1
|
Lim B, Greer Y, Lipkowitz S, Takebe N. Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox. Cancers (Basel) 2019; 11:cancers11081087. [PMID: 31370269 PMCID: PMC6721450 DOI: 10.3390/cancers11081087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Evasion from apoptosis is an important hallmark of cancer cells. Alterations of apoptosis pathways are especially critical as they confer resistance to conventional anti-cancer therapeutics, e.g., chemotherapy, radiotherapy, and targeted therapeutics. Thus, successful induction of apoptosis using novel therapeutics may be a key strategy for preventing recurrence and metastasis. Inhibitors of anti-apoptotic molecules and enhancers of pro-apoptotic molecules are being actively developed for hematologic malignancies and solid tumors in particular over the last decade. However, due to the complicated apoptosis process caused by a multifaceted connection with cross-talk pathways, protein–protein interaction, and diverse resistance mechanisms, drug development within the category has been extremely challenging. Careful design and development of clinical trials incorporating predictive biomarkers along with novel apoptosis-inducing agents based on rational combination strategies are needed to ensure the successful development of these molecules. Here, we review the landscape of currently available direct apoptosis-targeting agents in clinical development for cancer treatment and update the related biomarker advancement to detect and validate the efficacy of apoptosis-targeted therapies, along with strategies to combine them with other agents.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yoshimi Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Early Clinical Trials Development, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Niwa T, Kasuya Y, Suzuki Y, Ichikawa K, Yoshida H, Kurimoto A, Tanaka K, Morita K. Novel Immunoliposome Technology for Enhancing the Activity of the Agonistic Antibody against the Tumor Necrosis Factor Receptor Superfamily. Mol Pharm 2018; 15:3729-3740. [PMID: 29648839 DOI: 10.1021/acs.molpharmaceut.7b01167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have developed a technology for efficiently enhancing the anticancer apoptosis-inducing activity of agonistic antibodies against the tumor necrosis factor receptor (TNFR) superfamily by the formation of immunoliposomes. To induce apoptosis in cancer cells, agonistic antibodies to the TNFR superfamily normally need cross-linking by internal immune effector cells via the Fc region after binding to receptors on the cell membrane. To develop apoptosis-inducing antibodies that do not require the support of cross-linking by immune cells, we prepared immunoliposomes conjugated with TRA-8, an agonistic antibody against death receptor 5 (DR5), with various densities of antibody on the liposome surface, and evaluated their activities. The TRA-8 immunoliposomes exhibited apoptosis-inducing activity against various DR5-positive human carcinoma cells at a significantly lower concentration without cross-linking than that of the original TRA-8 and its natural ligand (TRAIL). The activity of the immunoliposomes was correlated with the density of antibodies on the surface. As the antibody component, not only the full-length antibody but also the Fab' fragment could be used, and the TRA-8 Fab' immunoliposomes also showed exceedingly high activity compared with the parental antibody, namely, TRA-8. Moreover, cytotoxicity of the TRA-8 full-length or Fab' immunoliposome against normal cells, such as human primary hepatocytes, was lower than that for TRAIL. Enhanced activity was also observed for immunoliposomes conjugated with other apoptosis-inducing antibodies against other receptors of the TNFR superfamily, such as death receptor 4 (DR4) and Fas. Thus, immunoliposomes are promising as a new modality that could exhibit significant activity at a low dose, for cost-effective application of an antibody fragment and with stable efficacy independent of the intratumoral environment of patients as a TNF superfamily agonistic therapy.
Collapse
Affiliation(s)
- Takako Niwa
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Yuji Kasuya
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Yukie Suzuki
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Kimihisa Ichikawa
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Hiroko Yoshida
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Akiko Kurimoto
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Kento Tanaka
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Koji Morita
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| |
Collapse
|
3
|
Kim H, Buchsbaum DJ, Zinn KR. A Novel Imaging Biomarker Extracted from Fluorescence Microscopic Imaging of TRA-8/DR5 Oligomers Predicts TRA-8 Therapeutic Efficacy in Breast and Pancreatic Cancer Mouse Models. Mol Imaging Biol 2017; 18:325-33. [PMID: 26552657 DOI: 10.1007/s11307-015-0913-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of the study was to develop a reliable quantitative imaging biomarker from fluorescence microscopic imaging of TRA-8/death receptor 5 (DR5) oligomer to predict TRA-8 therapeutic efficacy in human breast and pancreatic cancer mouse models. PROCEDURES Two breast (2LMP, SUM159) and two pancreatic (MIA PaCa-2, PANC1) cancer cell lines were used. 10(5) cells per cell line were placed in a culture dish and treated with Cy5.5-labeled TRA-8 overnight in vitro. Three fluorescence microphotographs (×20) were acquired from randomly selected areas, and about 300 cells were analyzed per cell line. Two-dimensional (2D) fluorescence signal distribution of Cy5.5-TRA-8 on each cell was measured. Gaussian curve fitting to the distribution was determined by the least square regression method, and the coefficient of determination (R (2)) of the fitting was found. In addition, two features of the best fitting Gaussian curve such as peak amplitude and the volume under the curve (VUC) were retrieved. A novel image biomarker was extracted by correlating the combination of R (2) value, peak amplitude, and the VUC with the logarithmic values of the half maximal inhibitory concentrations (IC50) of TRA-8 for the four cell lines or the percentage of tumor growth inhibition (%TGI) at a week of TRA-8 treatment in animal models. RESULTS Cy5.5-TRA-8 binding to DR5 receptors resulted in an oligomer on each cell membrane, and its fluorescence signal distribution followed Gaussian curve. Peak amplitude of fluorescence signal in the oligomeric region, R (2) value of the Gaussian fitting, and the VUC in TRA-8-sensitive cells were significantly higher than those in resistant cells (p < 0.05). The novel imaging biomarker was significantly correlated with either log10(IC50) or %TGI (p < 0.001). CONCLUSION The imaging biomarker extracted from the cellular distribution pattern of Cy5.5-TRA-8 may serve as a predictive biomarker of TRA-8 therapy for cancer patients.
Collapse
Affiliation(s)
- Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,, G082C5 Volker Hall, 1670 University Blvd., Birmingham, AL, 35294-0019, USA.
