1
|
Sanese P, Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Grossi V, Simone C. Methyltransferases in cancer drug resistance: Unlocking the potential of targeting SMYD3 to sensitize cancer cells. Biochim Biophys Acta Rev Cancer 2024; 1879:189203. [PMID: 39461625 DOI: 10.1016/j.bbcan.2024.189203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM). PTMs such as methylation affect protein function and are critical in cancer biology. Methylation is catalyzed by specific enzymes called protein methyltransferases. In recent years, the SET domain-containing N-lysine methyltransferase SMYD3 has emerged as a significant oncogenic driver. It is overexpressed in several tumor types and plays a signal-dependent role in promoting gastrointestinal cancer formation and development. Recent evidence indicates that SMYD3 is involved in the maintenance of cancer genome integrity and contributes to drug resistance in response to genotoxic stress by regulating DDR mechanisms. Several potential SMYD3 interactors implicated in DNA repair, especially in the homologous recombination and non-homologous end-joining pathways, have been identified by in silico analyses and confirmed by experimental validation, showing that SMYD3 promotes DDR protein interactions and enzymatic activity, thereby sustaining cancer cell survival. Targeting SMYD3, in combination with standard or targeted therapy, shows promise in overcoming drug resistance in colorectal, gastric, pancreatic, breast, endometrial, and lung cancer models, supporting the integration of SMYD3 inhibition into cancer treatment regimens. In this review, we describe the role played by SMYD3 in drug resistance and analyze its potential as a molecular target to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy; Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari 70124, Italy.
| |
Collapse
|
2
|
Nguyen CDK, Colón-Emeric BA, Murakami S, Shujath MNY, Yi C. PRMT1 promotes epigenetic reprogramming associated with acquired chemoresistance in pancreatic cancer. Cell Rep 2024; 43:114176. [PMID: 38691454 PMCID: PMC11238875 DOI: 10.1016/j.celrep.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.
Collapse
Affiliation(s)
- Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Benjamín A Colón-Emeric
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mia N Y Shujath
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
3
|
Cheng Y, Song Z, Fang X, Tang Z. Polycomb repressive complex 2 and its core component EZH2: potential targeted therapeutic strategies for head and neck squamous cell carcinoma. Clin Epigenetics 2024; 16:54. [PMID: 38600608 PMCID: PMC11007890 DOI: 10.1186/s13148-024-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Zhengzheng Song
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Xiaodan Fang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Ku B, Eisenbarth D, Baek S, Jeong TK, Kang JG, Hwang D, Noh MG, Choi C, Choi S, Seol T, Kim H, Kim YH, Woo SM, Kong SY, Lim DS. PRMT1 promotes pancreatic cancer development and resistance to chemotherapy. Cell Rep Med 2024; 5:101461. [PMID: 38460517 PMCID: PMC10983040 DOI: 10.1016/j.xcrm.2024.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/28/2023] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer, and novel treatment regimens are direly needed. Epigenetic regulation contributes to the development of various cancer types, but its role in the development of and potential as a therapeutic target for PDAC remains underexplored. Here, we show that PRMT1 is highly expressed in murine and human pancreatic cancer and is essential for cancer cell proliferation and tumorigenesis. Deletion of PRMT1 delays pancreatic cancer development in a KRAS-dependent mouse model, and multi-omics analyses reveal that PRMT1 depletion leads to global changes in chromatin accessibility and transcription, resulting in reduced glycolysis and a decrease in tumorigenic capacity. Pharmacological inhibition of PRMT1 in combination with gemcitabine has a synergistic effect on pancreatic tumor growth in vitro and in vivo. Collectively, our findings implicate PRMT1 as a key regulator of pancreatic cancer development and a promising target for combination therapy.
Collapse
Affiliation(s)
- Bomin Ku
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - David Eisenbarth
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Seonguk Baek
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Tae-Keun Jeong
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Ju-Gyeong Kang
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Daehee Hwang
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - Sungwoo Choi
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Taejun Seol
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sang Myung Woo
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Carneiro BA, Cavalcante L, Mahalingam D, Saeed A, Safran H, Ma WW, Coveler AL, Powell S, Bastos B, Davis E, Sahai V, Mikrut W, Longstreth J, Smith S, Weisskittel T, Li H, Borden BA, Harvey RD, Sahebjam S, Cervantes A, Koukol A, Mazar AP, Steeghs N, Kurzrock R, Giles FJ, Munster P. Phase I Study of Elraglusib (9-ING-41), a Glycogen Synthase Kinase-3β Inhibitor, as Monotherapy or Combined with Chemotherapy in Patients with Advanced Malignancies. Clin Cancer Res 2024; 30:522-531. [PMID: 37982822 DOI: 10.1158/1078-0432.ccr-23-1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/21/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE The safety, pharmacokinetics, and efficacy of elraglusib, a glycogen synthase kinase-3β (GSK-3β) small-molecule inhibitor, as monotherapy or combined with chemotherapy, in patients with relapsed or refractory solid tumors or hematologic malignancies was studied. PATIENTS AND METHODS Elraglusib (intravenously twice weekly in 3-week cycles) monotherapy dose escalation was followed by dose escalation with eight chemotherapy regimens (gemcitabine, doxorubicin, lomustine, carboplatin, irinotecan, gemcitabine/nab-paclitaxel, paclitaxel/carboplatin, and pemetrexed/carboplatin) in patients previously exposed to the same chemotherapy. RESULTS Patients received monotherapy (n = 67) or combination therapy (n = 171) elraglusib doses 1 to 15 mg/kg twice weekly. The initial recommended phase II dose (RP2D) of elraglusib was 15 mg/kg twice weekly and was defined, without dose-limiting toxicity observation, due to fluid volumes necessary for drug administration. The RP2D was subsequently reduced to 9.3 mg/kg once weekly to reduce elraglusib-associated central/peripheral vascular access catheter blockages. Other common elraglusib-related adverse events (AE) included transient visual changes and fatigue. Grade ≥3 treatment-emergent AEs occurred in 55.2% and 71.3% of patients on monotherapy and combination therapy, respectively. Part 1 monotherapy (n = 62) and part 2 combination (n = 138) patients were evaluable for response. In part 1, a patient with melanoma had a complete response, and a patient with acute T-cell leukemia/lymphoma had a partial response (PR). In part 2, seven PRs were observed, and the median progression-free survival and overall survival were 2.1 [95% confidence interval (CI), 2-2.6] and 6.9 (95% CI, 5.7-8.4) months, respectively. CONCLUSIONS Elraglusib had a favorable toxicity profile as monotherapy and combined with chemotherapy and was associated with clinical benefit supporting further clinical evaluation in combination with chemotherapy.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Legorreta Cancer Center, Brown University and Lifespan Cancer Institute, Providence, Rhode Island
| | | | | | - Anwaar Saeed
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Howard Safran
- Legorreta Cancer Center, Brown University and Lifespan Cancer Institute, Providence, Rhode Island
| | | | | | - Steven Powell
- Sanford Health, University of South Dakota Medical Center, Sioux Falls, South Dakota
| | - Bruno Bastos
- Miami Cancer Institute at Baptist Health, Miami, Florida
| | | | | | | | | | | | | | - Hu Li
- Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Brittany A Borden
- Legorreta Cancer Center, Brown University and Lifespan Cancer Institute, Providence, Rhode Island
| | | | | | - Andrés Cervantes
- Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | | | | | | | | | | | - Pamela Munster
- University of California San Francisco, San Francisco, California
| |
Collapse
|
6
|
Maharati A, Samsami Y, Latifi H, Tolue Ghasaban F, Moghbeli M. Role of the long non-coding RNAs in regulation of Gemcitabine response in tumor cells. Cancer Cell Int 2023; 23:168. [PMID: 37580768 PMCID: PMC10426205 DOI: 10.1186/s12935-023-03004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM resistant cancer patients and define a suitable therapeutic strategy among these patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Chibaya L, Murphy KC, DeMarco KD, Gopalan S, Liu H, Parikh CN, Lopez-Diaz Y, Faulkner M, Li J, Morris JP, Ho YJ, Chana SK, Simon J, Luan W, Kulick A, de Stanchina E, Simin K, Zhu LJ, Fazzio TG, Lowe SW, Ruscetti M. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. NATURE CANCER 2023; 4:872-892. [PMID: 37142692 PMCID: PMC10516132 DOI: 10.1038/s43018-023-00553-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Immunotherapies that produce durable responses in some malignancies have failed in pancreatic ductal adenocarcinoma (PDAC) due to rampant immune suppression and poor tumor immunogenicity. We and others have demonstrated that induction of the senescence-associated secretory phenotype (SASP) can be an effective approach to activate anti-tumor natural killer (NK) cell and T cell immunity. In the present study, we found that the pancreas tumor microenvironment suppresses NK cell and T cell surveillance after therapy-induced senescence through enhancer of zeste homolog 2 (EZH2)-mediated epigenetic repression of proinflammatory SASP genes. EZH2 blockade stimulated production of SASP chemokines CCL2 and CXCL9/10, leading to enhanced NK cell and T cell infiltration and PDAC eradication in mouse models. EZH2 activity was also associated with suppression of chemokine signaling and cytotoxic lymphocytes and reduced survival in patients with PDAC. These results demonstrate that EZH2 represses the proinflammatory SASP and that EZH2 inhibition combined with senescence-inducing therapy could be a powerful means to achieve immune-mediated tumor control in PDAC.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine C Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly D DeMarco
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sneha Gopalan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haibo Liu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chaitanya N Parikh
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yvette Lopez-Diaz
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Melissa Faulkner
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Junhui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John P Morris
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sachliv K Chana
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Janelle Simon
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Luan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Kulick
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Immunology and Microbiology Program, University of Massachusetts Medical Chan School, Worcester, MA, USA.
