological and clinical relevance will be highlighted, giving particular attention to the studies on the synthesis and characterization of targeted molecular imaging agents, biological evaluation, and potential clinical applications in oncology and non-oncology diseases. Whenever relevant, supporting computational studies will be also discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rúben D Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
14
|
Bokhari TH, Butt MB, Hina S, Iqbal M, Daud M, Imran M. A review on 90Y-labeled compounds and biomolecules. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5622-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Patsalos A, Pap A, Varga T, Trencsenyi G, Contreras GA, Garai I, Papp Z, Dezso B, Pintye E, Nagy L. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol 2017; 595:5815-5842. [PMID: 28714082 DOI: 10.1113/jp274361] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. ABSTRACT Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6Chigh ) to a repair (Ly6Clow ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics.
Collapse
Affiliation(s)
- Andreas Patsalos
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | | | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Dezso
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Pintye
- Department of Radiotherapy, Institute of Oncology, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,MTA-DE 'Lendület' Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.,Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| |
Collapse
|
16
|
Kertész I, Vida A, Nagy G, Emri M, Farkas A, Kis A, Angyal J, Dénes N, Szabó JP, Kovács T, Bai P, Trencsényi G. In Vivo Imaging of Experimental Melanoma Tumors using the Novel Radiotracer 68Ga-NODAGA-Procainamide (PCA). J Cancer 2017; 8:774-785. [PMID: 28382139 PMCID: PMC5381165 DOI: 10.7150/jca.17550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Purpose: The most aggressive form of skin cancer is the malignant melanoma. Because of its high metastatic potential the early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of the disease. Previous studies have already shown that benzamide derivatives, such as procainamide (PCA) specifically bind to melanin pigment. The aim of this study was to synthesize and investigate the melanin specificity of the novel 68Ga-labeled NODAGA-PCA molecule in vitro and in vivo using PET techniques. Methods: Procainamide (PCA) was conjugated with NODAGA chelator and was labeled with Ga-68 (68Ga-NODAGA-PCA). The melanin specificity of 68Ga-NODAGA-PCA was tested in vitro, ex vivo and in vivo using melanotic B16-F10 and amelanotic Melur melanoma cell lines. By subcutaneous and intravenous injection of melanoma cells tumor-bearing mice were prepared, on which biodistribution studies and small animal PET/CT scans were performed for 68Ga-NODAGA-PCA and 18FDG tracers. Results: 68Ga-NODAGA-PCA was produced with high specific activity (14.9±3.9 GBq/µmol) and with excellent radiochemical purity (98%<), at all cases. In vitro experiments showed that 68Ga-NODAGA-PCA uptake of B16-F10 cells was significantly (p≤0.01) higher than Melur cells. Ex vivo biodistribution and in vivo PET/CT studies using subcutaneous and metastatic tumor models showed significantly (p≤0.01) higher 68Ga-NODAGA-PCA uptake in B16-F10 primary tumors and lung metastases in comparison with amelanotic Melur tumors. In experiments where 18FDG and 68Ga-NODAGA-PCA uptake of B16-F10 tumors was compared, we found that the tumor-to-muscle (T/M) and tumor-to-lung (T/L) ratios were significantly (p≤0.05 and p≤0.01) higher using 68Ga-NODAGA-PCA than the 18FDG accumulation. Conclusion: Our novel radiotracer 68Ga-NODAGA-PCA showed specific binding to the melanin producing experimental melanoma tumors. Therefore, 68Ga-NODAGA-PCA is a suitable diagnostic radiotracer for the detection of melanoma tumors and metastases in vivo.
Collapse
Affiliation(s)
- István Kertész
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - András Vida
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary;; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | | | - Miklós Emri
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Antal Farkas
- Department of Urology, University of Debrecen, Debrecen, Hungary
| | - Adrienn Kis
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - János Angyal
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Noémi Dénes
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit P Szabó
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary;; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary;; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary;; Research Center for Molecular Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary;; Scanomed LTD, Debrecen, Hungary
| |
Collapse
|
17
|
Schmidt A, Schottelius M, Herz M, Wester HJ. Production of clinical radiopharmaceuticals: general pharmaceutical and radioanalytical aspects. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5125-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Popp I, Del Pozzo L, Waser B, Reubi JC, Meyer PT, Maecke HR, Gourni E. Approaches to improve metabolic stability of a statine-based GRP receptor antagonist. Nucl Med Biol 2016; 45:22-29. [PMID: 27865999 DOI: 10.1016/j.nucmedbio.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/08/2023]
Abstract
The bombesin receptor family, in particular the gastrin-releasing peptide receptor (GRPr), is an attractive target in the field of nuclear oncology due to the high density of these receptors on the cell surface of several human tumors. The successful clinical implementation of 64Cu-CB-TE2A-AR06, 68Ga-RM2 and 68Ga-NODAGA-MJ9, prompted us to continue the development of GRPr-antagonists. The aim of the present study was to assess if N-terminal modulations of the statine-based GRPr-antagonist influence the binding affinity, the pharmacokinetic performance and the in vivo metabolic stability. METHODS The GRPr-antagonist (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) was functionalized with the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via the spacer 4-amino-1-carboxymethyl-piperidine (Pip) and the amino acid N-Methyl-β-Ala, to obtain NMe-RM2 and labeled with 68Ga and 177Lu. The GRPr affinity of the corresponding metalloconjugates determined using [125I-Tyr4]-BN as radioligand. In vitro evaluation included internalization studies using PC3 cells. The 68Ga-conjugate was evaluated in PC3 xenografts by biodistribution and PET studies, while investigations on the metabolic stability and plasma protein binding were performed. RESULTS The half maximum inhibitory concentrations (IC50) of the metalloconjugates, using [125I-Tyr4]-BN, are in the low nanomolar range. PC3-cell culture binding studies of both metallated NMe-RM2 and RM2 show high GRPr-bound activity and low internalization. Metabolic studies showed that 68Ga-NMe-RM2 and 68Ga-RM2 are being cleaved in a similar fashion into three metabolites, with a good proportion of about 50% of the remaining blood activity at 15min post injection (p.i.) being represented by the intact radiotracer. 68Ga-NMe-RM2 was shown to target specifically PC3 xenografts, with high and sustained tumor uptake of about 13% IA/g within a time frame of 3h. The PET images clearly visualized the tumor. CONCLUSIONS The relatively high percentage of the remaining intact radiotracer in blood 15min post injection sufficiently enables in vivo targeting of GRPr positive tumors, finding which has been also shown in clinical trials.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Nuclear Medicine, University Hospital Freiburg, Germany
| | - Luigi Del Pozzo
- Department of Nuclear Medicine, University Hospital Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beatrice Waser
- Department of Pathology, University Hospital Bern, Bern, Switzerland
| | - Jean Claude Reubi
- Department of Pathology, University Hospital Bern, Bern, Switzerland
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Hospital Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut R Maecke
- Department of Nuclear Medicine, University Hospital Freiburg, Germany
| | - Eleni Gourni
- Department of Nuclear Medicine, University Hospital Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany,.
