1
|
Zhou B, Gao Z, Yang Y, Hu Y. Synthesis of bis(indolyl)methanes using N-heterocyclic carbene salt as a C1 precursor. Org Biomol Chem 2024; 22:9058-9062. [PMID: 39436311 DOI: 10.1039/d4ob01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We herein describe an alkylation reaction of indoles with NHC salts to access bis(indolyl)methanes as product. The NHC salt (or free NHC) serves as a C1 precursor due to decomposition of its N-heterocyclic ring. Although the exact roles of zinc powder and acetic/formic acid remain elusive, both of them are indispensable for this reaction. Two possible reaction pathways are proposed based on the results of mechanistic experiments.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yanhao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Tian C, Deng S, Yang M, Bai B, Pan Y, Xie G, Zhao D, Wei L. Indole-3-carbinol and its main derivative 3,3'-diindolylmethane: Regulatory roles and therapeutic potential in liver diseases. Biomed Pharmacother 2024; 180:117525. [PMID: 39388997 DOI: 10.1016/j.biopha.2024.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Indole-3-carbinol (I3C), a compound found in cruciferous vegetables, has shown significant efficacy in treating both cancerous and non-cancerous diseases. Its primary derivative, 3,3'-diindolylmethane (DIM), formed during digestion, also exhibits similar therapeutic benefits. In liver disorders, I3C and DIM exhibit dual roles by inhibiting and promoting hepatocellular carcinoma (HCC) and providing relief for nonmalignant liver diseases, such as acute liver injury (ALI), hepatic fibrosis, nonalcoholic fatty liver disease (NAFLD), and alcohol-related liver disease (ALD). Mechanistically, I3C and DIM modulate various pathophysiological processes, including cell proliferation, apoptosis, oxidative stress, and lipogenesis. This review aims to enhance researchers' understanding of the regulatory roles of I3C and DIM in these liver diseases and explore the potential of plant-derived substances in liver disease treatment.
Collapse
Affiliation(s)
- Chao Tian
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Shizhou Deng
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou 510700, China
| | - Ming Yang
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Baochen Bai
- Department of Cardiology, Peking University People's hospital, Beijing 100044, China
| | - Yi Pan
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Gangqiao Xie
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongliang Zhao
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China.
| |
Collapse
|
3
|
He G, Liu M, Chen TC, Huang LF, Ke YQ. SBFI-26 enhances apoptosis in docetaxel-treated triple-negative breast cancer cells by increasing ROS levels. BIOIMPACTS : BI 2024; 15:30137. [PMID: 39963566 PMCID: PMC11830146 DOI: 10.34172/bi.30137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2025]
Abstract
Introduction Fatty acid binding protein 5 (FABP5) exhibits heightened expression levels in triple-negative breast cancer. The inhibitor of FABP5, Stony Brook fatty acid-binding protein inhibitor 26 (SBFI-26), has demonstrated the capacity to suppress cell proliferation, migration, and invasion. This study delves into the functional mechanism and impact of combining SBFI-26 with docetaxel in treating MDA-MB-231 cells of triple-negative breast cancer. Methods Various concentrations of docetaxel and SBFI-26 were chosen for individual or combined treatments. The effects of SBFI-26, docetaxel, or their combination on cell cycle arrest and apoptosis were assessed using flow cytometry. Western blotting was utilised to detect the expression of apoptosis-related proteins, namely cysteinyl aspartate-specific proteases 3 (Caspase3), B cell leukemia/lymphoma 2 (Bcl-2), and Bcl-2 associated X (Bax), while intracellular reactive oxygen species (ROS) levels were determined using a fluorescence spectrophotometer. Results The IC50 values for SBFI-26 and docetaxel in inhibiting MDA-MB-231 cells were determined to be 106.1 μM and 86.14 nM, respectively. Significantly, the combination treatment augmented the proportion of G1 phase (apoptotic) cells by 3.67-fold compared to the control group (P < 0.0001). Furthermore, the apoptosis rate in the combination group was 2.59-fold higher than that in the docetaxel group (P < 0.0001) and demonstrated a significant increase of 1.82-fold compared with the SBFI-26 group (P < 0.001). Analyses revealed a decrease in the protein expression of Bcl-2, while Bax and Caspase3 exhibited an increase in the combination group for MDA-MB-231 cells. Moreover, the combined treatment group demonstrated a 2.97-fold increase (P < 0.0001) in ROS fluorescence intensity compared to the control group, a noteworthy 1.39-fold increase (P < 0.01) compared to the SBFI-26 treatment group, and a substantial 1.70-fold increase (P < 0.0001) compared to the docetaxel treatment group. Conclusion These findings suggest that the co-administration of SBFI-26 with docetaxel effectively enhances apoptosis in triple-negative breast cancer MDA-MB-231 cells by elevating intracellular ROS levels.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Mei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Tang cong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li fen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - You qiang Ke
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Mohammed SW, El-Megrab NA, Hasan AA, Gomaa E. A remodeled ivermectin polycaprolactone-based nanoparticles for inhalation as a promising treatment of pulmonary inflammatory diseases. Eur J Pharm Sci 2024; 195:106714. [PMID: 38301972 DOI: 10.1016/j.ejps.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In recent years, ivermectin (IVM), an antiparasitic drug of low water solubility and poor oral bioavailability, has shown a profound effect on inflammatory mediators involved in diseases, such as acute lung injury, lung fibrosis, and COVID-19. In order to maximize drug bioavailability, polymeric nanoparticles can be delivered through nebulizers for pulmonary administration. The aim of this study was to prepare IVM-loaded polycaprolactone (PCL) nanoparticles (NPs) by solvent evaporation method. Box-Benkhen design (BBD) was used to optimize entrapment efficiency (Y1), percent drug release after 6 h (Y2), particle size (Y3), and zeta potential (Y4). A study was conducted examining the effects of three independent variables: PCL-IVM ratio (A), polyvinyl alcohol (PVA) concentration (B), and sonication time (C). The optimized formula was also compared to the oral IVM dispersion for lung deposition, in-vivo behavior, and pharmacokinetic parameters. The optimized IVM-PCL-NPs formulation was spherical in shape with entrapment efficiency (% EE) of 93.99 ± 0.96 %, about 62.71 ± 0.53 % released after 6 h, particle size of 100.07 ± 0.73 nm and zeta potential of -3.30 ± 0.23 mV. Comparing the optimized formulation to IVM-dispersion, the optimized formulation demonstrated greater bioavailability with greater area under the curve AUC0-t of 710.91 ± 15.22 μg .ml-1.h for lung and 637.97 ± 15.43 μg .ml-1.h for plasma. Based on the results, the optimized NPs accumulated better in lung tissues, exhibiting a twofold longer residence time (MRT 4.78 ± 0.55 h) than the IVM-dispersion (MRT 2.64 ± 0.64 h). The optimized nanoparticle formulation also achieved higher cmax (194.90 ± 5.01 μg/ml), and lower kel (0.21 ± 0.04 h-1) in lungs. Additionally, the level of inflammatory mediators was markedly reduced. To conclude, inhalable IVM-PCL-NPs formulation was suitable for the pulmonary delivery and may be one of the most promising approaches to increase IVM bioavailability for the successful treatment of a variety of lung diseases.