- Cancer Center, University of Massachusetts Medical Chan School, Worcester, MA, USA.
| |
Collapse
|
8
|
Zhao L, Rao X, Huang C, Zheng R, Kong R, Chen Z, Yu X, Cheng H, Li S. Epigenetic reprogramming of carrier free photodynamic modulator to activate tumor immunotherapy by EZH2 inhibition. Biomaterials 2023; 293:121952. [PMID: 36502580 DOI: 10.1016/j.biomaterials.2022.121952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Tumor cells are characterized by unlimited proliferation and escape of immune clearance, which are closely associated with the down regulation of surface antigens. In this work, a carrier free photodynamic modulator (CeTaz) is developed to improve immunosuppressive tumor microenvironment and promote the recognition of tumors by T cells by epigenetic reprogramming. Specifically, CeTaz is assembled by chlorine e6 (Ce6) and tazemetostat (Taz) through intermolecular interactions. Upon light irradiation, CeTaz is able to promote the generation of reactive oxygen species (ROS) for a robust photodynamic therapy (PDT) to inhibit localized tumor growth. Meanwhile, the PDT also induces immunogenic cell death (ICD) to initiate immune response, leading to the activation of effector T cells. More importantly, CeTaz could inhibit the epigenetic regulator of EZH2 to suppress the methylation of H3K27, which would promote tumor cells to express MHC-I and release CXCL10. Consequently, the epigenetically reprogrammed tumor cells are readily recognized by effector T cells to enhance the antitumor immunity. Results indicate that the PDT activated immunotherapy of CeTaz could simultaneously inhibit the growth of primary and distant tumors with a low system toxicity. This study would advance the development of carrier free nanomedicine for precise treatment of metastatic tumor.
Collapse
Affiliation(s)
- Linping Zhao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiaona Rao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chuyu Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Rongrong Zheng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Renjiang Kong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Zuxiao Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiyong Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China.
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
9
|
Elrakaybi A, Ruess DA, Lübbert M, Quante M, Becker H. Epigenetics in Pancreatic Ductal Adenocarcinoma: Impact on Biology and Utilization in Diagnostics and Treatment. Cancers (Basel) 2022; 14:cancers14235926. [PMID: 36497404 PMCID: PMC9738647 DOI: 10.3390/cancers14235926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with high potential of metastases and therapeutic resistance. Although genetic mutations drive PDAC initiation, they alone do not explain its aggressive nature. Epigenetic mechanisms, including aberrant DNA methylation and histone modifications, significantly contribute to inter- and intratumoral heterogeneity, disease progression and metastasis. Thus, increased understanding of the epigenetic landscape in PDAC could offer new potential biomarkers and tailored therapeutic approaches. In this review, we shed light on the role of epigenetic modifications in PDAC biology and on the potential clinical applications of epigenetic biomarkers in liquid biopsy. In addition, we provide an overview of clinical trials assessing epigenetically targeted treatments alone or in combination with other anticancer therapies to improve outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Dietrich A. Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Quante
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Department of Gastroenterology and Hepatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Heiko Becker
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-36000
| |
Collapse
|
10
|
Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in Diffuse Midline Glioma and Epithelial Ovarian Cancer: Opposing Epigenetic Changes Leading to the Same Poor Outcomes. Cells 2022; 11:cells11213376. [PMID: 36359771 PMCID: PMC9655269 DOI: 10.3390/cells11213376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Histone post-translational modifications modulate gene expression through epigenetic gene regulation. The core histone H3 family members, H3.1, H3.2, and H3.3, play a central role in epigenetics. H3 histones can acquire many post-translational modifications, including the trimethylation of H3K27 (H3K27me3), which represses transcription. Triple methylation of H3K27 is performed by the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the Polycomb Repressive Complex 2. Both global increases and decreases in H3K27me3 have been implicated in a wide range of cancer types. Here, we explore how opposing changes in H3K27me3 contribute to cancer by highlighting its role in two vastly different cancer types; (1) a form of glioma known as diffuse midline glioma H3K27-altered and (2) epithelial ovarian cancer. These two cancers vary widely in the age of onset, sex, associated mutations, and cell and organ type. However, both diffuse midline glioma and ovarian cancer have dysregulation of H3K27 methylation, triggering changes to the cancer cell transcriptome. In diffuse midline glioma, the loss of H3K27 methylation is a primary driving factor in tumorigenesis that promotes glial cell stemness and silences tumor suppressor genes. Conversely, hypermethylation of H3K27 occurs in late-stage epithelial ovarian cancer, which promotes tumor vascularization and tumor cell migration. By using each cancer type as a case study, this review emphasizes the importance of H3K27me3 in cancer while demonstrating that the mechanisms of histone H3 modification and subsequent gene expression changes are not a one-size-fits-all across cancer types.
Collapse
Affiliation(s)
- Charles A. Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
- Correspondence:
| | - Edward H. Hinchcliffe
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - James P. Robinson
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Raja Arul GL, Toruner MD, Gatenby RA, Carr RM. Ecoevolutionary biology of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:730-740. [PMID: 35821188 DOI: 10.1016/j.pan.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer, is an aggressive disease predicted to be the 2nd cause of cancer mortality in the US by 2040. While first-line therapy has improved, 5-year overall survival has only increased from 5 to ∼10%, and surgical resection is only available for ∼20% of patients as most present with advanced disease, which is invariably lethal. PDAC has well-established highly recurrent mutations in four driver genes including KRAS, TP53, CDKN2A, and SMAD4. Unfortunately, these genetic drivers are not currently therapeutically actionable. Despite extensive sequencing efforts, few additional significantly recurrent and druggable drivers have been identified. In the absence of targetable mutations, chemotherapy remains the mainstay of treatment for most patients. Further, the role of the above driver mutations on PDAC initiation and early development is well-established. However, these mutations alone cannot account for PDAC heterogeneity nor discern early from advanced disease. Taken together, management of PDAC is an example highlighting the shortcomings of the current precision medicine paradigm. PDAC, like other malignancies, represents an ecoevolutionary process. Better understanding the disease through this lens can facilitate the development of novel therapeutic strategies to better control and cure PDAC. This review aims to integrate the current understanding of PDAC pathobiology into an ecoevolutionary framework.
Collapse
Affiliation(s)
| | - Merih D Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ryan M Carr
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Lyu C, Wang L, Stadlbauer B, Noessner E, Buchner A, Pohla H. Identification of EZH2 as Cancer Stem Cell Marker in Clear Cell Renal Cell Carcinoma and the Anti-Tumor Effect of Epigallocatechin-3-Gallate (EGCG). Cancers (Basel) 2022; 14:4200. [PMID: 36077742 PMCID: PMC9454898 DOI: 10.3390/cancers14174200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to develop a new therapeutic strategy to target cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC) and to identify typical CSC markers to improve therapy effectiveness. It was found that the corrected-mRNA expression-based stemness index was upregulated in kidney renal clear cell carcinoma (KIRC) tissues compared to non-tumor tissue and increased with higher tumor stage and grade. EZH2 was identified as a CSC marker and prognosis factor for KIRC patients. The expression of EZH2 was associated with several activated tumor-infiltrating immune cells. High expression of EZH2 was enriched in immune-related pathways, low expression was related to several metabolic pathways. Epigallocatechin-3-gallate (EGCG) was identified as the most potent suppressor of EZH2, was able to inhibit viability, migration, and invasion, and to increase the apoptosis rate of ccRCC CSCs. KIF11, VEGF, and MMP2 were identified as predictive EGCG target genes, suggesting a potential mechanism of how EZH2 might regulate invasiveness and migration. The percentages of FoxP3+ Treg cells in the peripheral blood mononuclear cells of ccRCC patients decreased significantly when cultured with spheres pretreated with EGCG plus sunitinib compared to spheres without treatment. Our findings provide new insights into the treatment options of ccRCC based on targeting CSCs.
