1
|
Ravi S, Rekha JS, Basu D, Kayal S. Prognostic Significance of T-Cells and Macrophages in the Tumour Microenvironment of Nodal DLBCL. Indian J Hematol Blood Transfus 2024; 40:604-612. [PMID: 39469178 PMCID: PMC11512949 DOI: 10.1007/s12288-024-01770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/05/2024] [Indexed: 10/30/2024] Open
Abstract
Revised International Prognostic (R-IPI) score is used widely for risk stratification of DLBCL cases, yet some patients belonging to same risk category tend to exhibit different outcomes. The role of T-cells and macrophages in prognostication of lymphomas has been a point of interest of late. We aimed to study the association of FOXP3 positive T-regulatory cells, cytotoxic T-cells and macrophages with the immunophenotypic subtypes, clinicopathological characteristics, treatment response and survival in nodal diffuse large B-cell lymphoma (DLBCL) patients. The clinicopathological and treatment data of 83 DLBCL patients diagnosed and treated at our institute from January 2015 to December 2018 were collected and followed up till June 2020. CD8, FOXP3 and CD68 immunostains were performed to highlight the cytotoxic T-cells, T-regulatory cells and macrophages respectively on the lymph node biopsies and the distribution of these cells and their association with clinico-pathological factors, treatment response and survival was analyzed. DLBCL cases with higher percentage of CD3 positive T-cells and CD8 positive cytotoxic T-cells had significant association with attainment of complete response to treatment. In addition, CD8 positive T-cells of more than 6.5% proved to be an independent predictor of treatment outcome (p = 0.022). Multivariate Cox regression survival analysis revealed that cases with 'good' R-IPI prognostic score and 'high CD68 positive macrophages in tumor microenvironment' had a significantly longer overall survival. Increased number of cytotoxic T-cells was significantly associated with complete response to treatment and higher number of macrophages correlated significantly with better overall survival signifying their antitumor effects.
Collapse
Affiliation(s)
- Soundarya Ravi
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Room No: 2024, First Floor, Institute Block, Puducherry, 605006 India
| | - J. Sree Rekha
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Room No: 2024, First Floor, Institute Block, Puducherry, 605006 India
| | - Debdatta Basu
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Room No: 2024, First Floor, Institute Block, Puducherry, 605006 India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| |
Collapse
|
2
|
Olivas-Bejarano AC, Montiel-Cervantes LA, Del Carmen Perez-Retiguin F, Garcia-Gutierrez S, Cruz-Hernandez TR, Lezama-Palacios RA, Reyes-Maldonado E, Vela-Ojeda J. Lymphocyte subsets and soluble forms of MIC-A and MIC-B are prognostic factors in non-Hodgkin lymphoma patients. Ann Hematol 2024; 103:1317-1325. [PMID: 38091053 DOI: 10.1007/s00277-023-05583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 03/16/2024]
Abstract
MIC-A and MIC-B are the natural ligands for NKG2D, an activator receptor expressed in NK cells. Soluble isoforms of MIC-A and MIC-B (sMICA, sMICB) have been identified in different malignancies, affecting NK cells' cytotoxicity. The study was performed to determine the levels of sMICA, sMICB, the expression of MIC-A, and MIC-B on tumor tissues, and lymphocyte subpopulations (CD4 + , CD8 + , NK, NKT, Tγδ cells, B cells, monocytes) in 94 patients with non-Hodgkin's lymphoma (NHL) and 72 healthy donors.The most frequent lymphoma was diffuse large B cell lymphoma (48%). Patients with NHL had decreased numbers of CD4 T cells, CD8 T cells, B cells, monocytes, NK cells, type 1 dendritic cells, γδ T cells, and increased iNKT cells. Patients showed higher levels of sMIC-A and similar serum levels of sMIC-B.Survival was poorer in patients having higher LDH values and lower numbers of CD4 T cells, type 1 dendritic cells, gamma-delta T cells, and high levels of sMIC-A.In conclusion, high levels of sMIC and decreased numbers in circulating lymphocyte subsets are related to poor outcomes in NHL.
Collapse
Affiliation(s)
- Ana Cristina Olivas-Bejarano
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Laura Arcelia Montiel-Cervantes
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Flor Del Carmen Perez-Retiguin
- Departamento de Hematología, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Centro Médico Nacional La Raza Seris y Zaachila S/N Colonia La Raza, Azcapotzalco, 02990, Mexico City, Mexico
| | - Socrates Garcia-Gutierrez
- Departamento de Patología, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Centro Médico Nacional La Raza Seris y Zaachila S/N Colonia La Raza, Azcapotzalco, 02990, Mexico City, Mexico
| | - Teresita Rocio Cruz-Hernandez
- Laboratorio de Diagnóstico Clínico, Seccion de Estudios de Posgrado E Investigacion, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Ruth Angelica Lezama-Palacios
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Elba Reyes-Maldonado
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Jorge Vela-Ojeda
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico.
| |
Collapse
|
3
|
Menguy S, Prochazkova-Carlotti M, Azzi-Martin L, Ferté T, Bresson-Bepoldin L, Rey C, Vergier B, Merlio JP, Beylot-Barry M, Pham-Ledard A. Proliferative Tumor-Infiltrating Lymphocytes' Abundance within the Microenvironment Impacts Clinical Outcome in Cutaneous B-Cell Lymphomas. J Invest Dermatol 2023; 143:124-133.e3. [PMID: 35970476 DOI: 10.1016/j.jid.2022.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 10/15/2022]
Abstract
Primary cutaneous large B-cell lymphoma, leg-type (PCLBCL-LT) is the most aggressive primary cutaneous B-cell lymphoma (PCBCL). Tumor microenvironment has a crucial role in tumor development, and tumor-infiltrating lymphocytes (TILs) can be targeted by immunotherapies. We characterized TILs in 20 PCBCLs to identify the tumor microenvironment features associated with clinical outcomes. We developed a seven‒multiplex immunofluorescence panel using Opal staining and image analysis using HALO software. In PCLBCL-LT, TILs were sparsely intermingled within tumor infiltrate in contrast to those in indolent PCBCL where TILs were scattered around tumor nodule edges with variable tumor infiltration. In PCLBCL-LT, TILs were composed of CD8 and CD4, whereas CD4 was predominant in indolent PCBCL. Proliferative TILs (CD3+Ki-67+ cells) were more abundant in PCLBCL-LT (P = 0.0036) than in indolent PCBCL. In PCLBCL-LT, proliferative TILs' abundance tended to be associated with better progression-free survival. These data were confirmed in a second independent cohort of 23 cases showing that proliferative TILs were more abundant in PCLBCL-LT (P = 0.0205) and that in PCLBCL-LT, high CD3+Ki-67+ cell density was associated with better progression-free survival (P = 0.002). These distinct TILs composition and distribution among PCBCL suggest that proliferative T lymphocytes represent a good prognostic factor in PCLBCL-LT and that stimulating their functions may represent a therapeutic approach.
Collapse
Affiliation(s)
- Sarah Menguy
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Pathology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Martina Prochazkova-Carlotti
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France
| | - Lamia Azzi-Martin
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France
| | - Thomas Ferté
- Department of Public Health, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laurence Bresson-Bepoldin
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France
| | | | - Béatrice Vergier
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Pathology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Philippe Merlio
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Tumor Biology and Tumor Bank Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marie Beylot-Barry
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Dermatology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Anne Pham-Ledard
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Dermatology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.
| |
Collapse
|
4
|
Miyawaki K, Sugio T. Lymphoma Microenvironment in DLBCL and PTCL-NOS: the key to uncovering heterogeneity and the potential for stratification. J Clin Exp Hematop 2022; 62:127-135. [PMID: 36171096 DOI: 10.3960/jslrt.22027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) are the most common subtypes of mature B cell neoplasm and T/NK cell lymphoma, respectively. They share a commonality in that they are, by definition, highly heterogeneous populations. Recent studies are revealing more about the heterogeneity of these diseases, and at the same time, there is an active debate on how to stratify these heterogeneous diseases and make them useful in clinical practice. The various immune cells and non-cellular components surrounding lymphoma cells, i.e., the lymphoma microenvironment, have been the subject of intense research since the late 2000s, and much knowledge has been accumulated over the past decade. As a result, it has become clear that the lymphoma microenvironment, despite its paucity in tissues, significantly impacts the lymphoma pathogenesis and clinical behavior, such as its prognosis and response to therapy. In this article, we review the role of the lymphoma microenvironment in DLBCL and PTCL-NOS, with particular attention given to its impact on the prognosis and stratification.
