1
|
de Barros JM, de Farias Morais HG, de Oliveira Costa CS, Rolim LSA, de Sousa Lopes MLD, Guedes Queiroz LM, de Souza LB, Pinto LP. Decreased Nuclear Immunoexpression of ING3 is a Frequent Event in Lip Carcinogenesis. Head Neck Pathol 2024; 18:103. [PMID: 39412571 PMCID: PMC11485000 DOI: 10.1007/s12105-024-01683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Evaluate the immunohistochemical expression of the ING3 in actinic cheilitis and squamous cell carcinoma of the lower lip. METHODS Forty-five specimens of actinic cheilitis and 48 specimens of squamous cell carcinoma of the lower lip were submitted to immunohistochemical detection of ING3. The protein expression in different cellular sublocations was compared between the two groups, and associations with the clinicopathological variables were analyzed. A significance level of 5% was adopted for all tests. RESULTS Deaths were significantly more frequent in tumors with a high histopathological risk score (p < 0.05). In actinic cheilitis, significant differences were found in the nucleus-cytoplasmic expression of ING3 and expression restricted to the cytoplasm with binary histopathological grading (p < 0.05). In squamous cell carcinoma of the lower lip, there was no statistically significant difference when comparing ING3 expressions with clinical and morphological parameters (p > 0.05). Nucleo-cytoplasmic ING3 expression was significantly lower in squamous cell carcinoma of the lower lip when compared to actinic cheilitis (p < 0.05) and the expression restricted to the cytoplasm was significantly higher in squamous cell carcinoma of the lower lip (p < 0.05). CONCLUSION The results of this study suggest that there is a marked decrease in the nuclear expression of ING3 as malignant progression occurs, indicating an impaired tumor suppressor function of this protein in actinic cheilitis and squamous cell carcinoma of the lower lip.
Collapse
Affiliation(s)
- Joyce Magalhães de Barros
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Hannah Gil de Farias Morais
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil.
| | - Carla Samily de Oliveira Costa
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Larissa Santos Amaral Rolim
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Maria Luiza Diniz de Sousa Lopes
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Lélia Maria Guedes Queiroz
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Leão Pereira Pinto
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| |
Collapse
|
2
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
3
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
4
|
Li Z, Xu S, Chen L, Huang S, Kuerban X, Li T. Prognostic significance of ING3 expression in patients with cancer: A systematic review and meta-analysis. Front Oncol 2023; 13:1090860. [PMID: 36845697 PMCID: PMC9948604 DOI: 10.3389/fonc.2023.1090860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background It has been reported that ING3 inhibits the progression of various cancers. However, some studies have shown that it promotes the development of prostate cancer. The purpose of this study was to investigate whether ING3 expression is associated with the prognosis of patients with cancer. Materials and methods PubMed, Cochrane Database, Embase, Medline, ScienceDirect, Scopus and Web of Science were searched until September 2022. The hazard ratio (HR)/odds ratio (OR) and 95% confidence interval (95% CI) were calculated using Stata 17 software. We used the Newcastle-Ottawa Scale (NOS) to assess the risk of bias. Result Seven studies involving 2371 patients with five types of cancer were included. The results showed that high expression of ING3 was negatively associated with a more advanced TNM stage (III-IV vs. I-II) (OR=0.61, 95% CI: 0.43-0.86), lymph node metastasis (OR=0.67, 95% CI: 0.49-0.90) and disease-free survival (HR=0.63, 95% CI: 0.37-0.88). However, ING3 expression was not associated with overall survival (HR=0.77, 95% CI: 0.41-1.12), tumor size (OR=0.67, 95% CI: 0.33-1.37), tumor differentiation (OR=0.86, 95% CI: 0.36-2.09) and gender (OR=1.14, 95% CI: 0.78-1.66). Conclusion This study showed that the expression of ING3 was associated with better prognosis, suggesting that ING3 may be a potential biomarker for cancer prognosis. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier (CRD42022306354).
Collapse
Affiliation(s)
- Zehan Li
- The Department of Surgery, the First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Shengchao Xu
- The Department of Surgery, Guangzhou Medical University, Guangdong, China
| | - Lin Chen
- The Department of Surgery, the First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Shuqi Huang
- The Department of Surgery, the First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xieyida Kuerban
- The Department of Surgery, the First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Tianyu Li
- The Department of Surgery, the First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong, China,*Correspondence: Tianyu Li,
| |
Collapse
|
5
|
Martinez-Vargas YDC, Silva-Filho TJD, Oliveira DHIPD, Gonçalo RIC, Queiroz LMG. ING3 and ING4 immunoexpression and their relation to the development of benign odontogenic lesions. Braz Dent J 2021; 32:74-82. [PMID: 34787253 DOI: 10.1590/0103-6440202104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
The Inhibitor of Growth (ING) gene family is a group of tumor suppressor genes that play important roles in cell cycle control, senescence, DNA repair, cell proliferation, and apoptosis. However, inactivation and downregulation of these proteins have been related in some neoplasms. The present study aimed to evaluate the immunohistochemical profiles of ING3 and ING4 proteins in a series of benign epithelial odontogenic lesions. METHODS The sample comprised of 20 odontogenic keratocysts (OKC), 20 ameloblastomas (AM), and 15 adenomatoid odontogenic tumors (AOT) specimens. Nuclear and cytoplasmic immunolabeling of ING3 and ING4 were semi-quantitatively evaluated in epithelial cells of the odontogenic lesions, according to the percentage of immunolabelled cells in each case. Descriptive and statistics analysis were computed, and the p-value was set at 0.05. RESULTS No statistically significant differences were found in cytoplasmic and nuclear ING3 immunolabeling among the studied lesions. In contrast, AOTs presented higher cytoplasmic and nuclear ING4 labeling compared to AMs (cytoplasmic p-value = 0.01; nuclear p-value < 0.001) and OKCs (nuclear p-value = 0.007). CONCLUSION ING3 and ING4 protein downregulation may play an important role in the initiation and progression of more aggressive odontogenic lesions, such as AMs and OKCs.
Collapse
Affiliation(s)
| | | | | | - Rani Iani Costa Gonçalo
- Postgraduate Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
6
|
Melekhova A, Baniahmad A. ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer. Cells 2021; 10:cells10102599. [PMID: 34685579 PMCID: PMC8533759 DOI: 10.3390/cells10102599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Prevention and overcoming castration resistance of prostate cancer (PC) remains one of the main unsolved problems in modern oncology. Hence, many studies are focused on the investigation of novel androgen receptor (AR) regulators that could serve as potential drug targets in disease therapy. Among such factors, inhibitor of growth (ING) proteins were identified. Some ING proteins act as AR transcriptional coregulators, indicating their relevance for PC research. The ING family consists of five protein-coding genes from ING1 to ING5 and pseudogene INGX. The ING genes were revealed through their sequence homology to the first identified ING1 from an in vivo screen. ING factors are a part of histone modification complexes. With the help of the conserved plant homeodomain (PHD) motif, ING factors bind to Histone 3 Lysine 4 (H3K4) methylation mark with a stronger affinity to the highest methylation grade H3K4me3 and recruit histone acetyltransferases (HAT) and histone deacetylases (HDAC) to chromatin. ING1 and ING2 are core subunits of mSIN3a-HDAC corepressor complexes, whereas ING3–5 interact with different HAT complexes that serve as coactivators. ING members belong to type II tumour suppressors and are frequently downregulated in many types of malignancies, including PC. As the family name indicates, ING proteins are able to inhibit cell growth and tumour development via regulation of cell cycle and cancer-relevant pathways such as apoptosis, cellular senescence, DNA repair, cell migration, invasion, and angiogenesis. Many ING splice variants that enhance the diversity of ING activity were discovered. However, it seems that the existence of multiple ING splice variants is underestimated, since alternative splice variants, such as the AR coregulators ING1 and ING3, counteract full-length ING and thus play an opposite functional role. These results open a novel prospective investigation direction in understanding ING factors biology in PC and other malignancies.