Collapse
Affiliation(s)
- Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
| | - Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München, D-81377 Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| |
Collapse
|
13
|
Chuang HH, Huang MS, Zhen YY, Chuang CH, Lee YR, Hsiao M, Yang CJ. FAK Executes Anti-Senescence via Regulating EZH2 Signaling in Non-Small Cell Lung Cancer Cells. Biomedicines 2022; 10:biomedicines10081937. [PMID: 36009484 PMCID: PMC9406208 DOI: 10.3390/biomedicines10081937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase overexpressed in various cancer types that plays a critical role in tumor progression. Accumulating evidence suggests that targeting FAK, either alone or in combination with other agents, may serve as an effective therapeutic strategy for numerous cancers. In addition to retarding proliferation, metastasis, and angiogenesis, FAK inhibition triggers cellular senescence in lung cancer cells. However, the detailed mechanism remains enigmatic. In the present study, we found that FAK inhibition not only elicits DNA-damage signaling but also downregulates enhancer of zeste homolog 2 (EZH2) expression. The manipulation of FAK expression influences EZH2 expression and corresponding signaling in vitro. Immunohistochemistry shows that active FAK signaling corresponds with the activation of the EZH2-mediated signaling cascade in lung-cancer-cells-derived tumor tissues. We also found that ectopic EZH2 expression attenuates FAK-inhibition-induced cellular senescence in lung cancer cells. Our results identify EZH2 as a critical downstream effector of the FAK-mediated anti-senescence pathway. Targeting FAK-EZH2 axis-induced cellular senescence may represent a promising therapeutic strategy for restraining tumor growth.
Collapse
Affiliation(s)
- Hsiang-Hao Chuang
- Division of Pulmonary Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Hao Chuang
- Division of Pulmonary Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Correspondence: (M.H.); (C.-J.Y.); Tel.: +886-2-27871243 (M.H.); +886-7-3121101 (ext. 5651) (C.-J.Y.)
| | - Chih-Jen Yang
- Division of Pulmonary Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.H.); (C.-J.Y.); Tel.: +886-2-27871243 (M.H.); +886-7-3121101 (ext. 5651) (C.-J.Y.)
| |
Collapse
|
14
|
Brouwer TP, van der Zanden SY, van der Ploeg M, van Eendenburg JDH, Bonsing BA, de Miranda NFCC, Neefjes JJ, Vahrmeijer AL. The identification of the anthracycline aclarubicin as an effective cytotoxic agent for pancreatic cancer. Anticancer Drugs 2022; 33:614-621. [PMID: 35324522 PMCID: PMC9281511 DOI: 10.1097/cad.0000000000001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer, mainly due to its delayed diagnosis and lack of effective therapeutic options. Therefore, it is imperative to find novel treatment options for PDAC. Here, we tested a series of conventional chemotherapeutics together with anthracycline compounds as single agents or in combination, determining their effectivity against established commercial and patient-derived, low-passage PDAC cell lines. Proliferation and colony formation assays were performed to determine the anticancer activity of anthracyclines; aclarubicin and doxorubicin, on commercial and patient-derived, low-passage PDAC cell lines. In addition, the effect of standard-of-care drugs gemcitabine and individual components of FOLFIRINOX were also investigated. To evaluate which mechanisms of cell death were involved in drug response, cleavage of poly(ADP-ribose)polymerase was evaluated by western blot. Aclarubicin showed superior antitumor activity compared to other anthracyclines and standard of care drugs (gemcitabine and individual components of FOLFIRINOX) in a patient-derived, low-passage PDAC cell line and in commercial cell lines. Importantly, the combination of gemcitabine and aclarubicin showed a synergistic effect at a dose range where the single agents by themselves were ineffective. In parallel, evaluation of the antitumor activity of aclarubicin demonstrated an apoptotic effect in all PDAC cell lines. Aclarubicin is cytotoxic for commercial and patient-derived low-passage PDAC cell lines, at doses lower than peak serum concentrations for patient treatment. Our findings support a (re)consideration of aclarubicin as a backbone of new combination regimens for pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacques J Neefjes
- Cell and Chemical Biology, Leiden University Medical Center, Leiden
- Oncode Institute, The Netherlands
| | | |
Collapse
|
15
|
TP53-Status-Dependent Oncogenic EZH2 Activity in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14143451. [PMID: 35884510 PMCID: PMC9320674 DOI: 10.3390/cancers14143451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Epigenetic alterations contribute to the aggressiveness and therapy resistance of Pancreatic Ductal Adenocarcinoma (PDAC). However, epigenetic regulators, including Enhancer of Zeste Homolog 2 (EZH2), reveal a strong context-dependent activity. Our study aimed to examine the context-defining molecular prerequisites of oncogenic EZH2 activity in PDAC to assess the therapeutic efficacy of targeting EZH2. Our preclinical study using diverse PDAC models demonstrates that the TP53 status determines oncogenic EZH2 activity. Only in TP53-wildtype (wt) PDAC subtypes was EZH2 blockade associated with a favorable PDAC prognosis mainly through cell-death response. We revealed that EZH2 depletion increases p53wt stability by the de-repression of CDKN2A. Therefore, our study provides preclinical evidence that an intact CDKN2A-p53wt axis is indispensable for a beneficial outcome of EZH2 depletion and highlights the significance of molecular stratification to improve epigenetic targeting in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) represents a lethal malignancy with a consistently poor outcome. Besides mutations in PDAC driver genes, the aggressive tumor biology of the disease and its remarkable therapy resistance are predominantly installed by potentially reversible epigenetic dysregulation. However, epigenetic regulators act in a context-dependent manner with opposing implication on tumor progression, thus critically determining the therapeutic efficacy of epigenetic targeting. Herein, we aimed at exploring the molecular prerequisites and underlying mechanisms of oncogenic Enhancer of Zeste Homolog 2 (EZH2) activity in PDAC progression. Preclinical studies in EZH2 proficient and deficient transgenic and orthotopic in vivo PDAC models and transcriptome analysis identified the TP53 status as a pivotal context-defining molecular cue determining oncogenic EZH2 activity in PDAC. Importantly, the induction of pro-apoptotic gene signatures and processes as well as a favorable PDAC prognosis upon EZH2 depletion were restricted to p53 wildtype (wt) PDAC subtypes. Mechanistically, we illustrate that EZH2 blockade de-represses CDKN2A transcription for the subsequent posttranslational stabilization of p53wt expression and function. Together, our findings suggest an intact CDKN2A-p53wt axis as a prerequisite for the anti-tumorigenic consequences of EZH2 depletion and emphasize the significance of molecular stratification for the successful implementation of epigenetic targeting in PDAC.
Collapse
|
16
|
Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora's Box of cancer stem cells. Stem Cell Res Ther 2022; 13:181. [PMID: 35505363 PMCID: PMC9066908 DOI: 10.1186/s13287-022-02856-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
Drug resistance is the main culprit of failure in cancer therapy that may lead to cancer relapse. This resistance mostly originates from rare, but impactful presence of cancer stem cells (CSCs). Ability to self-renewal and differentiation into heterogeneous cancer cells, and harboring morphologically and phenotypically distinct cells are prominent features of CSCs. Also, CSCs substantially contribute to metastatic dissemination. They possess several mechanisms that help them to survive even after exposure to chemotherapy drugs. Although chemotherapy is able to destroy the bulk of tumor cells, CSCs are left almost intact, and make tumor entity resistant to treatment. Eradication of a tumor mass needs complete removal of tumor cells as well as CSCs. Therefore, it is important to elucidate key features underlying drug resistance raised by CSCs in order to apply effective treatment strategies. However, the challenging point that threatens safety and specificity of chemotherapy is the common characteristics between CSCs and normal peers such as signaling pathways and markers. In the present study, we tried to present a comprehensive appraisal on CSCs, mechanisms of their drug resistance, and recent therapeutic methods targeting this type of noxious cells.