Collapse
Affiliation(s)
- Sabaa Wafiq Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Azza A Hasan
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Teli P, Soni S, Teli S, Agarwal S. Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes. Top Curr Chem (Cham) 2024; 382:8. [PMID: 38403746 DOI: 10.1007/s41061-024-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
From a synthetic perspective, bis(indolyl)methanes have undergone extensive investigation over the past two to three decades owing to their remarkable pharmacological activities, encompassing anticancer, antimicrobial, antioxidant, and antiinflammatory properties. These highly desirable attributes have spurred significant interest within the scientific community, leading to the development of various synthetic strategies that are not only more efficient but also ecofriendly. This synthesis-based literature review delves into the advancements made in the past 5 years, focusing on the synthesis of symmetrical as well as unsymmetrical bis(indolyl)methanes. The review encompasses a wide array of methods, ranging from well-established techniques to more unconventional and innovative approaches. Furthermore, it highlights the exploration of various substrates, encompassing readily available chemicals such as indole, aldehydes/ketones, indolyl methanols, etc. as well as the use of some specific compounds as starting materials to achieve the synthesis of this invaluable molecule. By encapsulating the latest developments in this field, this review provides insights into the expanding horizons of bis(indolyl)methane synthesis.
Collapse
Affiliation(s)
- Pankaj Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shivani Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Sunita Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India.
| |
Collapse
|
6
|
Qu Y, Cai X, Guan Y, Tan J, Cai Z, Liu M, Huang Y, Hu J, Chen WH, Wu JQ. Divergent synthesis of difluoromethylated indole-3-carbinols, bisindolylmethanes and indole-3-methanamines. Org Biomol Chem 2023; 22:90-94. [PMID: 38047717 DOI: 10.1039/d3ob01735d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Indole-3-carbinol, bisindolylmethanes (BIMs) and indole-3-methanamines exhibit diverse therapeutic activities. Fluorinated molecules are widely used in pharmaceuticals. Herein we report a facile and straightforward method for the successful synthesis of difluoromethylated indole-3-carbinols, bisindolylmethanes and indole-3-methanamines by a Friedel-Crafts reaction. The reaction involves the in situ generation of difluoroacetaldehyde from difluoroacetaldehyde ethyl hemiacetal in the presence of a base or an acid. This protocol is distinguished by its good to excellent yields, broad substrate compatibility, good functional group tolerance and scalability.
Collapse
Affiliation(s)
- Yifei Qu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Yuzhuang Guan
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jiamin Tan
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Zhangping Cai
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Minyun Liu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Yasi Huang
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| |
Collapse
|
7
|
Lowenthal R, Taylor M, Gidden JA, Heflin B, Lay JO, Avaritt N, Tackett AJ, Urbaniak A. The mycelium of the Trametes versicolor synn. Coriolus versicolor (Turkey tail mushroom) exhibit anti-melanoma activity in vitro. Biomed Pharmacother 2023; 161:114424. [PMID: 36827712 PMCID: PMC10147383 DOI: 10.1016/j.biopha.2023.114424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer and is characterized by high metastatic potential. Despite improvements in early diagnosis and treatment, the mortality rate among metastatic melanoma patients continues to represent a significant clinical challenge. Therefore, it is imperative that we search for new forms of treatment. Trametes versicolor is a mushroom commonly used in Chinese traditional medicine due to its numerous beneficial properties. In the present work, we demonstrate T. versicolor fruiting body and mycelium ethanol extracts exhibit potent cytotoxic activity towards A375 (IC50 = 663.3 and 114.5 µg/mL respectively) and SK-MEL-5 (IC50 = 358.4 and 88.6 µg/mL respectively) human melanoma cell lines. Further studies revealed that T. versicolor mycelium extract induced apoptotic cell death and poly (ADP-ribose) polymerase cleavage, upregulated the expression of autophagy-associated marker LC3-II, increased the presentation of major histocompatibility complex II and expression of programmed death-ligand receptor, and inhibited cell migration in SK-MEL-5 cells. Therefore, our present findings highlight the therapeutic potential of T. versicolor mycelium extract for the treatment of melanoma and merit further study.