Collapse
Affiliation(s)
| | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396-820; Fax: +49-3641-9396-822
| |
Collapse
|
7
|
A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial-Mesenchymal Transition in Prostate Cancer Cells. Biomolecules 2021; 11:biom11081152. [PMID: 34439818 PMCID: PMC8392754 DOI: 10.3390/biom11081152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibitor of growth 3 (ING3) is one of five members of the ING tumour suppressor family, characterized by a highly conserved plant homeodomain (PHD) as a reader of the histone mark H3K4me3. ING3 was reported to act as a tumour suppressor in many different cancer types to regulate apoptosis. On the other hand, ING3 levels positively correlate with poor survival prognosis of prostate cancer (PCa) patients. In PCa cells, ING3 acts rather as an androgen receptor (AR) co-activator and harbours oncogenic properties in PCa. Here, we show the identification of a novel ING3 splice variant in both the human PCa cell line LNCaP and in human PCa patient specimen. The novel ING3 splice variant lacks exon 11, ING3∆ex11, which results in deletion of the PHD, providing a unique opportunity to analyse functionally the PHD of ING3 by a natural splice variant. Functionally, overexpression of ING3Δex11 induced morphological changes of LNCaP-derived 3D spheroids with generation of lumen and pore-like structures within spheroids. Since these structures are an indicator of epithelial-mesenchymal transition (EMT), key regulatory factors and markers for EMT were analysed. The data suggest that in contrast to ING3, ING3Δex11 specifically modulates the expression of key EMT-regulating upstream transcription factors and induces the expression of EMT markers, indicating that the PHD of ING3 inhibits EMT. In line with this, ING3 knockdown also induced the expression of EMT markers, confirming the impact of ING3 on EMT regulation. Further, ING3 knockdown induced cellular senescence via a pathway leading to cell cycle arrest, indicating an oncogenic role for ING3 in PCa. Thus, the data suggest that the ING3Δex11 splice variant lacking functional PHD exhibits oncogenic characteristics through triggering EMT in PCa cells.
Collapse
|
8
|
ING2 tumor suppressive protein translocates into mitochondria and is involved in cellular metabolism homeostasis. Oncogene 2021; 40:4111-4123. [PMID: 34017078 DOI: 10.1038/s41388-021-01832-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
ING2 (Inhibitor of Growth 2) is a tumor suppressor gene that has been implicated in critical biological functions (cell-cycle regulation, replicative senescence, DNA repair and DNA replication), most of which are recognized hallmarks of tumorigenesis occurring in the cell nucleus. As its close homolog ING1 has been recently observed in the mitochondrial compartment, we hypothesized that ING2 could also translocate into the mitochondria and be involved in new biological functions. In the present study, we demonstrate that ING2 is imported in the inner mitochondrial fraction in a redox-sensitive manner in human cells and that this mechanism is modulated by 14-3-3η protein expression. Remarkably, ING2 is necessary to maintain mitochondrial ultrastructure integrity without interfering with mitochondrial networks or polarization. We observed an interaction between ING2 and mtDNA under basal conditions. This interaction appears to be mediated by TFAM, a critical regulator of mtDNA integrity. The loss of mitochondrial ING2 does not impair mtDNA repair, replication or transcription but leads to a decrease in mitochondrial ROS production, suggesting a detrimental impact on OXPHOS activity. We finally show using multiple models that ING2 is involved in mitochondrial respiration and that its loss confers a protection against mitochondrial respiratory chain inhibition in vitro. Consequently, we propose a new tumor suppressor role for ING2 protein in the mitochondria as a metabolic shift gatekeeper during tumorigenesis.
Collapse
|
9
|
Li H, Zhang H, Tan X, Liu D, Guo R, Wang M, Tang Y, Zheng K, Chen W, Li H, Tan M, Wang K, Liu R, Tang S. Overexpression of ING3 is associated with attenuation of migration and invasion in breast cancer. Exp Ther Med 2021; 22:699. [PMID: 34007308 PMCID: PMC8120550 DOI: 10.3892/etm.2021.10131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibitor of growth 3 (ING3) has been identified as a potential cancer drug target, but little is known about its role in breast cancer. Thus, the present study aimed to investigate ING3 expression in breast cancer, its clinical value, and how ING3 influences the migration and invasion of breast cancer cells. The Cancer Genome Atlas and UALCAN databases were used to analyze ING3 expression in cancer tissues and normal tissues. Survival analysis was performed using the UALCAN, UCSC Xena and KM-plot databases. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect ING3 mRNA and protein expression levels. ING3 was overexpressed via lentiviral vector transfection, while the Transwell and wound healing assays were performed to assess the cell migratory and invasive abilities. Protein interaction and pathway analyses were performed using the GeneMANIA and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The results demonstrated that ING3 expression was significantly lower in cancer tissues compared with normal tissues (P<0.05). In addition, luminal A and human epidermal growth factor receptor 2 (HER2)-enriched breast cancer tissues expressed lower levels of ING3 compared with normal breast tissues. Notably, statistically significant differences were observed in long-term survival between patients with luminal A (P=0.04) and HER2-enriched (P=0.008) breast cancer, with high and low expression levels of ING3. The results of the Transwell migration and invasion assays demonstrated that overexpression of ING3 significantly inhibited the migratory and invasive abilities of MCF7 (P<0.05) and HCC1937 (P<0.05) cells. The results of the wound healing assay demonstrated that the percentage wound closure significantly decreased in cells transfected with LV5-ING3 compared with the negative control group at 12 h (P<0.05) and 24 h (P<0.01). The PI3K/AKT, JAK/STAT, NF-κB and Wnt/β-catenin pathways are the potential pathways regulated by ING3. Notably, overexpression of ING3 inhibited migration and invasion in vitro. However, further studies are required to determine whether ING3 regulates the biological behavior of breast cancer via tumor-related pathways.
Collapse
Affiliation(s)
- Huimeng Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hengyu Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Xin Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rong Guo
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Maohua Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Yiyin Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Kai Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Wenlin Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hongwan Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Mingjian Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rui Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shicong Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
10
|
Jacquet K, Binda O. ING Proteins: Tumour Suppressors or Oncoproteins. Cancers (Basel) 2021; 13:cancers13092110. [PMID: 33925563 PMCID: PMC8123807 DOI: 10.3390/cancers13092110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The INhibitor of Growth family was defined in the mid-1990s by the identification of a tumour suppressor, ING1, and subsequent expansion of the family based essentially on sequence similarities. However, later work and more recent investigations demonstrate that at least a few ING proteins are actually required for normal proliferation of eukaryotic cells, from yeast to human. ING proteins are also part of a larger family of chromatin-associated factors marked by a plant homeodomain (PHD), which mediates interactions with methylated lysine residues. Herein, we discuss the role of ING proteins and their various roles in chromatin signalling in the context of cancer development and progression.
Collapse
Affiliation(s)
- Karine Jacquet
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
| | - Olivier Binda
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
11
|
Wu X, Chen C, Luo B, Yan D, Yan H, Chen F, Guan F, Wu H, Yuan J. Nuclear ING3 Expression Is Correlated With a Good Prognosis of Breast Cancer. Front Oncol 2021; 10:589009. [PMID: 33469513 PMCID: PMC7813678 DOI: 10.3389/fonc.2020.589009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The inhibitor of growth (ING) family was discovered as the type II tumor suppressors, which regulated the proliferation, apoptosis, differentiation, angiogenesis, metastasis, and invasion of tumor cells through multiple pathways. ING3, a new member of ING family, has been reported to be downregulated in several types of tumors. However, few studies on ING3 in breast cancer have been reported. In this study, we investigated the expression of ING3 and determined its prognostic value in breast cancer. The immunohistochemistry was performed to evaluate the expression of ING3 in tissue microarrays (TMA) including breast cancer tissues (n=211) and normal breast tissues (n=50). In normal breast tissues, ING3 protein was detected in both the cytoplasm and nucleus. In breast cancer tissues, ING3 protein was principally detected in the cytoplasm. Compared with normal breast tissues, the expression of ING3 in nucleus was remarkably reduced in breast cancer tissues. The downregulated ING3 in nucleus was significantly correlated with clinicopathological characteristics including histological grade, lymph node metastasis, and the status of ER and PR. In HER2 positive-type and triple-negative breast cancer (TNBC) patients, it had the lower rate of nuclear ING3 with high expression than that in luminal-type. Moreover, Kaplan-Meier curves demonstrated that the reduced expression of ING3 in nucleus was correlated with a poorer 5-DFS and 5-OS of breast cancer patients. Importantly, multivariate Cox regression analysis suggested that the reduced expression of ING3 in nucleus was an independent prognostic factor in breast cancer. Our study comprehensively described the expression of ING3 in breast cancer for the first time and proved that it was an independent prognostic predictor of breast cancer, as well as a new idea for study of breast cancer.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Hasan S. An Overview of Promising Biomarkers in Cancer Screening and Detection. Curr Cancer Drug Targets 2020; 20:831-852. [PMID: 32838718 DOI: 10.2174/1568009620666200824102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022]
Abstract
Applications of biomarkers have been proved in oncology screening, diagnosis, predicting response to treatment as well as monitoring the progress of the disease. Considering the crucial role played by them during different disease stages, it is extremely important to evaluate, validate, and assess them to incorporate them into routine clinical care. In this review, the role of few most promising and successfully used biomarkers in cancer detection, i.e. PD-L1, E-Cadherin, TP53, Exosomes, cfDNA, EGFR, mTOR with regard to their structure, mode of action, and reports signifying their pathological significance, are addressed. Also, an overview of some successfully used biomarkers for cancer medicine has been presented. The study also summarizes biomarker-driven personalized cancer therapy i.e., approved targets and indications, as per the US FDA. The review also highlights the increasingly prominent role of biomarkers in drug development at all stages, with particular reference to clinical trials. The increasing utility of biomarkers in clinical trials is clearly evident from the trend shown, wherein ~55 percent of all oncology clinical trials in 2019 were seen to involve biomarkers, as opposed to ~ 15 percent in 2001, which clearly proves the essence and applicability of biomarkers for synergizing clinical information with tumor progression. Still, there are significant challenges in the implementation of these possibilities with strong evidence in cost-- effective manner.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow, India
| |
Collapse
|
13
|
Zhou R, Rotte A, Li G, Chen X, Chen G, Bhandaru M. Nuclear localization of ING3 is required to suppress melanoma cell migration, invasion and angiogenesis. Biochem Biophys Res Commun 2020; 527:418-424. [PMID: 32334834 DOI: 10.1016/j.bbrc.2020.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Inhibitor of growth family member 3 (ING3), a tumor suppressor, plays crucial roles in cell cycle regulation, apoptosis and transcription. Previous studies suggest important roles of nuclear ING3, however, the nuclear localization sequence (NLS) of ING3 is not defined and its biological functions remain to be elucidated. In this study, various ING3 mutants were generated to identify its NLS. The NLS of ING3 was determined as KKFK between 164 and 167 amino acids. More intriguingly, replacement of Lysine 164 residue of ING3 with alanine (K164A) resulted in retention of ING3 in the cytoplasm. Overexpression of ING3 led to inhibition of melanoma cell migration, invasion, and angiogenesis respectively, however, this inhibition was abrogated in cells with overexpression of ING3-K164A mutant. In conclusion, this study identified the NLS of ING3 and demonstrated the significance of ING3 nuclear localization for tumor suppressive functions of ING3, and future studies await to elucidate the role of ING3 (K164) post-modificaton in its nuclear transportation and cancer development.
