1
|
Yang E, Fan X, Ye H, Sun X, Ji Q, Ding Q, Zhong S, Zhao S, Xuan C, Fang M, Ding X, Cao J. Exploring the role of ubiquitin regulatory X domain family proteins in cancers: bioinformatics insights, mechanisms, and implications for therapy. J Transl Med 2024; 22:157. [PMID: 38365777 PMCID: PMC10870615 DOI: 10.1186/s12967-024-04890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 02/18/2024] Open
Abstract
UBXD family (UBXDF), a group of proteins containing ubiquitin regulatory X (UBX) domains, play a crucial role in the imbalance of proliferation and apoptotic in cancer. In this study, we summarised bioinformatics proof on multi-omics databases and literature on UBXDF's effects on cancer. Bioinformatics analysis revealed that Fas-associated factor 1 (FAF1) has the largest number of gene alterations in the UBXD family and has been linked to survival and cancer progression in many cancers. UBXDF may affect tumour microenvironment (TME) and drugtherapy and should be investigated in the future. We also summarised the experimental evidence of the mechanism of UBXDF in cancer, both in vitro and in vivo, as well as its application in clinical and targeted drugs. We compared bioinformatics and literature to provide a multi-omics insight into UBXDF in cancers, review proof and mechanism of UBXDF effects on cancers, and prospect future research directions in-depth. We hope that this paper will be helpful for direct cancer-related UBXDF studies.
Collapse
Affiliation(s)
- Enyu Yang
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaowei Fan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haihan Ye
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyang Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong , 999077, Special Administrative Region, China
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shulian Zhong
- Zhejiang Sci-Tech University Hospital, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuo Zhao
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cheng Xuan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Xianfeng Ding
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
2
|
Gessani S, Belardelli F. Immune Dysfunctions and Immunotherapy in Colorectal Cancer: The Role of Dendritic Cells. Cancers (Basel) 2019; 11:E1491. [PMID: 31623355 PMCID: PMC6827143 DOI: 10.3390/cancers11101491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC), a multi-step malignancy showing increasing incidence in today's societies, represents an important worldwide health issue. Exogenous factors, such as lifestyle, diet, nutrition, environment and microbiota, contribute to CRC pathogenesis, also influencing non neoplastic cells, including immune cells. Several immune dysfunctions were described in CRC patients at different disease stages. Many studies underline the role of microbiota, obesity-related inflammation, diet and host reactive cells, including dendritic cells (DC), in CRC pathogenesis. Here, we focused on DC, the main cells linking innate and adaptive anti-cancer immunity. Variations in the number and phenotype of circulating and tumor-infiltrating DC have been found in CRC patients and correlated with disease stages and progression. A critical review of DC-based clinical studies and of recent advances in cancer immunotherapy leads to consider new strategies for combining DC vaccination strategies with check-point inhibitors, thus opening perspectives for a more effective management of this neoplastic disease.
Collapse
Affiliation(s)
- Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | |
Collapse
|
3
|
Galaine J, Turco C, Vauchy C, Royer B, Mercier-Letondal P, Queiroz L, Loyon R, Mouget V, Boidot R, Laheurte C, Lakkis Z, Jary M, Adotévi O, Borg C, Godet Y. CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int J Cancer 2019; 145:3112-3125. [PMID: 31396953 DOI: 10.1002/ijc.32620] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Immune checkpoint blockade has proven its efficacy in hypermutated subtypes of metastatic colorectal cancers (mCRC). Immunogenic potential can also be observed with conventional chemotherapies, but this property has never been explored thoroughly in CRC patients. The CRC therapeutic arsenal includes oxaliplatin, a well-characterized platinum drug already described as immunogenic. Here, we investigated the impact of the oxaliplatin-based treatment on mCRC immunopeptidome. We demonstrated that oxaliplatin-resistant CRC cell lines overexpressed telomerase reverse transcriptase (TERT), colorectal-associated-tumor antigen-1 (COA-1) and mesothelin tumor-associated antigens. We identified new HLA class-II-restricted and promiscuous peptides derived from COA-1 and mesothelin. The two naturally processed peptides COA-1331-345 and Meso366-380 appear to be the most immunogenic in mCRC patients. A prospective cohort of 162 mCRC patients enabled us to explore the impact of oxaliplatin exposure on the antitumor-specific immune response. Interestingly, chemotherapy-naive mCRC patients present high immune CD4 T-cell responses directed against TERT, COA-1 and mesothelin-derived peptides. These antitumor T-cell responses were maintained after 3 months of oxaliplatin-based treatment. Altogether, these findings highlight the interest of immunostimulatory agents to improve the management of chemoresistant mCRC patients. Finally, the high frequency of immune responses targeting the new immunogenic peptides derived from COA-1 and mesothelin support their use in immunomonitoring strategies.