Collapse
Affiliation(s)
- Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
5
|
Stubbins RJ, Lam R, Zhu J, Ghosh S, Mabilangan C, Kuruvilla J, Goswami RS, Lai R, Preiksaitis JK, Jain MD, Peters AC. Tumor Infiltrating Lymphocytes Predict Survival in Solid Organ Transplant Recipients With Monomorphic Post-transplant Lymphoproliferative Disorders. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:744-752. [PMID: 35717340 DOI: 10.1016/j.clml.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The tumor microenvironment (TME) in post-transplant lymphoproliferative disorders (PTLDs) remains unexplored. Tumor infiltrating lymphocytes (TILs) are prognostic in other lymphomas. We assessed the prognostic impact of TILs in monomorphic B-cell PTLD. METHODS TIL density (CD3+ cells/mm2) was determined by CD3 immunohistochemistry in archived diagnostic biopsies from patients diagnosed with monomorphic B-cell PTLD. RESULTS Amongst monomorphic PTLDs (N = 107), low TIL-count was associated with inferior 2-year progression-free survival (PFS) (41% versus 86%, P = .003) and 2-year overall survival (OS) (52% versus 93%, P = .003) by Kaplan-Meier analysis. Low TIL-count was significant on Cox univariate regression for inferior PFS (HR 4.5, 95% CI 2.0-9.9, P < .001) and OS (HR 4.6, 95% CI 1.8-11.8, P < .001). Multivariate analysis with clinical variables (age ≥60 years, high LDH, stage III/IV, CNS involvement) and TIL-count showed significance for PFS (HR 3.3, 95% CI 1.3-8.3, P = .010) and a non-significant trend for OS (HR 2.6, 95% CI 0.9-7.3, P = .064). A composite score including TILs and clinical variables (age ≥60 years, high LDH, stage III/IV, CNS involvement) effectively stratified monomorphic PTLD patients by PFS and OS (2-year OS: low-risk 93%, intermediate-risk 61%, high-risk 23%, P < .001). CONCLUSIONS The TME and TILs are prognostically relevant in monomorphic PTLD. Prognostic models including measures of the TME may improve risk stratification for patients with monomorphic PTLDs.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Leukemia/BMT Program of BC, BC Cancer, Vancouver, BC, Canada
| | - Ryan Lam
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - James Zhu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Sunita Ghosh
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Curtis Mabilangan
- Division of Infectious Diseases, Department of Medicine, University of Alberta, AB, Edmonton, Canada
| | - John Kuruvilla
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Jutta K Preiksaitis
- Division of Infectious Diseases, Department of Medicine, University of Alberta, AB, Edmonton, Canada
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute; Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthea C Peters
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W, Zappasodi R. Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies. Front Cell Dev Biol 2022; 9:805195. [PMID: 35071240 PMCID: PMC8777078 DOI: 10.3389/fcell.2021.805195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.
Collapse
Affiliation(s)
- Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sanjukta Chakraborty
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Yusuke Isshiki
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ryan Bucktrout
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
7
|
Yan J, Yuan W, Zhang J, Li L, Zhang L, Zhang X, Zhang M. Identification and Validation of a Prognostic Prediction Model in Diffuse Large B-Cell Lymphoma. Front Endocrinol (Lausanne) 2022; 13:846357. [PMID: 35498426 PMCID: PMC9048048 DOI: 10.3389/fendo.2022.846357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group with varied pathophysiological, genetic, and clinical features, accounting for approximately one-third of all lymphoma cases worldwide. Notwithstanding that unprecedented scientific progress has been achieved over the years, the survival of DLBCL patients remains low, emphasizing the need to develop novel prognostic biomarkers for early risk stratification and treatment optimization. METHOD In this study, we screened genes related to the overall survival (OS) of DLBCL patients in datasets GSE117556, GSE10846, and GSE31312 using univariate Cox analysis. Survival-related genes among the three datasets were screened according to the criteria: hazard ratio (HR) >1 or <1 and p-value <0.01. Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analysis were used to optimize and establish the final gene risk prediction model. The TCGA-NCICCR datasets and our clinical cohort were used to validate the performance of the prediction model. CIBERSORT and ssGSEA algorithms were used to estimate immune scores in the high- and low-risk groups. RESULTS We constructed an eight-gene prognostic signature that could reliably predict the clinical outcome in training, testing, and validation cohorts. Our prognostic signature also performed distinguished areas under the ROC curve in each dataset, respectively. After stratification based on clinical characteristics such as cell-of-origin (COO), age, eastern cooperative oncology group (ECOG) performance status, international prognostic index (IPI), stage, and MYC/BCL2 expression, the difference in OS between the high- and low-risk groups was statistically significant. Next, univariate and multivariate analyses revealed that the risk score model had a significant prediction value. Finally, a nomogram was established to visualize the prediction model. Of note, we found that the low-risk group was enriched with immune cells. CONCLUSION In summary, we identified an eight-gene prognostic prediction model that can effectively predict survival outcomes of patients with DLBCL and built a nomogram to visualize the perdition model. We also explored immune alterations between high- and low-risk groups.
Collapse
Affiliation(s)
- Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yuan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Otorhinolaryngology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Mingzhi Zhang,
| |
Collapse
|
8
|
Zhou Y, Wang S, Tao Y, Chen H, Qin Y, He X, Zhou S, Liu P, Yang J, Yang S, Gui L, Lou N, Zhang Z, Yao J, Han X, Shi Y. Low CCL19 expression is associated with adverse clinical outcomes for follicular lymphoma patients treated with chemoimmunotherapy. J Transl Med 2021; 19:399. [PMID: 34544443 PMCID: PMC8454033 DOI: 10.1186/s12967-021-03078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to recognize the hub genes associated with prognosis in follicular lymphoma (FL) treated with first-line rituximab combined with chemotherapy. Method RNA sequencing data of dataset GSE65135 (n = 24) were included in differentially expressed genes (DEGs) analysis. Weighted gene co-expression network analysis (WGCNA) was applied for exploring the coexpression network and identifying hub genes. Validation of hub genes expression and prognosis were applied in dataset GSE119214 (n = 137) and independent patient cohort from Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (n = 32), respectively, by analyzing RNAseq expression data and serum protein concentration quantified by ELISA. The Gene Set Enrichment Analysis (GSEA), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments analysis were performed. CIBERSORT was applied for tumor-infiltrating immune cells (TIICs) subset analysis. Results A total of 3260 DEGs were obtained, with 1861 genes upregulated and 1399 genes downregulated. Using WGCNA, eight hub genes, PLA2G2D, MMP9, PTGDS, CCL19, NFIB, YAP1, RGL1, and TIMP3 were identified. Kaplan–Meier analysis and multivariate COX regression analysis indicated that CCL19 independently associated with overall survival (OS) for FL patients treated with rituximab and chemotherapy (HR = 0.47, 95% CI [0.25–0.86], p = 0.014). Higher serum CCL19 concentration was associated with longer progression-free survival (PFS, p = 0.014) and OS (p = 0.039). TIICs subset analysis showed that CCL19 expression had a positive correlation with monocytes and macrophages M1, and a negative correlation with naïve B cells and plasma cells. Conclusion CCL19 expression was associated with survival outcomes and might be a potential prognostic biomarker for FL treated with first-line chemoimmunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03078-9.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shasha Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yunxia Tao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ning Lou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 41 Damucang Hutong, Xicheng District, Beijing, 100032, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
9
|
Zhao C, Huang R, Zeng Z, Yang S, Lu W, Liu J, Wei Y, Guo H, Zhang Y, Yan P, Huang Z, Shi J. Downregulation of USP18 reduces tumor-infiltrating activated dendritic cells in extranodal diffuse large B cell lymphoma patients. Aging (Albany NY) 2021; 13:14131-14158. [PMID: 34001679 PMCID: PMC8202869 DOI: 10.18632/aging.203030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/29/2021] [Indexed: 05/01/2023]
Abstract
Extranodal diffuse large B cell lymphoma (EN DLBCL) often leads to poor outcomes, while the underlying mechanism remains unclear. As immune imbalance plays an important role in lymphoma pathogenesis, we hypothesized that immune genes might be involved in the development of EN DLBCL. Ninety-three differentially expressed immune genes (DEIGs) were identified from 1168 differentially expressed genes (DEGs) between tumor tissues of lymph node DLBCL (LN DLBCL) and EN DLBCL patients in TCGA database. Nine prognostic immune genes were further identified from DEIGs by univariate Cox regression analysis. A multivariate predictive model was established based on these prognostic immune genes. Patients were divided into high- and low-risk groups according to the median model-based risk score. Kaplan-Meier survival curves showed that patients in the high-risk group had a shorter survival time than those in the low-risk group (P < 0.001). Ubiquitin-specific peptidase 18 (USP18) was further recognized as the key immune gene in EN DLBCL on the basis of coexpression of differentially expressed transcription factors (DETFs) and prognostic immune genes. USP18 exhibited low expression in EN DLBCL, which was regulated by LIM homeobox 2 (LHX2) (R = 0.497, P < 0.001, positive). The potential pathway downstream of USP18 was the MAPK pathway, identified by gene set variation analysis (GSVA), gene set enrichment analysis (GSEA) and Pearson correlation analysis (R = 0.294, P < 0.05, positive). The "ssGSEA" algorithm and Pearson correlation analysis identified that activated dendritic cells (aDCs) were the cell type mostly associated with USP18 (R = 0.694, P < 0.001, positive), indicating that USP18 participated in DC-modulating immune responses. The correlations among key biomarkers were supported by multiomics database validation. Indeed, the USP18 protein was confirmed to be expressed at lower levels in tumor tissues in patients with EN DLBCL than in those with LN DLBCL by immunohistochemistry. In short, our study illustrated that the downregulation of USP18 was associated with reduced aDC number in the tumor tissues of EN DLBCL patients, indicating that targeting USP18 might serve as a promising therapy.