Collapse
Affiliation(s)
- Ruiyao Zhou
- Department of General Surgery, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Anand Rotte
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Xiaolei Chen
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guangdi Chen
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Bioelectromagnetics Laboratory, Department of Public Health, Zhejiang University School of Medicine, China.
| | - Madhuri Bhandaru
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Li X, Zhang Q, Zhang M, Luo Y, Fu Y. Downregulation of nuclear ING3 expression and translocalization to cytoplasm promotes tumorigenesis and progression in head and neck squamous cell carcinoma (HNSCC). Histol Histopathol 2019; 35:681-690. [PMID: 31886514 DOI: 10.14670/hh-18-197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ING3 (inhibitor of growth gene 3) is a member of the ING gene family, and is considered as a candidate tumor suppressor gene. In order to explore the roles of ING3 in tumorigenesis and cancer progression of head and neck squamous cell carcinoma (HNSCC), ING3 expression was assessed in 173 cases of HNSCC by immunohistochemistry. The expression of ING3 was also compared to clinicopathological variables, and the expression of several tumorigenic markers. Nuclear expression of ING3 in HNSCC was significantly lower than that in dysplasia and normal epithelium, and was negatively correlated with a poor-differentiated status, T staging and TNM staging. In contrast, cytoplasmic expression of ING3 was significantly increased in HNSCC, and was statistically associated with lymph node metastasis and 14-3-3η expression. In addition, nuclear expression of ING3 was positively correlated with the expression of p300, p21 and acetylated p53. In conclusion, decreases in nuclear ING3 may play important roles in tumorigenesis, progression and tumor differentiation in HNSCC. Increases in cytoplasmic ING3 may be due to 14-3-3η binding and may also be involved in malignant progression. Nuclear ING3 may modulate the transactivation of target genes, promoting apoptosis through interactions with p300 and p21. Moreover, ING3 may interact with p300 to upregulate the level of acetylation of p53, and promote p53-mediated cell cycle arrest, senescence and/or apoptosis. Therefore, ING3 may be a potential tumor suppressor and a possible therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qun Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yusong Luo
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaping Fu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Fink D, Yau T, Nabbi A, Wagner B, Wagner C, Hu SM, Lang V, Handschuh S, Riabowol K, Rülicke T. Loss of Ing3 Expression Results in Growth Retardation and Embryonic Death. Cancers (Basel) 2019; 12:cancers12010080. [PMID: 31905726 PMCID: PMC7017303 DOI: 10.3390/cancers12010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022] Open
Abstract
The ING3 candidate tumour suppressor belongs to a family of histone modifying proteins involved in regulating cell proliferation, senescence, apoptosis, chromatin remodeling, and DNA repair. It is a stoichiometric member of the minimal NuA4 histone acetyl transferase (HAT) complex consisting of EAF6, EPC1, ING3, and TIP60. This complex is responsible for the transcription of an essential cascade of genes involved in embryonic development and in tumour suppression. ING3 has been linked to head and neck and hepatocellular cancers, although its status as a tumour suppressor has not been well established. Recent studies suggest a pro-metastasis role in prostate cancer progression. Here, we describe a transgenic mouse strain with insertional mutation of an UbC-mCherry expression cassette into the endogenous Ing3 locus, resulting in the disruption of ING3 protein expression. Homozygous mutants are embryonically lethal, display growth retardation, and severe developmental disorders. At embryonic day (E) 10.5, the last time point viable homozygous embryos were found, they were approximately half the size of heterozygous mice that develop normally. µCT analysis revealed a developmental defect in neural tube closure, resulting in the failure of formation of closed primary brain vesicles in homozygous mid-gestation embryos. This is consistent with high ING3 expression levels in the embryonic brains of heterozygous and wild type mice and its lack in homozygous mutant embryos that show a lack of ectodermal differentiation. Our data provide direct evidence that ING3 is an essential factor for normal embryonic development and that it plays a fundamental role in prenatal brain formation.
Collapse
Affiliation(s)
- Dieter Fink
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
- Correspondence: ; Tel.: +43-(0)-1-25077-2820
| | - Tienyin Yau
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Arash Nabbi
- Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.N.); (K.R.)
| | - Bettina Wagner
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Christine Wagner
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Shiting Misaki Hu
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Viktor Lang
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Stephan Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Karl Riabowol
- Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.N.); (K.R.)
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| |
Collapse
|
16
|
Chang HY, Xie RX, Zhang L, Fu LZ, Zhang CT, Chen HH, Wang ZQ, Zhang Y, Quan FS. Overexpression of miR-101-2 in donor cells improves the early development of Holstein cow somatic cell nuclear transfer embryos. J Dairy Sci 2019; 102:4662-4673. [PMID: 30879805 DOI: 10.3168/jds.2018-15072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Accumulating studies have suggested that microRNA play a part in regulating multiple cellular processes, such as cell proliferation, apoptosis, the cell cycle, and embryo development. This study explored the effects of miR-101-2 on donor cell physiological status and the development of Holstein cow somatic cell nuclear transfer (SCNT) embryos in vitro. Holstein cow bovine fetal fibroblasts (BFF) overexpressing miR-101-2 were used as donor cells to perform SCNT; then, cleavage rate, blastocyst rate, inner cell mass-to-trophectoderm ratio, and the expression of some development- and apoptosis-related genes in different groups were analyzed. The miR-101-2 suppressed the expression of inhibitor of growth protein 3 (ING3) at mRNA and protein levels, expedited cell proliferation, and decreased apoptosis in BFF, suggesting that ING3, a target gene of miR-101-2, is a potential player in this process. Moreover, by utilizing donor cells overexpressing miR-101-2, the development of bovine SCNT embryos in vitro was significantly enhanced; the apoptotic rate in SCNT blastocysts was reduced, and the inner cell mass-to-trophectoderm ratio and SOX2, POU5F1, and BCL2L1 expression significantly increased, whereas BAX and ING3 expression decreased. Collectively, these findings suggest that miR-101-2 promotes BFF proliferation and vitality, reduces their apoptosis, and improves the early development of SCNT embryos.