| |
Collapse
|
19
|
Teng G, Ju Y, Yang Y, Hua H, Chi J, Mu X. Combined antitumor activity of the nitroreductase/CB1954 suicide gene system and γ-rays in HeLa cells in vitro. Mol Med Rep 2016; 14:5164-5170. [PMID: 27840931 PMCID: PMC5355654 DOI: 10.3892/mmr.2016.5917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/11/2016] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli nitroreductase (NTR) may convert the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) into a bifunctional alkylating agent, which may lead to DNA crosslinks and the apoptosis of cancer cells. NTR/CB1954 has been demonstrated to be an effective gene therapy in cancer cells. The present study examined whether the NTR/CB1954 suicide gene system had cytotoxic effects on HeLa cells and may improve the radiosensitivity of HeLa cells to γ-rays. It was observed that the NTR/CB1954 suicide gene system exerted marked cytotoxic effects on HeLa cells. The combined therapeutic effects of NTR/CB1954 and γ-rays on HeLa cells demonstrated a synergistic effect. CB1954 at concentrations of 12.5 and 25 µmol/l increased the sensitization enhancement ratio of HeLa cells to 1.54 and 1.66, respectively. Therefore, when compared with monotherapy, the combined therapy of NTR/CB1954 and γ-rays may increase the apoptotic rate and enhance the radiosensitivity of HeLa cells. The combined therapy of γ-ray radiation and the NTR/CB1954 suicide gene system may be a novel and potent therapeutic method for the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Geling Teng
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanrong Ju
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yepeng Yang
- Department of Radiation Medicine, Peking University Health Science Centre, Beijing 100191, P.R. China
| | - Hu Hua
- Department of Respiratory Medicine, Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Jingyu Chi
- Department of Respiratory Medicine, Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiuan Mu
- Foreign Language Department, Shandong Medical College, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
20
|
Zhao M, Yang W, Zhang M, Li G, Wang S, Wang Z, Ma X, Kang F, Wang J. Evaluation of 68Ga-labeled iNGR peptide with tumor-penetrating motif for microPET imaging of CD13-positive tumor xenografts. Tumour Biol 2016; 37:12123-12131. [PMID: 27220318 DOI: 10.1007/s13277-016-5068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/05/2016] [Indexed: 11/27/2022] Open
Abstract
The aim of the study is to evaluate the efficacy of 68Ga-labeled iNGR, containing Asn-Gly-Arg (NGR) homing sequence and CendR (R/KXXR/K) penetrating motif, as a new molecular probe for microPET imaging of CD13-positive xenografts. The synthesized iNGR and NGR peptides were conjugated with DOTA and then labeled with 68Ga. 68Ga-iNGR and 68Ga-NGR were compared in the performance of the in vitro stability, partition coefficient, binding affinity, cell uptake analysis, in vivo microPET imaging, and biodistribution studies in CD13-positive HT-1080 and CD13-negative HT-29 cell lines. The in vitro results revealed that both probes exhibited high radiochemical purity and stability, and no significant difference between two probes was observed in terms of the binding affinity to CD13. In vivo microPET/CT imaging showed that the uptake of 68Ga-iNGR in HT-1080 tumor was significantly higher than that of 68Ga-NGR. Moreover, tumor 68Ga-iNGR uptake could be completely blocked by cold NGR and partially blocked by neutralizing NRP-1 antibody. We concluded that 68Ga-iNGR has a higher tumor uptake and better tumor retention than 68Ga-NGR through NRP-1, indicating that CendR motif modification is a promising method for improving NGR peptide performance.