Collapse
Affiliation(s)
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Razeghian-Jahromi
- Cardiovascular Research Center, Shiraz University of Medical Sciences, 3rd Floor, Mohammad Rasoolallah Research Tower, Namazi Hospital, Shiraz, Iran.
| |
Collapse
|
17
|
IGF2BP1 Promotes Proliferation of Neuroendocrine Neoplasms by Post-Transcriptional Enhancement of EZH2. Cancers (Basel) 2022; 14:cancers14092121. [PMID: 35565249 PMCID: PMC9131133 DOI: 10.3390/cancers14092121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neuroendocrine neoplasms (NEN) are very heterogeneous malignancies arising at different sites of the body that show an increasing incidence in recent decades. Here, we show that IGF2 mRNA binding protein 1 (IGF2BP1) is highly expressed in NEN cell lines, leading to enhanced cell proliferation. This oncogenic function relies on post-transcriptional stimulation of EZH2 expression by IGF2BP1, resulting in epigenetic silencing of cell cycle inhibitors via tri-methylation of histone H3 at lysine 27 (H3K27me3). Combinatorial pharmacological targeting of IGF2BP1, EZH2, and the EZH2-activator Myc leads to synergistic antiproliferative and proapoptotic effects in NEN cells, representing a novel therapeutic strategy in neuroendocrine malignancies. Abstract Neuroendocrine neoplasms (NENs) represent a heterogenous class of highly vascularized neoplasms that are increasing in prevalence and are predominantly diagnosed at a metastatic state. The molecular mechanisms leading to tumor initiation, metastasis, and chemoresistance are still under investigation. Hence, identification of novel therapeutic targets is of great interest. Here, we demonstrate that the RNA-binding Protein IGF2BP1 is a post-transcriptional regulator of components of the Polycomb repressive complex 2 (PRC2), an epigenic modifier affecting transcriptional regulation and proliferation: Comprehensive in silico analyses along with in vitro experiments showed that IGF2BP1 promotes neuroendocrine tumor cell proliferation by stabilizing the mRNA of Enhancer of Zeste 2 (EZH2), the catalytic subunit of PRC2, which represses gene expression by tri-methylation of histone H3 at lysine 27 (H3K27me3). The IGF2BP1-driven stabilization and protection of EZH2 mRNA is m6A-dependent and enhances EZH2 protein levels which stimulates cell cycle progression by silencing cell cycle arrest genes through enhanced H3K27 tri-methylation. Therapeutic inhibition of IGF2BP1 destabilizes EZH2 mRNA and results in a reduced cell proliferation, paralleled by an increase in G1 and sub-G1 phases. Combined targeting of IGF2BP1, EZH2, and Myc, a transcriptional activator of EZH2 and well-known target of IGF2BP1 cooperatively induces tumor cell apoptosis. Our data identify IGF2BP1 as an important driver of tumor progression in NEN, and indicate that disruption of the IGF2BP1-Myc-EZH2 axis represents a promising approach for targeted therapy of neuroendocrine neoplasms.
Collapse
|
18
|
Chromatin-Independent Interplay of NFATc1 and EZH2 in Pancreatic Cancer. Cells 2021; 10:cells10123463. [PMID: 34943970 PMCID: PMC8700089 DOI: 10.3390/cells10123463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The Nuclear Factor of Activated T-cells 1 (NFATc1) transcription factor and the methyltransferase Enhancer of Zeste Homolog 2 (EZH2) significantly contribute to the aggressive phenotype of pancreatic ductal adenocarcinoma (PDAC). Herein, we aimed at dissecting the mechanistic background of their interplay in PDAC progression. Methods: NFATc1 and EZH2 mRNA and protein expression and complex formation were determined in transgenic PDAC models and human PDAC specimens. NFATc1 binding on the Ezh2 gene and the consequences of perturbed NFATc1 expression on Ezh2 transcription were explored by Chromatin Immunoprecipitation (ChIP) and upon transgenic or siRNA-mediated interference with NFATc1 expression, respectively. Integrative analyses of RNA- and ChIP-seq data was performed to explore NFATc1-/EZH2-dependent gene signatures. Results: NFATc1 targets the Ezh2 gene for transcriptional activation and biochemically interacts with the methyltransferase in murine and human PDAC. Surprisingly, our genome-wide binding and expression analyses do not link the protein complex to joint gene regulation. In contrast, our findings provide evidence for chromatin-independent functions of the NFATc1:EZH2 complex and reveal posttranslational EZH2 phosphorylation at serine 21 as a prerequisite for robust complex formation. Conclusion: Our findings disclose a previously unknown NFATc1-EZH2 axis operational in the pancreas and provide mechanistic insights into the conditions fostering NFATc1:EZH2 complex formation in PDAC.
Collapse
|
19
|
Chaudhary P, Guragain D, Chang JH, Kim JA. TPH1 and 5-HT 7 Receptor Overexpression Leading to Gemcitabine-Resistance Requires Non-Canonical Permissive Action of EZH2 in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:5305. [PMID: 34771469 PMCID: PMC8582390 DOI: 10.3390/cancers13215305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
In the present study, we investigated the regulatory mechanisms underlying overexpression of EZH2, tryptophan hydroxylase 1 (TPH1), and 5-HT7, in relation to gemcitabine resistance and CSC survival in PDAC cells. In aggressive PANC-1 and MIA PaCa-2 cells, knock-down (KD) of EZH2, TPH1, or HTR7 induced a decrease in CSCs and recovery from gemcitabine resistance, while preconditioning of less aggressive Capan-1 cells with 5-HT induced gemcitabine resistance with increased expression of EZH2, TPH1, and 5-HT7. Such effects of the gene KD and 5-HT treatment were mediated through PI3K/Akt and JAK2/STAT3 signaling pathways. EZH2 KD or GSK-126 (an EZH2 inhibitor) inhibited activities of these signaling pathways which altered nuclear level of NF-kB, Sp1, and p-STAT3, accompanied by downregulation of TPH1 and 5-HT7. Co-immunoprecipation with EZH2 and pan-methyl lysine antibodies revealed that auto-methylated EZH2 served as a scaffold for binding with methylated NF-kB and Sp1 as well as unmethylated p-STAT3. Furthermore, the inhibitor of EZH2, TPH1, or 5-HT7 effectively regressed pancreatic tumor growth in a xenografted mouse tumor model. Overall, the results revealed that long-term exposure to 5-HT upregulated EZH2, and the noncanonical action of EZH2 allowed the expression of TPH1-5-HT7 axis leading to gemcitabine resistance and CSC population in PDAC.
Collapse
Affiliation(s)
| | | | | | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (P.C.); (D.G.); (J.-H.C.)
| |
Collapse
|
20
|
Sun Y, Ren D, Zhou Y, Shen J, Wu H, Jin X. Histone acetyltransferase 1 promotes gemcitabine resistance by regulating the PVT1/EZH2 complex in pancreatic cancer. Cell Death Dis 2021; 12:878. [PMID: 34564701 PMCID: PMC8464605 DOI: 10.1038/s41419-021-04118-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
The poor prognosis of pancreatic cancer is primarily due to the development of resistance to therapies, including gemcitabine. The long noncoding RNA PVT1 (lncRNA PVT1) has been shown to interact with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), promoting gemcitabine resistance in pancreatic cancer. In this study, we found histone acetyltransferase 1 (HAT1) enhanced the tolerance of pancreatic cancer cells to gemcitabine and HAT1-mediated resistance mechanisms were regulated by PVT1 and EZH2. Our results showed that the aberrant HAT1 expression promoted gemcitabine resistance, while silencing HAT1 restored gemcitabine sensitivity. Moreover, HAT1 depletion caused a notable increase of gemcitabine sensitivity in gemcitabine-resistant pancreatic cancer cell lines. Further research found that HAT1 increased PVT1 expression to induce gemcitabine resistance, which enhanced the binding of bromodomain containing 4 (BRD4) to the PVT1 promoter, thereby promoting PVT1 transcription. Besides, HAT1 prevented EZH2 degradation by interfering with ubiquitin protein ligase E3 component n-recognin 4 (UBR4) binding to the N-terminal domain of EZH2, thus maintaining EZH2 protein stability to elevate the level of EZH2 protein, which also promoted HAT1-mediated gemcitabine resistance. These results suggested that HAT1 induced gemcitabine resistance of pancreatic cancer cells through regulating PVT1/EZH2 complex. Given this, Chitosan (CS)-tripolyphosphate (TPP)-siHAT1 nanoparticles were developed to block HAT1 expression and improve the antitumor effect of gemcitabine. The results showed that CS-TPP-siHAT1 nanoparticles augmented the antitumor effects of gemcitabine in vitro and in vivo. In conclusion, HAT1-targeted therapy can improve observably gemcitabine sensitivity of pancreatic cancer cells. HAT1 is a promising therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
21
|
Martinez-Useros J, Martin-Galan M, Florez-Cespedes M, Garcia-Foncillas J. Epigenetics of Most Aggressive Solid Tumors: Pathways, Targets and Treatments. Cancers (Basel) 2021; 13:3209. [PMID: 34198989 PMCID: PMC8267921 DOI: 10.3390/cancers13133209] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Highly aggressive tumors are characterized by a highly invasive phenotype, and they display chemoresistance. Furthermore, some of the tumors lack expression of biomarkers for target therapies. This is the case of small-cell lung cancer, triple-negative breast cancer, pancreatic ductal adenocarcinoma, glioblastoma, metastatic melanoma, and advanced ovarian cancer. Unfortunately, these patients show a low survival rate and most of the available drugs are ineffective. In this context, epigenetic modifications have emerged to provide the causes and potential treatments for such types of tumors. Methylation and hydroxymethylation of DNA, and histone modifications, are the most common targets of epigenetic therapy, to influence gene expression without altering the DNA sequence. These modifications could impact both oncogenes and tumor suppressor factors, which influence several molecular pathways such as epithelial-to-mesenchymal transition, WNT/β-catenin, PI3K-mTOR, MAPK, or mismatch repair machinery. However, epigenetic changes are inducible and reversible events that could be influenced by some environmental conditions, such as UV exposure, smoking habit, or diet. Changes in DNA methylation status and/or histone modification, such as acetylation, methylation or phosphorylation, among others, are the most important targets for epigenetic cancer therapy. Therefore, the present review aims to compile the basic information of epigenetic modifications, pathways and factors, and provide a rationale for the research and treatment of highly aggressive tumors with epigenetic drugs.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Avenida Reyes Catolicos 2, 28040 Madrid, Spain;
| | - Mario Martin-Galan
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Avenida Reyes Catolicos 2, 28040 Madrid, Spain;
| | | | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Avenida Reyes Catolicos 2, 28040 Madrid, Spain;
| |
Collapse
|
22
|
Li X, Gera L, Zhang S, Chen Y, Lou L, Wilson LM, Xie ZR, Sautto G, Liu D, Danaher A, Mamouni K, Yang Y, Du Y, Fu H, Kucuk O, Osunkoya AO, Zhou J, Wu D. Pharmacological inhibition of noncanonical EED-EZH2 signaling overcomes chemoresistance in prostate cancer. Theranostics 2021; 11:6873-6890. [PMID: 34093859 PMCID: PMC8171087 DOI: 10.7150/thno.49235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.