Collapse
Affiliation(s)
- Rocky Lowenthal
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Megan Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jennifer A Gidden
- Arkansas Statewide MS Facility, University of Arkansas, Fayetteville 72701, AR, United States
| | - Billie Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jackson O Lay
- Arkansas Statewide MS Facility, University of Arkansas, Fayetteville 72701, AR, United States; Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, AR, United States
| | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
8
|
Choe YJ, Min JY, Lee H, Lee SY, Kwon J, Kim HJ, Lee J, Kim HM, Park HS, Cho MY, Hyun JY, Kim HM, Chung YH, Ha SK, Jeong HG, Choi I, Kim TD, Hong KS, Han EH. Heterotypic cell-in-cell structures between cancer and NK cells is associated with enhanced anti-cancer drug resistance. iScience 2022; 25:105017. [PMID: 36105584 PMCID: PMC9464952 DOI: 10.1016/j.isci.2022.105017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heterotypic CIC structures formed of cancer and immune cells have been observed in tumor tissues. We aimed to assess the feasibility of using heterotypic CICs as a functional biomarker to predict NK susceptibility and drug resistance. The heterotypic CIC-forming cancer cells showed a lower response to NK cytotoxicity and higher proliferative ability than non-CIC cancer cells. After treatment with anticancer drugs, cancer cells that formed heterotypic CICs showed a higher resistance to anticancer drugs than non-CIC cancer cells. We also observed the formation of more CIC structures in cancer cells treated with anticancer drugs than in the non-treated group. Our results confirm the association between heterotypic CIC structures and anticancer drug resistance in CICs formed from NK and cancer cells. These results suggest a mechanism underlying immune evasion in heterotypic CIC cancer cells and provide insights into the anticancer drug resistance of cancer cells. Conformation of heterotypic CIC structures formed between cancer and NK cells Heterotypic CICs exhibit a higher proliferative ability than non-CIC cells Heterotypic CICs are associated with NK susceptibility Heterotypic CICs are involved in anticancer drug resistance
Collapse
|
9
|
Jawarneh S, Talib WH. Combination of Ashwagandha Water Extract and Intermittent Fasting as a Therapy to Overcome Cisplatin Resistance in Breast Cancer: An in vitro and in vivo Study. Front Nutr 2022; 9:863619. [PMID: 35859750 PMCID: PMC9290527 DOI: 10.3389/fnut.2022.863619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is considered a universal public health dilemma in women. Due to the high toxicity and low selectivity of conventional anticancer therapies, there is a growing trend of using plant-derived natural products in cancer prevention and therapy. Ashwagandha (Withania somnifera, WS) has been used in the Mediterranean region and Ayurvedic medicine for millennia as a functional food and a medicinal plant with anticancer activity. Besides, intermittent fasting (IF) has been engaged recently in cancer treatment. Hence, the combination of WS and IF provides possible solutions to treat cancer and reduce chemoresistance when combined with chemotherapy. In this study, WS root (WSR), IF, and cisplatin were tested on cisplatin-sensitive (EMT6/P) and cisplatin-resistant (EMT6/CPR) mouse mammary cell lines. The phytochemical content of the WSR extract was analyzed using liquid chromatography–mass spectrometry (LC-MS) analysis. Antiproliferative and apoptotic effects were assessed for WSR extract, cisplatin, and their combination in vitro using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] (MTT) and caspase-3 assays. An in vivo study was used to assess the effect of WSR extract, IF, cisplatin, and their combinations in mice inculcated with EMT6/P and EMT6/CPR cells. The safety profile was also investigated using liver enzymes and creatinine assays. In vitro, WSR extract and cisplatin had a synergistic effect in both cell lines. The same combination induced an apoptotic effect higher than the single treatment in both cell lines. In vivo, several combinations of WSR extract, IF, or cisplatin caused significant tumor size reduction and improved the cure rate in mice implanted with EMT6/P and EMT6/CPR cell lines. IF-treated groups showed a significant reduction in serum glucose and an elevation in β-hydroxybutyrate (BHB) levels. In the safety profile, WSR extract, IF, and their combinations were safe. Overall, the combination of WSR extract and IF provides a promising solution for breast cancer treatment besides cisplatin by reducing the proliferation of cancer cells through induction of apoptosis. Moreover, they minimize cisplatin toxicity to the liver and kidney.
Collapse
|
10
|
Bag D, Sawant SD. Gold(I)-Catalyzed Cycloisomerization-Indole Addition Cascade: Synthesis of 3(2 H)-Furanone-Incorporated Unsymmetrical 3,3'- Bis(indolyl)methanes. Org Lett 2022; 24:4930-4934. [PMID: 35776425 DOI: 10.1021/acs.orglett.2c01845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented Au(I)-catalyzed domino intramolecular carbonyl-alkyne cyclization/indole addition strategy has been disclosed here. This generalized strategy enables the synthesis of 3(2H)-furanone-incorporated unsymmetrical bis(indolyl)methanes with generation of a stereocenter at the furanone junction from easily accessible indole-tethered ynediones. In addition, this present protocol could also be extended for the synthesis of a number of indolyl-(hetero)arylmethanes by employing a variety of (hetero)arenes as a nucleophile coupling partner.
Collapse
Affiliation(s)
- Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Zhu WR, Su Q, Deng XY, Liu JS, Zhong T, Meng SS, Yi JT, Weng J, Lu G. Organocatalytic enantioselective S N1-type dehydrative nucleophilic substitution: access to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chem Sci 2021; 13:170-177. [PMID: 35733509 PMCID: PMC9158264 DOI: 10.1039/d1sc05174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
A highly general and straightforward approach to access chiral bis(indolyl)methanes (BIMs) bearing quaternary stereocenters has been realized via enantioconvergent dehydrative nucleophilic substitution. A broad range of 3,3'-, 3,2'- and 3,1'-BIMs were obtained under mild conditions with excellent efficiency and enantioselectivity (80 examples, up to 98% yield and >99 : 1 er). By utilizing racemic 3-indolyl tertiary alcohols as precursors of alkyl electrophiles and indoles as C-H nucleophiles, this organocatalytic strategy avoids pre-activation of substrates and produces water as the only by-product. Mechanistic studies suggest a formal SN1-type pathway enabled by chiral phosphoric acid catalysis. The practicability of the obtained enantioenriched BIMs was further demonstrated by versatile transformation and high antimicrobial activities (3al, MIC: 1 μg mL-1).