Collapse
Affiliation(s)
- Mingxuan Zhao
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China.,Department of Nuclear Medicine, Kunming General Hospital of the People's Liberation Army, No. 212 Daguan Road, Kunming, 650032, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Shengjun Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
21
|
Nordeman P, Johansson LBG, Bäck M, Estrada S, Hall H, Sjölander D, Westermark GT, Westermark P, Nilsson L, Hammarström P, Nilsson KPR, Antoni G. (11)C and (18)F Radiolabeling of Tetra- and Pentathiophenes as PET-Ligands for Amyloid Protein Aggregates. ACS Med Chem Lett 2016; 7:368-73. [PMID: 27096043 DOI: 10.1021/acsmedchemlett.5b00309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/18/2016] [Indexed: 12/29/2022] Open
Abstract
Three oligothiophenes were evaluated as PET ligands for the study of local and systemic amyloidosis ex vivo using tissue from patients with amyloid deposits and in vivo using healthy animals and PET-CT. The ex vivo binding studies revealed that all three labeled compounds bound specifically to human amyloid deposits. Specific binding was found in the heart, kidney, liver, and spleen. To verify the specificity of the oligothiophenes toward amyloid deposits, tissue sections with amyloid pathology were stained using the fluorescence exhibited by the compounds and evaluated with multiphoton microscopy. Furthermore, a in vivo monkey PET-CT study showed very low uptake in the brain, pancreas, and heart of the healthy animal indicating low nonspecific binding to healthy tissue. The biological evaluations indicated that this is a promising group of compounds for the visualization of systemic and localized amyloidosis.
Collapse
Affiliation(s)
- Patrik Nordeman
- Preclinical
PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-75123, Sweden
| | | | - Marcus Bäck
- Department
of Chemistry, IFM, Linköping University, Linköping 581 83, Sweden
| | - Sergio Estrada
- Preclinical
PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-75123, Sweden
| | - Håkan Hall
- Preclinical
PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-75123, Sweden
| | - Daniel Sjölander
- Department
of Chemistry, IFM, Linköping University, Linköping 581 83, Sweden
| | | | - Per Westermark
- Department
of Immunology, Genetics and Pathology, Uppsala University, Uppsala SE-75123, Sweden
| | - Lars Nilsson
- Department
of Pharmacology, University of Oslo, Oslo 0316, Norway
| | - Per Hammarström
- Department
of Chemistry, IFM, Linköping University, Linköping 581 83, Sweden
| | - K. Peter R. Nilsson
- Department
of Chemistry, IFM, Linköping University, Linköping 581 83, Sweden
| | - Gunnar Antoni
- Preclinical
PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-75123, Sweden
| |
Collapse
|
22
|
Yadav N, Chuttani K, Mishra AK, Singh B. Synthesis, Characterization, and Preclinical Evaluation of99mTc-Labeled Macrobicyclic and Tricyclic Chelators as Single Photon Emission Computed Tomography Tracer. Chem Biol Drug Des 2016; 87:730-6. [PMID: 26684343 DOI: 10.1111/cbdd.12707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023]
Abstract
The novel tetraaza macrobicyclic chelator 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-2,10-dione (TBPD) and pentaaza macrotricyclic chelator 9-oxa-3,6,12,15,21-pentaazatricyclo[15,3,2,1]trieicos-1(21),17,19-triene-2,7,11,16-tetradione (OPTT) were synthesized, characterized, and radiolabeled with (99m)Tc to produce (99m)Tc-TBPD and (99m)Tc-OPTT. These radiolabeled complexes were prepared with high radiolabeling yield, radiochemical purity, and good in vitro stability up to 24 h. The labeling efficiency of (99m)Tc-TBPD and (99m)Tc-OPTT was found 98% and 97%. In vitro serum stability of (99m)Tc-TBPD was found to be 95.2%, while that of (99m)Tc-OPTT 94.2% up to 24 h. Blood kinetics experiments of (99m)Tc-labeled complexes showed biphasic pattern of blood clearance. About 99.57 ± 0.89% activity of (99m)Tc-TBPD and 99.42 ± 0.88% activity of (9m)Tc-OPTT were cleared off blood stream at 24 h postadministration. The biological half-life of (99m) Tc-TBPD was observed: t1/2(F) 1 h 5 min and t1/2(S) 12 h and biological half-life of (99m)Tc-OPTT was observed: t1/2(F) 1 h 10 min and t1/2(S) 9 h 50 min, respectively. The biodistribution studies revealed that maximum uptake of (99m)Tc-TBPD was found in liver, concluded that excretory pathway is hepatobiliary, while that of (99m)Tc-OPTT was renal as well as hepatobiliary. The negligible activity observed in stomach confirming the stability of radiolabeled complex in biological milieu. In vitro cytotoxicity study of TBPD and OPTT did not show any considerable antiproliferative activity against cancer cells of human cervical SW756, HeLa, and glioblastoma U-87, U373 cell lines.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Chemistry; Centre of Advanced Study; Faculty of Science; Banaras Hindu University; Varanasi 221005 India
| | - Krishna Chuttani
- Division of Cyclotron and Radiopharmaceutical Sciences; Institute of Nuclear Medicine and Allied Sciences; Defence Research and Development Organization; Brig. S. K. Mazumdar Road Timarpur Delhi 110054 India
| | - Anil K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences; Institute of Nuclear Medicine and Allied Sciences; Defence Research and Development Organization; Brig. S. K. Mazumdar Road Timarpur Delhi 110054 India
| | - Bachcha Singh
- Department of Chemistry; Centre of Advanced Study; Faculty of Science; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
23
|
Bardajee GR, Mohammadi M, Kakavand N. Copper(II)-diaminosarcophagine-functionalized SBA-15: a heterogeneous nanocatalyst for the synthesis of benzimidazole, benzoxazole and benzothiazole derivatives under solvent-free conditions. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Marzieh Mohammadi
- Department of Chemistry; Faculty of Science; Urmia University; 57159 Urmia Iran
| | - Nahale Kakavand
- Department of Chemistry; Payame Noor University (PNU); PO Box 19395-3697 Tehran Iran
| |
Collapse
|
24
|