Collapse
Affiliation(s)
- Xin Li
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Yanhua Chen
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Lauren Marie Wilson
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Giuseppe Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Alira Danaher
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yang Yang
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeboye O. Osunkoya
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daqing Wu
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- MetCure Therapeutics LLC, Atlanta, GA, USA
| |
Collapse
|
23
|
Tone K, Ohno S, Honda M, Notsu A, Sasaki K, Sugino T. Application of enhancer of zeste homolog 2 immunocytochemistry to bile cytology. Cancer Cytopathol 2021; 129:612-621. [PMID: 33788988 DOI: 10.1002/cncy.22426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Bile cytology has low diagnostic sensitivity and requires ancillary techniques. This study assessed the utility of enhancer of zeste homolog 2 (EZH2) immunocytochemistry (ICC) in bile cytology. METHODS A total of 141 bile cytology specimens from 141 patients were evaluated retrospectively. Papanicolaou-stained slides were immunostained with an antibody to EZH2. After calculation of the EZH2 labeling index (LI), the cutoff value was determined via receiver operating characteristic curve analysis. Cytological performance with and without EZH2 ICC was evaluated with reference to the final diagnosis. RESULTS The area under the curve for the EZH2 LI was 0.955, and the cutoff value for identifying benign bile samples versus malignant ones was 24.0%. The sensitivity and specificity values for malignancy were 53.4% and 100% for routine cytology only, 89.0% and 95.7% for EZH2 ICC only, and 89.8% and 95.7% for a combination of routine cytology and EZH2 ICC. The sensitivities of EZH2 ICC only and a combination of routine cytology and EZH2 ICC were significantly improved in comparison with routine cytology only (P < .001). EZH2 ICC alone had a sensitivity of 68.0% and a specificity of 85.7% in bile samples with atypical cytology, a sensitivity of 87.0% in samples that were suspicious for malignancy, and a sensitivity of 85.7% and a specificity of 100% in samples that were negative for malignancy. CONCLUSIONS EZH2 ICC improved the diagnostic sensitivity for pancreatobiliary adenocarcinoma in bile cytology. This method is particularly meaningful in samples of indeterminate cytology and may be useful as an initial assessment to ensure that no cancer cells are missed.
Collapse
Affiliation(s)
- Kiyoshi Tone
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Sachiyo Ohno
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Masatake Honda
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Akifumi Notsu
- Clinical Research Center, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Keiko Sasaki
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
24
|
Overexpression of SERPINA3 promotes tumor invasion and migration, epithelial-mesenchymal-transition in triple-negative breast cancer cells. Breast Cancer 2021; 28:859-873. [PMID: 33569740 PMCID: PMC8213666 DOI: 10.1007/s12282-021-01221-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-021-01221-4.
Collapse
|
25
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
26
|
Lee JE, Cho SG, Ko SG, Ahrmad SA, Puga A, Kim K. Regulation of a long noncoding RNA MALAT1 by aryl hydrocarbon receptor in pancreatic cancer cells and tissues. Biochem Biophys Res Commun 2020; 532:563-569. [PMID: 32900487 DOI: 10.1016/j.bbrc.2020.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Environmental toxicants such as dioxins and polycyclic aromatic carbons are risk factors for pancreatitis and pancreatic cancer. These toxicants activate aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, of which activation regulates many downstream biological events, including xenobiotic metabolism, inflammation, and cancer cell growth and transformation. Here, we identified that environmental toxicant-activated AHR increased expression of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in pancreatic cancer cells and pancreatic tissues. The MALAT1 is a long noncoding (lnc) RNA which interacts with Enhancer of Zeste 2 (EZH2), a histone methyltransferase with epigenetic silencer activity, and the MALAT1-EZH2 interaction increased its epigenetic silencing activity. In contrast, AHR antagonist, CH223191 or resveratrol, counteracted the AHR-mediated MALAT1 induction and MALAT1-enahnced EZH2 activity. Collectively, these results revealed a novel pathway of how environmental exposure leads to epigenetic alteration via activation of AHR-MALAT1-EZH2 signaling axis under pancreatic tissue- and cancer cell-context.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Environmental and Public Health Sciences, College of Medicine University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, United States
| | - Sung-Gook Cho
- Division of Food and Biotechnology, College of Health and Life Sciences, Korea National University of Transportation, Jeungpyeong, Chungbuk, 27909, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130701, South Korea
| | - Syed A Ahrmad
- Department of Surgery, College of Medicine University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, United States
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences, College of Medicine University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, United States
| | - Kyounghyun Kim
- Department of Environmental and Public Health Sciences, College of Medicine University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, United States.
| |
Collapse
|
27
|
The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther 2020; 5:143. [PMID: 32747629 PMCID: PMC7398912 DOI: 10.1038/s41392-020-00252-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Digestive cancers are the leading cause of cancer-related death worldwide and have high risks of morbidity and mortality. Histone methylation, which is mediated mainly by lysine methyltransferases, lysine demethylases, and protein arginine methyltransferases, has emerged as an essential mechanism regulating pathological processes in digestive cancers. Under certain conditions, aberrant expression of these modifiers leads to abnormal histone methylation or demethylation in the corresponding cancer-related genes, which contributes to different processes and phenotypes, such as carcinogenesis, proliferation, metabolic reprogramming, epithelial–mesenchymal transition, invasion, and migration, during digestive cancer development. In this review, we focus on the association between histone methylation regulation and the development of digestive cancers, including gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer, as well as on its clinical application prospects, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
28
|
Citron F, Fabris L. Targeting Epigenetic Dependencies in Solid Tumors: Evolutionary Landscape Beyond Germ Layers Origin. Cancers (Basel) 2020; 12:cancers12030682. [PMID: 32183227 PMCID: PMC7140038 DOI: 10.3390/cancers12030682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive efforts recently witnessed the complexity of cancer biology; however, molecular medicine still lacks the ability to elucidate hidden mechanisms for the maintenance of specific subclasses of rare tumors characterized by the silent onset and a poor prognosis (e.g., ovarian cancer, pancreatic cancer, and glioblastoma). Recent mutational fingerprints of human cancers highlighted genomic alteration occurring on epigenetic modulators. In this scenario, the epigenome dependency of cancer orchestrates a broad range of cellular processes critical for tumorigenesis and tumor progression, possibly mediating escaping mechanisms leading to drug resistance. Indeed, in this review, we discuss the pivotal role of chromatin remodeling in shaping the tumor architecture and modulating tumor fitness in a microenvironment-dependent context. We will also present recent advances in the epigenome targeting, posing a particular emphasis on how this knowledge could be translated into a feasible therapeutic approach to individualize clinical settings and improve patient outcomes.