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiao-Yi Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jia-Sheng Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shan-Shui Meng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
12
|
Mardani Y, Karimi-Jaberi Z, Soltanian Fard MJ. Application of Magnetically Recoverable Core–Shell Nanocomposite in the Synthesis of Bis(indolyl)methanes at Room Temperature. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Urbaniak A, Reed MR, Fil D, Moorjani A, Heflin S, Antoszczak M, Sulik M, Huczyński A, Kupsik M, Eoff RL, MacNicol MC, Chambers TC, MacNicol AM. Single and double modified salinomycin analogs target stem-like cells in 2D and 3D breast cancer models. Biomed Pharmacother 2021; 141:111815. [PMID: 34130123 PMCID: PMC8429223 DOI: 10.1016/j.biopha.2021.111815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer remains one of the leading cancers among women. Cancer stem cells (CSCs) are tumor-initiating cells which drive progression, metastasis, and reoccurrence of the disease. CSCs are resistant to conventional chemo- and radio-therapies and their ability to survive such treatment enables tumor reestablishment. Metastasis is the main cause of mortality in women with breast cancer, thus advances in treatment will depend on therapeutic strategies targeting CSCs. Salinomycin (SAL) is a naturally occurring polyether ionophore antibiotic known for its anticancer activity towards several types of tumor cells. In the present work, a library of 17 C1-single and C1/C20-double modified SAL analogs was screened to identify compounds with improved activity against breast CSCs. Six single- and two double-modified analogs were more potent (IC50 range of 1.1 ± 0.1-1.4 ± 0.2 µM) toward the breast cancer cell line MDA-MB-231 compared to SAL (IC50 of 4.9 ± 1.6 µM). Double-modified compound 17 was found to be more efficacious than SAL against the majority of cancer cell lines in the NCI-60 Human Tumor Cell Line Panel. Compound 17 was more potent than SAL in inhibiting cell migration and cell renewal properties of MDA-MB-231 cells, as well as inducing selective loss of the CD44+/CD24/low stem-cell-like subpopulation in both monolayer (2D) and organoid (3D) culture. The present findings highlight the therapeutic potential of SAL analogs towards breast CSCs and identify select compounds that merit further study and clinical development.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daniel Fil
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Anika Moorjani
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sarah Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
14
|
Pillaiyar T, Sedaghati M, B. Mahardhika A, L. Wendt L, E. Müller C. Iodine-catalyzed electrophilic substitution of indoles: Synthesis of (un)symmetrical diindolylmethanes with a quaternary carbon center. Beilstein J Org Chem 2021; 17:1464-1475. [PMID: 34221175 PMCID: PMC8218542 DOI: 10.3762/bjoc.17.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
A novel, versatile approach for the synthesis of unsymmetrical 3,3'-diindolylmethanes (DIMs) with a quaternary carbon center has been developed via iodine-catalyzed coupling of trifluoromethyl(indolyl)phenylmethanols with indoles. In contrast to previously reported methods, the new procedure is characterized by chemoselectivity, mild conditions, high yields, and scalability to obtain gram amounts for biological studies. Selected compounds were found to display affinity for cannabinoid receptors, which are promising drug targets for the treatment of inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, phone: +49-228-73-2301; Fax: +49-228-73-2567
- Pharmaceutical Institute, Pharmaceutical/Medicinal Chemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany, phone: +49-7071-29-77458
| | - Masoud Sedaghati
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, phone: +49-228-73-2301; Fax: +49-228-73-2567
| | - Andhika B. Mahardhika
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, phone: +49-228-73-2301; Fax: +49-228-73-2567
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Lukas L. Wendt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, phone: +49-228-73-2301; Fax: +49-228-73-2567
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, phone: +49-228-73-2301; Fax: +49-228-73-2567
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
15
|
Zhang H, Liu P, Zhang Y, Han L, Hu Z, Cai Z, Cai J. Inhibition of galectin-3 augments the antitumor efficacy of PD-L1 blockade in non-small-cell lung cancer. FEBS Open Bio 2021; 11:911-920. [PMID: 33455075 PMCID: PMC7931229 DOI: 10.1002/2211-5463.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
Multiple clinical trials have shown that monoclonal antibodies (mAbs) against programmed death-ligand 1 (PD-1/PD-L1) can benefit patients with lung cancer by increasing their progression-free survival and overall survival. However, a significant proportion of patients do not respond to anti-PD-1/PD-L1 mAbs. In the present study, we investigated whether galectin (Gal)-3 inhibitors can enhance the antitumor effect of PD-L1 blockade. Using the NSCLC-derived cell line A549, we examined the expression of Gal-3 in lung cancer cells under hypoxic conditions and investigated the regulatory effect of Gal-3 on PD-L1 expression, which is mediated by the STAT3 pathway. We also explored whether Gal-3 inhibition can facilitate the cytotoxic effect of T cells induced by PD-L1 blockade. The effects of combined use of a Gal-3 inhibitor and PD-L1 blockade on tumor growth and T-cell function were also investigated, and we found that hypoxia increased the expression and secretion of Gal-3 by lung cancer cells. Gal-3 increased PD-L1 expression via the upregulation of STAT3 phosphorylation, and administration of a Gal-3 inhibitor enhanced the effect of PD-L1 blockade on the cytotoxic activity of T cells against cancer cells in vitro. In a mouse xenograft model, the combination of a Gal-3 inhibitor and PD-L1 blockade synergistically suppressed tumor growth. Furthermore, the administration of a Gal-3 inhibitor enhanced T-cell infiltration and granzyme B release in tumors. Collectively, our results show that Gal-3 increases PD-L1 expression in lung cancer cells and that the administration of a Gal-3 inhibitor as an adjuvant enhanced the antitumor activity of PD-L1 blockade.