Herold CJ, Lewin JS, Wibmer AG, Thrall JH, Krestin GP, Dixon AK, Schoenberg SO, Geckle RJ, Muellner A, Hricak H. Imaging in the Age of Precision Medicine: Summary of the Proceedings of the 10th Biannual Symposium of the International Society for Strategic Studies in Radiology. Radiology 2015; 279:226-38. [PMID: 26465058 DOI: 10.1148/radiol.2015150709] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the past decade, with its breakthroughs in systems biology, precision medicine (PM) has emerged as a novel health-care paradigm. Challenging reductionism and broad-based approaches in medicine, PM is an approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle. It involves integrating information from multiple sources in a holistic manner to achieve a definitive diagnosis, focused treatment, and adequate response assessment. Biomedical imaging and imaging-guided interventions, which provide multiparametric morphologic and functional information and enable focused, minimally invasive treatments, are key elements in the infrastructure needed for PM. The emerging discipline of radiogenomics, which links genotypic information to phenotypic disease manifestations at imaging, should also greatly contribute to patient-tailored care. Because of the growing volume and complexity of imaging data, decision-support algorithms will be required to help physicians apply the most essential patient data for optimal management. These innovations will challenge traditional concepts of health care and business models. Reimbursement policies and quality assurance measures will have to be reconsidered and adapted. In their 10th biannual symposium, which was held in August 2013, the members of the International Society for Strategic Studies in Radiology discussed the opportunities and challenges arising for the imaging community with the transition to PM. This article summarizes the discussions and central messages of the symposium.
Collapse
Affiliation(s)
- Christian J Herold
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Jonathan S Lewin
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Andreas G Wibmer
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - James H Thrall
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Gabriel P Krestin
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Adrian K Dixon
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Stefan O Schoenberg
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Rena J Geckle
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Ada Muellner
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| | - Hedvig Hricak
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (C.J.H., A.G.W.); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (J.S.L., R.J.G.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.H.T.); Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands (G.P.K.); Department of Radiology, University of Cambridge, Cambridge, England (A.K.D.); Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C-278, New York, NY 10065 (A.M., H.H.)
| |
Collapse
|
25
|
Porot C, Knapp J, Wang J, Germain S, Camporese D, Seimbille Y, Boulahdour H, Vuitton DA, Gottstein B, Blagosklonov O. Development of a specific tracer for metabolic imaging of alveolar echinococcosis: A preclinical study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5587-90. [PMID: 25571261 DOI: 10.1109/embc.2014.6944893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Positron emission tomography (PET)-computed tomography (CT) using [18F]-fluorodeoxyglucose (FDG) (FDG-PET/CT) is a valuable method for initial staging and follow up of patients with alveolar echinococcosis (AE). However, the cells responsible for FDG uptake have not been clearly identified. The main goal of our study was to evaluate the uptake of PET tracers by the cells involved in the host-parasite reaction around AE lesions as the first step to develop a specific PET tracer that would allow direct assessment of parasite viability in AE. Candidate molecules ([18F]-fluorotyrosine (FET), [18F]-fluorothymidine (FLT), and [18F]-fluorometylcholine (FMC), were compared to FDG by in vitro studies on human leukocytes and parasite vesicles. Our results confirmed that FDG was mainly consumed by immune cells and showed that FLT was the best candidate tracer for parasite metabolism. Indeed, parasite cells exhibited high uptake of FLT. We also performed PET/CT scans in mice infected intraperitoneally with E. multilocularis metacestodes. PET images showed no FDG or FLT uptake in parasitic lesions. This preliminary study assessed the metabolic activity of human leukocytes and AE cells using radiolabeling. Future studies could develop a specific PET tracer for AE lesions to improve lesion detection and echinococcosis treatment in patients. Our results demonstrated that a new animal model is needed for preclinical PET imaging to better mimic human hepatic and/or periparasitic metabolism.
Collapse
|
26
|
[(18)F]-fluoro-L-thymidine PET and advanced MRI for preoperative grading of gliomas. NEUROIMAGE-CLINICAL 2015; 8:448-54. [PMID: 26106569 PMCID: PMC4474410 DOI: 10.1016/j.nicl.2015.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/05/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
Abstract
Purpose Conventional MRI based on contrast enhancement is often not sufficient in differentiating grade II from grade III and grade III from grade IV diffuse gliomas. We assessed advanced MRI, MR spectroscopy and [18F]-fluoro-l-thymidine ([18F]-FLT) PET as tools to overcome these limitations. Methods In this prospective study, thirty-nine patients with diffuse gliomas of grades II, III or IV underwent conventional MRI, perfusion, diffusion, proton MR spectroscopy (1H-MRS) and [18F]-FLT-PET imaging before surgery. Relative cerebral blood volume (rCBV), apparent diffusion coefficient (ADC), Cho/Cr, NAA/Cr, Cho/NAA and FLT-SUV were compared between grades. Results Cho/Cr showed significant differences between grade II and grade III gliomas (p = 0.03). To discriminate grade II from grade IV and grade III from grade IV gliomas, the most relevant parameter was the maximum value of [18F]-FLT uptake FLTmax (respectively, p < 0.001 and p < 0.0001). The parameter showing the best correlation with the grade was the mean value of [18F]-FLT uptake FLTmean (R2 = 0.36, p < 0.0001) and FLTmax (R2 = 0.5, p < 0.0001). Conclusion Whereas advanced MRI parameters give indications for the grading of gliomas, the addition of [18F]-FLT-PET could be of interest for the accurate preoperative classification of diffuse gliomas, particularly for identification of doubtful grade III and IV gliomas. Comparison of advanced MRI and FLT PET in glioma grading FLT shows the best correlation with glioma grade. Both MRI and PET should be used for doubtful patients.