Collapse
Affiliation(s)
- Francesca Citron
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: ; Tel.: +1-713-563-5635
| |
Collapse
|
29
|
Wang S, Cai L, Zhang F, Shang X, Xiao R, Zhou H. Inhibition of EZH2 Attenuates Sorafenib Resistance by Targeting NOTCH1 Activation-Dependent Liver Cancer Stem Cells via NOTCH1-Related MicroRNAs in Hepatocellular Carcinoma. Transl Oncol 2020; 13:100741. [PMID: 32092673 PMCID: PMC7036423 DOI: 10.1016/j.tranon.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022] Open
Abstract
Acquired resistance and intrinsic to sorafenib therapy represents a major hurdle in improving the management of advanced hepatocellular carcinoma (HCC), which has been recently shown to be associated with the emergence of liver cancer stem cells (CSCs). However, it remains largely unknown whether and how histone posttranslational modifications, especially H3K27me3, are causally linked to the maintenance of self-renewal ability in sorafenib-resistant HCC. Here, we found that NOTCH1 signaling was activated in sorafenib-resistant HCC cells and NOTCH1 activation conferred hepatoma cells sorafenib resistance through enhanced self-renewal and tumorigenecity. Besides, the overexpression of EZH2 was required for the emergence of cancer stem cells following prolonged sorafenib treatment. As such, modulating EZH2 expression or activity suppressed activation of NOTCH1 pathway by elevating the expression of NOTCH1-related microRNAs, hsa-miR-21-5p and has-miR-26a-1-5p, via H3K27me3, and consequently weakened self-renewal ability and tumorigenecity and restored the anti-tumor effects of sorafenib. Overall, our results highlight the role of EZH2/NICD1 axis, and also suggest that EZH2 and NOTCH1 pathway are rational targets for therapeutic intervention in sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Shanshan Wang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China.
| | - Long Cai
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Fengwei Zhang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Xuechai Shang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Rong Xiao
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Hongjuan Zhou
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
30
|
Wan Z, Jiang H, Li L, Zhu S, Hou J, Yu Y. Carcinogenic roles and therapeutic effects of EZH2 in gynecological cancers. Bioorg Med Chem 2020; 28:115379. [PMID: 32098708 DOI: 10.1016/j.bmc.2020.115379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Enhancer of Zeste Homolog 2 (EZH2) is highly expressed in kinds of malignant tumors and related to tumor occurrence, development, and prognosis. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which promotes cell proliferation, migration, and invasion by epigenetic regulation of anti-tumor gene. It can activate numerous tumor-associated signaling pathways and interfere with DNA damage repair. In recent years, large amounts of studies have shown that EZH2 is closely related to gynecologic-related malignancies and can be used as a potential target gene for the treatment of gynecological-related malignancies. This review summarizes the oncogenic function of EZH2 and introduces the recent advances in the development of EZH2 inhibitors. On this basis, future research prospect of EZH2 is proposed.
Collapse
Affiliation(s)
- Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Assisted Reproduction Technology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuhui Zhu
- Department of Food and Drug Engineering, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Brunner M, Wu Z, Krautz C, Pilarsky C, Grützmann R, Weber GF. Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions. Int J Mol Sci 2019; 20:E4543. [PMID: 31540286 PMCID: PMC6770743 DOI: 10.3390/ijms20184543] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies and is associated with a poor prognosis. Surgery is considered the only potential curative treatment for pancreatic cancer, followed by adjuvant chemotherapy, but surgery is reserved for the minority of patients with non-metastatic resectable tumors. In the future, neoadjuvant treatment strategies based on molecular testing of tumor biopsies may increase the amount of patients becoming eligible for surgery. In the context of non-metastatic disease, patients with resectable or borderline resectable pancreatic carcinoma might benefit from neoadjuvant chemo- or chemoradiotherapy followed by surgeryPatients with locally advanced or (oligo-/poly-)metastatic tumors presenting significant response to (neoadjuvant) chemotherapy should undergo surgery if R0 resection seems to be achievable. New immunotherapeutic strategies to induce potent immune response to the tumors and investigation in molecular mechanisms driving tumorigenesis of pancreatic cancer may provide novel therapeutic opportunities in patients with pancreatic carcinoma and help patient selection for optimal treatment.
Collapse
Affiliation(s)
- Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Zhiyuan Wu
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
32
|
Xu H, Zhang L, Qian X, Zhou X, Yan Y, Zhou J, Ge W, Albahde M, Wang W. GSK343 induces autophagy and downregulates the AKT/mTOR signaling pathway in pancreatic cancer cells. Exp Ther Med 2019; 18:2608-2616. [PMID: 31572509 PMCID: PMC6755448 DOI: 10.3892/etm.2019.7845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a common malignancy that has a poor prognosis and limited therapeutic options. Enhancer of zeste homolog 2 (EZH2) serves a key role in the progression of different types of cancers. The effect of GSK343 (a competitive inhibitor of EZH2) on pancreatic cancer cells was assessed in the present study. Cell viability was evaluated using MTT and cell counting kit-8 assays in AsPC-1 and PANC-1 cells. Flow cytometry and an EdU assay were also performed to assess the effects of GSK343 on cell proliferation, apoptosis and the cell cycle. The induction of autophagy and associated molecular mechanisms were studied using fluorescence microscopy and western blot analysis. The results demonstrated that GSK343 inhibited cell viability in a dose- and time-dependent manner. Furthermore, GSK343 suppressed cell proliferation, promoted apoptosis and blocked cell cycle progression at the G1-phase. Furthermore, GSK343 induced autophagy in pancreatic cancer via the AKT/mTOR signaling pathway. In conclusion, GSK343 exhibited an anti-cancer effect on pancreatic cancer cells, downregulating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Linshi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaohui Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yingcai Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiarong Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenhao Ge
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Mugahed Albahde
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
33
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
34
|
Yu L, Despotovic N, Kovacs MS, Pin CL, Luyt LG. 18F-Labeled PET Probe Targeting Enhancer of Zeste Homologue 2 (EZH2) for Cancer Imaging. ACS Med Chem Lett 2019; 10:334-340. [PMID: 30891136 DOI: 10.1021/acsmedchemlett.8b00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
The enzyme enhancer of zeste homologue 2 (EZH2) plays a catalytic role in histone methylation (H3K27me3), one of the epigenetic modifications that is dysregulated in cancer. The development of a positron emission tomography (PET) imaging agent targeting EZH2 has the potential to provide a method of stratifying patients for epigenetic therapies. In this study, we designed and synthesized a series of fluoroethyl analogs based upon the structure of EZH2 inhibitors UNC1999 and EPZ6438. Among the candidate compounds, 20b exhibited a high binding affinity to EZH2 (IC50 = 6 nM) with selectivity versus EZH1 (IC50 = 200 nM) by SAM competition assay, and furthermore, EZH2 inhibition was demonstrated in the pancreatic cancer cell line PANC-1 (IC50 = 9.8 nM). [18F]20b was synthesized successfully and showed 5-fold higher uptake in PANC-1 cells than in MCF-7 cells. MicroPET imaging in a PANC-1 cell xenograft mouse model indicates that [18F]20b has specific binding to EZH2, which was identified by ex vivo Western blot analysis of the tumor tissue.
Collapse
Affiliation(s)
- Lihai Yu
- London Regional Cancer Program, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | | | | | | | - Leonard G. Luyt
- London Regional Cancer Program, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| |
Collapse
|
35
|
Pitarresi JR, Rustgi AK. Mechanisms Underlying Metastatic Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:3-10. [PMID: 31576536 DOI: 10.1007/978-3-030-22254-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma is an overwhelming fatal disease that often presents with overt metastases and ultimately causes the majority of cancer-associated deaths. The mechanisms underlying the metastatic cascade are complex, and research in recent years has begun to provide insights into the underlying drivers of this phenomenon. It has become clear that cancer cells, in particular pancreatic cancer cells, possess properties of plasticity involving bidirectional transition between epithelial and mesenchymal identities. Furthermore, recent work has begun to establish that there are distinct hybrid states between purely epithelial and purely mesenchymal states that cancer cells may reside, in order to thrive at different stages of carcinogenesis. We discuss how this plasticity is important for different phases of the metastatic cascade, from delamination to colonization, and how different epithelial-mesenchymal states may affect metastatic organotropism. In this review, we summarize the current understanding of pancreatic cancer cell plasticity and metastasis, and highlight current model systems that can be used to study these phenomena.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
36
|
Hsu MC, Pan MR, Chu PY, Tsai YL, Tsai CH, Shan YS, Chen LT, Hung WC. Protein Arginine Methyltransferase 3 Enhances Chemoresistance in Pancreatic Cancer by Methylating hnRNPA1 to Increase ABCG2 Expression. Cancers (Basel) 2018; 11:cancers11010008. [PMID: 30577570 PMCID: PMC6356582 DOI: 10.3390/cancers11010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is poorly responsive to chemotherapy due to intrinsic or acquired resistance. Our previous study showed that epigenetic modifying enzymes including protein arginine methyltransferase 3 (PRMT3) are dysregulated in gemcitabine (GEM)-resistant pancreatic cancer cells. Here, we attempt to elucidate the role of PRMT3 in chemoresistance. Overexpression of PRMT3 led to increased resistance to GEM in pancreatic cancer cells, whereas reduction of PRMT3 restored GEM sensitivity in resistant cells. We identified a novel PRMT3 target, ATP-binding cassette subfamily G member 2 (ABCG2), which is known to play a critical role in drug resistance. PRMT3 overexpression upregulated ABCG2 expression by increasing its mRNA stability. Mass spectrometric analysis identified hnRNPA1 as a PRMT3 interacting protein, and methylation of hnRNPA1 at R31 by PRMT3 in vivo and in vitro. The expression of methylation-deficient hnRNPA1-R31K mutant reduced the RNA binding activity of hnRNPA1 and the expression of ABCG2 mRNA. Taken together, this provides the first evidence that PRMT3 methylates the RNA recognition motif (RRM) of hnRNPA1 and promotes the binding between hnRNPA1 and ABCG2 to enhance drug resistance. Inhibition of PRMT3 could be a novel strategy for the treatment of GEM-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City 500, Taiwan.