Collapse
Affiliation(s)
- Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Célia Turco
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Gastrointestinal Surgery, Besançon, France
| | - Charline Vauchy
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center un Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Bernard Royer
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of pharmacotoxicology, Besançon, France
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Lise Queiroz
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center un Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Romain Loyon
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Virginie Mouget
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Romain Boidot
- Centre Georges-François Leclerc, Platform for Transfer to Cancer Biology, Dijon, France
| | - Caroline Laheurte
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,EFS Bourgogne Franche-Comté, INSERM CIC-1431, CHRU Besançon, Plateforme de BioMonitoring, Besançon, France
| | - Zaher Lakkis
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Gastrointestinal Surgery, Besançon, France
| | - Marine Jary
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Olivier Adotévi
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| |
Collapse
|
4
|
Volonté A, Di Tomaso T, Spinelli M, Todaro M, Sanvito F, Albarello L, Bissolati M, Ghirardelli L, Orsenigo E, Ferrone S, Doglioni C, Stassi G, Dellabona P, Staudacher C, Parmiani G, Maccalli C. Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. THE JOURNAL OF IMMUNOLOGY 2013; 192:523-32. [PMID: 24277698 DOI: 10.4049/jimmunol.1301342] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer-initiating cells (CICs) that are responsible for tumor initiation, propagation, and resistance to standard therapies have been isolated from human solid tumors, including colorectal cancer (CRC). The aim of this study was to obtain an immunological profile of CRC-derived CICs and to identify CIC-associated target molecules for T cell immunotherapy. We have isolated cells with CIC properties along with their putative non-CIC autologous counterparts from human primary CRC tissues. These CICs have been shown to display "tumor-initiating/stemness" properties, including the expression of CIC-associated markers (e.g., CD44, CD24, ALDH-1, EpCAM, Lgr5), multipotency, and tumorigenicity following injection in immunodeficient mice. The immune profile of these cells was assessed by phenotype analysis and by in vitro stimulation of PBMCs with CICs as a source of Ags. CICs, compared with non-CIC counterparts, showed weak immunogenicity. This feature correlated with the expression of high levels of immunomodulatory molecules, such as IL-4, and with CIC-mediated inhibitory activity for anti-tumor T cell responses. CIC-associated IL-4 was found to be responsible for this negative function, which requires cell-to-cell contact with T lymphocytes and which is impaired by blocking IL-4 signaling. In addition, the CRC-associated Ag COA-1 was found to be expressed by CICs and to represent, in an autologous setting, a target molecule for anti-tumor T cells. Our study provides relevant information that may contribute to designing new immunotherapy protocols to target CICs in CRC patients.
Collapse
Affiliation(s)
- Andrea Volonté
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Centre, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ex vivo enrichment of circulating anti-tumor T cells from both cutaneous and ocular melanoma patients: clinical implications for adoptive cell transfer therapy. Cancer Immunol Immunother 2011; 61:1169-82. [PMID: 22207316 PMCID: PMC3401505 DOI: 10.1007/s00262-011-1179-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
Abstract
Tumor-infiltrating lymphocytes (TILs) have been successfully used for adoptive cell transfer (ACT) immunotherapy; however, due to their scarce availability, this therapy is possible for a limited fraction of cutaneous melanoma patients. We assessed whether an effective protocol for ex vivo T-cell expansion from peripheral blood mononuclear cells (PBMCs), suitable for ACT of both cutaneous and ocular melanoma patients, could be identified. PBMCs from both cutaneous and ocular melanoma patients were stimulated in vitro with autologous, irradiated melanoma cells (mixed lymphocyte tumor cell culture; MLTCs) in the presence of IL-2 and IL-15 followed by the rapid expansion protocol (REP). The functional activity of these T lymphocytes was characterized and compared with that of TILs. In addition, the immune infiltration in vivo of ocular melanoma lesions was analyzed. An efficient in vitro MLTC expansion of melanoma reactive T cells was achieved from all PBMC’s samples obtained in 7 cutaneous and ocular metastatic melanoma patients. Large numbers of melanoma-specific T cells could be obtained when the REP protocol was applied to these MLTCs. Most MLTCs were enriched in non-terminally differentiated TEM cells homogeneously expressing co-stimulatory molecules (e.g., NKG2D, CD28, CD134, CD137). A similar pattern of anti-tumor activity, in association with a more variable expression of co-stimulatory molecules, was detected on short-term in vitro cultured TILs isolated from the same patients. In these ocular melanoma patients, we observed an immune infiltrate with suppressive characteristics and a low rate of ex vivo growing TILs (28.5% of our cases). Our MLTC protocol overcomes this limitation, allowing the isolation of T lymphocytes with effector functions even in these patients. Thus, anti-tumor circulating PBMC-derived T cells could be efficiently isolated from melanoma patients by our novel ex vivo enrichment protocol. This protocol appears suitable for ACT studies of cutaneous and ocular melanoma patients.