Collapse
Affiliation(s)
- Chong Zhao
- Department of Hematology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Zhiwei Zeng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanyu Wei
- Department of Hematology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Lou X, Wang JJ, Wei YQ, He YJ, Jiang ZJ, Sun JJ. Identification of molecular heterogeneity of hepatocellular carcinoma based on immune gene expression signatures. Med Oncol 2021; 38:50. [PMID: 33786682 DOI: 10.1007/s12032-021-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
Although various molecular subtypes of hepatocellular carcinoma (HCC) have been investigated, most of these studies identify HCC subtype based on genomic profiling. Few studies have investigated the classification based on immune signatures, and none have classified HCC based on Immune activation and immunosuppressive. We performed immune gene expression of tumor tissue in 374 HCC patients from The Cancer Genome Atlas (TCGA) database and used unsupervised consensus clustering to stratify tumors. We then used HCC patients from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) as replication datasets. Based on the expression of 782 immune-related genes, HCC was stratified into four distinct immune subtypes. Tumors in one cluster (high immune activation; high-IA) indicate a higher level of Immune activation, which was characterized by higher anti-tumor immunity, higher pro-tumor immune-suppressive cell types, higher fractions of CD8+ T cells and M0 Macrophages compared with other subtypes. The high-IA also presents higher cancer-related hallmark signatures, such as epithelial-mesenchymal transition (EMT), angiogenesis, and apoptosis. We also found subpopulations of regulatory and exhaustion T lymphocyte were characterized by an opposite trend in high-IA, though samples in high-IA response to immunotherapy with better survival. The comparison of the immune profile in tumor and normal tissue indicates the activation of immune responses which only occurred in high-IA patients, while we conducted comparison of cirrhosis and non-cirrhosis tumor immune signatures, immune response activation was almost occurred in high-IA, but some of immune responses occurred in low-IA (low immune activation).
Collapse
Affiliation(s)
- Xin Lou
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Juan-Juan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Qing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying-Jie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhi-Jia Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jin-Jin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
11
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang C, Chen YP, Medeiros LJ, Chen TY, Chang KC. Higher infiltration of intratumoral CD25+ FOXP3+ lymphocytes correlates with a favorable prognosis in patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 62:76-85. [PMID: 32962457 DOI: 10.1080/10428194.2020.1817438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T-cells (Tregs) play an important role in cancer immunity but their prognostic impact is controversial in diffuse large B-cell lymphoma (DLBCL). Intratumoral Tregs in DLBCL (n = 70) were evaluated by double-stained CD25 and FOXP3 lymphocytes in formalin-fixed paraffin-embedded tissues, and correlated with clinicopathologic features. We found that increased numbers of intratumoral FOXP3+ lymphocytes (>2.4/HPF) and CD25 + FOXP3+ lymphocytes (>0.8/HPF) are favorable prognosticators (p = .004 and p < .001, respectively) in DLBCL patients, along with age <70 years, stage I-II disease, normal serum LDH level and low IPI scores (p < .001, .002, .002, and <.001, respectively). On multivariate analyses, a higher number of CD25 + FOXP3+ lymphocytes retained prognostic significance (p = .040). Interestingly, higher Treg infiltration correlated with increased infiltration by cytotoxic T-lymphocytes (γ = 0.294, p = .038) and nodal location (γ = 0.390, p = .004), but not with infiltration by CD123+ plasmacytoid dendritic cells, which were reported to induce Tregs with immune tolerance. Therefore, congruent with literature meta-analyses, higher intratumoral CD25 + FOXP3+ lymphocytes have a beneficial impact on DLBCL.
Collapse
Affiliation(s)
- Chen Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ping Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tsai-Yun Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Inflammatory Cells in Diffuse Large B Cell Lymphoma. J Clin Med 2020; 9:jcm9082418. [PMID: 32731512 PMCID: PMC7463675 DOI: 10.3390/jcm9082418] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells.
Collapse
|
14
|
Opinto G, Vegliante MC, Negri A, Skrypets T, Loseto G, Pileri SA, Guarini A, Ciavarella S. The Tumor Microenvironment of DLBCL in the Computational Era. Front Oncol 2020; 10:351. [PMID: 32296632 PMCID: PMC7136462 DOI: 10.3389/fonc.2020.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Among classical exemplifications of tumor microenvironment (TME) in lymphoma pathogenesis, the “effacement model” resembled by diffuse large B cell lymphoma (DLBCL) implies strong cell autonomous survival and paucity of non-malignant elements. Nonetheless, the magnitude of TME exploration is increasing as novel technologies allow the high-resolution discrimination of cellular and extra-cellular determinants at the functional, more than morphological, level. Results from genomic-scale studies and recent clinical trials revitalized the interest in this field, prompting the use of new tools to dissect DLBCL composition and reveal novel prognostic association. Here we revisited major controversies related to TME in DLBCL, focusing on the use of bioinformatics to mine transcriptomic data and provide new insights to be translated into the clinical setting.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Maria Carmela Vegliante
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Antonio Negri
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Tetiana Skrypets
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy.,CHIMOMO Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Loseto
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Stefano Aldo Pileri
- Division of Haematopathology, European Institute of Oncology-IRCCS, Milan, Italy
| | - Attilio Guarini
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Sabino Ciavarella
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| |
Collapse
|
15
|
Roussel M, Lhomme F, Roe CE, Bartkowiak T, Gravelle P, Laurent C, Fest T, Irish JM. Mass cytometry defines distinct immune profile in germinal center B-cell lymphomas. Cancer Immunol Immunother 2020; 69:407-420. [PMID: 31919622 PMCID: PMC7764565 DOI: 10.1007/s00262-019-02464-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
Tumor-associated macrophage and T-cell subsets are implicated in the pathogenesis of diffuse large B-cell lymphoma, follicular lymphoma, and classical Hodgkin lymphoma. Macrophages provide essential mechanisms of tumor immune evasion through checkpoint ligand expression and secretion of suppressive cytokines. However, normal and tumor-associated macrophage phenotypes are less well characterized than those of tumor-infiltrating T-cell subsets, and it would be especially valuable to know whether the polarization state of macrophages differs across lymphoma tumor microenvironments. Here, an established mass cytometry panel designed to characterize myeloid-derived suppressor cells and known macrophage maturation and polarization states was applied to characterize B-lymphoma tumors and non-malignant human tissue. High-dimensional single-cell analyses were performed using dimensionality reduction and clustering tools. Phenotypically distinct intra-tumor macrophage subsets were identified based on abnormal marker expression profiles that were associated with lymphoma tumor types. While it had been proposed that measurement of CD163 and CD68 might be sufficient to reveal macrophage subsets in tumors, results here indicated that S100A9, CCR2, CD36, Slan, and CD32 should also be measured to effectively characterize lymphoma-specific tumor macrophages. Additionally, the presence of phenotypically distinct, abnormal macrophage populations was closely linked to the phenotype of intra-tumor T-cell populations, including PD-1 expressing T cells. These results further support the close links between macrophage polarization and T-cell functional state, as well as the rationale for targeting tumor-associated macrophages in cancer immunotherapies.