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Chia-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Insitute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
37
|
Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: A View on Paradoxical Roles of KDM6B and EZH2. EPIGENOMES 2018; 3:epigenomes3010001. [PMID: 34991274 PMCID: PMC8594212 DOI: 10.3390/epigenomes3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
EMT (epithelial to mesenchymal transition) is a plastic phenomenon involved in metastasis formation. Its plasticity is conferred in a great part by its epigenetic regulation. It has been reported that the trimethylation of lysine 27 histone H3 (H3K27me3) was a master regulator of EMT through two antagonist enzymes that regulate this mark, the methyltransferase EZH2 (enhancer of zeste homolog 2) and the lysine demethylase KDM6B (lysine femethylase 6B). Here we report that EZH2 and KDM6B are overexpressed in numerous cancers and involved in the aggressive phenotype and EMT in various cell lines by regulating a specific subset of genes. The first paradoxical role of these enzymes is that they are antagonistic, but both involved in cancer aggressiveness and EMT. The second paradoxical role of EZH2 and KDM6B during EMT and cancer aggressiveness is that they are also inactivated or under-expressed in some cancer types and linked to epithelial phenotypes in other cancer cell lines. We also report that new cancer therapeutic strategies are targeting KDM6B and EZH2, but the specificity of these treatments may be increased by learning more about the mechanisms of action of these enzymes and their specific partners or target genes in different cancer types.
Collapse
|
38
|
Ma J, Zhang J, Weng YC, Wang JC. EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer. Mol Cells 2018; 41:868-880. [PMID: 30304920 PMCID: PMC6182224 DOI: 10.14348/molcells.2018.0109] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive cancers presenting with high rates of invasion and metastasis, and unfavorable prognoses. The current study aims to investigate whether EZH2/miR-139-5p axis affects epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in PC, and the mechanism how EZH2 regulates miR-139-5p. Human PC and adjacent normal tissues were collected to determine expression of EZH2 and miR-139-5p, and their relationship with clinicopathological features of PC. Human PC cell line was selected, and treated with miR-139-5p mimics/inhibitors, EZH2 vector or shEZH2 in order to validate the regulation of EZH2-mediated miR-139-5p in PC cells. Dual-luciferase report gene assay and chromatin immunoprecipitation assay were employed to identify the relationship between miR-139-5p and EZH2. RT-qPCR and Western blot analysis were conducted to determine the expression of miR-139-5p, EZH2 and EMT-related markers and ZEB1/2. Tumor formation ability and in vitro cell activity were also analyzed. Highly-expressed EZH2 and poorly-expressed miR-139-5p were detected in PC tissues, and miR-139-5p and EZH2 expressions were associated with patients at Stage III/IV, with LNM and highly-differentiated tumors. EZH2 suppressed the expression of miR-139-5p through up-regulating Histone 3 Lysine 27 Trimethylation (H3K27me3). EMT, cell proliferation, migration and invasion were impeded, and tumor formation and LNM were reduced in PC cells transfected with miR-139-5p mimics and shEZH2. MiR-139-5p transcription is inhibited by EZH2 through up-regulating H3K27me3, thereby down-regulation of EZH2 and up-regulation of miR-139-5p impede EMT and LNM in PC. In addition, the EZH2/miR-139-5p axis presents as a promising therapeutic strategy for the treatment of PC.
Collapse
Affiliation(s)
- Jin Ma
- Department of Gastroenterology, Luwan Branch of Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200020,
P.R. China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025,
P.R. China
| | - Yuan-Chi Weng
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025,
P.R. China
| | - Jian-Cheng Wang
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025,
P.R. China
| |
Collapse
|
39
|
High expression of EZH2 as a marker for the differential diagnosis of malignant and benign myogenic tumors. Sci Rep 2018; 8:12331. [PMID: 30120321 PMCID: PMC6098067 DOI: 10.1038/s41598-018-30648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Overlap in morphologic features between malignant and benign myogenic tumors, such as leiomyosarcoma (LMS) vs. leiomyoma as well as rhabdomyosarcoma (RMS) vs. rhabdomyoma, often makes differential diagnosis difficult and challenging. Here the expressions of Enhancer of Zeste Homolog 2 (EZH2), Suppressor of Zeste 12 (SUZ12), retinoblastoma protein associated protein 46 (RbAp46), Embryonic Ectoderm Development (EED) and ki-67 protein were detected by immunohistochemistry to evaluate their values in differential diagnosis. The expression of EZH2 mRNA was investigated by analyzing the Gene Expression Omnibus Datasets. The results demonstrated that EZH2 protein was detected in 81.25% (26/32) of LMS and 70.58% (36/51) of RMS, whereas none of leiomyoma (n = 16), rhabdomyoma (n = 15) and normal tissues (n = 31) showed positive immunostaining (p < 0.05). EZH2 protein was found to have a sensitivity of 91.30% and specificity of 100% in distinguishing well-differentiated LMS from cellular leiomyoma, and a sensitivity of 92.86% and specificity of 100% in distinguishing well-differentiated embryonal rhabdomyosarcoma (ERMS) from fetal rhabdomyoma. Besides, the expression of EZH2 mRNA was higher in LMS and RMS than in benign tumors (p < 0.05). The expressions of SUZ12 and RbAp46 protein were higher in RMS than in rhabdomyoma (p < 0.05). Conclusively, the high expression of EZH2 is a promising marker in distinguishing well–differentiated LMS from cellular leiomyoma, or well–differentiated ERMS from fetal rhabdomyoma, and the upregulation of EZH2 protein expression may occur at transcriptional level.
Collapse
|
40
|
Ohuchi M, Sakamoto Y, Tokunaga R, Kiyozumi Y, Nakamura K, Izumi D, Kosumi K, Harada K, Kurashige J, Iwatsuki M, Baba Y, Miyamoto Y, Yoshida N, Shono T, Naoe H, Sasaki Y, Baba H. Increased EZH2 expression during the adenoma-carcinoma sequence in colorectal cancer. Oncol Lett 2018; 16:5275-5281. [PMID: 30214616 DOI: 10.3892/ol.2018.9240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
The adenoma-carcinoma sequence, the sequential mutation and deletion of various genes by which colorectal cancer progresses, is a well-established and accepted concept of colorectal cancer carcinogenesis. Proteins of the polycomb repressive complex 2 (PRC2) function as transcriptional repressors by trimethylating histone H3 at lysine 27; the activity of this complex is essential for cell proliferation and differentiation. The histone methyltransferase enhancer of zeste homolog 2 (EZH2), an essential component of PRC2, is associated with the transcriptional repression of tumor suppressor genes. EZH2 expression has previously been reported to increase with the progression of pancreatic intraductal papillary mucinous neoplasm. Thus, we hypothesized that EZH2 expression also increases during the adenoma-carcinoma sequence of colorectal cancer. The present study investigated changes in EZH2 expression during the colorectal adenoma-carcinoma sequence. A total of 47 patients with colorectal adenoma, 20 patients with carcinoma in adenoma and 43 patients with colorectal carcinoma who underwent surgical or endoscopic resection were enrolled in this study. Non-cancerous tissue from the clinical specimens was also examined. The association between EZH2 expression, pathology and expression of tumor suppressor genes during colorectal carcinogenesis were analyzed. Each specimen was immunohistochemically stained for EZH2, proliferation marker protein Ki-67 (Ki-67), cyclin-dependent kinase inhibitor (CDKN) 1A (p21), CDKN1B (p27) and CDKN2A (p16). Total RNA was extracted from formalin-fixed paraffin-embedded blocks and reverse transcription-quantitative polymerase chain reaction analysis of these genes was performed. Ki-67 and EZH2 expression scores increased significantly during the progression of normal mucosa to adenoma and carcinoma (P=0.009), and EZH2 expression score was positively associated with Ki-67 expression score (P=0.02). Conversely, p21 mRNA and protein expression decreased significantly, whereas expression of p27 and p16 did not change significantly. During the carcinogenesis sequence from normal mucosa to adenoma and carcinoma, EZH2 expression increased and p21 expression decreased significantly. EZH2 may therefore contribute to the development of colorectal cancer from adenoma via suppression of p21.