Collapse
Affiliation(s)
- Hongxin Zhang
- Department of SurgeryHebei Medical UniversityShijiazhuangChina
| | - Pengfei Liu
- Department of OncologyTianjin Academy of Traditional Chinese Medicine Affiliated HospitalChina
| | - Yan Zhang
- Department of OncologyShijiazhuang First HospitalChina
| | - Lujun Han
- Department of OncologyShijiazhuang First HospitalChina
| | - Zhihui Hu
- Department of OncologyShijiazhuang First HospitalChina
| | - Ziqi Cai
- Hebei Engineering Technology Research Center for Cell TherapyHebei HOFOY Bio‐Tech Co. LtdShijiazhuangChina
| | - Jianhui Cai
- Department of SurgeryHebei Medical UniversityShijiazhuangChina
- Department of SurgeryDepartment of Oncology & ImmunotherapyHebei General HospitalShijiazhuangChina
| |
Collapse
|
16
|
Zheng Z, Zha D, Cui P, Zhang H, Li C, Shi J, Han B. Friedel–Crafts reaction of indoles for (3-indolyl)methyl ethers under basic condition: Application in unsymmetrical bis(indolyl)methanes. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Zhao M, Jing Z, Zhou L, Zhao H, Du Q, Sun Z. Pharmacokinetic Research Progress of Anti-tumor Drugs Targeting for Pulmonary Administration. Curr Drug Metab 2020; 21:1117-1126. [PMID: 33183196 DOI: 10.2174/1389200221999201111193910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer is a major problem that threatens human survival and has a high mortality rate. The traditional chemotherapy methods are mainly intravenous injection and oral administration, but have obvious toxic and side effects. Anti-tumor drugs for pulmonary administration can enhance drug targeting, increase local drug concentration, and reduce the damage to systemic organs, especially for the treatment of lung cancer. METHODS The articles on the pharmacokinetics of anti-tumor drugs targeting pulmonary administration were retrieved from the Pub Med database. This article mainly took lung cancer as an example and summarized the pharmacokinetic characteristics of anti-tumor drugs targeting for pulmonary administration contained in nanoparticles, dendrimers, liposomes and micelles. RESULTS The review shows that the pharmacokinetics process of pulmonary administration is associated with a drug carrier by increasing the deposition and release of drugs in the lung, and retarding the lung clearance rate. Among them, the surface of dendrimers could be readily modified, and polymer micelles have favorable loading efficiency. In the case of inhalation administration, liposomes exhibit more excellent lung retention properties compared to other non-lipid carriers. Therefore, the appropriate drug carrier is instrumental to increase the curative effect of anti-tumor drugs and reduce the toxic effect on surrounding healthy tissues or organs. CONCLUSION In the process of pulmonary administration, the carrier-embedded antitumor drugs have the characteristics of targeted and sustained release compared with non-packaging drugs, which provides a theoretical basis for the clinical rational formulation of chemotherapy regimens. However, there is currently a lack of comparative research between drug packaging materials, and more importantly, the development of safe and effective anti-tumor drugs targeting for pulmonary administration requires more data.
Collapse
Affiliation(s)
- Mengfan Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Hongyu Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| |
Collapse
|
18
|
HFIP-promoted catalyst-free cascade reactions for the synthesis of biologically relevant 3,3-di(indolyl)indolin-2-ones from indoles and isatins. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Amare DE. Anti-Cancer and Other Biological Effects of a Dietary Compound 3,3ʹ-Diindolylmethane Supplementation: A Systematic Review of Human Clinical Trials . NUTRITION AND DIETARY SUPPLEMENTS 2020. [DOI: 10.2147/nds.s261577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
20
|
Uddin I, Ullah H, Bibi A, Taha M, Khan F, Rahim F, Wadood A, Ahmad N, Khan AA, Ahmad F, Rehman ZU, Khan KM. Synthesis, in vitro alpha glucosidase, urease activities and molecular docking study of bis-indole bearing Schiff base analogs. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Singh A, Kaur G, Banerjee B. Recent Developments on the Synthesis of Biologically Significant bis/tris(indolyl)methanes under Various Reaction Conditions: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200228092752] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bis(indolyl)methane skeleton is the main building block of many naturally occurring bioactive compounds. Bis(indolyl)methanes are found to possess a wide range of pharmaceuitical efficacies. These important scaffolds are being used as anti-cancer, antioxidant, anti-bacterial, anti-inflammatory, and anti-proliferative agents. In this review, we summarized the latest developments on the synthesis of various bis/tris(indolyl)methane derivatives from the reactions of two equivalents of indoles and one equivalent of aldehydes or indole-3-carbaldehydes under various reaction conditions. More than hundred different catalysts were employed for these transformations which include various metal catalysts, ionic liquids, organocatalysts, surfactants, homogeneous, heterogeneous catalysts etc.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| |
Collapse
|
22
|
Wróbel-Biedrawa D, Grabowska K, Galanty A, Sobolewska D, Żmudzki P, Podolak I. Anti-melanoma potential of two benzoquinone homologues embelin and rapanone - a comparative in vitro study. Toxicol In Vitro 2020; 65:104826. [PMID: 32169436 DOI: 10.1016/j.tiv.2020.104826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022]
Abstract
Rapanone and embelin are simple alkyl benzoquinone derivatives, mainly distributed in the Primulaceae. They have an interesting scope of biological activities including cytotoxicity. As melanoma is one of the most common types of cancer, in many cases resistant to current treatment regimens, the aim of this study was to assess and compare anti-melanoma activity of the two benzoquinones. Cytotoxicity of both compounds towards different melanoma cell lines (A375, HTB140, WM793) and selectivity with respect to normal keratinocytes (HaCaT) were investigated. Furthermore, interactions with a reference chemotherapeutic, doxorubicine, were assessed. Finally, analysis of anti-inflammatory, antioxidant and anti-tyrosinase activities of both benzoquinones was conducted as well. Rapanone showed selective and higher than doxorubicine cytotoxic potential against primary melanoma cell line, WM793. Although embelin was also highly cytotoxic, its selectivity was much poorer. Interestingly, in case of HTB140 and HaCaT cell lines a combination of each benzoquinone with doxorubicine potentiated the cytotoxic potential in a synergistic manner. Embelin revealed higher albumin anti-denaturation potential than rapanone but lower than diclofenac sodium. Anti-hyaluronidase effect of both benzoquinones was higher than quercetin. Both compounds showed antioxidant potential although significantly lower as compared to vitamin C. Finally, neither embelin nor rapanone had any inhibitory effect on tyrosinase.
Collapse
Affiliation(s)
- Dagmara Wróbel-Biedrawa
- Department of Pharmacognosy, Pharmaceutical Faculty, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland.
| | - Karolina Grabowska
- Department of Pharmacognosy, Pharmaceutical Faculty, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland.
| | - Agnieszka Galanty
- Department of Pharmacognosy, Pharmaceutical Faculty, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland.
| | - Danuta Sobolewska
- Department of Pharmacognosy, Pharmaceutical Faculty, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland.