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kurt R Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
4
|
Qu L, Zhang H, Yang Y, Yang G, Xin H, Ling C. Corosolic acid analogue, a natural triterpenoid saponin, induces apoptosis on human hepatocarcinoma cells through mitochondrial pathway in vitro. PHARMACEUTICAL BIOLOGY 2016; 54:1445-1457. [PMID: 26810384 DOI: 10.3109/13880209.2015.1104699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context 2a,-3a,-24-Trihydroxyurs-12-en-28-oic acid (TEO, a corosolic acid analogue) is a triterpenoid saponin isolated from Actinidia valvata Dunn (Actinidiaceae), a well-known traditional Chinese medicine. Objective This study investigated the anti-proliferation and inducing apoptosis effects of TEO in three human hepatocellular carcinoma (HCC) cell lines. Materials and methods Cytotoxic activity of TEO was determined by the MTT assay at various concentrations from 2.5 to 40 μg/mL in BEL-7402, BEL-7404 and SMMC-7721 cell lines. Cell morphology was assessed by acridine orange/ethidium bromide and 4'-6-diamidino-2-phenylindole dihydrochloride staining and fluorescence microscopy. Cell-cycle distribution and DNA damage were determined by flow cytometry and comet assay. Mitochondrial dysfunction was assessed by JC-1 staining and transmission electron microscopy. Apoptosis changes were explored by Western blot, TNF-α and caspase-3, -8, -9 assays. Results TEO exhibited inhibition effects on BEL-7402, BEL-7404 and SMMC-7721 cells treated for 24 h, the IC50 values were 34.6, 30.8 and 30.5 μg/mL, respectively. TEO (40 μg/mL)-treated three cell lines increased by more than 21% in the G1 phase and presented the morphological change and DNA damage. TEO also declined the mitochondrial membrane potential and altered mitochondrial ultra-structure. Furthermore, caspase-3, caspase-8, caspase-9 and TNF-α were also activated. Mechanism investigation showed that TEO could decrease anti-apoptotic Bcl-2 protein expression, increase proapoptotic Bax and Bid proteins expressions and increase Bax/Bcl-2 ratio. Conclusion Our results demonstrate for the first time that TEO inhibited growth of HCC cell lines and induced G1 phase arrest. Moreover, proapoptotic effects of TEO were mediated through the activation of TNF-α, caspases and mitochondrial pathway.
Collapse
MESH Headings
- Actinidia/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/ultrastructure
- Cell Line, Tumor
- Cell Shape/drug effects
- DNA Damage
- Dose-Response Relationship, Drug
- G1 Phase Cell Cycle Checkpoints/drug effects
- Humans
- Inhibitory Concentration 50
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/ultrastructure
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/ultrastructure
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Signal Transduction/drug effects
- Time Factors
- Triterpenes/isolation & purification
- Triterpenes/pharmacology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Liping Qu
- a Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University , Shanghai , PR China
| | - Huiqing Zhang
- a Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University , Shanghai , PR China
| | - Yanlong Yang
- a Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University , Shanghai , PR China
| | - Geliang Yang
- a Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University , Shanghai , PR China
| | - Hailiang Xin
- a Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University , Shanghai , PR China
- b Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , P.R. China
| | - Changquan Ling
- a Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University , Shanghai , PR China
- c E-Institute of TCM Internal Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , P.R. China
| |
Collapse
|
5
|
Targeted radiotherapy potentiates the cytotoxicity of a novel anti-human DR5 monoclonal antibody and the adenovirus encoding soluble TRAIL in prostate cancer. J Egypt Natl Canc Inst 2015; 27:205-15. [DOI: 10.1016/j.jnci.2015.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/23/2022] Open
|
6
|
Kimbrough CW, Khanal A, Zeiderman M, Khanal BR, Burton NC, McMasters KM, Vickers SM, Grizzle WE, McNally LR. Targeting Acidity in Pancreatic Adenocarcinoma: Multispectral Optoacoustic Tomography Detects pH-Low Insertion Peptide Probes In Vivo. Clin Cancer Res 2015; 21:4576-85. [PMID: 26124201 PMCID: PMC4609270 DOI: 10.1158/1078-0432.ccr-15-0314] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND pH-low insertion peptides (pHLIP) can serve as a targeting moiety that enables pH-sensitive probes to detect solid tumors. Using these probes in conjunction with multispectral optoacoustic tomography (MSOT) is a promising approach to improve imaging for pancreatic cancer. METHODS A pH-sensitive pHLIP (V7) was conjugated to 750 NIR fluorescent dye and evaluated as a targeted probe for pancreatic adenocarcinoma. The pH-insensitive K7 pHLIP served as an untargeted control. Probe binding was assessed in vitro at pH 7.4, 6.8, and 6.6 using human pancreatic cell lines S2VP10 and S2013. Using MSOT, semiquantitative probe accumulation was then assessed in vivo with a murine orthotopic pancreatic adenocarcinoma model. RESULTS In vitro, the V7-750 probe demonstrated significantly higher fluorescence at pH 6.6 compared with pH 7.4 (S2VP10, P = 0.0119; S2013, P = 0.0160), whereas no difference was observed with the K7-750 control (S2VP10, P = 0.8783; S2013, P = 0.921). In the in vivo S2VP10 model, V7-750 probe resulted in 782.5 MSOT a.u. signal compared with 5.3 MSOT a.u. in K7-750 control in tumor (P = 0.0001). Similarly, V7-750 probe signal was 578.3 MSOT a.u. in the S2013 model compared with K7-750 signal at 5.1 MSOT a.u. (P = 0.0005). There was minimal off-target accumulation of the V7-750 probe within the liver or kidney, and probe distribution was confirmed with ex vivo imaging. CONCLUSIONS Compared with pH-insensitive controls, V7-750 pH-sensitive probe specifically targets pancreatic adenocarcinoma and has minimal off-target accumulation. The noninvasive detection of pH-targeted probes by means of MSOT represents a promising modality to improve the detection and monitoring of pancreatic cancer.
Collapse
Affiliation(s)
- Charles W Kimbrough
- The Hiram C. Polk Jr, MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Anil Khanal
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Matthew Zeiderman
- The Hiram C. Polk Jr, MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Bigya R Khanal
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | | | - Kelly M McMasters
- The Hiram C. Polk Jr, MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | | | | | - Lacey R McNally
- Department of Medicine, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
7
|
Kim H, Samuel S, Totenhagen JW, Warren M, Sellers JC, Buchsbaum DJ. Dynamic contrast enhanced magnetic resonance imaging of an orthotopic pancreatic cancer mouse model. J Vis Exp 2015:52641. [PMID: 25938718 PMCID: PMC4541579 DOI: 10.3791/52641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been limitedly used for orthotopic pancreatic tumor xenografts due to severe respiratory motion artifact in the abdominal area. Orthotopic tumor models offer advantages over subcutaneous ones, because those can reflect the primary tumor microenvironment affecting blood supply, neovascularization, and tumor cell invasion. We have recently established a protocol of DCE-MRI of orthotopic pancreatic tumor xenografts in mouse models by securing tumors with an orthogonally bent plastic board to prevent motion transfer from the chest region during imaging. The pressure by this board was localized on the abdominal area, and has not resulted in respiratory difficulty of the animals. This article demonstrates the detailed procedure of orthotopic pancreatic tumor modeling using small animals and DCE-MRI of the tumor xenografts. Quantification method of pharmacokinetic parameters in DCE-MRI is also introduced. The procedure described in this article will assist investigators to apply DCE-MRI for orthotopic gastrointestinal cancer mouse models.