Collapse
Affiliation(s)
- Mikael Roussel
- Laboratoire Hématologie, CHU Pontchaillou, Centre Hospitalier Universitaire de Rennes, Pôle Biologie, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.
| | - Faustine Lhomme
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France
| | - Caroline E Roe
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 740B Preston Building, 2220 Pierce Avenue, Nashville, TN, 37232-6840, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Todd Bartkowiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 740B Preston Building, 2220 Pierce Avenue, Nashville, TN, 37232-6840, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pauline Gravelle
- Service Anatomie et Cytologie Pathologiques and UMR1037, Toulouse, France
| | - Camille Laurent
- Service Anatomie et Cytologie Pathologiques and UMR1037, Toulouse, France
| | - Thierry Fest
- Laboratoire Hématologie, CHU Pontchaillou, Centre Hospitalier Universitaire de Rennes, Pôle Biologie, 2 rue Henri Le Guilloux, 35033, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 740B Preston Building, 2220 Pierce Avenue, Nashville, TN, 37232-6840, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
16
|
Ciavarella S, Vegliante MC, Fabbri M, De Summa S, Melle F, Motta G, De Iuliis V, Opinto G, Enjuanes A, Rega S, Gulino A, Agostinelli C, Scattone A, Tommasi S, Mangia A, Mele F, Simone G, Zito AF, Ingravallo G, Vitolo U, Chiappella A, Tarella C, Gianni AM, Rambaldi A, Zinzani PL, Casadei B, Derenzini E, Loseto G, Pileri A, Tabanelli V, Fiori S, Rivas-Delgado A, López-Guillermo A, Venesio T, Sapino A, Campo E, Tripodo C, Guarini A, Pileri SA. Dissection of DLBCL microenvironment provides a gene expression-based predictor of survival applicable to formalin-fixed paraffin-embedded tissue. Ann Oncol 2019; 29:2363-2370. [PMID: 30307529 PMCID: PMC6311951 DOI: 10.1093/annonc/mdy450] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Gene expression profiling (GEP) studies recognized a prognostic role for tumor microenvironment (TME) in diffuse large B-cell lymphoma (DLBCL), but the routinely adoption of prognostic stromal signatures remains limited. Patients and methods Here, we applied the computational method CIBERSORT to generate a 1028-gene matrix incorporating signatures of 17 immune and stromal cytotypes. Then, we carried out a deconvolution on publicly available GEP data of 482 untreated DLBCLs to reveal associations between clinical outcomes and proportions of putative tumor-infiltrating cell types. Forty-five genes related to peculiar prognostic cytotypes were selected and their expression digitally quantified by NanoString technology on a validation set of 175 formalin-fixed, paraffin-embedded DLBCLs from two randomized trials. Data from an unsupervised clustering analysis were used to build a model of clustering assignment, whose prognostic value was also assessed on an independent cohort of 40 cases. All tissue samples consisted of pretreatment biopsies of advanced-stage DLBCLs treated by comparable R-CHOP/R-CHOP-like regimens. Results In silico analysis demonstrated that higher proportion of myofibroblasts (MFs), dendritic cells, and CD4+ T cells correlated with better outcomes and the expression of genes in our panel is associated with a risk of overall and progression-free survival. In a multivariate Cox model, the microenvironment genes retained high prognostic performance independently of the cell-of-origin (COO), and integration of the two prognosticators (COO + TME) improved survival prediction in both validation set and independent cohort. Moreover, the major contribution of MF-related genes to the panel and Gene Set Enrichment Analysis suggested a strong influence of extracellular matrix determinants in DLBCL biology. Conclusions Our study identified new prognostic categories of DLBCL, providing an easy-to-apply gene panel that powerfully predicts patients’ survival. Moreover, owing to its relationship with specific stromal and immune components, the panel may acquire a predictive relevance in clinical trials exploring new drugs with known impact on TME.
Collapse
Affiliation(s)
- S Ciavarella
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - M C Vegliante
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - M Fabbri
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - S De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - F Melle
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - G Motta
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - V De Iuliis
- Post-graduated Medical School of Clinical Pathology, "Gabriele D'Annunzio", University of Chieti, Chieti, Italy
| | - G Opinto
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Enjuanes
- Unitat de Genòmica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBERONC, Barcelona, Spain
| | - S Rega
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Gulino
- Tumor Immunology Unit, Dipartimento per la Promozione della Salute e Materno Infantile "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - C Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - A Scattone
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - S Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - F Mele
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - G Simone
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A F Zito
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - G Ingravallo
- Pathology Section, Department of Emergency and Organ Transplantation (DETO), University of Bari "Aldo Moro", Bari, Italy
| | - U Vitolo
- Department of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - A Chiappella
- Department of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - C Tarella
- Onco-Hematology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - A M Gianni
- Onco-Hematology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - A Rambaldi
- Department of Hematology and Oncology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; School of Medicine, University of Milan, Milan, Italy
| | - P L Zinzani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B Casadei
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - E Derenzini
- Onco-Hematology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - G Loseto
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - V Tabanelli
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - S Fiori
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - A Rivas-Delgado
- CIBERONC, Barcelona, Spain; Hematology Department, Hospital Clínic, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - A López-Guillermo
- CIBERONC, Barcelona, Spain; Hematology Department, Hospital Clínic, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - T Venesio
- Pathology Department, Candiolo Cancer Institute, Turin, Italy
| | - A Sapino
- Pathology Department, Candiolo Cancer Institute, Turin, Italy
| | - E Campo
- CIBERONC, Barcelona, Spain; Haematopathology Unit, Pathology Department, Hospital Clínic, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - C Tripodo
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Guarini
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - S A Pileri
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy.
| |
Collapse
|
17
|
Mulder TA, Wahlin BE, Österborg A, Palma M. Targeting the Immune Microenvironment in Lymphomas of B-Cell Origin: From Biology to Clinical Application. Cancers (Basel) 2019; 11:cancers11070915. [PMID: 31261914 PMCID: PMC6678966 DOI: 10.3390/cancers11070915] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
In lymphomas of B-cell origin, cancer cells orchestrate an inflammatory microenvironment of immune and stromal cells that sustain the tumor cell survival and growth, known as a tumor microenvironment (TME). The features of the TME differ between the different lymphoma types, ranging from extremely inflammatory, such as in Hodgkin lymphoma, to anergic, leading to immune deficiency and susceptibility to infections, such as in chronic lymphocytic leukemia. Understanding the characteristic features of the TME as well as the interactions between cancer and TME cells has given insight into the pathogenesis of most lymphomas and contributed to identify novel therapeutic targets. Here, we summarize the preclinical data that contributed to clarifying the role of the immune cells in the TME of different types of lymphomas of B-cell origin, and explain how the understanding of the biological background has led to new clinical applications. Moreover, we provide an overview of the clinical results of trials that assessed the safety and efficacy of drugs directly targeting TME immune cells in lymphoma patients.
Collapse
Affiliation(s)
- Tom A Mulder
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Björn E Wahlin
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Marzia Palma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Hammerich L, Marron TU, Upadhyay R, Svensson-Arvelund J, Dhainaut M, Hussein S, Zhan Y, Ostrowski D, Yellin M, Marsh H, Salazar AM, Rahman AH, Brown BD, Merad M, Brody JD. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med 2019; 25:814-824. [PMID: 30962585 DOI: 10.1038/s41591-019-0410-x] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023]
Abstract
Indolent non-Hodgkin's lymphomas (iNHLs) are incurable with standard therapy and are poorly responsive to checkpoint blockade. Although lymphoma cells are efficiently killed by primed T cells, in vivo priming of anti-lymphoma T cells has been elusive. Here, we demonstrate that lymphoma cells can directly prime T cells, but in vivo immunity still requires cross-presentation. To address this, we developed an in situ vaccine (ISV), combining Flt3L, radiotherapy, and a TLR3 agonist, which recruited, antigen-loaded and activated intratumoral, cross-presenting dendritic cells (DCs). ISV induced anti-tumor CD8+ T cell responses and systemic (abscopal) cancer remission in patients with advanced stage iNHL in an ongoing trial ( NCT01976585 ). Non-responding patients developed a population of PD1+CD8+ T cells after ISV, and murine tumors became newly responsive to PD1 blockade, prompting a follow-up trial of the combined therapy. Our data substantiate that recruiting and activating intratumoral, cross-priming DCs is achievable and critical to anti-tumor T cell responses and PD1-blockade efficacy.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U Marron
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ranjan Upadhyay
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Svensson-Arvelund
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxime Dhainaut
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yougen Zhan
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana Ostrowski
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Henry Marsh
- Celldex Therapeutics, Inc., Needham, MA, USA
| | | | - Adeeb H Rahman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, York, NY, USA
| | - Joshua D Brody
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Preliminary analysis of single-nucleotide polymorphisms in IL-10, IL-4, and IL-4Rα genes and profile of circulating cytokines in patients with gastric Cancer. BMC Gastroenterol 2018; 18:184. [PMID: 30526523 PMCID: PMC6288868 DOI: 10.1186/s12876-018-0913-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background Gastric Cancer is highly prevalent and deadly worldwide. In Colombia, it is the most lethal form of cancer. Some single-nucleotide polymorphisms in IL-10, IL-4, and IL-4Rα genes have been associated with an anti-inflammatory environment and a Th2 profile in detriment of the antitumor Th1 response. This research sought to detect single-nucleotide polymorphisms in promoter sequences, like − 1082 (G/A), − 592 (C/A), and − 819 (C/T), as well as − 590 (C/T) of the IL-10 and IL-4 genes, respectively; in addition to the IL-4Rα mutation variants, Ile50Val and Q576R, together with circulating levels of IL-4, TNF-α, IL-10, and IFN-γ in patients with gastric carcinoma in Cúcuta, Colombia. Methods In a cross-sectional study, 17 patients and 30 healthy individuals were genotyped for the six polymorphisms mentioned through PCR-RFLP of DNA obtained from peripheral blood cells and serum samples were analyzed by sandwich ELISA to quantify cytokines. Statistical difference between groups was determined along with the association between the presence of polymorphisms and the risk of gastric cancer, as well as the mortality in patients, using Mann-Whitney U test and logistic regression analysis, respectively. Results An association between the − 1082 (G/A) and the risk of gastric cancer was found (OR = 7.58, range 0.77–74.06, P = 0.08). Furthermore, patients had a significant increase in IL-4 serum levels (P < 0.01) compared to healthy individuals, both variables showed a higher estimated risk of mortality in patients, although without statistical association (P > 0.05). Conclusion We infer that two possible biomarkers (one immunological and one genetic) could be considered in association with gastric cancer in our population, which should be confirmed by subsequent studies involving a greater number of individuals.