Collapse
|
27
|
Máté G, Kertész I, Enyedi KN, Mező G, Angyal J, Vasas N, Kis A, Szabó É, Emri M, Bíró T, Galuska L, Trencsényi G. In vivo imaging of Aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer (68)Ga-NOTA-c(NGR). Eur J Pharm Sci 2015; 69:61-71. [PMID: 25592229 DOI: 10.1016/j.ejps.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Aminopeptidase N (APN/CD13) plays an important role in tumor neoangiogenic process and the development of metastases. Furthermore, it may serve as a potential target for cancer diagnosis and therapy. Previous studies have already shown that asparagine-glycine-arginine (NGR) peptides specifically bind to APN/CD13. The aim of the study was to synthesize and investigate the APN/CD13 specificity of a novel (68)Ga-labeled NOTA-c(NGR) molecule in vivo using miniPET. METHODS c[KNGRE]-NH2 peptide was conjugated with p-SCN-Bn-NOTA and was labeled with Ga-68 ((68)Ga-NOTA-c(NGR)). Orthotopic and heterotopic transplanted mesoblastic nephroma (NeDe) bearing Fischer-344 rats were prepared, on which biodistribution studies and miniPET scans were performed for both (68)Ga-NOTA-c(NGR) and ανβ3 integrin selective (68)Ga-NODAGA-[c(RGD)]2 tracers. APN/CD13 receptor expression of NeDe tumors and metastases was analyzed by western blot. RESULTS (68)Ga-NOTA-c(NGR) was produced with high specific activity (5.13-5.92GBq/μmol) and with excellent radiochemical purity (95%<), at all cases. Biodistribution studies in normal rats showed that uptake of the (68)Ga-NOTA-c(NGR) was significantly (p⩽0.05) lower in abdominal organs in comparison with (68)Ga-NODAGA-[c(RGD)]2. Both radiotracers were mainly excreted from the kidney. In NeDe tumor bearing rats higher (68)Ga-NOTA-c(NGR) accumulation was found in the tumors than that of the (68)Ga-NODAGA-[c(RGD)]2. Using orthotopic transplantation, metastases were developed which showed specific (68)Ga-NOTA-c(NGR) uptake. Western blot analysis confirmed the presence of APN/CD13 expression in NeDe tumors and metastases. CONCLUSION Our novel radiotracer (68)Ga-NOTA-c(NGR) showed specific binding to the APN/CD13 expressed ortho- and heterotopic transplanted NeDe tumors. Therefore, (68)Ga-NOTA-c(NGR) is a suitable tracer for the detection of APN/CD13 positive tumors and metastases in vivo.
Collapse
Affiliation(s)
- Gábor Máté
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - István Kertész
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - János Angyal
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Nikolett Vasas
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Adrienn Kis
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Éva Szabó
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Miklós Emri
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Tamás Bíró
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - László Galuska
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine, University of Debrecen, Hungary; Scanomed LTD, Debrecen, Hungary.
| |
Collapse
|
28
|
Zhang Z, Doi H, Koyama H, Watanabe Y, Suzuki M. Efficient syntheses of [¹¹C]zidovudine and its analogs by convenient one-pot palladium(0)-copper(I) co-mediated rapid C-[¹¹C]methylation. J Labelled Comp Radiopharm 2014; 57:540-9. [PMID: 24992010 DOI: 10.1002/jlcr.3213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
The nucleosides zidovudine (AZT), stavudine (d4T), and telbivudine (LdT) are approved for use in the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) infections. To promote positron emission tomography (PET) imaging studies on their pharmacokinetics, pharmacodynamics, and applications in cancer diagnosis, a convenient one-pot method for Pd(0)-Cu(I) co-mediated rapid C-C coupling of [(11)C]methyl iodide with stannyl precursor was successfully established and applied to synthesize the PET tracers [(11)C]zidovudine, [(11)C]stavudine, and [(11)C]telbivudine. After HPLC purification and radiopharmaceutical formulation, the desired PET tracers were obtained with high radioactivity (6.4-7.0 GBq) and specific radioactivity (74-147 GBq/µmol) and with high chemical (>99%) and radiochemical (>99.5%) purities. This one-pot Pd(0)-Cu(I) co-mediated rapid C-[(11)C]methylation also worked well for syntheses of [methyl-(11)C]thymidine and [methyl-(11)C]4'-thiothymidine, resulting twice the radioactivity of those prepared by a previous two-pot method. The mechanism of one-pot Pd(0)-Cu(I) co-mediated rapid C-[(11)C]methylation was also discussed.
Collapse
Affiliation(s)
- Zhouen Zhang
- Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, 650-0047, Japan; RIKEN Center for Molecular Imaging Science, Kobe, Hyogo, 650-0047, Japan
| | | | | | | | | |
Collapse
|
29
|
Ermert J. 18F-labelled intermediates for radiosynthesis by modular build-up reactions: newer developments. BIOMED RESEARCH INTERNATIONAL 2014; 2014:812973. [PMID: 25343144 PMCID: PMC4197889 DOI: 10.1155/2014/812973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
This brief review gives an overview of newer developments in (18)F-chemistry with the focus on small (18)F-labelled molecules as intermediates for modular build-up syntheses. The short half-life (<2 h) of the radionuclide requires efficient syntheses of these intermediates considering that multistep syntheses are often time consuming and characterized by a loss of yield in each reaction step. Recent examples of improved synthesis of (18)F-labelled intermediates show new possibilities for no-carrier-added ring-fluorinated arenes, novel intermediates for tri[(18)F]fluoromethylation reactions, and (18)F-fluorovinylation methods.