Collapse
Affiliation(s)
- Hyunki Kim
- Radiology, University of Alabama at Birmingham;
| | | | | | | | | | | |
Collapse
|
8
|
Kimbrough CW, Hudson S, Khanal A, Egger ME, McNally LR. Orthotopic pancreatic tumors detected by optoacoustic tomography using Syndecan-1. J Surg Res 2014; 193:246-54. [PMID: 25439222 DOI: 10.1016/j.jss.2014.06.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Advances in small animal imaging have improved the detection and monitoring of cancer in vivo; although with orthotopic models, precise localization of tumors remains a challenge. In this study, we evaluated multispectral optoacoustic tomography (MSOT) as an imaging modality to detect pancreatic adenocarcinoma in an orthotopic murine model. METHODS In vitro binding of Syndecan-1 probe to the human pancreatic cancer cell line S2VP10 was evaluated on flow cytometry. For in vivo testing, S2VP10 cells were orthotopically implanted into the pancreas of severe combined immunodeficiency mice. At 7 d after implantation, the mice were intravenously injected with Syndecan-1 probe, and tumor uptake was evaluated with MSOT at multiple time points. Comparison was made with a free-dye control, indocyanine green (ICG). Probe uptake was verified ex vivo with fluorescent imaging. RESULTS Syndecan-1 probe demonstrated partial binding to S2VP10 cells in vitro. In vivo, Syndecan-1 probe preferentially accumulated in the pancreas tumor (480 MSOT a.u.) compared with off-target organs, including the liver (67 MSOT a.u.) and kidney (96 MSOT a.u.). Syndecan-1 probe accumulation peaked at 6 h (480 MSOT a.u.), whereas the ICG control dye failed to demonstrate similar retention within the tumor bed (0.0003 MSOT a.u.). At peak accumulation, signal intensity was 480 MSOT a.u., resulting in several times greater signal in the tumor bed than in the kidney or liver. Ex vivo fluorescent imaging comparing tumor signal with that within off-target organs confirmed the in vivo results. CONCLUSIONS MSOT demonstrates successful accumulation of Syndecan-1 probe within pancreatic tumors, and provides high-resolution images, which allow noninvasive, real-time comparison of signal within individual organs. Syndecan-1 probe preferentially accumulates within a pancreatic adenocarcinoma model, with minimal off-target effects.
Collapse
Affiliation(s)
- Charles W Kimbrough
- The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Shanice Hudson
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Anil Khanal
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Michael E Egger
- The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Lacey R McNally
- Department of Medicine, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
9
|
Silva-Torres LA, Vélez C, Lyvia Alvarez J, Ortiz JG, Zayas B. Toxic effects of xylazine on endothelial cells in combination with cocaine and 6-monoacetylmorphine. Toxicol In Vitro 2014; 28:1312-9. [PMID: 25017475 DOI: 10.1016/j.tiv.2014.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
Abstract
The use of xylazine as a drug of abuse has emerged worldwide in the last 7 years, including Puerto Rico. Clinical findings reported that xylazine users present greater physiological deterioration, than heroin users. The aim of this study was to assess the xylazine toxicity on endothelial cells, as this is one of the first tissues impact upon administration. Human umbilical vein endothelial cells in culture were treated with xylazine, cocaine, 6-monoacetylmorphine (heroin metabolite) and its combinations, at concentrations of 0.10-400 μM, for periods of 24, 48 and 72 h. IC50 were calculated and the Annexin V assay implemented to determine the cell death mechanism. Results indicated IC50 values at 24h as follow: xylazine 62 μM, cocaine 210 μM, 6-monoacetylmorphine 300 μM. When these drugs were combined the IC50 value was 57 μM. Annexin V results indicated cell death by an apoptosis mechanism in cells treated with xylazine or in combination. Results demonstrated that xylazine use inhibits the endothelial cell proliferation, at lower concentrations than cocaine and 6-monoacetylmorphine. These findings contribute to the understanding of the toxicity mechanisms induced by xylazine on endothelial cells.
Collapse
Affiliation(s)
- L A Silva-Torres
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico; Puerto Rico Institute of Forensic Science, San Juan, Puerto Rico.
| | - C Vélez
- Universidad Metropolitana, School of Environmental Affairs, San Juan, Puerto Rico
| | - J Lyvia Alvarez
- Puerto Rico Institute of Forensic Science, San Juan, Puerto Rico; University of Puerto Rico, School of Health Professions, Medical Science Campus, Puerto Rico
| | - J G Ortiz
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico
| | - B Zayas
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico; Universidad Metropolitana, School of Environmental Affairs, San Juan, Puerto Rico
| |
Collapse
|
10
|
Burvenich IJ, Lee FT, Cartwright GA, O'Keefe GJ, Makris D, Cao D, Gong S, Chueh AC, Mariadason JM, Brechbiel MW, Beckman RA, Fujiwara K, von Roemeling R, Scott AM. Molecular Imaging of Death Receptor 5 Occupancy and Saturation Kinetics In Vivo by Humanized Monoclonal Antibody CS-1008. Clin Cancer Res 2013; 19:5984-93. [DOI: 10.1158/1078-0432.ccr-12-3104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Abstract
Pancreatic cancer is critical for developed countries, where its rate of diagnosis has been increasing steadily annually. In the past decade, the advances of pancreatic cancer research have not contributed to the decline in mortality rates from pancreatic cancer-the overall 5-year survival rate remains about 5% low. This number only underscores an obvious urgency for us to better understand the biological features of pancreatic carcinogenesis, to develop early detection methods, and to improve novel therapeutic treatments. To achieve these goals, animal modeling that faithfully recapitulates the whole process of human pancreatic cancer is central to making the advancements. In this review, we summarize the currently available animal models for pancreatic cancer and the advances in pancreatic cancer animal modeling. We compare and contrast the advantages and disadvantages of three major categories of these models: (1) carcinogen-induced; (2) xenograft and allograft; and (3) genetically engineered mouse models. We focus more on the genetically engineered mouse models, a category which has been rapidly expanded recently for their capacities to mimic human pancreatic cancer and metastasis, and highlight the combinations of these models with various newly developed strategies and cell-lineage labeling systems.