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Pharmaceutical Faculty, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland.
| | - Irma Podolak
- Department of Pharmacognosy, Pharmaceutical Faculty, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland.
| |
Collapse
|
23
|
Urbaniak A, Jousheghany F, Piña-Oviedo S, Yuan Y, Majcher-Uchańska U, Klejborowska G, Moorjani A, Monzavi-Karbassi B, Huczyński A, Chambers TC. Carbamate derivatives of colchicine show potent activity towards primary acute lymphoblastic leukemia and primary breast cancer cells-in vitro and ex vivo study. J Biochem Mol Toxicol 2020; 34:e22487. [PMID: 32141170 DOI: 10.1002/jbt.22487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Colchicine (COL) shows strong anticancer activity but due to its toxicity towards normal cells its wider application is limited. To address this issue, a library of 17 novel COL derivatives, namely N-carbamates of N-deacetyl-4-(bromo/chloro/iodo)thiocolchicine, has been tested against two types of primary cancer cells. These included acute lymphoblastic leukemia (ALL) and human breast cancer (BC) derived from two different tumor subtypes, ER+ invasive ductal carcinoma grade III (IDCG3) and metastatic carcinoma (MC). Four novel COL derivatives showed higher anti-proliferative activity than COL (IC50 = 8.6 nM) towards primary ALL cells in cell viability assays (IC50 range of 1.1-6.4 nM), and several were more potent towards primary IDCG3 (IC50 range of 0.1 to 10.3 nM) or MC (IC50 range of 2.3-9.1 nM) compared to COL (IC50 of 11.1 and 11.7 nM, respectively). In addition, several derivatives were selectively active toward primary breast cancer cells compared to normal breast epithelial cells. The most promising derivatives were subsequently tested against the NCI panel of 60 human cancer cell lines and seven derivatives were more potent than COL against leukemia, non-small-cell lung, colon, CNS and prostate cancers. Finally, COL and two of the most active derivatives were shown to be effective in killing BC cells when tested ex vivo using fresh human breast tumor explants. The present findings indicate that the select COL derivatives constitute promising lead compounds targeting specific types of cancer.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sergio Piña-Oviedo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Youzhong Yuan
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Urszula Majcher-Uchańska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Greta Klejborowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Anika Moorjani
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
24
|
Overcoming Resistance to Platinum-Based Drugs in Ovarian Cancer by Salinomycin and Its Derivatives-An In Vitro Study. Molecules 2020; 25:molecules25030537. [PMID: 31991882 PMCID: PMC7037477 DOI: 10.3390/molecules25030537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
Polyether ionophore salinomycin (SAL) and its semi-synthetic derivatives are recognized as very promising anticancer drug candidates due to their activity against various types of cancer cells, including multidrug-resistant populations. Ovarian cancer is the deadliest among gynecologic malignancies, which is connected with the development of chemoresistant forms of the disease in over 70% of patients after initial treatment regimen. Thus, we decided to examine the anticancer properties of SAL and selected SAL derivatives against a series of drug-sensitive (A2780, SK-OV-3) and derived drug-resistant (A2780 CDDP, SK-OV-3 CDDP) ovarian cancer cell lines. Although SAL analogs showed less promising IC50 values than SAL, they were identified as the antitumor agents that significantly overcome the resistance to platinum-based drugs in ovarian cancer, more potent than unmodified SAL and commonly used anticancer drugs—5-fluorouracil, gemcitabine, and cisplatin. Moreover, when compared with SAL used alone, our experiments proved for the first time increased selectivity of SAL-based dual therapy with 5-fluorouracil or gemcitabine, especially towards A2780 cell line. Looking closer at the results, SAL acted synergistically with 5-fluorouracil towards the drug-resistant A2780 cell line. Our results suggest that combinations of SAL with other antineoplastics may become a new therapeutic option for patients with ovarian cancer.
Collapse
|
25
|
Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866:172784. [DOI: 10.1016/j.ejphar.2019.172784] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
|
26
|
Yadav N, Rajendra J, Acharekar A, Dutt S, Vavia P. Effect of Glucosamine Conjugate-Functionalized Liposomes on Glioma Cell and Healthy Brain: An Insight for Future Application in Brain Infusion. AAPS PharmSciTech 2019; 21:24. [PMID: 31845106 DOI: 10.1208/s12249-019-1567-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 01/04/2023] Open
Abstract
Conjugation of D-glucosamine with lipophilic moiety can ease its application in surface modification of liposomes. Interestingly, although D-glucosamine is safe, studies have shed light on "toxic effect" of its conjugates on cancer cells and highlighted its application in targeting glioma. However, understanding the safety of such conjugates for local delivery to the brain is unavailable. Herein, after successful synthesis of D-glucosamine conjugate (GC), the toxicity of functionalized liposome was evaluated both in vitro and in vivo. The study revealed a significant effect on cytotoxicity and apoptosis in vitro as assessed on grade IV-resistant glioma cell lines, SF268, U87MG, using MTT assay and PI staining. Additionally, this effect was not observed on normal human erythrocytes in the hemolysis assay. Furthermore, we demonstrated that GC liposomes were non-toxic to the normal brain tissues of healthy Sprague-Dawley rats. Successful functionalization yielded liposome with uniform particle size, stability, and cellular uptake. With < 10% hemolysis, all the liposomal formulations demonstrated hemato-compatibility but led to high glioma cytotoxicity. The surface density of conjugate played an important role in tumor toxicity (0.5 < 1.0 ≤ 2.0% molar ratio). PI staining revealed that compared to control cell, functionalization led 26-fold increase in induction of apoptosis in glioma cells. Absence of histological and behavioral changes along with the absence of caspase-3 in brain tissue confirmed the suitability of the system for direct infusion in the brain. Thus, this study will aid the future development of clinically useful local chemotherapeutic without "add-in" side effects.