Collapse
Affiliation(s)
- Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
30
|
[Molecular imaging in oncological surgery: technical principles and importance]. Chirurg 2014; 85:474-80. [PMID: 24805798 DOI: 10.1007/s00104-013-2666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Diagnostic imaging with positron emission tomography (PET) is becoming increasingly more involved in oncological therapy management. OBJECTIVES How can PET be helpful in oncological surgery? METHODS After a short introduction into the basic principles of PET the current state of imaging as well as indications and limitations of the method are described. RESULTS The PET is a functional and quantitative imaging technique, enabling detection and characterization of tumors. It is applied in pretherapeutic staging as well as in follow-up and therapy assessment. The use of PET changes the therapy management in about one third of all oncology patients. New radiopharmaceuticals and novel technologies expand the diagnostic potential. DISCUSSION Hybrid imaging with PET computed tomography (CT) and PET magnetic resonance imaging (MRI) further improves diagnostic imaging and increases the acceptance of PET further.
Collapse
|
31
|
de Almeida A, Soveral G, Casini A. Gold compounds as aquaporin inhibitors: new opportunities for therapy and imaging. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00265b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review on the development of gold-based compounds as aquaglyceroporin inhibitors with potential as therapeutic agents or as chemical probes.
Collapse
Affiliation(s)
- Andreia de Almeida
- Dept. of Pharmacokinetics, Toxicology and Targeting
- Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen, The Netherlands
| | - Graça Soveral
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa Av. Prof Gama Pinto
- 1649-003 Lisbon, Portugal
| | - Angela Casini
- Dept. of Pharmacokinetics, Toxicology and Targeting
- Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen, The Netherlands
| |
Collapse
|
32
|
Morais M, Paulo A, Gano L, Santos I, Correia JD. Target-specific Tc(CO)3-complexes for in vivo imaging. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
de Almeida A, Oliveira BL, Correia JD, Soveral G, Casini A. Emerging protein targets for metal-based pharmaceutical agents: An update. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Jamous M, Haberkorn U, Mier W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules 2013; 18:3379-409. [PMID: 23493103 PMCID: PMC6269889 DOI: 10.3390/molecules18033379] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 12/20/2022] Open
Abstract
Despite the advances in molecular biology and biochemistry, the prognosis of patients suffering from tumor diseases remains poor. The limited therapeutic success can be explained by the insufficient performance of the common chemotherapeutic drugs that lack the ability to specifically target tumor tissues. Recently peptide radiopharmaceuticals have been developed that enable the concurrent imaging and therapy of tumors expressing a specific target. Here, with a special emphasis on the synthesis of the building blocks required for the complexation of metallic radioisotopes, the requirements to the design and synthesis of radiolabeled peptides for clinical applications are described.
Collapse
Affiliation(s)
| | | | - Walter Mier
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6221-56-7720; Fax: +49-6221-65-33629
| |
Collapse
|
35
|
Microfluidics: a golden opportunity for positron emission tomography? Future Med Chem 2013; 5:241-4. [DOI: 10.4155/fmc.13.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
|
37
|
Corroyer-Dulmont A, Pérès EA, Petit E, Guillamo JS, Varoqueaux N, Roussel S, Toutain J, Divoux D, MacKenzie ET, Delamare J, Ibazizène M, Lecocq M, Jacobs AH, Barré L, Bernaudin M, Valable S. Detection of glioblastoma response to temozolomide combined with bevacizumab based on μMRI and μPET imaging reveals [18F]-fluoro-L-thymidine as an early and robust predictive marker for treatment efficacy. Neuro Oncol 2012; 15:41-56. [PMID: 23115160 DOI: 10.1093/neuonc/nos260] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The individualized care of glioma patients ought to benefit from imaging biomarkers as precocious predictors of therapeutic efficacy. Contrast enhanced MRI and [(18)F]-fluorodeoxyglucose (FDG)-PET are routinely used in clinical settings; their ability to forecast the therapeutic response is controversial. The objectives of our preclinical study were to analyze sensitive µMRI and/or µPET imaging biomarkers to predict the efficacy of anti-angiogenic and/or chemotherapeutic regimens. Human U87 and U251 orthotopic glioma models were implanted in nude rats. Temozolomide and/or bevacizumab were administered. µMRI (anatomical, diffusion, and microrheological parameters) and µPET ([(18)F]-FDG and [(18)F]-fluoro-l-thymidine [FLT]-PET) studies were undertaken soon (t(1)) after treatment initiation compared with late anatomical µMRI evaluation of tumor volume (t(2)) and overall survival. In both models, FDG and FLT uptakes were attenuated at t(1) in response to temozolomide alone or with bevacizumab. The distribution of FLT, reflecting intratumoral heterogeneity, was also modified. FDG was less predictive for treatment efficacy than was FLT (also highly correlated with outcome, P < .001 for both models). Cerebral blood volume was significantly decreased by temozolomide + bevacizumab and was correlated with survival for rats with U87 implants. While FLT was highly predictive of treatment efficacy, a combination of imaging biomarkers was superior to any one alone (P < .0001 in both tumors with outcome). Our results indicate that FLT is a sensitive predictor of treatment efficacy and that predictability is enhanced by a combination of imaging biomarkers. These findings may translate clinically in that individualized glioma treatments could be decided in given patients after PET/MRI examinations.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- CNRS, UMR ISTCT 6301, CERVOxy and LDM-TEP groups. GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 CAEN cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Morais GR, Paulo A, Santos I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012. [DOI: 10.1021/om300501d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Goreti Ribeiro Morais