Collapse
Affiliation(s)
- Wanglong Qiu
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
12
|
Zhou Y, Lu N, Zhang H, Wei L, Tao L, Dai Q, Zhao L, Lin B, Ding Q, Guo Q. HQS-3, a newly synthesized flavonoid, possesses potent anti-tumor effect in vivo and in vitro. Eur J Pharm Sci 2013; 49:649-58. [PMID: 23619285 DOI: 10.1016/j.ejps.2013.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 04/14/2013] [Indexed: 12/21/2022]
Abstract
HQS-3 is a newly baicalein derivative with a benzene substitution. We investigated the anticancer effect of HQS-3 in vivo and in vitro. HQS-3 significantly decreased tumor growth in mice inoculated with Heps and HepG2 cells; and had little influence on the state and weight of animals. After treatment with 20 mg/kg HQS-3, the inhibitory rate of tumor weight in mice inoculated with Heps and HepG2 cells were 63.62% and 68.03%, respectively. Meanwhile, HQS-3 inhibited the viability of various kinds of tumor cells with IC50 values in the range of 22.98-54.32 μM after 48 h treatment measured by MTT-assay. HQS-3 remarkably inhibited viability of hepatoma cells in a concentration- and time-dependent manner and induced apoptosis in HepG2 cells by DAPI staining and Annexin V/PI double staining. The apoptosis-induction effect of HQS-3 was attributed to its ability to modulate the activity of caspase-9, caspase-3 and PARP. Moreover, the expression of bax protein was increased while the bcl-2 protein was decreased, leading to an increase in Bax/Bcl-2 ratio. The accumulation of ROS induced by HQS-3 in HepG2 cells was also observed. The further results suggested that HQS-3 induced mitochondrial-mediated apoptosis by increasing ROS level and inhibiting the expression of anti-oxidative protein SOD2. HQS-3 exerted anti-tumor activity both in vitro and in vivo via inducing tumor cells apoptosis, and these results suggested that it deserves further investigation as a novel chemotherapy for human tumors.
Collapse
Affiliation(s)
- Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim H, Zhai G, Liu Z, Samuel S, Shah N, Helman EE, Knowles JA, Stockard CR, Fineberg NS, Grizzle WE, Zhou T, Zinn KR, Rosenthal EL. Extracelluar matrix metalloproteinase as a novel target for pancreatic cancer therapy. Anticancer Drugs 2012; 22:864-74. [PMID: 21730821 DOI: 10.1097/cad.0b013e328349311e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective of this study was to evaluate extracellular matrix metalloproteinase (EMMPRIN) as a novel target in orthotopic pancreatic cancer murine models. MIA PaCa-2 human pancreatic tumor cells were implanted in groups 1 and 3-7, whereas MIA PaCa-2 EMMPRIN knockdown cells were implanted in group 2. Dosing with anti-EMMPRIN antibody started immediately after implantation for groups 1-3 (residual tumor model) and at 21 days after cell implantation for groups 4-7 (established tumor model). Groups 3, 5, and 7 were treated with anti-EMMRPIN antibody (0.2-1.0 mg) twice weekly for 2-3 weeks, whereas the other groups served as the control. In the residual tumor model, tumor growth of anti-EMMPRIN-treated group was successfully arrested for 21 days (15 ± 4 mm(3)), which was significantly lower than that of the EMMPRIN knockdown group (80 ± 15 mm(3); P=0.001) or the control group (240 ± 41 mm(3); P<0.001). In the established tumor model, anti-EMMPRIN therapy lowered tumor volume increase by approximately 40% compared with the control, regardless of the dose amount. Ki67-expressed cell density of group 5 was 939 ± 150 mm(-2), which was significantly lower than that of group 4 (1709 ± 145 mm(-2); P=0.006). Microvessel density of group 5 (30 ± 6 mm(-2)) was also significantly lower than that of group 4 (53 ± 5 mm(-2); P=0.014), whereas the microvessel size of group 5 (191 ± 22 μm(2)) was significantly larger than that of group 4 (113 ± 26 μm(2); P=0.049). These data show the high potential of anti-EMMPRIN therapy for pancreatic cancer and support its clinical translation.
Collapse
Affiliation(s)
- Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim H, Zhai G, Samuel SL, Rigell CJ, Umphrey HR, Rana S, Stockard CR, Fineberg NS, Zinn KR. Dual combination therapy targeting DR5 and EMMPRIN in pancreatic adenocarcinoma. Mol Cancer Ther 2011; 11:405-15. [PMID: 22203731 DOI: 10.1158/1535-7163.mct-11-0581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The goal of the study was to assess the efficacy of combined extracellular matrix metalloprotease inducer (EMMPRIN)- and death receptor 5 (DR5)-targeted therapy for pancreatic adenocarcinoma in orthotopic mouse models with multimodal imaging. Cytotoxicity of anti-EMMPRIN antibody and anti-DR5 antibody (TRA-8) in MIA PaCa-2 and PANC-1 cell lines was measured by ATPlite assay in vitro. The distributions of Cy5.5-labeled TRA-8 and Cy3-labeled anti-EMMPRIN antibody in the 2 cell lines were analyzed by fluorescence imaging in vitro. Groups 1 to 12 of severe combined immunodeficient mice bearing orthotopic MIA PaCa-2 (groups 1-8) or PANC-1 (groups 9-12) tumors were used for in vivo studies. Dynamic contrast-enhanced-MRI was applied in group 1 (untreated) or group 2 (anti-EMMPRIN antibody). The tumor uptake of Tc-99m-labeled TRA-8 was measured in group 3 (untreated) and group 4 (anti-EMMPRIN antibody). Positron emission tomography/computed tomography imaging with (18)F-FDG was applied in groups 5 to 12. Groups 5 to 8 (or groups 9 to 12) were untreated or treated with anti-EMMPRIN antibody, TRA-8, and combination, respectively. TRA-8 showed high killing efficacy for both MIA PaCa-2 and PANC-1 cells in vitro, but additional anti-EMMPRIN treatment did not improve the cytotoxicity. Cy5.5-TRA-8 formed cellular caps in both the cell lines, whereas the maximum signal intensity was correlated with TRA-8 cytotoxicity. Anti-EMMPRIN therapy significantly enhanced the tumor delivery of the MR contrast agent, but not Tc-99m-TRA-8. Tumor growth was significantly suppressed by the combination therapy, and the additive effect of the combination was shown in both MIA PaCa-2 and PANC-1 tumor models.