Collapse
Affiliation(s)
- H Y Chang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - R X Xie
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - L Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - L Z Fu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - C T Zhang
- Animal Husbandry and Veterinary Station of Xining, Xining 810003, Qinghai, China
| | - H H Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Z Q Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Y Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - F S Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Mouche A, Archambeau J, Ricordel C, Chaillot L, Bigot N, Guillaudeux T, Grenon M, Pedeux R. ING3 is required for ATM signaling and DNA repair in response to DNA double strand breaks. Cell Death Differ 2019; 26:2344-2357. [PMID: 30804473 DOI: 10.1038/s41418-019-0305-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/16/2023] Open
Abstract
Inhibitor of Growth 3 (ING3) is a candidate tumor suppressor gene whose expression is lost in tumors such as hepatocellular carcinoma, head and neck squamous cell carcinoma and melanoma. In the present study, we show that ING3-depleted human cells and yeast cells deleted for its ortholog YNG2 are sensitive to DNA damage suggesting a conserved role in response to such stress. In human cells, ING3 is recruited to DNA double strand breaks and is required for ATM activation. Remarkably, in response to doxorubicin, ATM activation is dependent on ING3 but not on TIP60, whose recruitment to DNA breaks also depends on ING3. These events lead to ATM-mediated phosphorylation of NBS1 and the subsequent recruitment of RNF8, RNF168, 53BP1, and BRCA1, which are major mediators of the DNA damage response. Accordingly, upon genotoxic stress, DNA repair by non-homologous end joining (NHEJ) or homologous recombination (HR) were impaired in absence of ING3. Finally, immunoglobulin class switch recombination (CSR), a physiological mechanism requiring NHEJ repair, was impaired in the absence of ING3. Since deregulation of DNA double strand break repair is associated with genomic instability, we propose a novel function of ING3 as a caretaker tumor suppressor involved in the DNA damage signaling and repair.
Collapse
Affiliation(s)
- Audrey Mouche
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,INSERM U1236, MICMAC, Rennes, France
| | - Jérôme Archambeau
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Charles Ricordel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Laura Chaillot
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,UMS Biosit, SFR Biologie-Santé, Rennes, France
| | - Nicolas Bigot
- Université de Rennes 1, Rennes, France.,INSERM U1236, MICMAC, Rennes, France.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Thierry Guillaudeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,UMS Biosit, SFR Biologie-Santé, Rennes, France
| | - Muriel Grenon
- Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rémy Pedeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France. .,Université de Rennes 1, Rennes, France.
| |
Collapse
|
18
|
Regulat-INGs in tumors and diseases: Focus on ncRNAs. Cancer Lett 2019; 447:66-74. [PMID: 30673590 DOI: 10.1016/j.canlet.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in cell homeostasis. It has been shown that their expression is lost or diminished in many cancers and other diseases. The main mechanisms by which they are regulated in oncogenesis have not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. miRNAs are short sequences (18-25 nucleotides) that can bind to the 3 'UTR sequence of the targeted messenger RNA (mRNA), leading to its degradation or translational repression. Interactions between the ING family and miRNAs have been described in some cancers but also in other diseases. The involvement of miRNAs in ING family regulation opens up new fields of investigation, particularly for targeted therapies. In this review, we will summarize the regulatory mechanisms at the RNA and protein level of the ING family and focus on the interactions with ncRNAs.
Collapse
|
19
|
Hodges AJ, Plummer DA, Wyrick JJ. NuA4 acetyltransferase is required for efficient nucleotide excision repair in yeast. DNA Repair (Amst) 2018; 73:91-98. [PMID: 30473425 DOI: 10.1016/j.dnarep.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.
Collapse
Affiliation(s)
- Amelia J Hodges
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - Dalton A Plummer
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States; Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
20
|
Inhibitor of growth 3 induces cell death by regulating cell proliferation, apoptosis and cell cycle arrest by blocking the PI3K/AKT pathway. Cancer Gene Ther 2018; 25:240-247. [DOI: 10.1038/s41417-018-0023-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 12/14/2022]
|
21
|
Nabbi A, McClurg UL, Thalappilly S, Almami A, Mobahat M, Bismar TA, Binda O, Riabowol KT. ING3 promotes prostate cancer growth by activating the androgen receptor. BMC Med 2017; 15:103. [PMID: 28511652 PMCID: PMC5434536 DOI: 10.1186/s12916-017-0854-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The androgen receptor (AR) is a major driver of prostate cancer, and increased AR levels and co-activators of the receptor promote the development of prostate cancer. INhibitor of Growth (ING) proteins target lysine acetyltransferase or lysine deacetylase complexes to the histone H3K4Me3 mark of active transcription, to affect chromatin structure and gene expression. ING3 is a stoichiometric member of the TIP60 lysine acetyltransferase complex implicated in prostate cancer development. METHODS Biopsies of 265 patients with prostate cancer were stained for ING3, pan-cytokeratin, and DNA. LNCaP and C4-2 androgen-responsive cells were used for in vitro assays including immunoprecipitation, western blotting, Luciferase reporter assay and quantitative polymerase chain reaction. Cell viability and migration assays were performed in prostate cancer cell lines using scrambled siRNA or siRNA targeting ING3. RESULTS We find that ING3 levels and AR activity positively correlate in prostate cancer. ING3 potentiates androgen effects, increasing expression of androgen-regulated genes and androgen response element-driven reporters to promote growth and anchorage-independent growth. Conversely, ING3 knockdown inhibits prostate cancer cell growth and invasion. ING3 activates the AR by serving as a scaffold to increase interaction between TIP60 and the AR in the cytoplasm, enhancing receptor acetylation and translocation to the nucleus. Activation is independent of ING3's ability to target the TIP60 complex to H3K4Me3, identifying a previously unknown chromatin-independent cytoplasmic activity for ING3. In agreement with in vitro observations, analysis of The Cancer Genome Atlas (TCGA) data (n = 498) and a prostate cancer tissue microarray (n = 256) show that ING3 levels are higher in aggressive prostate cancers, with high levels of ING3 predicting shorter patient survival in a low AR subgroup. Including ING3 levels with currently used indicators such as the Gleason score provides more accurate prognosis in primary prostate cancer. CONCLUSIONS In contrast to the majority of previous reports suggesting tumor suppressive functions in other cancers, our observations identify a clear oncogenic role for ING3, which acts as a co-activator of AR in prostate cancer. Data from TCGA and our previous and current tissue microarrays suggest that ING3 levels correlate with AR levels and that in patients with low levels of the receptor, ING3 level could serve as a useful prognostic biomarker.
Collapse
Affiliation(s)
- Arash Nabbi
- Department of Biochemistry & Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Urszula L McClurg
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Subhash Thalappilly
- Department of Biochemistry & Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amal Almami
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pathology & Laboratory Medicine, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mahsa Mobahat
- Department of Biochemistry & Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tarek A Bismar
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pathology & Laboratory Medicine, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Olivier Binda
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, England, NE2 4HH, UK.
| | - Karl T Riabowol
- Department of Biochemistry & Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,, #311 HMRB, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
22
|
Gou WF, Yang XF, Shen DF, Zhao S, Sun HZ, Luo JS, Zheng HC. Immunohistochemical profile of ING3 protein in normal and cancerous tissues. Oncol Lett 2017; 13:1631-1636. [PMID: 28454301 PMCID: PMC5403501 DOI: 10.3892/ol.2017.5632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
The inhibitor of growth family, member 3 (ING3) protein may be capable of blocking the cell cycle via activating p53-transactivated promoters of p21 and Bcl2-associated X protein, and may induce apoptosis via a Fas/caspase-8-dependent signaling pathway. In the present study, immunohistochemistry was performed in order to characterize the expression profile of ING3 protein in tissue microarrays containing mouse and human normal tissue, human hepatocellular (n=62), renal clear cell (n=62), pancreatic (n=62), esophageal squamous cell (n=45), cervical squamous cell (n=31), breast (n=144), gastric (n=196), colorectal (n=96), ovarian (n=208), endometrial (n=96) and lung carcinoma (n=192). In mouse tissue, ING3 protein was positively detected in the cytoplasm of cardiomyocytes, kidney and skeletal muscle cells, and was additionally detected in the cytoplasm and nucleus of bronchial and alveolar epithelium, gastric and intestinal gland, and mammary gland cells. In human tissues, ING3 protein was principally distributed in the cytoplasm, but was observed in the cytoplasm and nucleus of tongue, esophagus, stomach, intestine, lung, skin, appendix, bladder, cervix and breast cells. ING3 immunoreactivity was strongly detected in the stomach, skin and cervical tissues, whereas a weak signal was detected in the cerebellum, brain stem, thymus, liver, skeletal muscle, testis and prostate. In total, ING3-positive specimens were identified in 424 of 1,194 tested cancer entities (35.5%). In a number of cases, ING3 expression was observed to be restricted to the cytoplasm and nucleus, excluding the cytoplasmic distribution identified in breast and hepatocellular carcinoma. Among these cases, ING3 was more frequently expressed in breast and gynecological types of cancer, including ovarian (59.2%), endometrial (47.9%), breast (38.9%) and cervical (35.5%) cancer. ING3-positive cases were more rare in renal clear cell (17.7%), hepatocellular (16.1%) and esophageal carcinoma (17.8%). It is suggested that ING3 may be involved in the repair and regeneration of organs or tissues, and may be closely associated with gynecological carcinogenesis.