Collapse
|
6
|
Immunotherapy for treating metastatic colorectal cancer. Surg Oncol 2011; 21:67-77. [PMID: 21292476 DOI: 10.1016/j.suronc.2010.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 10/10/2010] [Accepted: 10/14/2010] [Indexed: 01/17/2023]
Abstract
BACKGROUND Colorectal cancer remains one of the leading causes of death in the world. Surgery still remains the mainstay of treatment for primary and metastatic colorectal cancer. Immunotherapy used as an adjunct to surgery can play an important role in controlling the spread of tumour. METHODS The online databases PubMed, Medline, Scirus and Medscape Oncology were used to identify articles of relevance. Keywords included; "Immunotherapy", "Cellular Immunotherapy", "Metastatic Colorectal Cancer", "Monoclonal Antibody" "Tumour Vaccines" and "Adoptive Cell Therapy". The databases search was from the period of June 1995 until May 2010 inclusive. RESULTS Our understanding of tumour immunology has allowed the development of some successful therapies. Immunotherapy through the use of monoclonal antibodies is an effective adjunct to chemotherapy for metastatic colorectal cancer. Other modalities that are in the stages of development are cellular and conjugated vaccines. However, these vaccines are being experimented in advanced stages of colorectal tumours. CONCLUSION Colorectal cancer vaccines are being developed for advanced stages of colorectal tumour. However, their use as an early adjunct could potentially limit the spread of tumour or even result in cure. Further trials are required to ensure the safety and efficacy of cellular vaccines against colorectal tumours to allow their use on patients early in their disease presentation.
Collapse
|
7
|
McDonnell AM, Nowak AK, Lake RA. Contribution of the immune system to the chemotherapeutic response. Semin Immunopathol 2011; 33:353-67. [PMID: 21274535 DOI: 10.1007/s00281-011-0246-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 01/28/2023]
Abstract
The immune system plays an important role in the surveillance of neoplastic cells by eliminating them before they manifest as full-blown cancer. Despite this, tumors do develop in the presence of a functioning immune system. Conventional chemotherapy and its ability to directly kill tumor cells is one of the most effective weapons in the fight against cancer, however, increasing evidence suggests that the therapeutic efficacy of some cytotoxic drugs relies on their capacity to interact with the immune system. Killing of tumor cells in a manner that favors their capture by immune cells or selective targeting of immunosuppressive pathways by specific chemotherapies promotes the generation of an effective anti-cancer response; however, this alone is rarely sufficient to cause elimination of advanced disease. An understanding of the immunological events occurring in both animal models and patients undergoing chemotherapy will guide decisions for the development of appropriate combinations and scheduling for the integration of chemotherapy with immunotherapy.
Collapse
Affiliation(s)
- Alison M McDonnell
- National Centre for Asbestos-Related Diseases and School of Medicine and Pharmacology, The University of Western Australia, Perth, 6009 Western Australia, Australia
| | | | | |
Collapse
|
8
|
Di Tomaso T, Mazzoleni S, Wang E, Sovena G, Clavenna D, Franzin A, Mortini P, Ferrone S, Doglioni C, Marincola FM, Galli R, Parmiani G, Maccalli C. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 2010; 16:800-13. [PMID: 20103663 DOI: 10.1158/1078-0432.ccr-09-2730] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Cancer stem cells (CSC) have been isolated from human tumors, including glioblastoma multiforme (GBM). The aims of this study were the immunobiological characterization of GBM CSCs and the assessment of whether these cells represent suitable targets for immunotherapy. EXPERIMENTAL DESIGN GBM CSC lines and their fetal bovine serum (FBS)-cultured non-CSC pair lines were generated and examined by flow cytometry for expression of known tumor antigens, MHC-I and MHC-II molecules, antigen-processing machinery components, and NKG2D ligands. In addition, immunogenicity and immunosuppression of such cell lines for autologous or allogeneic T lymphocytes were tested by cytokine secretion (ELISPOT) or proliferation (carboxyfluorescein diacetate succinimidyl ester) assays, respectively. RESULTS Both GBM CSC and FBS lines were weakly positive and negative for MHC-I, MHC-II, and NKG2D ligand molecules, respectively. Antigen-processing machinery molecules were also defective in both cell types. Upregulation of most molecules was induced by IFNs or 5-Aza deoxycytidine, although more efficiently in FBS than in CSCs. Patient T-cell responses, mediated by both TH1 and the TH2 subsets, against autologous CSC could be induced in vitro. In addition, CSC but not their paired FBS tumor lines inhibited T-cell proliferation of healthy donors. Notably, a differential gene signature that was confirmed at the protein levels for some immunologic-related molecules was also found between CSC and FBS lines. CONCLUSIONS These results indicate lower immunogenicity and higher suppressive activity of GBM CSC compared with FBS lines. The immunogenicity, however, could be rescued by immune modulation leading to anti-GBM T cell-mediated immune response.
Collapse
Affiliation(s)
- Tiziano Di Tomaso
- Department of Pathology, San Raffaele Foundation Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|