Collapse
|
20
|
Chen Z, Deng X, Ye Y, Gao L, Zhang W, Liu W, Zhao S. Novel risk stratification of de novo diffuse large B cell lymphoma based on tumour-infiltrating T lymphocytes evaluated by flow cytometry. Ann Hematol 2018; 98:391-399. [PMID: 30377764 DOI: 10.1007/s00277-018-3534-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/20/2018] [Indexed: 02/05/2023]
Abstract
The prognostic value of tumour-infiltrating T lymphocytes (TIL-Ts) has been demonstrated in many solid tumours but remained unclear in diffuse large B cell lymphoma (DLBCL). We conducted a retrospective cohort study reviewing the TIL-Ts proportion and CD4:CD8 of 66 de novo DLBCL by flow cytometry to construct a risk stratification based on TIL-Ts-related prognostic factors. In univariate analysis, low TIL-Ts (< 14%) was significantly related to shorter survival (HR = 2.58, 95% CI 1.11-5.99, p = 0.028). In multivariate analysis, low TIL-Ts (HR = 6.48, 95% CI 2.16-19.46, p = 0.001) and high CD4:CD8 (> 1.2) (HR = 4.22, 95% CI 1.43-12.35, p = 0.009) were independent risk factors. For the risk stratification, three groups were defined based on TIL-Ts-related risk factors: low-risk group (high TIL-Ts and low CD4:CD8), intermediate risk group (low TIL-Ts, low CD4:CD8 or high TIL-Ts, high CD4:CD8) and high-risk group (low TIL-Ts and high CD4:CD8). The patients in high-risk group have significantly shorter survival than that in intermediate risk group (p = 0.025) and low-risk group (p = 0.002). This new risk stratification which is independent of performance status and age of the patients could hint the prognosis and may guide treatment of DLBCL.
Collapse
Affiliation(s)
- Zihang Chen
- Department of Pathology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, Sichuan, China
| | - Xueqin Deng
- Department of Pathology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, Sichuan, China
| | - Yunxia Ye
- Department of Pathology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, Sichuan, China
| | - Limin Gao
- Department of Pathology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, Sichuan, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, Sichuan, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, Sichuan, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
HSP110 sustains chronic NF-κB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization. Blood 2018; 132:510-520. [PMID: 29871863 DOI: 10.1182/blood-2017-12-819706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive lymphoproliferative disorder involving chronic NF-κB activation. Several mutations in the BCR and MyD88 signaling pathway components, such as MyD88 L265P, are implicated in this aberrant activation. Among heat shock proteins, HSP110 has recently been identified as a prosurvival and/or proliferation factor in many cancers, but its role in ABC-DLBCL survival mechanisms remained to be established. We observed that short hairpin RNA-mediated HSP110 silencing decreased the survival of several ABC-DLBCL cell lines and decreased immunoglobulin M-MyD88 co-localization and subsequent NF-κB signaling. Conversely, overexpression of HSP110 in ABC-DLBCL or non-DLBCL cell lines increased NF-κB signaling, indicating a tight interplay between HSP110 and the NF-κB pathway. By using immunoprecipitation and proximity ligation assays, we identified an interaction between HSP110 and both wild-type MyD88 and MyD88 L265P. HSP110 stabilized both MyD88 forms with a stronger effect on MyD88 L265P, thus facilitating chronic NF-κB activation. Finally, HSP110 expression was higher in lymph node biopsies from patients with ABC-DLBCL than in normal reactive lymph nodes, and a strong correlation was found between the level of HSP110 and MyD88. In conclusion, we identified HSP110 as a regulator of NF-κB signaling through MyD88 stabilization in ABC-DLBCL. This finding reveals HSP110 as a new potential therapeutic target in ABC-DLBCL.
Collapse
|
22
|
Tumor-infiltrating CD45RO + Memory T Lymphocytes Predict Favorable Clinical Outcome in Solid Tumors. Sci Rep 2017; 7:10376. [PMID: 28871164 PMCID: PMC5583330 DOI: 10.1038/s41598-017-11122-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
The prognostic role of tumor-infiltrating CD45RO+ memory T lymphocytes (CD45RO+ T cells) in human solid tumors remains controversial. Herein, we conducted a meta-analysis including 25 published studies with 4720 patients identified from PubMed and EBSCO to assess the prognostic impact of tumor-infiltrating CD45RO+ T cells in human solid tumors. We found that CD45RO+ T cell infiltration was significantly associated with improved overall survival (OS) and disease-free survival (DFS) in all types of solid tumors. In stratified analyses, CD45RO+ T cell infiltration significantly improved 1-year, 3-year and 5-year OS in colorectal, gastric and esophageal cancer, but only 5-year OS in hepatocellular carcinoma. And these cells were positively associated with 1-year, 3-year and 5-year DFS in hepatocellular, colorectal and esophageal cancer. In addition, high density of intratumoral CD45RO+ T cells inversely correlated with TNM stage of solid tumor. In conclusion, CD45RO+ memory T lymphocyte infiltration leads to a favorable clinical outcome in solid tumors, implicating that it is a valuable biomarker for prognostic prediction for human solid malignances.
Collapse
|
23
|
Roussel M, Irish JM, Menard C, Lhomme F, Tarte K, Fest T. Regulatory myeloid cells: an underexplored continent in B-cell lymphomas. Cancer Immunol Immunother 2017; 66:1103-1111. [PMID: 28689360 PMCID: PMC11029098 DOI: 10.1007/s00262-017-2036-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
In lymphomas arising from the germinal center, prognostic factors are linked to the myeloid compartment. In particular, high circulating monocyte or myeloid-derived suppressor cell counts are associated with poor prognosis for patients with high-grade B-cell lymphomas. Macrophages with an M2 phenotype are enriched within lymphoma tumors. However, the M1/M2 nomenclature is now deprecated and the clinical impact of this phenotype remains controversial. Across cancer types, myeloid cells are primarily thought to function as immune suppressors during tumor initiation and maintenance, but the biological mechanisms behind the myeloid signatures are still poorly understood in germinal center B-cell lymphomas. Herein, we describe the role and clinical relevance of myeloid cells in B-cell lymphoma and propose innovative approaches to decipher this complex cellular compartment. Indeed, characterization of this heterogeneous cell ecosystem has been largely accomplished with "low-resolution" approaches like morphological evaluation and immunohistochemistry, where cells are characterized using a few proteins and qualitative metrics. High-resolution, quantitative approaches, such as mass cytometry, are valuable to better understand myeloid cell diversity, functions, and to identify potential targets for novel therapies.
Collapse
Affiliation(s)
- Mikael Roussel
- CHU de Rennes, Pole de Biologie, Rennes, France.
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France.