Collapse
Affiliation(s)
- Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oliver PG, LoBuglio AF, Zhou T, Forero A, Kim H, Zinn KR, Zhai G, Li Y, Lee CH, Buchsbaum DJ. Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Res Treat 2011; 133:417-26. [PMID: 21901385 DOI: 10.1007/s10549-011-1755-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/27/2022]
Abstract
The purpose is to evaluate sensitivity of basal-like breast cancer to treatment with anti-DR5 alone and in combination with chemotherapy. Cytotoxicity of TRA-8 anti-DR5 alone and in combination with doxorubicin or paclitaxel was examined. The role of a DR5-associated molecule (DDX3) in the regulation of apoptosis by recruitment of cIAP1 to the DR5/DDX3 complex was studied. SUM159 and 2LMP orthotopic xenografts were treated with TRA-8 alone and in combination with Abraxane or doxorubicin, and tumor growth inhibition determined. Diffusion-weighted magnetic resonance imaging was used to monitor early tumor response. The majority (12/15) of basal-like cell lines were very sensitive to TRA-8-induced cytotoxicity (IC(50) values of 1.0-49 ng/ml). In contrast, 8/11 luminal or HER2-positive cell lines were resistant (IC(50) > 1,000 ng/ml). Enhanced killing of basal-like cell lines was produced by combination treatment with TRA-8 and doxorubicin. Majority of basal cell lines expressed lower levels of DR5-associated DDX3 and cIAP1 than luminal and HER2-positive cell lines. TRA-8 inhibited growth of basal xenografts and produced 20% complete 2LMP tumor regressions. TRA-8 and chemotherapy produced greater 2LMP growth inhibition than either alone. An increase in apparent diffusion coefficient in 2LMP tumors was measured in a week of therapy with TRA-8 and Abraxane. Basal-like cell lines were more sensitive to TRA-8-mediated cytotoxicity than HER2-over-expressing and luminal cell lines, and chemotherapy enhanced cytotoxicity. High sensitivity of basal cells to TRA-8 correlated with low expression of DR5/DDX3/cIAP1 complex. Treatment with TRA-8 and chemotherapy may be an effective therapy for basal-like breast cancer.
Collapse
Affiliation(s)
- Patsy G Oliver
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Irinotecan synergistically enhances the antiproliferative and proapoptotic effects of axitinib in vitro and improves its anticancer activity in vivo. Neoplasia 2011; 13:217-29. [PMID: 21390185 DOI: 10.1593/neo.101334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 02/08/2023] Open
Abstract
AIMS To demonstrate the synergistic antiproliferative and proapoptotic activity of irinotecan and axitinib in vitro and the improvement of the in vivo effects on angiogenesis and pancreatic cancer. METHODS Proliferation and apoptotic assays were performed on human dermal microvascular endothelial cells and pancreas cancer (MIAPaCa-2, Capan-1) cell lines exposed to SN-38, the active metabolite of irinotecan, axitinib, or their simultaneous combination for 72 hours. ERK1/2 and Akt phosphorylation, the vascular endothelial growth factor (VEGF), VEGF receptor-2, and thrombospondin-1 (TSP-1) concentration were measured by ELISAs. ATP7A and ABCG2 gene expression was performed with real-time polymerase chain reaction and SN-38 intracellular concentrations were measured by high-performance liquid chromatography. Capan-1 xenografts in nude mice were treated with irinotecan and axitinib alone or in simultaneous combination. RESULTS A strong synergistic effect on antiproliferative and proapoptotic activity was found with the axitinib/SN-38 combination on endothelial and cancer cells. ERK1/2 and Akt phosphorylation were significantly inhibited by lower concentrations of the combined drugs in all the cell lines. Axitinib and SN-38 combined treatment greatly inhibited the expression of the ATP7A and ABCG2 genes in endothelial and cancer cells, increasing the SN-38 intracellular concentration. Moreover, TSP-1 secretion was increased in cells treated with both drugs, whereas VEGFR-2 levels significantly decreased. In vivo administration of the simultaneous combination determined an almost complete regression of tumors and tumor neovascularization. CONCLUSIONS In vitro results show the highly synergistic properties of simultaneous combination of irinotecan and axitinib on endothelial and pancreas cancer cells, suggesting a possible translation of this schedule into the clinics.
Collapse
|
17
|
Malin D, Chen F, Schiller C, Koblinski J, Cryns VL. Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 2011; 17:5005-15. [PMID: 21653692 DOI: 10.1158/1078-0432.ccr-11-0099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Metastatic breast cancer is a deadly disease which requires new therapeutic strategies. Endogenous TNF-related apoptosis-inducing ligand (TRAIL) functions as a metastasis suppressor by activating proapoptotic TRAIL receptors (TRAIL-R1/DR4 and/or TRAIL-R2/DR5) in transformed cells, making it an attractive pathway for antimetastatic therapies. However, it is unclear whether TRAIL-R1 or TRAIL-R2 is a better therapeutic target in metastatic breast cancer. EXPERIMENTAL DESIGN Several metastatic, triple (estrogen receptor, progesterone receptor, and HER2)-negative cancer cell lines were treated with human agonistic monoclonal antibodies targeting TRAIL-R1 (mapatumumab) or TRAIL-R2 (lexatumumab). The effects on cell viability, apoptosis, and caspase-8 activation were determined. An orthotopic model of triple-negative breast cancer in which fluorescently labeled breast cancer cells metastasize from the mammary gland to lymph nodes and lung was utilized to evaluate the effects of mapatumumab, lexatumumab, or doxorubicin on primary and metastatic tumor burden in vivo. RESULTS Lexatumumab was more effective than mapatumumab in activating caspase-8, inducing apoptosis and inhibiting long-term survival of metastatic cancer cells, which expressed both TRAIL-R1 and TRAIL-R2. Human mammary epithelial cells transformed by oncogenic Ras were more sensitive to lexatumumab than nontransformed cells. Lexatumumab inhibited lymph node and lung metastases more robustly than mapatumumab in an orthotopic model of triple-negative breast cancer; both agents inhibited mammary tumor growth. In addition, lexatumumab was more effective than doxorubicin at suppressing metastases at doses of doxorubicin that were associated with toxicity, even though doxorubicin reduced primary tumor burden more robustly than lexatumumab. CONCLUSION Targeting TRAIL-R2 receptor may be an effective therapeutic strategy for metastatic breast cancer.
Collapse
Affiliation(s)
- Dmitry Malin
- Cell Death Regulation Laboratory, Department of Medicine, and Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
18
|
Foster FS, Hossack J, Adamson SL. Micro-ultrasound for preclinical imaging. Interface Focus 2011; 1:576-601. [PMID: 22866232 DOI: 10.1098/rsfs.2011.0037] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, non-invasive preclinical imaging has emerged as an important tool to facilitate biomedical discovery. Not only have the markets for these tools accelerated, but the numbers of peer-reviewed papers in which imaging end points and biomarkers have been used have grown dramatically. High frequency 'micro-ultrasound' has steadily evolved in the post-genomic era as a rapid, comparatively inexpensive imaging tool for studying normal development and models of human disease in small animals. One of the fundamental barriers to this development was the technological hurdle associated with high-frequency array transducers. Recently, new approaches have enabled the upper limits of linear and phased arrays to be pushed from about 20 to over 50 MHz enabling a broad range of new applications. The innovations leading to the new transducer technology and scanner architecture are reviewed. Applications of preclinical micro-ultrasound are explored for developmental biology, cancer, and cardiovascular disease. With respect to the future, the latest developments in high-frequency ultrasound imaging are described.