Collapse
Affiliation(s)
- Wen-Feng Gou
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xue-Feng Yang
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shuang Zhao
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jun-Sheng Luo
- Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China.,Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
23
|
Yang C, Gao J, Yan N, Wu B, Ren Y, Li H, Liang J. Propofol inhibits the growth and survival of gastric cancer cells in vitro through the upregulation of ING3. Oncol Rep 2016; 37:587-593. [DOI: 10.3892/or.2016.5218] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/17/2016] [Indexed: 12/28/2022] Open
|
24
|
Almami A, Hegazy SA, Nabbi A, Alshalalfa M, Salman A, Abou-Ouf H, Riabowol K, Bismar TA. ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumour Biol 2016; 37:9731-8. [PMID: 26803516 DOI: 10.1007/s13277-016-4802-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022] Open
Abstract
The inhibitor of growth family member 3 (ING3) is a member of the ING tumor suppressor family. Although its expression has been reported in various types of cancers, the role of ING3 and its prognostic value in prostate cancer (PCa) has not been investigated. ING3 expression and prognostic value was assessed in a cohort of PCa patients (n = 312) treated with transurethral resection of prostate using immumoflourescent automated quantitative analysis (AQUA) system. In vitro studies were carried out in conjunction to investigate its expression in various PCa cell lines. ING3 knockdown was also carried out in DU145 cell lines to assess for any changes in invasion and migration. ING3 expression was highest in benign prostate tissues (mean 3.2 ± 0.54) compared to PCa (mean 2.5 ± 0.26) (p = 0.437), advanced prostate cancer (AdvPCa) (mean 1.5 ± 0.32) (p = 0.004), and castration-resistant prostate cancer (CRPC) (mean 2.28 ± 0.32) (p = 0.285). ING3 expression was inversely correlated to Gleason score (p = 0.039) and ETS-related gene (ERG) expression (p = 0.019). Higher ING3 expression was marginally associated with lethal disease (p = 0.052), and this was more pronounced in patients with ERG-negative status (p = 0.018). Inhibition of ING3 in DU145 PCa cells using small interfering RNA (siRNA) was associated with decreased cell invasion (p = 0.0016) and cell migration compared to control cells. ING3 is significantly associated with PCa disease progression and cancer-specific mortality. To our knowledge, this is the first report suggesting an oncogenic function of ING3, previously well known as a tumor suppressor protein. Further studies should investigate potential-related pathways in association to ING3.
Collapse
Affiliation(s)
- Amal Almami
- Medical Science Department Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Samar A Hegazy
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Arash Nabbi
- Medical Science Department Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada
| | | | - Asma Salman
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Hatem Abou-Ouf
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Karl Riabowol
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada.,Departments of Oncology, Biochemistry and Molecular Biology, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada. .,Departments of Oncology, Biochemistry and Molecular Biology, Calgary, Alberta, Canada. .,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada. .,The Prostate Centre, Calgary, Alberta, Canada. .,Departments of Pathology & Laboratory Medicine and Oncology, University of Calgary-Cumming School of Medicine, Rockyview General Hospital, Calgary, Alberta, T2V 1P9, Canada.
| |
Collapse
|
25
|
Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2015; 36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
26
|
Hill R, Kalathur RKR, Colaço L, Brandão R, Ugurel S, Futschik M, Link W. TRIB2 as a biomarker for diagnosis and progression of melanoma. Carcinogenesis 2015; 36:469-77. [PMID: 25586991 DOI: 10.1093/carcin/bgv002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/19/2014] [Indexed: 01/27/2023] Open
Abstract
Malignant melanoma is the most deadly form of skin cancer. There is a critical need to identify the patients that could be successfully treated by surgery alone and those that require adjuvant treatment. In this study, we demonstrate that the expression of tribbles2 (TRIB2) strongly correlates with both the presence and progression of melanocyte-derived malignancies. We examined the expression of TRIB2 in addition to 12 previously described melanoma biomarkers across three independent full genome microarray studies. TRIB2 expression was consistently and significantly increased in benign nevi and melanoma, and was highest in samples from patients with metastatic melanoma. The expression profiles for the 12 biomarkers were poorly conserved throughout these studies with only TYR, S100B and SPP1 showing consistently elevated expression in metastatic melanoma versus normal skin. Strikingly we confirmed these findings in 20 freshly obtained primary melanoma tissue samples from metastatic lesions where the expression of these biomarkers were evaluated revealing that TRIB2 expression correlated with disease stage and clinical prognosis. Our results suggest that TRIB2 is a meaningful biomarker reflecting diagnosis and progression of melanoma, as well as predicting clinical response to chemotherapy.
Collapse
Affiliation(s)
- Richard Hill
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal, Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve,Campus de Gambelas, 8005-139 Faro, Portugal and
| | - Ravi Kiran Reddy Kalathur
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Laura Colaço
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ricardo Brandão
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Selma Ugurel
- Department of Dermatology, Julius-Maximilians University, Würzburg, Germany
| | - Matthias Futschik
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Wolfgang Link
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal, Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve,Campus de Gambelas, 8005-139 Faro, Portugal and
| |
Collapse
|
27
|
Nabbi A, Almami A, Thakur S, Suzuki K, Boland D, Bismar TA, Riabowol K. ING3 protein expression profiling in normal human tissues suggest its role in cellular growth and self-renewal. Eur J Cell Biol 2015; 94:214-22. [PMID: 25819753 DOI: 10.1016/j.ejcb.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022] Open
Abstract
Members of the INhibitor of Growth (ING) family of proteins act as readers of the epigenetic code through specific recognition of the trimethylated form of lysine 4 of histone H3 (H3K4Me3) by their plant homeodomains. The founding member of the family, ING1, was initially identified as a tumor suppressor with altered regulation in a variety of cancer types. While alterations in ING1 and ING4 levels have been reported in a variety of cancer types, little is known regarding ING3 protein levels in normal or transformed cells due to a lack of reliable immunological tools. In this study we present the characterization of a new monoclonal antibody we have developed against ING3 that specifically recognizes human and mouse ING3. The antibody works in western blots, immunofluorescence, immunoprecipitation and immunohistochemistry. Using this antibody we show that ING3 is most highly expressed in small intestine, bone marrow and epidermis, tissues in which cells undergo rapid proliferation and renewal. Consistent with this observation, we show that ING3 is expressed at significantly higher levels in proliferating versus quiescent epithelial cells. These data suggest that ING3 levels may serve as a surrogate for growth rate, and suggest possible roles for ING3 in growth and self renewal and related diseases such as cancer.
Collapse
Affiliation(s)
- Arash Nabbi
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amal Almami
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Satbir Thakur
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keiko Suzuki
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Donna Boland
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tarek A Bismar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Karl Riabowol
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling. Arch Biochem Biophys 2014; 562:22-30. [DOI: 10.1016/j.abb.2014.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/28/2014] [Accepted: 08/11/2014] [Indexed: 12/20/2022]
|
29
|
Fan Y, Wang P, Fu W, Dong T, Qi C, Liu L, Guo G, Li C, Cui X, Zhang S, Zhang Q, Zhang Y, Sun D. Genome-wide association study for pigmentation traits in Chinese Holstein population. Anim Genet 2014; 45:740-4. [DOI: 10.1111/age.12189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Yipeng Fan
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Peng Wang
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Weixuan Fu
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Tian Dong
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Chao Qi
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Lin Liu
- Beijing Dairy Cattle Center; Beijing 100085 China
| | - Gang Guo
- Beijing Sanyuan Lvhe Dairy Cattle Breeding Center; Beijing 100076 China
| | - Cong Li
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Xiaogang Cui
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Shengli Zhang
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Qin Zhang
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Yi Zhang
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| | - Dongxiao Sun
- College of Animal Science and Technology; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture; National Engineering Laboratory of Animal Breeding; China Agricultural University; Beijing 100193 China
| |
Collapse
|
30
|
Guérillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: Status in human tumors. Cancer Lett 2014; 345:1-16. [DOI: 10.1016/j.canlet.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
|
31
|
Polato F, Rusconi P, Zangrossi S, Morelli F, Boeri M, Musi A, Marchini S, Castiglioni V, Scanziani E, Torri V, Broggini M. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected]. J Natl Cancer Inst 2014; 106:dju053. [PMID: 24652652 DOI: 10.1093/jnci/dju053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. METHODS DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. RESULTS We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. CONCLUSIONS DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.