Collapse
|
27
|
Faisal M, Larik FA, Salman M, Saeed A. Phospho Sulfonic Acid: A Highly Efficient and Novel Catalyst for Formation of Bis(Indolyl)Alkanes from Aldehydes and Indole under Aqueous Conditions. KINETICS AND CATALYSIS 2019. [DOI: 10.1134/s0023158419040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Kumar A, Patel C, Patil P, Vyas S, Sharma A. Chemoselective synthesis of bis(indolyl)methanes using sulfonic acid-functionalized chitosan. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00846-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Rodriguez Sawicki L, Garcia KA, Corsico B, Scaglia N. De novo lipogenesis at the mitotic exit is used for nuclear envelope reassembly/expansion. Implications for combined chemotherapy. Cell Cycle 2019; 18:1646-1659. [PMID: 31203714 DOI: 10.1080/15384101.2019.1629792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mitosis has been traditionally considered a metabolically inactive phase. We have previously shown, however, that extensive alterations in lipids occur as the cells traverse mitosis, including increased de novo fatty acid (FA) and phosphatidylcholine (PtdCho) synthesis and decreased lysophospholipid content. Given the diverse structural and functional properties of these lipids, we sought to study their metabolic fate and their importance for cell cycle completion. Here we show that FA and PtdCho synthesized at the mitotic exit are destined to the nuclear envelope. Importantly, FA and PtdCho synthesis, but not the decrease in lysophospholipid content, are necessary for cell cycle completion beyond G2/M. Moreover, the presence of alternative pathways for PtdCho synthesis renders the cells less sensitive to its inhibition than to the impairment of FA synthesis. FA synthesis, thus, represents a cell cycle-related metabolic vulnerability that could be exploited for combined chemotherapy. We explored the combination of fatty acid synthase (FASN) inhibition with agents that act at different phases of the cell cycle. Our results show that the effect of FASN inhibition may be enhanced under some drug combinations.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Karina A Garcia
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Betina Corsico
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Natalia Scaglia
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| |
Collapse
|
30
|
Ling Y, An D, Zhou Y, Rao W. Ga(OTf) 3-Catalyzed Temperature-Controlled Regioselective Friedel-Crafts Alkylation of Trifluoromethylated 3-Indolylmethanols with 2-Substituted Indoles: Divergent Synthesis of Trifluoromethylated Unsymmetrical 3,3'-and 3,6'-Bis(indolyl)methanes. Org Lett 2019; 21:3396-3401. [PMID: 31008615 DOI: 10.1021/acs.orglett.9b01135] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented Ga(OTf)3-catalyzed, temperature-controlled regiodivergent alkylation of 2-substituted indoles with trifluoromethylated 3-indolylmethanols is described that provides structurally diverse unsymmetrical 3,3'- and 3,6'-bis(indolyl)methanes with a CF3-containing quaternary carbon center in good to excellent yields under mild conditions. In addition, this present protocol could be successfully extended to the synthesis of difluoromethylated 3,3'- and 3,6'-bis(indolyl)methanes with excellent efficiency.
Collapse
Affiliation(s)
- Yuan Ling
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Di An
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| |
Collapse
|
31
|
Muthukumar A, Rao GN, Sekar G. Zn(OTf) 2-catalyzed access to symmetrical and unsymmetrical bisindoles from α-keto amides. Org Biomol Chem 2019; 17:3921-3933. [PMID: 30941387 DOI: 10.1039/c9ob00114j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zn(OTf)2-catalyzed synthesis of 3,3'-bisindolyl acetamides from α-keto amides is developed. Both aromatic α-keto amides substituted with electron-donating as well as -withdrawing groups and aliphatic α-keto amides are well tolerated to provide symmetrical bisindoles in moderate to excellent yields. The chemoselective bisindolylation of the keto group of α-keto amides in the presence of a simple keto functionality is successfully achieved in good yields. The transformation is further extended to the synthesis of challenging unsymmetrical bisindoles by treating indolyl α-hydroxy amides with substituted indoles. The unsymmetrical bisindoles are isolated in good to excellent yields.
Collapse
Affiliation(s)
- Alagesan Muthukumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | | | | |
Collapse
|
32
|
Lanza-Jacoby S, Cheng G. 3,3'-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species. PHARMACEUTICAL BIOLOGY 2018; 56:407-414. [PMID: 30301388 PMCID: PMC6179060 DOI: 10.1080/13880209.2018.1495747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 04/22/2018] [Accepted: 06/07/2018] [Indexed: 05/29/2023]
Abstract
CONTEXT A major problem in the treatment of cancer is the development of toxic side effects and resistance to chemotherapy. The use of plant compounds to overcome resistance and prevent toxicity is a potential strategy for treatment. OBJECTIVE We evaluated whether 3,3'-diindolylmethane (DIM) enhanced the sensitivity of breast cancer cells to docetaxel (DOC). MATERIALS AND METHODS MDA-MB231 and Sk-BR-3 cells were treated with and without 25 or 50 µM of DIM and 1 nM of DOC for 48 and 72 h, respectively. MTT assay was used to measure cell survival. Apoptosis and intracellular reactive oxygen species (ROS) were determined by flow cytometry. The expression of proteins regulating ROS production and apoptosis was evaluated by immunoblotting technique. RESULTS Combining 25 µM of DIM with 1 nM DOC decreased cell survival by 42% in MDA-MB231 cells and 59% in Sk-BR-3 cells compared to control, DIM, or DOC (p ≤ 0.05). The combination treatment increased apoptosis over 20% (p ≤ 0.01) in both cell lines, which was associated with decreased Bcl-2, increased Bax, cleaved PARP and activated JNK (p ≤ 0.01). ROS production increased by 46.5% in the MDA-MB231 and 29.3% in Sk-BR-3 cells with the combination compared to DIM or DOC alone. Pretreating cells with N-acetyl-cysteine or Tiron abrogated the anti-survival effect of the combination. The increase in ROS was associated with a 54% decrease in MnSOD and 47% increase in NOX2 protein compared to the other groups. CONCLUSIONS Our findings indicated that DIM enhances the sensitivity of breast cancer cells to DOC treatment by increasing ROS, which led to decreased cell survival and apoptosis.