Collapse
Affiliation(s)
- F Stuart Foster
- Sunnybrook and Health Sciences Centre , University of Toronto , Toronto, Ontario , Canada
| | | | | |
Collapse
|
19
|
LFG-500, a newly synthesized flavonoid, induced a reactive oxygen species-mitochondria-mediated apoptosis in hepatocarcinoma cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Amm HM, Oliver PG, Lee CH, Li Y, Buchsbaum DJ. Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biol Ther 2011; 11:431-49. [PMID: 21263219 PMCID: PMC3087899 DOI: 10.4161/cbt.11.5.14671] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 12/20/2022] Open
Abstract
Molecularly targeted therapies, such as antibodies and small molecule inhibitors have emerged as an important breakthrough in the treatment of many human cancers. One targeted therapy under development is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to its ability to induce apoptosis in a variety of human cancer cell lines and xenografts, while lacking toxicity in most normal cells. TRAIL and apoptosis-inducing agonistic antibodies to the TRAIL death receptors have been the subject of many preclinical and clinical studies in the past decade. However, the sensitivity of individual cancer cell lines of a particular tumor type to these agents varies from highly sensitive to resistant. Various chemotherapy agents have been shown to enhance the apoptosis-inducing capacity of TRAIL receptor-targeted therapies and induce sensitization of TRAIL-resistant cells. This review provides an overview of the mechanisms associated with chemotherapy enhancement of TRAIL receptor-targeted therapies including modulation of the apoptotic (death receptor expression, FLIP, and Bcl-2 or inhibitors of apoptosis (IAP) families) as well as cell signaling (NFκB, Akt, p53) pathways. These mechanisms will be important in establishing effective combinations to pursue clinically and in determining relevant targets for future cancer therapies.
Collapse
Affiliation(s)
- Hope M Amm
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|
21
|
Fulda S. Targeting apoptosis signaling in pancreatic cancer. Cancers (Basel) 2011; 3:241-51. [PMID: 24212616 PMCID: PMC3756359 DOI: 10.3390/cancers3010241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 12/14/2022] Open
Abstract
The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| |
Collapse
|
22
|
DHF-18, a new synthetic flavonoid, induced a mitochondrial-mediated apoptosis of hepatocarcinoma cells in vivo and in vitro. Eur J Pharmacol 2011; 651:33-40. [DOI: 10.1016/j.ejphar.2010.10.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 10/07/2010] [Accepted: 10/29/2010] [Indexed: 11/20/2022]
|
23
|
Huang Z, Saluja A, Dudeja V, Vickers S, Buchsbaum D. Molecular targeted approaches for treatment of pancreatic cancer. Curr Pharm Des 2011; 17:2221-38. [PMID: 21777178 PMCID: PMC3422746 DOI: 10.2174/138161211796957427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/20/2011] [Indexed: 02/07/2023]
Abstract
Human pancreatic cancer remains a highly malignant disease with almost similar incidence and mortality despite extensive research. Many targeted therapies are under development. However, clinical investigation showed that single targeted therapies and most combined therapies were not able to improve the prognosis of this disease, even though some of these therapies had excellent anti-tumor effects in pre-clinical models. Cross-talk between cell proliferation signaling pathways may be an important phenomenon in pancreatic cancer, which may result in cancer cell survival even though some pathways are blocked by targeted therapy. Pancreatic cancer may possess different characteristics and targets in different stages of pathogenesis, maintenance and metastasis. Sensitivity to therapy may also vary for cancer cells at different stages. The unique pancreatic cancer structure with abundant stroma creates a tumor microenvironment with hypoxia and low blood perfusion rate, which prevents drug delivery to cancer cells. In this review, the most commonly investigated targeted therapies in pancreatic cancer treatment are discussed. However, how to combine these targeted therapies and/or combine them with chemotherapy to improve the survival rate of pancreatic cancer is still a challenge. Genomic and proteomic studies using pancreatic cancer samples obtained from either biopsy or surgery are recommended to individualize tumor characters and to perform drug sensitivity study in order to design a tailored therapy with minimal side effects. These studies may help to further investigate tumor pathogenesis, maintenance and metastasis to create cellular expression profiles at different stages. Integration of the information obtained needs to be performed from multiple levels and dimensions in order to develop a successful targeted therapy.
Collapse
Affiliation(s)
- Z.Q. Huang
- Department of Radiation Oncology, University of Alabama at Birmingham USA
| | - A.K. Saluja
- Department of Surgery, University of Minnesota, USA
| | - V. Dudeja
- Department of Surgery, University of Minnesota, USA
| | - S.M. Vickers
- Department of Surgery, University of Minnesota, USA
| | - D.J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham USA
| |
Collapse
|
24
|
Bodenstine TM, Vaidya KS, Ismail A, Beck BH, Cook LM, Diers AR, Landar A, Welch DR. Homotypic gap junctional communication associated with metastasis suppression increases with PKA activity and is unaffected by PI3K inhibition. Cancer Res 2010; 70:10002-11. [PMID: 21098703 DOI: 10.1158/0008-5472.can-10-2606] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Loss of gap junctional intercellular communication (GJIC) between cancer cells is a common characteristic of malignant transformation. This communication is mediated by connexin proteins that make up the functional units of gap junctions. Connexins are highly regulated at the protein level and phosphorylation events play a key role in their trafficking and degradation. The metastasis suppressor breast cancer metastasis suppressor 1 (BRMS1) upregulates GJIC and decreases phosphoinositide-3-kinase (PI3K) signaling. On the basis of these observations, we set out to determine whether there was a link between PI3K and GJIC in tumorigenic and metastatic cell lines. Treatment of cells with the well-known PI3K inhibitor LY294002, and its structural analogue LY303511, which does not inhibit PI3K, increased homotypic GJIC; however, we found the effect to be independent of PI3K/AKT inhibition. We show in multiple cancer cell lines of varying metastatic capability that GJIC can be restored without enforced expression of a connexin gene. In addition, while levels of connexin 43 remained unchanged, its relocalization from the cytosol to the plasma membrane was observed. Both LY294002 and LY303511 increased the activity of protein kinase A (PKA). Moreover, PKA blockade by the small molecule inhibitor H89 decreased the LY294002/LY303511-mediated increase in GJIC. Collectively, our findings show a connection between PKA activity and GJIC mediated by PI3K-independent mechanisms of LY294002 and LY303511. Manipulation of these signaling pathways could prove useful for antimetastatic therapy.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Forero-Torres A, Shah J, Wood T, Posey J, Carlisle R, Copigneaux C, Luo FR, Wojtowicz-Praga S, Percent I, Saleh M. Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 2010; 25:13-9. [PMID: 20187792 DOI: 10.1089/cbr.2009.0673] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND TRA-8 is a murine agonist monoclonal antibody to death receptor 5 (DR5), which is able to trigger apoptosis in DR5 positive human tumor cells without the aid of crosslinking. It has demonstrated cytotoxicity in vitro and in vivo antitumor efficacy to a wide range of solid tumors in murine xenograft models. Tigatuzumab is a humanized IgG1 monoclonal antibody derived from TRA-8. METHODS A phase I trial of tigatuzumab in patients with relapsed/refractory carcinomas (n = 16) or lymphoma (n = 1) was designed to determine the maximal tolerated dose (MTD), pharmacokinetics, immunogenicity, and safety. Three to six (3-6) patients were enrolled in successive escalating cohorts at doses ranging from 1 to 8 mg/kg weekly. RESULTS Seventeen (17) patients enrolled, 9 in the 1-, 2-, and 4-mg/kg dose cohorts (3 in each cohort) and 8 in the 8-mg/kg dose cohort. Tigatuzumab was well tolerated with no DLTs observed, and the MTD was not reached. There were no study-drug-related grade 3 or 4, renal, hepatic, or hematologic toxicities. Plasma half-life was 6-10 days, and no anti-tigatuzumab responses were detected. Seven (7) patients had stable disease, with the duration of response ranging from 81 to 798 days. CONCLUSIONS Tigatuzumab is well tolerated, and the MTD was not reached. The high number of patients with stable disease suggests antitumor activity.