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - António Paulo
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| |
Collapse
|
39
|
|
40
|
Abstract
Early diagnosis and therapy increasingly operate at the cellular, molecular, or even at the genetic level. As diagnostic techniques transition from the systems to the molecular level, the role of multimodality molecular imaging becomes increasingly important. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are powerful techniques for in vivo molecular imaging. The inability of PET to provide anatomical information is a major limitation of standalone PET systems. Combining PET and CT proved to be clinically relevant and successfully reduced this limitation by providing the anatomical information required for localization of metabolic abnormalities. However, this technology still lacks the excellent soft-tissue contrast provided by MRI. Standalone MRI systems reveal structure and function but cannot provide insight into the physiology and/or the pathology at the molecular level. The combination of PET and MRI, enabling truly simultaneous acquisition, bridges the gap between molecular and systems diagnosis. MRI and PET offer richly complementary functionality and sensitivity; fusion into a combined system offering simultaneous acquisition will capitalize the strengths of each, providing a hybrid technology that is greatly superior to the sum of its parts. A combined PET/MRI system provides both the anatomical and structural description of MRI simultaneously with the quantitative capabilities of PET. In addition, such a system would allow exploiting the power of MR spectroscopy (MRS) to measure the regional biochemical content and to assess the metabolic status or the presence of neoplasia and other diseases in specific tissue areas. This paper briefly summarizes state-of-the-art developments and latest advances in dedicated hybrid PET/MRI instrumentation. Future prospects and potential clinical applications of this technology will also be discussed.
Collapse
Affiliation(s)
- Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland.
| | | |
Collapse
|
41
|
Kramer-Marek G, Shenoy N, Seidel J, Griffiths GL, Choyke P, Capala J. 68Ga-DOTA-affibody molecule for in vivo assessment of HER2/neu expression with PET. Eur J Nucl Med Mol Imaging 2011; 38:1967-76. [PMID: 21748382 PMCID: PMC3393017 DOI: 10.1007/s00259-011-1810-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/18/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Overexpression of HER2/neu in breast cancer is correlated with a poor prognosis. It may vary between primary tumors and metastatic lesions and change during the treatment. Therefore, there is a need for a new means to assess HER2/neu expression in vivo. In this work, we used (68)Ga-labeled DOTA-Z(HER2:2891)-Affibody to monitor HER2/neu expression in a panel of breast cancer xenografts. METHODS DOTA-Z(HER2:2891)-Affibody molecules were labeled with (68)Ga. In vitro binding was characterized by a receptor saturation assay. Biodistribution and PET imaging studies were conducted in athymic nude mice bearing subcutaneous human breast cancer tumors with three different levels of HER2/neu expression. Nonspecific uptake was analyzed using non-HER2-specific Affibody molecules. Signal detected by PET was compared with ex vivo assessment of the tracer uptake and HER2/neu expression. RESULTS The (68)Ga-DOTA-Z(HER2:2891)-Affibody probe showed high binding affinity to MDA-MB-361 cells (K (D) = 1.4 ± 0.19 nM). In vivo biodistribution and PET imaging studies demonstrated high radioactivity uptake in HER2/neu-positive tumors. Tracer was eliminated quickly from the blood and normal tissues, resulting in high tumor-to-blood ratios. The highest concentration of radioactivity in normal tissue was seen in the kidneys (227 ± 14%ID/g). High-contrast PET images of HER2/neu-overexpressing tumors were recorded as soon as 1 h after tracer injection. A good correlation was observed between PET imaging, biodistribution estimates of tumor tracer concentration, and the receptor expression. CONCLUSION These results suggest that PET imaging using (68)Ga-DOTA-Z(HER2:2891)-Affibody is sensitive enough to detect different levels of HER2/neu expression in vivo.
Collapse
Affiliation(s)
- Gabriela Kramer-Marek
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nalini Shenoy
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Jurgen Seidel
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gary L. Griffiths
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jacek Capala
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Abstract
Some of the most exciting advances in molecular-functional imaging of cancer are occurring at the interface between chemistry and imaging. Several of these advances have occurred through the development of novel imaging probes that report on molecular pathways, the tumor micro-environment and the response of tumors to treatment; as well as through novel image-guided platforms such as nanoparticles and nanovesicles that deliver therapeutic agents against specific targets and pathways. Cancer cells have a remarkable ability to evade destruction despite the armamentarium of drugs currently available. While these drugs can destroy cancer cells, normal tissue toxicity is a major limiting factor, a problem further compounded by poor drug delivery. One major challenge for chemistry continues to be to eliminate cancer cells without damaging normal tissues. Here we have selected examples of MRI and optical imaging, to demonstrate how integrating imaging with novel probes can facilitate the successful treatment of this multifaceted disease.