- Laboratoire d'Hématologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes Cedex, France.
| | - Jonathan M Irish
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cedric Menard
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | | | - Karin Tarte
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Thierry Fest
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| |
Collapse
|
24
|
Xu B, Wang T. Intimate cross-talk between cancer cells and the tumor microenvironment of B-cell lymphomas: The key role of exosomes. Tumour Biol 2017; 39:1010428317706227. [PMID: 28618932 DOI: 10.1177/1010428317706227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Biyu Xu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Jeong J, Oh EJ, Yang WI, Kim SJ, Yoon SO. Implications of infiltrating immune cells within bone marrow of patients with diffuse large B-cell lymphoma. Hum Pathol 2017; 64:222-231. [PMID: 28438619 DOI: 10.1016/j.humpath.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
The implications of infiltrating immune cells, especially T cells and macrophages, in the bone marrow (BM) microenvironment of patients with diffuse large B-cell lymphoma (DLBCL) have rarely been studied. We aimed to investigate the significance of infiltrating immune cells in the BM microenvironment as a prognostic factor for DLBCL patients. Using the initial pretreatment BM biopsy obtained from 198 DLBCL patients, we semiquantitatively evaluated CD3+ T cells, CD8+ T cells, and CD163+ macrophages that infiltrate into the paratrabecular and interstitial areas of BM by immunohistochemistry and analyzed their clinicopathological and prognostic implications. Levels of infiltrating CD3+ T cells, CD8+ T cells, and CD163+ macrophages were significantly higher in BM with DLBCL involvement (BMI-positive group) than in that without DLBCL involvement (BMI-negative group). Infiltration of CD8+ T cells significantly increased in cases with advanced Ann Arbor stage, elevated lactate dehydrogenase level, extranodal site involvement ≥2 sites, higher Eastern Cooperative Oncology Group performance status, and higher International Prognostic Index (IPI) risk. High levels of CD3+ T cells were significantly associated with age ≤60, and high levels of CD163+ macrophages were associated with advanced Ann Arbor stage and higher IPI risk. High infiltration of CD8+ T cells was significantly related to inferior overall and recurrence-free survival rate, even in the BMI-negative group. High infiltration of CD8+ T cells within the pretreatment BM was related to poor prognosis, and might be a useful prognostic factor of DLBCL patients. Therefore, evaluation of CD8+ T cells is helpful for predicting prognosis in initial pretreatment BM biopsy of DLBCL patients.
Collapse
Affiliation(s)
- Juhyeon Jeong
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Pathology, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea
| | - Eun Ji Oh
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Woo Ick Yang
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soo Jeong Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
26
|
Kendrick S, Rimsza LM, Scott DW, Slack GW, Farinha P, Tan KL, Persky D, Puvvada S, Connors JM, Sehn L, Gascoyne RD, Schmelz M. Aberrant cytoplasmic expression of MHCII confers worse progression free survival in diffuse large B-cell lymphoma. Virchows Arch 2016; 470:113-117. [PMID: 27888357 DOI: 10.1007/s00428-016-2041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha Kendrick
- Department of Pathology, University of Arizona, P.O. Box 24-5043, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Graham W Slack
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Pedro Farinha
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - King L Tan
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Daniel Persky
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Soham Puvvada
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Joseph M Connors
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Laurie Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Randy D Gascoyne
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Monika Schmelz
- Department of Pathology, University of Arizona, P.O. Box 24-5043, 1501 N Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
27
|
Bartlett NL, Smith MR, Siddiqi T, Advani RH, O’Connor OA, Sharman JP, Feldman T, Savage KJ, Shustov AR, Diefenbach CS, Oki Y, Palanca-Wessels MC, Uttarwar M, Li M, Yang J, Jacobsen ED. Brentuximab vedotin activity in diffuse large B-cell lymphoma with CD30 undetectable by visual assessment of conventional immunohistochemistry. Leuk Lymphoma 2016; 58:1607-1616. [DOI: 10.1080/10428194.2016.1256481] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nancy L. Bartlett
- Department of Medicine, Oncology Division, Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Tanya Siddiqi
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ranjana H. Advani
- Medicine ? Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Owen A. O’Connor
- Medicine and Experimental Therapeutics, Columbia University Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Jeff P. Sharman
- Medical Oncology ? Hematology Research, Willamette Valley Cancer Institute and Research Center/US Oncology Research, Eugene, OR, USA
| | - Tatyana Feldman
- Oncology ? Lymphoma Division, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Andrei R. Shustov
- Division of Hematology, Seattle Cancer Care Alliance/University of Washington Medical Center, Seattle, WA, USA
| | | | - Yasuhiro Oki
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Martha Li
- Diagnostics & Biomarkers, Seattle Genetics, Inc., Bothell, MA, USA
| | - Jing Yang
- Clinical Pharmacology, Seattle Genetics, Inc., Bothell, MA, USA
| | - Eric D. Jacobsen
- Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
28
|
Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:471-482. [DOI: 10.1016/j.bbamcr.2015.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 12/29/2022]
|
29
|
Chang C, Wu SY, Kang YW, Lin KP, Chen TY, Medeiros LJ, Chang KC. High levels of regulatory T cells in blood are a poor prognostic factor in patients with diffuse large B-cell lymphoma. Am J Clin Pathol 2015; 144:935-44. [PMID: 26573001 DOI: 10.1309/ajcpujgmvv6zf4gg] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Host immunity likely plays a role in preventing progression of diffuse large B-cell lymphoma (DLBCL). Analysis of host immune cells may provide useful information for assessing prognosis or possibly clinical management. METHODS Peripheral blood samples from 77 patients with DLBCL and 30 healthy volunteers were analyzed using flow cytometry immunophenotyping. CBC counts, T-cell subsets, and dendritic cells (DCs) were detected, and the results were correlated with clinicopathologic characteristics. RESULTS Compared with healthy volunteers, patients with DLBCL had significantly higher leukocyte and monocyte counts (P < .001); higher percentages of neutrophils (P < .001), "natural" regulatory T cells (Tregs; CD3+Foxp3+, P < .001), and immature DCs (CD83-CD1a+, P = .005); and lower percentages of lymphocytes (P < .001) and helper T cells (P = .038). In univariate analysis, high neutrophil counts (≥6,000/μL, P = .014) and "induced" Tregs (CD4+CD25+, P = .026) were poor survival factors along with high International Prognostic Index scores (P < .001) and other high-risk clinical parameters. In multivariate analysis, high Tregs retained significance. Suppression of lymphocytes correlated with poor clinical factors; higher natural Tregs correlated with a lower CD4+/CD8+ ratio (P = .035) and more immature DCs (P = .055). CONCLUSIONS Changes in blood immune cells occur in patients with DLBCL. The results also support a suppressive role of Tregs in adaptive immunity and correlate with poor-risk prognostic factors.
Collapse
|
30
|
Stromal immune infiltration in HIV-related diffuse large B-cell lymphoma is associated with HIV disease history and patient survival. AIDS 2015; 29:1943-51. [PMID: 26355571 DOI: 10.1097/qad.0000000000000780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Understanding tumor microenvironment and its impact on prognosis of HIV-related lymphomas may provide insight into novel therapeutic strategies. DESIGN We characterized the relationship between infiltrating immune cells with tumor characteristics, HIV disease history and survival in 80 patients with HIV-related diffuse large B-cell lymphoma (DLBCL) diagnosed in the era of combined antiretroviral therapy (1996-2007) at Kaiser Permanente California. Eighty patients with HIV-unrelated DLBCL were included for comparison. METHODS Data on patients' clinical history were obtained from Kaiser Permanente's electronic health records. The density of stromal CD4, CD8 and FOXP3 T cells and CD68 macrophages, as well as tumor molecular characteristics were examined using immunohistochemistry. The associations between stromal immune infiltration and patient's clinical history or tumor characteristics were examined using Kruskal-Wallis tests or Pearson's correlation coefficient. The effect of stromal immune infiltration on 2-year mortality was evaluated in multivariable logistic regression. RESULTS Compared with HIV-unrelated DLBCL, patients with HIV-related DLBCL had significantly reduced stromal CD4 and FOXP3 T cells, but increased density of macrophages. Increased density of stromal macrophages was correlated with lower circulating CD4 cell count at DLBCL diagnosis. Tumor molecular characteristics, including BCL6, p53 and cMYC expression, but not Epstein-Barr virus infection status, were significantly correlated with stromal immune infiltration, particularly FOXP3 T cells. A higher density of infiltrating CD8 T cell was significantly associated with reduced mortality in patients with HIV-related DLBCL (odds ratio = 0.30 [0.09-0.97] for ≥25 vs. <10%). CONCLUSION These data provide evidence for the prognostic significance of cytotoxic T cells in determining outcomes of HIV-related lymphoma.