Collapse
Affiliation(s)
- Federica Polato
- Affiliations of authors: Laboratory of Molecular Pharmacology (FP, PR, SZ, FM, MBo, AM, SM, MBr), and Laboratory of Methodology for Biomedical Research (VT), Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy; Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milan, Italy (VC, ES); Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy (VC, ES); Present address: Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD (FP)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
p90 RSK2 mediates antianoikis signals by both transcription-dependent and -independent mechanisms. Mol Cell Biol 2013; 33:2574-85. [PMID: 23608533 DOI: 10.1128/mcb.01677-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How invasive and metastatic tumor cells evade anoikis induction remains unclear. We found that knockdown of RSK2 sensitizes diverse cancer cells to anoikis induction, which is mediated through phosphorylation targets including apoptosis signal-regulating kinase 1 (ASK1) and cyclic AMP (cAMP) response element-binding protein (CREB). We provide evidence to show that RSK2 inhibits ASK1 by phosphorylating S83, T1109, and T1326 through a novel mechanism in which phospho-T1109/T1326 inhibits ATP binding to ASK1, while phospho-S83 attenuates ASK1 substrate MKK6 binding. Moreover, the RSK2→CREB signaling pathway provides antianoikis protection by regulating gene expression of protein effectors that are involved in cell death regulation, including the antiapoptotic factor protein tyrosine kinase 6 (PTK6) and the proapoptotic factor inhibitor-of-growth protein 3 (ING3). PTK6 overexpression or ING3 knockdown in addition to ASK1 knockdown further rescued the increased sensitivity to anoikis induction in RSK2 knockdown cells. These data together suggest that RSK2 functions as a signal integrator to provide antianoikis protection to cancer cells in both transcription-independent and -dependent manners, in part by signaling through ASK1 and CREB, and contributes to cancer cell invasion and tumor metastasis.
Collapse
|
33
|
Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics 2013; 40:97-106. [PMID: 23522382 PMCID: PMC3861240 DOI: 10.1016/j.jgg.2013.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
Abstract
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin-proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MI 48109, USA
| |
Collapse
|
34
|
RegulatING chromatin regulators: post-translational modification of the ING family of epigenetic regulators. Biochem J 2013; 450:433-42. [DOI: 10.1042/bj20121632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.
Collapse
|
35
|
Zhang D, Cao L, Li Y, Lu H, Yang X, Xue P. Expression of glioma-associated oncogene 2 (Gli 2) is correlated with poor prognosis in patients with hepatocellular carcinoma undergoing hepatectomy. World J Surg Oncol 2013; 11:25. [PMID: 23356443 PMCID: PMC3565946 DOI: 10.1186/1477-7819-11-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/06/2013] [Indexed: 02/04/2023] Open
Abstract
Background Our previous studies showed that glioma-associated oncogene (Gli)2 plays an important role in the proliferation and apoptosis resistance of hepatocellular carcinoma (HCC) cells. The aim of this study was to explore the clinical significance of Gli2 expression in HCC. Methods Expression of Gli2 protein was detected in samples from 68 paired HCC samples, the corresponding paraneoplastic liver tissues, and 20 normal liver tissues using immunohistochemistry. Correlation of the immunohistochemistry results with clinicopathologic parameters, prognosis, and the expression of E-cadherin, N-cadherin, and vimentin were analyzed. Results Immunohistochemical staining showed high levels of Gli2 protein expression in HCC, compared with paraneoplastic and normal liver tissues (P < 0.05). This high expression level of Gli2 was significantly associated with tumor differentiation, encapsulation, vascular invasion, early recurrence, and intra-hepatic metastasis (P < 0.05). There was a significantly negative correlation between Gli2 and E-cadherin expression (r = −0.302, P < 0.05) and a significantly positive correlation between expression of Gli2 and expression of vimentin (r = −0.468, P < 0.05) and N-cadherin (r = −0.505, P < 0.05). Kaplan-Meier analysis showed that patients with overexpressed Gli2 had significantly shorter overall survival and disease-free survival times (P < 0.05). Multivariate analysis suggested that the level of Gli2 expression was an independent prognostic factor for HCC. Conclusions Expression of Gli2 is high in HCC tissue, and is associated with poor prognosis in patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical College, No, 250, East Changgang Road, Guangzhou 510260, China
| | | | | | | | | | | |
Collapse
|
36
|
Mathieu V, Pirker C, Schmidt WM, Spiegl-Kreinecker S, Lötsch D, Heffeter P, Hegedus B, Grusch M, Kiss R, Berger W. Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget 2012; 3:399-413. [PMID: 22535842 PMCID: PMC3380575 DOI: 10.18632/oncotarget.473] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Melanoma is a devastating skin cancer characterized by distinct biological subtypes. Besides frequent mutations in growth- and survival-promoting genes like BRAF and NRAS, melanomas additionally harbor complex non-random genomic alterations. Using an integrative approach, we have analysed genomic and gene expression changes in human melanoma cell lines (N=32) derived from primary tumors and various metastatic sites and investigated the relation to local growth aggressiveness as xenografts in immuno-compromised mice (N=22). Although the vast majority >90% of melanoma models harbored mutations in either BRAF or NRAS, significant differences in subcutaneous growth aggressiveness became obvious. Unsupervised clustering revealed that genomic alterations rather than gene expression data reflected this aggressive phenotype, while no association with histology, stage or metastatic site of the original melanoma was found. Genomic clustering allowed separation of melanoma models into two subgroups with differing local growth aggressiveness in vivo. Regarding genes expressed at significantly altered levels between these subgroups, a surprising correlation with the respective gene doses (>85% accordance) was found. Genes deregulated at the DNA and mRNA level included well-known cancer genes partly already linked to melanoma (RAS genes, PTEN, AURKA, MAPK inhibitors Sprouty/Spred), but also novel candidates like SIPA1 (a Rap1GAP). Pathway mining further supported deregulation of Rap1 signaling in the aggressive subgroup e.g. by additional repression of two Rap1GEFs. Accordingly, siRNA-mediated down-regulation of SIPA1 exerted significant effects on clonogenicity, adherence and migration in aggressive melanoma models. Together our data suggest that an aneuploidy-driven gene expression deregulation drives local aggressiveness in human melanoma.
Collapse
Affiliation(s)
- Véronique Mathieu
- Laboratory of Toxicology, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jafarnejad SM, Li G. Regulation of p53 by ING family members in suppression of tumor initiation and progression. Cancer Metastasis Rev 2012; 31:55-73. [PMID: 22095030 DOI: 10.1007/s10555-011-9329-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The INhibitor of Growth (ING) family is an evolutionarily conserved set of proteins, implicated in suppression of initiation and progression of cancers in various tissues. They promote cell cycle arrest, cellular senescence and apoptosis, participate in stress responses, regulate DNA replication and DNA damage responses, and inhibit cancer cell migration, invasion, and angiogenesis of the tumors. At the molecular level, ING proteins are believed to participate in chromatin remodeling and transcriptional regulation of their target genes. However, the best known function of ING proteins is their cooperation with p53 tumor suppressor protein in tumor suppression. All major isoforms of ING family members can promote the transactivition of p53 and the majority of them are shown to directly interact with p53. In addition, ING proteins are thought to interact with and modulate the function of auxiliary members of p53 pathway, such as MDM2, ARF , p300, and p21, indicating their widespread involvement in the regulation and function of this prominent tumor suppressor pathway. It seems that p53 pathway is the main mechanism by which ING proteins exert their functions. Nevertheless, regulation of other pathways which are not relevant to p53, yet important for tumorigenesis such as TGF-β and NF-κB, by ING proteins is also observed. This review summarizes the current understanding of the mutual interactions and cooperation between different members of ING family with p53 pathway and implications of this cooperation in the suppression of cancer initiation and progression.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
38
|
Lu M, Chen F, Wang Q, Wang K, Pan Q, Zhang X. Downregulation of inhibitor of growth 3 is correlated with tumorigenesis and progression of hepatocellular carcinoma. Oncol Lett 2012; 4:47-52. [PMID: 22807958 DOI: 10.3892/ol.2012.685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/30/2012] [Indexed: 11/06/2022] Open
Abstract
ING3, a member of the inhibitor of growth (ING) family, has been reported to be involved in transcription modulation, cell cycle control and the induction of apoptosis. Previous studies have demonstrated that the expression of ING3 decreased in melanoma and head and neck squamous cell carcinoma (HNSCC). The aim of this study was to investigate the role of ING3 in hepatocellular carcinoma (HCC) tumorigenesis and progression. The correlation between ING3 expression and clinicopathological variables of HCC was analyzed. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), it was found that ING3 was downregulated in HCC tissues compared with adjacent non-cancerous tissues (p<0.05). The immunohistochemical staining of tissue microarray data indicated a significant reduction of ING3 expression in 57.14% of HCC cases (64/112). In addition, the downregulation of ING3 was associated with the tumor differentiation stage. Most HCC samples of Edmondson-Steiner grades II to III exhibited inhibition of ING3 expression. The overexpression of ING3 in HCC cells was found to suppress cell proliferation, colony formation and cell migration, suggesting that ING3 acts as a tumor suppressor in HCC cells. Taken together, the data revealed that ING3 may serve as a suppression factor during tumorigenesis and progression of HCC.