Collapse
|
43
|
Noninvasive optical imaging of nitroreductase gene-directed enzyme prodrug therapy system in living animals. Gene Ther 2011; 19:295-302. [DOI: 10.1038/gt.2011.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Targeting nitric oxide synthase with 99mTc/Re-tricarbonyl complexes containing pendant guanidino or isothiourea moieties. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2010.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Correia JDG, Paulo A, Raposinho PD, Santos I. Radiometallated peptides for molecular imaging and targeted therapy. Dalton Trans 2011; 40:6144-67. [DOI: 10.1039/c0dt01599g] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Lawrence J, Rohren E, Provenzale J. PET/CT today and tomorrow in veterinary cancer diagnosis and monitoring: fundamentals, early results and future perspectives. Vet Comp Oncol 2010; 8:163-87. [PMID: 20691025 DOI: 10.1111/j.1476-5829.2010.00218.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Functional imaging using positron emission tomography (PET) plays an important role in the diagnosis, staging, image-guided treatment planning and monitoring of malignant diseases. PET imaging complements conventional anatomical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI). The strength of CT scanning lies in its high spatial resolution, allowing for anatomical characterization of disease. PET imaging, however, moves beyond anatomy and characterizes tissue based on functions such as metabolic rate. Combined PET/CT scanners were introduced commercially in 2001 and a number of technological advancements have since occurred. Radiolabelled tracers such as (18)F-fluorodeoxyglucose (FDG) and (18)F-fluorothymidine (FLT) allow visualization of various metabolic processes within cancer cells. Many studies in human oncology evaluating the utility of PET/CT have demonstrated clinical benefits. Few veterinary studies have been performed, but initial studies show promise for improved detection of malignancy, more thorough staging of canine cancer and determination of early response and disease recrudescence.
Collapse
Affiliation(s)
- J Lawrence
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA.
| | | | | |
Collapse
|
47
|
Pretze M, Wuest F, Peppel T, Köckerling M, Mamat C. The traceless Staudinger ligation with fluorine-18: a novel and versatile labeling technique for the synthesis of PET-radiotracers. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.09.134] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Oliveira BL, Raposinho PD, Mendes F, Figueira F, Santos I, Ferreira A, Cordeiro C, Freire AP, Correia JDG. Re and Tc Tricarbonyl Complexes: From the Suppression of NO Biosynthesis in Macrophages to in Vivo Targeting of Inducible Nitric Oxide Synthase. Bioconjug Chem 2010; 21:2168-72. [DOI: 10.1021/bc100291e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bruno L. Oliveira
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Paula D. Raposinho
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Filipa Mendes
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Flávio Figueira
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Isabel Santos
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - António Ferreira
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Carlos Cordeiro
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Ana P. Freire
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - João D. G. Correia
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal, and Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| |
Collapse
|
49
|
Li Z, Conti PS. Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev 2010; 62:1031-51. [PMID: 20854860 DOI: 10.1016/j.addr.2010.09.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/11/2010] [Accepted: 09/13/2010] [Indexed: 12/13/2022]
Abstract
Molecular imaging is an emerging technology that allows the visualization of interactions between molecular probes and biological targets. Molecules that either direct or are subject to homeostatic controls in biological systems could be labeled with the appropriate radioisotopes for the quantitative measurement of selected molecular interactions during normal tissue homeostasis and again after perturbations of the normal state. In particular, positron emission tomography (PET) offers picomolar sensitivity and is a fully translational technique that requires specific probes radiolabeled with a usually short-lived positron-emitting radionuclide. PET has provided the capability of measuring biological processes at the molecular and metabolic levels in vivo by the detection of the gamma rays formed as a result of the annihilation of the positrons emitted. Despite the great wealth of information that such probes can provide, the potential of PET strongly depends on the availability of suitable PET radiotracers. However, the development of new imaging probes for PET is far from trivial and radiochemistry is a major limiting factor for the field of PET. In this review, we provided an overview of the most common chemical approaches for the synthesis of PET-labeled molecules and highlighted the most recent developments and trends. The discussed PET radionuclides include ¹¹C (t₁(/)₂=20.4min), ¹³N (t₁(/)₂=9.9min), ¹⁵O (t₁(/)₂=2min), ⁶⁸Ga (t₁(/)₂=68min), ¹⁸F (t₁(/)₂=109.8min), ⁶⁴Cu (t₁(/)₂=12.7h), and ¹²⁴I (t₁(/)₂=4.12d).
Collapse
|
50
|
Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 2010; 9:906-20. [PMID: 20705518 DOI: 10.1016/s1474-4422(10)70181-2] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Imaging techniques are important for accurate diagnosis and follow-up of patients with gliomas. T1-weighted MRI, with or without gadolinium, is the gold standard method. However, this technique only reflects biological activity of the tumour indirectly by detecting the breakdown of the blood-brain barrier. Therefore, especially for low-grade glioma or after treatment, T1-weighted MRI enhanced with gadolinium has substantial limitations. Development of more advanced imaging methods to improve outcomes for individual patients is needed. New imaging methods based on MRI and PET can be employed in various stages of disease to target the biological activity of the tumour cells (eg, increased uptake of aminoacids or nucleoside analogues), the changes in diffusivity through the interstitial space (diffusion-weighted MRI), the tumour-induced neovascularisation (perfusion-weighted MRI or contrast-enhanced MRI, or increased uptake of aminoacids in endothelial wall), and the changes in concentrations of metabolites (magnetic resonance spectroscopy). These techniques have advantages and disadvantages, and should be used in conjunction to best help individual patients. Advanced imaging techniques need to be validated in clinical trials to ensure standardisation and evidence-based implementation in routine clinical practice.
Collapse
Affiliation(s)
- Frederic G Dhermain
- Department of Radiation Oncology and Physics, Institut Gustave Roussy, Villejuif Cedex, Paris, France
| | | | | | | | | |
Collapse
|