Collapse
|
31
|
Chang C, Lin CH, Cheng AL, Medeiros LJ, Chang KC. Primary central nervous system diffuse large B-cell lymphoma has poorer immune cell infiltration and prognosis than its peripheral counterpart. Histopathology 2015; 67:625-35. [PMID: 25829022 DOI: 10.1111/his.12706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023]
Abstract
AIMS Primary central nervous system (CNS) diffuse large B-cell lymphoma (PCNSL) is an ominous disease with a poor prognosis. The brain is an immune-privileged sanctuary, and this may contribute to an ineffective host immune response and thus a poorer outcome. The aim of this study was therefore to study the difference in the immune composition in PCNSL and non-CNS diffuse large B-cell lymphoma (DLBCL), and the role of the immune response in PCNSL prognosis. METHODS AND RESULTS Thirty-two biopsy specimens of PCNSL and 30 specimens of low-stage non-CNS DLBCL from immunocompetent patients formed the study group. The density and distribution of immune cells, including dendritic cells (dendritic cell-specific lysosomal-associated membrane protein-positive and S100-positive), effector/memory T cells (CD45RO-positive), and cytotoxic T cells (granzyme B-positive), and the expression of HLA-DR by lymphoma cells, were evaluated immunohistochemically. PCNSL patients showed poorer overall survival (P = 0.032). On comparison of the PCNSL and DLBCL biopsy specimens, the PCNSL cells showed less HLA-DR expression (P = 0.003), and there were fewer S100-positive cells (P < 0.01), and effector T cells (P = 0.026) infiltrating PCNSL than infiltrating DLBCL. For PCNSL patients, fewer cytotoxic T cells in the background constituted a poor prognostic factor (P = 0.004). Intratumoral S100-positive cell infiltration was positively correlated with T-cell infiltration, and a T-cell rimming pattern. CONCLUSIONS In PCNSL, the baseline antitumour immune response is less as compared with non-CNS DLBCL, and this response may play a role in the poorer prognosis. Adjuvant dendritic cell and T-cell immunotherapy may further boost treatment responses in PCNSL patients.
Collapse
Affiliation(s)
- Chen Chang
- Department of Pathology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Ching-Hung Lin
- Departments of Oncology and Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Departments of Oncology and Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| |
Collapse
|
32
|
Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers. PLoS Genet 2015; 11:e1004922. [PMID: 25642983 PMCID: PMC4333733 DOI: 10.1371/journal.pgen.1004922] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers. To shed light on the genetic predisposition to cancers of the hematologic system, we performed genome-wide association analysis of affected and non-affected pet dogs. Dogs naturally develop the same diseases as humans, including cancer, and the relatively limited genetic diversity within different breeds makes genetic studies easier compared to in humans. By doing genome-wide association, we identified loci predisposing to hemangiosarcoma and B-cell lymphoma. To our surprise, we found two shared loci predisposing to both diseases. Within these two regions we identified several partially overlapping haplotypes, predisposing somewhat differently to the two cancers. We found no coding mutations that followed the risk or non-risk haplotypes suggesting that regulatory mutations exert the effect on disease. We also looked at gene expression in B-cell lymphomas, comparing samples from individuals with risk or non-risk haplotypes. This analysis showed differential expression associated with the haplotypes at both loci, suggesting the risk haplotypes are associated with an effect on T-cell response.
Collapse
|
33
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
34
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771. [PMID: 24286020 PMCID: PMC3841205 DOI: 10.4161/onci.25771] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Galand C, Donnou S, Molina TJ, Fridman WH, Fisson S, Sautès-Fridman C. Influence of Tumor Location on the Composition of Immune Infiltrate and Its Impact on Patient Survival. Lessons from DCBCL and Animal Models. Front Immunol 2012; 3:98. [PMID: 22566974 PMCID: PMC3343266 DOI: 10.3389/fimmu.2012.00098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/14/2012] [Indexed: 12/18/2022] Open
Abstract
Diffuse large B-cell lymphomas (DLBCLs) are heterogeneous diseases growing either in nodal or extranodal locations including the central nervous system. One key issue is to decipher the prognostic value of immune cells infiltrating these tumors as DLBCLs developing in sanctuaries are more aggressive than nodal DLCBLs. Here, we summarize available data from the literature regarding the prognostic values of the different immune cell types found in these two types of human primary tumors (i.e., nodal vs brain). In nodal DLBCLs, memory T-cells and dendritic cells (DCs) densities are of good prognostic value whereas the influence of regulatory T-cells (Tregs) is less clear, in accordance with other types of cancers. Data for primary central nervous system lymphomas are very sparse for these cell types. By contrast, CD8+ cytotoxic T-cells seem to be of poor prognosis in either location. Their presence is linked to a loss of MHC expression providing a possible immune escape mechanism for these tumors. Clearly, tumor-associated macrophages are not associated to a significant prognostic value even in the brain where they highly infiltrate the tumor. Animal models indicate some specific features of lymphoma developing in sanctuaries by comparison to splenic location, with a higher infiltration of Tregs and less DCs, most likely reflecting the immunosuppressive context of these organs. All these informations illustrate the high impact of the immune system on patient outcome, encourage the pursuit of the immune environment’s analysis and of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Claire Galand
- INSERM, UMRS872, Centre de Recherche des Cordeliers Paris, France
| | | | | | | | | | | |
Collapse
|
37
|
Cacciatore M, Guarnotta C, Calvaruso M, Sangaletti S, Florena AM, Franco V, Colombo MP, Tripodo C. Microenvironment-centred dynamics in aggressive B-cell lymphomas. Adv Hematol 2012; 2012:138079. [PMID: 22400028 PMCID: PMC3287037 DOI: 10.1155/2012/138079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/27/2011] [Indexed: 12/13/2022] Open
Abstract
Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- Matilde Cacciatore
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Carla Guarnotta
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Marco Calvaruso
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Sabina Sangaletti
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Ada Maria Florena
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Vito Franco
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Mario Paolo Colombo
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Claudio Tripodo
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| |
Collapse
|
38
|
Bauer K, Michel S, Reuschenbach M, Nelius N, von Knebel Doeberitz M, Kloor M. Dendritic cell and macrophage infiltration in microsatellite-unstable and microsatellite-stable colorectal cancer. Fam Cancer 2012; 10:557-65. [PMID: 21598004 DOI: 10.1007/s10689-011-9449-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High level microsatellite instability (MSI-H) is a hallmark of Lynch syndrome-associated colorectal cancer (CRC). MSI-H CRC express immunogenic tumour antigens as a consequence of DNA mismatch repair deficiency-induced frameshift mutations. Consequently, frameshift antigen-specific immune responses are commonly observed in patients with Lynch syndrome-associated MSI-H CRC. Dendritic cells (DC) and macrophages play a crucial role in the induction and modulation of immune responses. We here analysed DC and macrophage infiltration in MSI-H and microsatellite-stable CRC. Sixty-nine CRC (MSI-H, n = 33; microsatellite-stable, n = 36) were examined for the density of tumour-infiltrating DC, Foxp3-positive regulatory T cells, and CD163-positive macrophages. In MSI-H lesions, S100-positive and CD163-positive cell counts were significantly higher compared to microsatellite-stable lesions (S100: epithelium P = 0.018, stroma P = 0.042; CD163: epithelium P < 0.001, stroma P = 0.046). Additionally, numbers of CD208-positive mature DC were significantly elevated in the epithelial compartment of MSI-H CRC (P = 0.027). High numbers of tumour-infiltrating Foxp3-positive T cells were detected in tumours showing a low proportion of CD208-positive, mature DC among the total number of S100-positive cells. Our study demonstrates that infiltration with DC, mature DC, and macrophages is elevated in MSI-H compared to microsatellite-stable CRC. The positive correlation of Foxp3-positive Treg cell density with a low proportion of mature DC suggests that impaired DC maturation may contribute to local immune evasion in CRC. Our results demonstrate that DC and macrophages in the tumour environment likely play an important role in the induction of antigen-specific immune responses in Lynch syndrome. Moreover, impaired DC maturation might contribute to local immune evasion in CRC.
Collapse
Affiliation(s)
- Kathrin Bauer
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 220, 69120, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Partial plasma cell differentiation as a mechanism of lost major histocompatibility complex class II expression in diffuse large B-cell lymphoma. Blood 2011; 119:1459-67. [PMID: 22167754 DOI: 10.1182/blood-2011-07-363820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of major histocompatibility complex class II (MHC II) expression is associated with poor patient outcome in diffuse large B-cell lymphoma (DLBCL). As MHC II molecules are lost with plasmacytic differentiation in normal cells, we asked whether MHC II loss in DLBCL is associated with an altered differentiation state. We used gene expression profiling, quantum dots, and immunohistochemistry to study the relationship between MHC II and plasma cell markers in DLBCL and plasmablastic lymphoma (PBL). Results demonstrate that MHC II(-) DLBCL immunophenotypically overlap with PBL and demonstrate an inverse correlation between MHC II and plasma cell markers MUM1, PRDM1/Blimp1, and XBP1s. In addition, MHC II expression is significantly higher in germinal center-DLBCL than activated B cell-DLBCL. A minor subset of cases with an unusual pattern of mislocalized punctate MHC II staining and intermediate levels of mRNA is also described. Finally, we show that PBL is negative for MHC II. The results imply a spectrum of MHC II expression that is more frequently diminished in tumors derived from B cells at the later stages of differentiation (with complete loss in PBL). Our observations provide a possible unifying concept that may contribute to the poor outcome reported in all MHC II(-) B-cell tumors.