Collapse
Affiliation(s)
- Meiling Lu
- The Central Laboratory, People's 10th Hospital, Shanghai 200072
| | | | | | | | | | | |
Collapse
|
39
|
Yang HY, Liu HL, Tian LT, Song RP, Song X, Yin DL, Liang YJ, Qu LD, Jiang HC, Liu JR, Liu LX. Expression and prognostic value of ING3 in human primary hepatocellular carcinoma. Exp Biol Med (Maywood) 2012; 237:352-61. [PMID: 22550337 DOI: 10.1258/ebm.2011.011346] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor-suppressor ING3 has been shown to be involved in tumor transcriptional regulation, apoptosis and the cell cycle. Some studies have demonstrated that ING3 is dysregulated in several types of cancers. However, the expression and function of ING3 in human hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate ING3 expression in hepatic tumors and its clinical relevance in hepatic cancer. The expression of ING3 protein was examined in 120 dissected HCC tissues and 47 liver tissues adjacent to the tumor by immunohistochemical assays and confirmed by Western blot analysis in 20 paired frozen tumor and non-tumor liver tissues. The relationship between ING3 staining and clinico-pathological characteristics of HCC was further analyzed. The mRNA expression of ING3 in the dissected tissues was also analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and realtime PCR. Both mRNA and protein concentrations of ING3 were found to be downregulated in the majority of HCC tumors in comparison with matched non-tumor hepatic tissues. Analysis of the relationship between ING3 staining and clinico-pathological characteristics of HCC showed that the low expression of ING3 protein is correlated with more aggressive behavior of the tumor. Kaplan–Meier curves demonstrated that patients with a low expression of ING3 have a significantly increased risk of shortened survival time. In addition, multivariate analysis suggested that the level of ING3 expression may be an independent prognostic factor. Our findings indicate that ING3 may be an important marker for human hepatocellular carcinoma progression and prognosis, as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Hao-Ling Liu
- Department of Endocrinology, The First Clinical College of Harbin Medical University, 23 Youzheng Street, Nangang District
| | - Lan-Tian Tian
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Rui-Peng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Da-Long Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Ying-Jian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Lian-Dong Qu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Experimental Animal Center, 427 Ma Duan Street, Harbin 150001, PR China
| | - Hong-Chi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Jia-Ren Liu
- Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Lian-Xin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| |
Collapse
|
40
|
Rodríguez-Cerdeira C, Molares-Vila A. New Perspectives of "omics" Applications in Melanoma Research. Open Biochem J 2011; 5:60-6. [PMID: 22253648 PMCID: PMC3257552 DOI: 10.2174/1874091x01105010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/08/2011] [Accepted: 11/20/2011] [Indexed: 01/08/2023] Open
Abstract
Background: Oncoproteomics is the study of proteins and their interactions in a cancer cell by proteomic technologies and has the potential to revolutionize clinical practice, including cancer diagnosis. Recent technological advances in the analysis of the human genome have opened the door to improving our primitive understanding of the gene expression patterns in cancer. The examination of the phenotypic and (epi) genetic changes in cutaneous melanoma has identified several genes deemed central to the development and progression of melanoma. Methods: A review of the literature was performed to determine the role of epigenetic modifications in human melanoma. The role of array-based high-throughput gene expression analysis in understanding the specific genes involved as well as the pathways and the comparative gene expression patterns of primary and metastatic melanoma. The development and clinical application of selective pharmacologic agents are also discussed. Results: We identified several articles that have extensively studied the role of epigenetics in melanoma, further elucidating the complex processes involved in gene regulation and expression. Other studies utilizing gene microarray analysis and other whole genome approaches reveal a wide array of genes and expression patterns in human melanoma. Several genes have been identified as potential prognostic markers of tumor progression and overall clinical outcome. Conclusions: High-throughput gene expression analysis has had a major impact in melanoma research. Several gene expression platforms have provided insight into the gene expression patterns in melanoma. Such data will provide foundations for the future development of prognostic markers and improved targeted therapies for patients with melanoma.
Collapse
|
41
|
Mehta S, Shelling A, Muthukaruppan A, Lasham A, Blenkiron C, Laking G, Print C. Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2011; 2:125-48. [PMID: 21789130 DOI: 10.1177/1758834009360519] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the last 10 years there has been an explosion of information about the molecular biology of cancer. A challenge in oncology is to translate this information into advances in patient care. While there are well-formed routes for translating new molecular information into drug therapy, the routes for translating new information into sensitive and specific diagnostic, prognostic and predictive tests are still being developed. Similarly, the science of using tumor molecular profiles to select clinical trial participants or to optimize therapy for individual patients is still in its infancy. This review will summarize the current technologies for predicting treatment response and prognosis in cancer medicine, and outline what the future may hold. It will also highlight the potential importance of methods that can integrate molecular, histopathological and clinical information into a synergistic understanding of tumor progression. While these possibilities are without doubt exciting, significant challenges remain if we are to implement them with a strong evidence base in a widely available and cost-effective manner.
Collapse
Affiliation(s)
- Sunali Mehta
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
42
|
Kanwar JR, Singh N, Kanwar RK. Role of nanomedicine in reversing drug resistance mediated by ATP binding cassette transporters and P-glycoprotein in melanoma. Nanomedicine (Lond) 2011; 6:701-14. [DOI: 10.2217/nnm.11.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is one of the most common complex phenomenons exhibited by cancer cells. It is a very common property of melanoma postchemotherapy. MDR transporters, ATP binding cassette (ABC) transporters, play a critical role in conferring this property to melanoma cells. miRNA are post-transcriptional regulators that regulate the expression of these ABC transporters. Targeting these miRNA, in turn targeting ABC transporters with the help of nanodelivery systems to overcome drug resistance, is the primary focus for attaining successful treatment methods for drug-resistant melanoma. These delivery systems are endocytosed by the cancer cells and do not require ABC transporters for their delivery, being a promising therapeutic measure for melanoma.
Collapse
Affiliation(s)
| | - Neha Singh
- Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre for Biotechnology & Interdisciplinary Biosciences (BioDeakin), Institute for Technology & Research Innovation, Deakin University, Geelong, Technology Precinct, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia
| | - Rupinder K Kanwar
- Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre for Biotechnology & Interdisciplinary Biosciences (BioDeakin), Institute for Technology & Research Innovation, Deakin University, Geelong, Technology Precinct, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia
| |
Collapse
|
43
|
Zheng HC, Xia P, Xu XY, Takahashi H, Takano Y. The nuclear to cytoplasmic shift of ING5 protein during colorectal carcinogenesis with their distinct links to pathologic behaviors of carcinomas☆. Hum Pathol 2011; 42:424-33. [DOI: 10.1016/j.humpath.2009.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/06/2009] [Accepted: 12/08/2009] [Indexed: 11/26/2022]
|
44
|
Aguissa-Touré AH, Wong RPC, Li G. The ING family tumor suppressors: from structure to function. Cell Mol Life Sci 2011; 68:45-54. [PMID: 20803232 PMCID: PMC11114739 DOI: 10.1007/s00018-010-0509-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/31/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
The Inhibitor of Growth (ING) proteins belong to a well-conserved family which presents in diverse organisms with several structural and functional domains for each protein. The ING family members are found in association with many cellular processes. Thus, the ING family proteins are involved in regulation of gene transcription, DNA repair, tumorigenesis, apoptosis, cellular senescence and cell cycle arrest. The ING proteins have multiple domains that are potentially capable of binding to many partners. It is conceivable, therefore, that such proteins could function similarly within protein complexes. In this case, within this family, each function could be attributed to a specific domain. However, the role of ING domains is not definitively clear. In this review, we summarize recent advances in structure-function relationships in ING proteins. For each domain, we describe the known biological functions and the approaches utilized to identify the functions associated with ING proteins.