Collapse
Affiliation(s)
- Mayuko Ohuchi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ryuma Tokunaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takashi Shono
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideaki Naoe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
41
|
Recent Advances in Chromatin Mechanisms Controlling Pancreatic Carcinogenesis. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Paradise BD, Barham W, Fernandez-Zapico ME. Targeting Epigenetic Aberrations in Pancreatic Cancer, a New Path to Improve Patient Outcomes? Cancers (Basel) 2018; 10:cancers10050128. [PMID: 29710783 PMCID: PMC5977101 DOI: 10.3390/cancers10050128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has one of the highest mortality rates among all types of cancers. The disease is highly aggressive and typically diagnosed in late stage making it difficult to treat. Currently, the vast majority of therapeutic regimens have only modest curative effects, and most of them are in the surgical/neo-adjuvant setting. There is a great need for new and more effective treatment strategies in common clinical practice. Previously, pathogenesis of pancreatic cancer was attributed solely to genetic mutations; however, recent advancements in the field have demonstrated that aberrant activation of epigenetic pathways contributes significantly to the pathogenesis of the disease. The identification of these aberrant activated epigenetic pathways has revealed enticing targets for the use of epigenetic inhibitors to mitigate the phenotypic changes driven by these cascades. These pathways have been found to be responsible for overactivation of growth signaling pathways and silencing of tumor suppressors and other cell cycle checkpoints. Furthermore, new miRNA signatures have been uncovered in pancreatic ductal adenocarcinoma (PDAC) patients, further widening the window for therapeutic opportunity. There has been success in preclinical settings using both epigenetic inhibitors as well as miRNAs to slow disease progression and eliminate diseased tissues. In addition to their utility as anti-proliferative agents, the pharmacological inhibitors that target epigenetic regulators (referred to here as readers, writers, and erasers for their ability to recognize, deposit, and remove post-translational modifications) have the potential to reconfigure the epigenetic landscape of diseased cells and disrupt the cancerous phenotype. The potential to “reprogram” cancer cells to revert them to a healthy state presents great promise and merits further investigation.
Collapse
Affiliation(s)
- Brooke D Paradise
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA.
| | - Whitney Barham
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA.
| | - Martín E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
43
|
Giancotti V, Bergamin N, Cataldi P, Rizzi C. Epigenetic Contribution of High-Mobility Group A Proteins to Stem Cell Properties. Int J Cell Biol 2018; 2018:3698078. [PMID: 29853899 PMCID: PMC5941823 DOI: 10.1155/2018/3698078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023] Open
Abstract
High-mobility group A (HMGA) proteins have been examined to understand their participation as structural epigenetic chromatin factors that confer stem-like properties to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and cancer stem cells (CSCs). The function of HMGA was evaluated in conjunction with that of other epigenetic factors such as histones and microRNAs (miRs), taking into consideration the posttranscriptional modifications (PTMs) of histones (acetylation and methylation) and DNA methylation. HMGA proteins were coordinated or associated with histone and DNA modification and the expression of the factors related to pluripotency. CSCs showed remarkable differences compared with ESCs and iPSCs.
Collapse
Affiliation(s)
- Vincenzo Giancotti
- Department of Life Science, University of Trieste, Trieste, Italy
- Trieste Proteine Ricerche, Palmanova, Udine, Italy
| | - Natascha Bergamin
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Palmina Cataldi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Claudio Rizzi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| |
Collapse
|
44
|
Wen Y, Cai J, Hou Y, Huang Z, Wang Z. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 2018; 8:37974-37990. [PMID: 28415635 PMCID: PMC5514966 DOI: 10.18632/oncotarget.16467] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.
Collapse
Affiliation(s)
- Yiping Wen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaya Hou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int 2018; 2018:5416923. [PMID: 29681949 PMCID: PMC5850899 DOI: 10.1155/2018/5416923] [Citation(s) in RCA: 556] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Sang-Hyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
46
|
Sun R, Shen J, Gao Y, Zhou Y, Yu Z, Hornicek F, Kan Q, Duan Z. Overexpression of EZH2 is associated with the poor prognosis in osteosarcoma and function analysis indicates a therapeutic potential. Oncotarget 2018; 7:38333-38346. [PMID: 27223261 PMCID: PMC5122393 DOI: 10.18632/oncotarget.9518] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/08/2016] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor that has a poor prognosis due to local recurrence, metastasis, and chemotherapy resistance. Therefore, there is an urgent need to develop novel potential therapeutic targets for osteosarcoma. Enhancer of zeste homologue 2 (EZH2) is a member of the polycomb group of proteins, which has important functions in epigenetic silencing and cell cycle regulation. Overexpression of EZH2 has been found in several malignancies, however, its expression and the role of EZH2 in osteosarcoma is largely unknown. In this study, we examined EZH2 expression by immunohistochemistry in a large series of osteosarcoma tissues in association with tumor characteristics and patient outcomes. EZH2 expression was also analyzed in a microarray dataset of osteosarcoma. Results showed that higher expression of EZH2 was significantly associated with more aggressive tumor behavior and poor patient outcomes of osteosarcoma. We subsequently investigated the functional and therapeutic relevance of EZH2 as a target in osteosarcoma. Immunohistochemical analysis indicated that EZH2 expression was significantly associated with more aggressive tumor behavior and poorer patient outcomes of osteosarcoma. EZH2 silencing by siRNA inhibited osteosarcoma cell growth, proliferation, migration, and invasion. Moreover, suppression of EZH2 attenuated cancer stem cell functions. Similar results were observed in osteosarcoma cells treated with EZH2 specific inhibitor 3-deazaneplanocin A (DZNep), which exhausted cellular levels of EZH2. These results suggest that EZH2 is critical for the growth and metastasis of osteosarcoma, and an epigenetic therapy that pharmacologically targets EZH2 via specific inhibitors may constitute a novel approach to the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yubing Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Quancheng Kan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Zhenfeng Duan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
47
|
Christofides A, Karantanos T, Bardhan K, Boussiotis VA. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2. Oncotarget 2018; 7:85624-85640. [PMID: 27793053 PMCID: PMC5356764 DOI: 10.18632/oncotarget.12928] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Theodoros Karantanos
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,General Internal Medicine Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Kankana Bardhan
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Leveraging Epigenetics to Enhance the Cellular Response to Chemotherapies and Improve Tumor Immunogenicity. Adv Cancer Res 2018; 138:1-39. [PMID: 29551125 DOI: 10.1016/bs.acr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Despite better knowledge of its genetic basis, pancreatic cancer is still highly lethal with very few therapeutic options. In this review, we discuss the potential impact of epigenetic therapies, focusing on lysine methylation signaling and its implication in pancreatic cancer. RECENT FINDINGS Protein lysine methylation, a key mechanism of posttranslational modifications of histone proteins, has emerged as a major cell signaling mechanism regulating physiologic and pathologic processes including cancer. This finely tuned and dynamic signaling mechanism is regulated by lysine methyltransferases (KMT), lysine demethylases (KDM) and signal transducers harboring methyl-binding domains. Recent evidence demonstrates that overexpression of cytoplasmic KMT and resulting enhanced lysine methylation is a reversible event that enhances oncogenic signaling through the Ras and Mitogen-Activated Protein Kinases pathway in pancreatic cancer, opening perspectives for new anticancer chemotherapeutics aimed at controlling these activities. SUMMARY The development of potent and specific inhibitors of lysine methylation signaling may represent a hitherto largely unexplored avenue for new forms of targeted therapy in cancer, with great potential for yet hard-to-treat cancers such as pancreatic cancer.
Collapse
|
50
|
Yoshida K, Toden S, Ravindranathan P, Han H, Goel A. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis 2017; 38:1036-1046. [PMID: 29048549 DOI: 10.1093/carcin/bgx065] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023] Open
Abstract
Development of resistance to chemotherapeutic drugs is a major challenge in the care of patients with pancreatic ductal adenocarcinoma (PDAC). Acquired resistance to chemotherapeutic agents in PDAC has been linked to a subset of cancer cells termed 'cancer stem cells' (CSCs). Therefore, an improved understanding of the molecular events underlying the development of pancreatic CSCs is required to identify new therapeutic targets to overcome chemoresistance. Accumulating evidence indicates that curcumin, a phenolic compound extracted from turmeric, can overcome de novo chemoresistance and re-sensitize tumors to various chemotherapeutic agents. However, the underlying mechanisms for curcumin-mediated chemosensitization remain unclear. The Enhancer of Zeste Homolog-2 (EZH2) subunit of Polycomb Repressive Complex 2 (PRC2) was recently identified as a key player regulating drug resistance. EZH2 mediates interaction with several long non-coding RNAs (lncRNAs) to modulate epithelial-mesenchymal transition and cancer stemness, phenomena commonly associated with drug resistance. Here, we report the re-sensitization of chemoresistant PDAC cells by curcumin through the inhibition of the PRC2-PVT1-c-Myc axis. Using gemcitabine-resistant PDAC cell lines, we found that curcumin sensitized chemoresistant cancer cells by inhibiting the expression of the PRC2 subunit EZH2 and its related lncRNA PVT1. Curcumin was also found to prevent the formation of spheroids, a hallmark of CSCs, and to down-regulate several self-renewal driving genes. In addition, we confirmed our in vitro findings in a xenograft mouse model where curcumin inhibited gemcitabine-resistant tumor growth. Overall, this study indicates clinical relevance for combining curcumin with chemotherapy to overcome chemoresistance in PDAC.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Shusuke Toden
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Preethi Ravindranathan
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Haiyong Han
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| |
Collapse
|