Collapse
|
40
|
Rimsza LM, Unger JM, Tome ME, Leblanc ML. A strategy for full interrogation of prognostic gene expression patterns: exploring the biology of diffuse large B cell lymphoma. PLoS One 2011; 6:e22267. [PMID: 21829609 PMCID: PMC3150354 DOI: 10.1371/journal.pone.0022267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL). Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome. METHODOLOGY/PRINCIPAL FINDINGS We explored gene expression profiling data using variable cut-point analysis for 36 genes with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of significance: 1) genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g. HLA-DR); 2) genes with significant cut-points above the median, whose over-expression is associated with poor outcome (e.g. CCND2); and 3) genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as FN1). CONCLUSIONS/SIGNIFICANCE Variable cut-point analysis with permutation p-value calculation can be used to identify significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of gene effects.
Collapse
Affiliation(s)
- Lisa M Rimsza
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America.
| | | | | | | |
Collapse
|
41
|
Yeh YM, Chang KC, Chen YP, Kao LY, Tsai HP, Ho CL, Wang JR, Jones D, Chen TY. Large B cell lymphoma presenting initially in bone marrow, liver and spleen: an aggressive entity associated frequently with haemophagocytic syndrome. Histopathology 2011; 57:785-95. [PMID: 21166693 DOI: 10.1111/j.1365-2559.2010.03709.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To describe diffuse large B cell lymphoma (DLBCL) presenting initially in bone marrow, liver and spleen (BLS-type) without lymphadenopathy. METHODS AND RESULTS The clinicopathological and cytogenetic features of 11 such cases (eight men, three women; mean age: 62.7 years are described). Usually presenting with fever and haemophagocytic syndrome suggesting infection and complicating timely diagnosis, bone marrow examination showed patchy and interstitial infiltration of large tumour cells without sinusoidal involvement. All cases had a high Ki-67 index (≥90%), commonly a non-germinal centre/activated B cell immunophenotype and were negative for Epstein-Barr virus and human herpesvirus 6 and 8. The more frequent cytogenetic changes involved chromosomal loci 14q32 and 9p24, as well as del(3)(q21), add(7)(p22), t(3;6), del(8)(p22), +18 and add(19)(p13). Clinical behaviour was very aggressive, with a 2-year survival rate of 18% (45% of patients died within 3 weeks). High-dose chemotherapy with haematopoietic stem cell transplantation prolonged survival in one patient. CONCLUSIONS Although it shares with intravascular LBCL a subtle presentation and an aggressive clinical course, this primary BLS large cell lymphoma variant is distinguished by lacking an intravascular component and having different cytogenetic findings.
Collapse
Affiliation(s)
- Yu-Min Yeh
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bernd HW, Ziepert M, Thorns C, Klapper W, Wacker HH, Hummel M, Stein H, Hansmann ML, Ott G, Rosenwald A, Müller-Hermelink HK, Barth TFE, Möller P, Cogliatti SB, Pfreundschuh M, Schmitz N, Trümper L, Höller S, Löffler M, Feller AC. Loss of HLA-DR expression and immunoblastic morphology predict adverse outcome in diffuse large B-cell lymphoma - analyses of cases from two prospective randomized clinical trials. Haematologica 2010; 94:1569-80. [PMID: 19880780 DOI: 10.3324/haematol.2009.008862] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Research on prognostically relevant immunohistochemical markers in diffuse large B-cell lymphomas has mostly been performed on retrospectively collected clinical data. This is also true for immunohistochemical classifiers that are thought to reflect the cell-of-origin subclassification of gene expression studies. In order to obtain deeper insight into the heterogeneous prognosis of diffuse large B-cell lymphomas and to validate a previously published immunohistochemical classifier, we analyzed data from a large set of cases from prospective clinical trials with long-term follow-up. DESIGN AND METHODS We performed morphological and extensive immunohistochemical analyses in 414 cases of diffuse large B-cell lymphoma from two prospective randomized clinical trials (NHL-B1/B2, Germany). Classification into germinal center and non-germinal center subtypes of B-cell lymphoma was based on the expression pattern of CD10, BCL6, and IRF4. Multivariate analyses were performed adjusting for the factors in the International Prognostic Index. RESULTS Analyzing 20 different epitopes on tissue microarrays, expression of HLA-DR, presence of CD23(+) follicular dendritic cell meshworks, and monotypic light chain expression emerged as International Prognostic Index-independent markers of superior overall survival. Immunoblastic morphology was found to be related to poor event-free survival. The non-germinal center subtype, according to the three-epitope classifier (CD10, BCL6, and IRF4) did not have prognostic relevance when adjusted for International Prognostic Index factors (relative risk=1.2, p=0.328 for overall survival; and relative risk=1.1, p=0.644 for event-free survival). CONCLUSIONS The previously reported International Prognostic Index-independent prognostic value of stratification into germinal center/non-germinal center B-cell lymphoma using the expression pattern of CD10, BCL6, and IRF4 was not reproducible in our series. However, other markers and the morphological subtype appear to be of prognostic value.
Collapse
Affiliation(s)
- Heinz-Wolfram Bernd
- Institute of Pathology, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160 D-23538 Lübeck, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yoo C, Hong YS, Cho BK, Kim SH, Shim SI, Kang CS. Distribution of Dendritic Cells and Regulatory T-Cells in Cutaneous Lymphomas. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.6.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Changyoung Yoo
- Department of Hospital Pathology, St. Vincent's Hospital, Suwon, Korea
| | - Young Seon Hong
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Baik Kee Cho
- Department of Dermatology, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sang Ho Kim
- Department of Pathology, Songeui Campus, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sang In Shim
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Chang Suk Kang
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Rimsza LM, Chan WC, Gascoyne RD, Campo E, Jaffe ES, Staudt LM, Delabie J, Rosenwald A, Murphy SP. CIITA or RFX coding region loss of function mutations occur rarely in diffuse large B-cell lymphoma cases and cell lines with low levels of major histocompatibility complex class II expression. Haematologica 2009; 94:596-8. [PMID: 19229048 DOI: 10.3324/haematol.2008.000752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
45
|
Abstract
It has become clear that the biological and clinical behaviour of malignant lymphoma is not only determined by the properties of the tumour cells themselves but are also largely by the interaction of the tumour cells with their nonmalignant microenvironment. The composition and functional status of the tumour microenvironment is highly variable between different classes of malignant lymphoma and may provide both growth-supportive and growth suppressive signals via components of the adaptive and innate immune response. In this review, the functional interactions and clinical consequences of these insights are discussed in indolent and aggressive B-cell lymphomas and in classical Hodgkin's lymphoma.
Collapse
Affiliation(s)
- D de Jong
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|
46
|
Gene expression predicts overall survival in paraffin-embedded tissues of diffuse large B-cell lymphoma treated with R-CHOP. Blood 2008; 112:3425-33. [PMID: 18544678 DOI: 10.1182/blood-2008-02-137372] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene expression profiling (GEP) on frozen tissues has identified genes predicting outcome in patients with diffuse large B-cell lymphoma (DLBCL). Confirmation of results in current patients is limited by availability of frozen samples and addition of monoclonal antibodies to treatment regimens. We used a quantitative nuclease protection assay (qNPA) to analyze formalin-fixed, paraffin-embedded tissue blocks for 36 previously identified genes (N = 209, 93 chemotherapy; 116 rituximab + chemotherapy). By qNPA, 208 cases were successfully analyzed (99.5%). In addition, 15 of 36 and 11 of 36 genes, representing each functional group previously identified by GEP, were associated with survival (P < .05) in the 2 treatment groups, respectively. In addition, 30 of 36 hazard ratios of death trended in the same direction versus the original studies. Multivariate and variable cut-off point analysis identified low levels of HLA-DRB (< 20%) and high levels of MYC (> 80%) as independent indicators of survival, together distinguishing cases with the worst prognosis. Our results solve a clinical research problem by demonstrating that prognostic genes can be meaningfully quantified using qNPA technology on formalin-fixed, paraffin-embedded tissues; previous GEP findings in DLBCL are relevant with current treatments; and 2 genes, representing immune escape and proliferation, are the common features of the most aggressive DLBCL.
Collapse
|
47
|
Chang KC, Jones D. Reply to the Letter to the Editor from Oudejans et al. Clin Cancer Res 2008. [DOI: 10.1158/1078-0432.ccr-07-5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Dan Jones
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
48
|
Oudejans JJ, Muris JJF, Cillessen SAGM, Meijer CJLM. T-cell response in B-cell lymphomas: favorable or unfavorable? Clin Cancer Res 2008; 14:2514; author reply 2515-6. [PMID: 18413849 DOI: 10.1158/1078-0432.ccr-07-4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|