Collapse
Affiliation(s)
- Almass-Houd Aguissa-Touré
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Ronald P. C. Wong
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
45
|
Wang QS, Li M, Zhang LY, Jin Y, Tong DD, Yu Y, Bai J, Huang Q, Liu FL, Liu A, Lee KY, Fu SB. Down-regulation of ING4 is associated with initiation and progression of lung cancer. Histopathology 2010; 57:271-81. [PMID: 20716169 DOI: 10.1111/j.1365-2559.2010.03623.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Tumour suppressor ING4 is one of ING family genes, which are involved in cell cycle arrest, gene transcription regulation, DNA repair and apoptosis. ING4 inhibition has been reported in various tumours, including gliomas, breast tumours, and stomach adenocarcinoma. The aim was to evaluate ING4 expression in lung cancers. METHOD AND RESULTS By immunohistochemistry of 246 lung tumour tissues, reduced ING4 nuclear and cytoplasmic expression were both revealed in lung cancer and associated with tumour grade. Interestingly, compared with normal tissues, we found more tumours with ING4 expression in the cytoplasm higher than in the nucleus. Nuclear ING4 inhibition correlated with the tumour stage and lymph node metastasis. Consistent with these findings, semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting demonstrated decreased ING4 mRNA and expression in 100% (50/50) tumour tissues. Furthermore, ING4 expression was lower in grade III than in grades I-II tumours. Reduced ING4 mRNA correlated with lymph node metastasis. CONCLUSIONS Our results indicate that overall inhibition of ING4 expression and ING4 expression higher in cytoplasm than in nucleus of tumour cells may be involved in the initiation and progression of lung cancers, and thus, analysis for ING4 expression may be useful as a clinical diagnostic and prognostic tool for lung cancer.
Collapse
Affiliation(s)
- Qiu-shi Wang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The altered expression of ING5 protein is involved in gastric carcinogenesis and subsequent progression. Hum Pathol 2010; 42:25-35. [PMID: 21062663 DOI: 10.1016/j.humpath.2010.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/23/2010] [Accepted: 05/26/2010] [Indexed: 11/20/2022]
Abstract
ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. To clarify the roles of ING5 in gastric tumorigenesis and progression, its expression was examined by immunohistochemistry on a tissue microarray containing gastric nonneoplastic mucosa (n = 119), dysplasia (n = 50), and carcinomas (n = 429), with its comparison with clinicopathologic parameters of the carcinomas. ING5 expression was analyzed in gastric carcinoma tissues and cell lines (MKN28, MKN45, AGS, GT-3 TKB, and KATO-III) by Western blot and reverse transcriptase-polymerase chain reaction. ING5 protein was found to distribute to the nuclei of gastric carcinoma cells with similar messenger RNA levels. An increased expression of ING5 messenger RNA was observed in gastric carcinoma in comparison with paired mucosa (P < .05). Lower expression of nuclear ING5 was detected in gastric dysplasia and carcinoma than that in nonneoplastic mucosa (P < .05). Gastric nonneoplastic mucosa and metastatic carcinoma showed more expression of cytoplasmic ING5 than did gastric carcinoma and dysplasia (P < .05). Nuclear ING5 expression was negatively correlated with tumor size, depth of invasion, lymph node metastasis, and clinicopathologic staging (P < .05), whereas cytoplasmic ING5 was positively associated with depth of invasion, venous invasion, lymph node metastasis, and clinicopathologic staging (P < .05). Nuclear ING5 was more expressed in older than younger carcinoma patients (P < .05). There was a higher expression of nuclear ING5 in intestinal-type than diffuse-type carcinoma (P < .05), whereas it was the converse for cytoplasmic ING5 (P < .05). Survival analysis indicated that nuclear ING5 was closely linked to favorable prognosis of carcinoma patients (P < .05), albeit not independent. It was suggested that aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and could be considered as a promising marker to gauge aggressiveness and prognosis of gastric carcinoma.
Collapse
|
47
|
Desouki MM, Liao S, Huang H, Conroy J, Nowak NJ, Shepherd L, Gaile DP, Geradts J. Identification of metastasis-associated breast cancer genes using a high-resolution whole genome profiling approach. J Cancer Res Clin Oncol 2010; 137:795-809. [PMID: 20680643 DOI: 10.1007/s00432-010-0937-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 07/05/2010] [Indexed: 01/23/2023]
Abstract
PURPOSE We employed a whole genome tumor profiling approach in an attempt to identify DNA copy number alterations (CNAs) and new candidate genes that are correlated with the metastatic potential of a primary breast carcinoma and with progression at the metastatic site. METHODS Fifty-four small (≤ 2 cm), high grade, ER-positive, formalin-fixed invasive ductal carcinomas were suitable for whole genome profiling analysis. Twenty-four of them did not form metastases within 5-10 years (unmatched primaries, UP). Thirty tumors had at least one synchronous axillary lymph node metastasis (matched primaries, MP; matched lymph node metastases, ML). Genomic DNA was hybridized to high density (19k) BAC arrays. Statistical analysis revealed differential distributions of CNAs between UP and MP and between MP and ML, respectively. We selected 27 candidate genes for validation experiments using quantitative (Q-)PCR of genomic DNA. For tetraspanin TSPAN1, we studied mRNA expression levels in a separate cohort of primary breast carcinomas and in breast cell lines. RESULTS Matched primary (MP) tumors had a threefold higher rate of DNA copy number losses compared to UP tumors. In the UP-MP comparison, 186 BACs were differentially amplified or deleted. Most of them were localized to chromosomes 7p, 16q and 18q. In the MP-ML comparison, 131 BACs showed differential CNAs. Most of them were localized to chromosomes 1q and 20. By Q-PCR, seven candidate genes could be confirmed to show differential distributions of CNAs. TSPAN1 was amplified in UP and deleted in MP tumors. The gene was markedly downregulated in ER-negative and high-grade breast cancers. CONCLUSIONS Metastasizing tumors had a higher rate of deletions, suggesting possible inactivation of metastasis suppressor genes. We provide preliminary evidence that TSPAN1 may be another important breast cancer suppressor gene belonging to the tetraspanin superfamily.
Collapse
Affiliation(s)
- Mohamed M Desouki
- Department of Pathology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Biomarkers: the useful and the not so useful--an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol 2010; 130:1971-87. [PMID: 20555347 DOI: 10.1038/jid.2010.149] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Among individuals with localized (Stage I-II) melanoma, stratifying patients by a number of phenotypic variables (e.g., depth of invasion, ulceration) yields a wide range of 10-year melanoma-specific survival rates. With the possible exception of Ki-67, no molecular assessment is routinely used. However, there have been a tremendous number of studies assessing protein expression by immunohistochemistry toward the goal of better prediction of recurrence. In a previous systematic review, which required publication of multivariable prognostic models as a strict inclusion criterion, we identified 37 manuscripts that collectively reported on 62 proteins. Data for 324 proteins extracted from 418 manuscripts did not meet our inclusion criteria for that study, but are revisited here, emphasizing trends of protein expression across either melanocytic lesion progression or gradations of tumor thickness. These identified 101 additional proteins that stratify melanoma, organized according to the Hanahan and Weinberg functional capabilities of cancer.
Collapse
|
49
|
Piche B, Li G. Inhibitor of growth tumor suppressors in cancer progression. Cell Mol Life Sci 2010; 67:1987-99. [PMID: 20195696 PMCID: PMC11115670 DOI: 10.1007/s00018-010-0312-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/11/2010] [Accepted: 01/29/2010] [Indexed: 12/27/2022]
Abstract
The inhibitor of growth (ING) family of tumor suppressors has five members and is implicated in the control of apoptosis, senescence, DNA repair, and cancer progression. However, little is known about ING activity in the regulation of cancer progression. ING members and splice variants seem to behave differently with respect to cancer invasion and metastasis. Interaction with histone trimethylated at lysine 4 (H3K4me3), hypoxia inducible factor-1 (HIF-1), p53, and nuclear factor kappa-B (NF-kappaB) are potential mechanisms by which ING members exert effects on invasion and metastasis. Subcellular mislocalization, rapid protein degradation, and to a lesser extent ING gene mutation are among the mechanisms responsible for inappropriate ING levels in cancer cells. The aim of this review is to summarize the different roles of ING family tumor suppressors in cancer progression and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Brad Piche
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
50
|
Chen G, Wang Y, Garate M, Zhou J, Li G. The tumor suppressor ING3 is degraded by SCFSkp2-mediated ubiquitin–proteasome system. Oncogene 2009; 29:1498-508. [DOI: 10.1038/onc.2009.424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|