Collapse
Affiliation(s)
- Andres Forero-Torres
- University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama 35294-3300, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McNally LR, Welch DR, Beck BH, Stafford LJ, Long JW, Sellers JC, Huang ZQ, Grizzle WE, Stockard CR, Nash KT, Buchsbaum DJ. KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clin Exp Metastasis 2010; 27:591-600. [PMID: 20844932 DOI: 10.1007/s10585-010-9349-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 08/24/2010] [Indexed: 12/15/2022]
Abstract
Identifying molecular targets for treatment of pancreatic cancer metastasis is critical due to the high frequency of dissemination prior to diagnosis of this lethal disease. Because the KISS1 metastasis suppressor is expressed at reduced levels in advanced pancreatic cancer, we hypothesized that re-expression of KISS1 would reduce metastases. Highly metastatic S2VP10 cells expressing luciferase (S2VP10L) were transfected with a FLAG-tagged version of KISS1 (KFM), KFMΔSS (with deleted secretion signal sequence), or pcDNA3 control plasmid (CP) and expression was confirmed by RTQ-PCR. SCID mice were implanted orthotopically with S2VP10L cells or transfectants and tumor growth and metastases were monitored using bioluminescence imaging. Mice with S2VP10L-KISS1 tumors developed fewer liver (98%) and lung (99%) metastases than S2VP10L. Unexpectedly, mice with S2VP10L-KFMΔSS tumors also had reduced liver and lung metastases, but had more metastases than mice with S2VP10L-KISS. KISS1 protein was found in the cytoplasm of both KFMΔSS and KISS1-expressing orthotopic tumors by immunohistochemistry. Metastases were not found in lungs of mice with S2VP10L-KISS1 tumors; whereas, KFMΔSS lung sections had regions of concentrated KISS1 staining, suggesting that secretion of KISS1 is needed to reduce metastasis significantly. These data suggest induction of KISS1 expression has potential as an adjuvant treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Lacey R McNally
- Department of Radiation Oncology, University of Alabama at Birmingham, 35294-2182, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fox NL, Humphreys R, Luster TA, Klein J, Gallant G. Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) Receptor-1 and Receptor-2 agonists for cancer therapy. Expert Opin Biol Ther 2010; 10:1-18. [PMID: 19857186 DOI: 10.1517/14712590903319656] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE OF THE FIELD Agents that activate the TNF-related apoptosis-inducing ligand death receptors, TRAIL-R1 and TRAIL-R2, have attracted substantial attention and investment as potential anti-cancer therapies. Preclinical studies of TRAIL-R agonists indicate that they may be efficacious in a wide range of tumor types, especially when combined with chemotherapeutic agents. AREAS COVERED IN THIS REVIEW The rationale for clinical development of TRAIL-R agonists is described, including the basis for combining these agents with other agents that modulate the 'checks and balances' of the apoptotic pathways. Accruing data that highlight differences between TRAIL-R1 and TRAIL-R2 that could affect the clinical significance of their specific agonists are described. The clinical experience to date with each of the agonists is summarized. WHAT THE READER WILL GAIN The reader will gain an understanding of the rationale for the clinical development of TRAIL-R agonists, as well as the current status of clinical trials of these interesting new agents. TAKE HOME MESSAGE Ongoing clinical trials will provide important information regarding the future development of TRAIL-R agonists.
Collapse
|
28
|
Chames P, Kerfelec B, Baty D. Therapeutic antibodies for the treatment of pancreatic cancer. ScientificWorldJournal 2010; 10:1107-20. [PMID: 20563534 PMCID: PMC2925140 DOI: 10.1100/tsw.2010.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer is a devastating disease with the worst mortality rate and an overall 5-year survival rate lower than 5%. In the U.S., this disease is the fourth leading cause of death and represents 6% of all cancer-related deaths. Gemcitabine, the current standard first-line treatment, offers marginal benefits to patients in terms of symptom control and prolongation of life. Since 1996, about 20 randomized phase III trials have been performed to improve the efficacy of gemcitabine, with little success regarding a significant improvement in survival outcomes. The need for novel therapeutic strategies, such as target therapy, is obvious. Monoclonal antibodies have finally come of age as therapeutics and several molecules are now approved for cancer therapies. This review aims to give a general view on the clinical results obtained so far by antibodies for the treatment of pancreatic cancer and describes the most promising avenues toward a significant improvement in the treatment of this frustrating disease.
Collapse
|
29
|
Abstract
Resistance to apoptosis (programmed cell death) is a characteristic feature of human malignancies including pancreatic cancer, which is one of the leading causes of cancer deaths in the western world. Defects in this intrinsic cell death program can contribute to the multistep process of tumorigenesis, because too little cell death can disturb tissue homeostasis. Further, blockade of apoptosis pathways can cause treatment failure, because intact apoptosis signalling cascades largely mediate therapy-induced cytotoxicity. The elucidation of apoptosis pathways in pancreatic carcinoma over the last decade has resulted in the identification of various molecular defects. How apoptosis pathways can be exploited for the treatment of pancreatic cancer will be discussed in this review.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Eythstr., Ulm, Germany.
| |
Collapse
|
30
|
Abstract
Human pancreatic cancer is a malignant disease with almost equal incidence and mortality. Effective diagnostic and therapeutic strategies are still urgently needed to improve its survival rate. With advances in structural and functional genomics, recent work has focused on targeted molecular therapy using monoclonal antibodies. This review summarizes the target molecules on the tumor cell surface and normal tissue stroma, which are related to pancreatic cancer oncogenesis, tumor growth or resistance to chemotherapy, as well as molecules involved in regulating inflammation and host immunoresponses. Targeted molecules include cell-surface receptors, such as the EGF receptor, HER2, death receptor 5 and IGF-1 receptor. Effects of monoclonal antibodies against these target molecules alone or in combination with chemotherapy, small-molecule signal transduction inhibitors, or radiation therapy are also discussed. Also discussed are the use of toxin or radioisotope conjugates, and information relating to the use of these targeting agents in pancreatic cancer clinical trials. Although targeted molecular therapy with monoclonal antibodies has made some progress in pancreatic cancer treatment, especially in preclinical studies, its clinical application to improve the survival rate of pancreatic cancer patients requires further investigation.
Collapse
Affiliation(s)
| | - Donald J Buchsbaum
- Author for correspondence: Department of Radiation Oncology, Division of Radiation Biology, 1530 3rd Avenue South, WTI 674 Birmingham, AL 35294-6832, USA, Tel.: +1 205 934 7077, Fax: +1 205 975 7060
| |
Collapse
|
31
|
Kim H, Morgan DE, Buchsbaum DJ, Zeng H, Grizzle WE, Warram JM, Stockard CR, McNally LR, Long JW, Sellers JC, Forero A, Zinn KR. Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res 2008; 68:8369-76. [PMID: 18922909 DOI: 10.1158/0008-5472.can-08-1771] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Early therapeutic efficacy of anti-death receptor 5 antibody (TRA-8) combined with gemcitabine was measured using diffusion-weighted magnetic resonance imaging (DWI) in an orthotopic pancreatic tumor model. Groups 1 to 4 of severe combined immunodeficient mice (n = 5-7 per group) bearing orthotopically implanted, luciferase-positive human pancreatic tumors (MIA PaCa-2) were subsequently (4-5 weeks thereafter) injected with saline (control), gemcitabine (120 mg/kg), TRA-8 (200 mug), or TRA-8 combined with gemcitabine, respectively, on day 0. DWI, anatomic magnetic resonance imaging, and bioluminescence imaging were done on days 0, 1, 2, and 3 after treatment. Three tumors from each group were collected randomly on day 3 after imaging, and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling staining was done to quantify apoptotic cellularity. At just 1 day after starting therapy, the changes of apparent diffusion coefficient (ADC) in tumor regions for group 3 (TRA-8) and group 4 (TRA-8/Gem) were 21 +/- 9% (mean +/- SE) and 27 +/- 3%, respectively, significantly higher (P < 0.05) than those of group 1 (-1 +/- 5%) and group 2 (-2 +/- 4%). There was no statistical difference in tumor volumes for the groups at this time. The mean ADC values of groups 2 to 4 gradually increased over 3 days, which were concurrent with tumor volume regressions and bioluminescence signal decreases. Apoptotic cell densities of tumors in groups 1 to 4 were 0.7 +/- 0.4%, 0.6 +/- 0.2%, 3.1 +/- 0.9%, and 4.7 +/- 1.0%, respectively, linearly proportional to the ADC changes on day 1. Further, the ADC changes were highly correlated with the previously reported mean survival times of animals treated with the same agents and doses. This study supports the clinical use of DWI for pancreatic tumor patients for early assessment of drug efficacy.
Collapse
Affiliation(s)
- Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Plati J, Bucur O, Khosravi-Far R. Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem 2008; 104:1124-49. [PMID: 18459149 DOI: 10.1002/jcb.21707] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Apoptosis is a tightly regulated cell suicide program that plays an essential role in the maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Defects in this native defense mechanism promote malignant transformation and frequently confer chemoresistance to transformed cells. Indeed, the evasion of apoptosis has been recognized as a hallmark of cancer. Given that multiple mechanisms function at many levels to orchestrate the regulation of apoptosis, a multitude of opportunities for apoptotic dysregulation are present within the intricate signaling network of cell. Several of the molecular mechanisms by which cancer cells are protected from apoptosis have been elucidated. These advances have facilitated the development of novel apoptosis-inducing agents that have demonstrated single-agent activity against various types of cancers cells and/or sensitized resistant cancer cells to conventional cytotoxic therapies. Herein, we will highlight several of the central modes of apoptotic dysregulation found in cancer. We will also discuss several therapeutic strategies that aim to reestablish the apoptotic response, and thereby eradicate cancer cells, including those that demonstrate resistance to traditional therapies.
Collapse
Affiliation(s)
- Jessica Plati
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
33
|
Fiveash JB, Gillespie GY, Oliver PG, Zhou T, Belenky ML, Buchsbaum DJ. Enhancement of glioma radiotherapy and chemotherapy response with targeted antibody therapy against death receptor 5. Int J Radiat Oncol Biol Phys 2008; 71:507-16. [PMID: 18474311 DOI: 10.1016/j.ijrobp.2008.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/08/2008] [Accepted: 02/10/2008] [Indexed: 11/27/2022]
Abstract
PURPOSE TRA-8 is an agonistic mouse monoclonal antibody that binds to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5, which induces apoptosis in cancer cells through a caspase-8-dependent mechanism. We investigated the ability of TRA-8 to augment the radiotherapy (RT) and chemotherapy response of human glioma cells in vitro and in vivo. METHODS AND MATERIALS The in vitro cytotoxicity of TRA-8 and temozolomide (Tmz) or RT was examined using adenosine triphosphate-dependent viability and clonogenic survival assays with five glioma cell lines. Death receptor 5 expression was determined by flow cytometry. In vivo studies included subcutaneous and intracranial xenograft models testing various combination treatments, including RT, Tmz, and TRA-8. RESULTS TRA-8, combined with Tmz or RT, produced enhanced cytotoxicity against five glioma cell lines compared with the use of the individual agents alone. Death receptor 5 upregulation occurred in response to RT. Complete tumor regression in the subcutaneous experiments was the most common in animals that received combination therapy with TRA-8/Tmz/RT. TRA-8 enhanced tumor growth delay in combination with RT or Tmz. TRA-8 alone had limited activity against intracranial tumors. In contrast, the median survival of mice treated with TRA-8/Tmz/RT was significantly greater than the control or TRA-8-alone-treated mice. The median survival of the mice treated with TRA-8/Tmz/RT or chemoradiotherapy only was significantly greater than the control or TRA-8-treated mice. A trend toward improved survival was observed between TRA-8/Tmz/RT-treated and Tmz/RT-treated mice. CONCLUSIONS These preliminary findings support the hypothesis that TRA-8 will augment the RT and chemotherapy response in gliomas. A humanized version of TRA-8 is being evaluated in a Phase II clinical trial.
Collapse
Affiliation(s)
- John B Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | | | | | | | | | | |
Collapse
|