Collapse
Affiliation(s)
- Susan Lanza-Jacoby
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guanjun Cheng
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Pan YH, Jiao L, Lin CY, Lu CH, Li L, Chen HY, Wang YB, He Y. Combined treatment with metformin and gefitinib overcomes primary resistance to EGFR-TKIs with EGFR mutation via targeting IGF-1R signaling pathway. Biologics 2018; 12:75-86. [PMID: 30154647 PMCID: PMC6108345 DOI: 10.2147/btt.s166867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aim Although EGFR tyrosine kinase inhibitors (TKIs) have shown dramatic effects against sensitizing EGFR mutations in non-small cell lung cancer (NSCLC), ~20%–30% of NSCLC patients with EGFR-sensitive mutation exhibit intrinsic resistance to EGFR-TKIs. The purpose of the current study was to investigate the enhanced antitumor effect of metformin (Met), a biguanide drug, in combination with gefitinib (Gef) in primary resistant human lung cancer cells and the associated molecular mechanism. Experimental design H1975 cell line was treated with Met and/or Gef to examine the inhibition of cell growth and potential mechanism of action by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Ki67 incorporation assay, flow cytometry analysis, small interfering RNA technology, Western blot analysis and xenograft implantation. Results Insulin-like growth factor-1 receptor (IGF-1R) signaling pathway was markedly activated in EGFR-TKI primary resistant H1975 cells as compared to EGFR-TKI acquired resistance cells (PC-9GR, H1650-M3) and EGFR-TKI sensitivity cells (PC-9, HCC827). Inhibition of IGF-1R activity by AG-1024 (a small molecule of IGF-1R inhibitor), as well as downregulation of IGF-1R by siRNA, significantly enhanced the ability of Gef to suppress proliferation and induce apoptosis in H1975 cells via the inhibition of AKT activation and subsequent upregulation of Bcl-2-interacting mediator of cell death (BIM). Interestingly, the observation showed that Met combined with Gef treatment had similar tumor growth suppression effects in comparison with the addition of AG-1024 to therapy with Gef. A clear synergistic antiproliferative interaction between Met and Gef was observed with a combination index (CI) value of 0.65. Notably, IGF-1R silencing mediated by RNA interference (RNAi) attenuated anticancer effects of Met without obviously resensitizing H1975 cells to Gef. Finally, Met-based combinatorial therapy effectively blocked tumor growth in the xenograft with TKI primary resistant lung cancer cells. Conclusion Our findings demonstrated that Met combined with Gef would be a promising strategy to overcome EGFR-TKI primary resistance via suppressing IGF-1R signaling pathway in NSCLC.
Collapse
Affiliation(s)
- Yong-Hong Pan
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Lin Jiao
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Cai-Yu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Cong-Hua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Heng-Yi Chen
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Yu-Bo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| |
Collapse
|
34
|
The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens. World J Microbiol Biotechnol 2018; 34:86. [PMID: 29876752 DOI: 10.1007/s11274-018-2472-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The oral pathogen Streptococcus mutans is involved in tooth decay by a process that initiates with biofilm adhesion and caries development. The presence of other microbes such as Candida albicans may worsen the demineralization process. Since both microbes are virulent to the host and will proliferate under specific host immune deficiencies and systemic diseases, it is important to study antimicrobial substances and their effects on both pathogens. There are several antiseptic agents used to reduce plaque biofilm and its outcome (dental caries and/or periodontal disease). However, some of these have undesired effects. In the current study we investigated the antimicrobial and anti-adhesion properties of micellar solutions of surfactants and the plant natural product terpinen-4-ol (TP). The results revealed an increase in antimicrobial properties of the synthetic surfactants, cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CTAB), when mixed with TP. In addition, although surfactin, a biosurfactant, has little antimicrobial activity, it was demonstrated that it enhanced the effect of TP both as antimicrobial and anti-adhesion compound. Surfactin and the synthetic surfactants promote the antimicrobial activity of TP against S. mutans, the causal agent of tooth decay, suggesting specificity for membrane interactions that may be facilitated by surfactants. This is the first report on the successful use of surfactin in association with TP to inhibit the growth and adhesion of microbial pathogens. Surfactin has other beneficial properties besides being biodegradable, it has antiviral and anti-mycoplasma activities in addition to adjuvant properties and encapsulating capacity at low concentration.
Collapse
|
35
|
Qi X, Ai HJ, Zhang N, Peng JB, Ying J, Wu XF. Palladium-catalyzed carbonylative bis(indolyl)methanes synthesis with TFBen as the CO source. J Catal 2018. [DOI: 10.1016/j.jcat.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Urbaniak A, Delgado M, Antoszczak M, Huczyński A, Chambers TC. Salinomycin derivatives exhibit activity against primary acute lymphoblastic leukemia (ALL) cells in vitro. Biomed Pharmacother 2018; 99:384-390. [DOI: 10.1016/j.biopha.2018.01.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
|
37
|
Pandey VK, Anbarasan P. One-Pot Trifluoromethylative Functionalization of Amides: Synthesis of Trifluoromethylated Bis(indolyl)arylmethanes and Triarylmethanes. J Org Chem 2017; 82:12328-12336. [DOI: 10.1021/acs.joc.7b02161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vinay Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India
| |
Collapse
|
38
|
Su M, Qian C, Hu Y, Lu W, Huang R, Chen M, Chen J. Inhibitory effect of the low-toxic exogenous aryl hydrocarbon receptor modulator 3'3-diindolylmethane on gastric cancer in mice. Oncol Lett 2017; 14:8100-8105. [PMID: 29344254 DOI: 10.3892/ol.2017.7185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
3'3-Diindolylmethane (DIM) has been proved to exhibit anticancer properties in many solid tumors. In our previous study, we demonstrated that DIM inhibited SGC7901 cell proliferation by inducing apoptosis and delaying cell cycle progression. Herein, we further explored the anti-tumor effect of DIM on SGC-7901 tumor bearing mice. Tumors were excised, weighed, and tested by western blot and TdT-UTP nick-end labeling (TUNEL) assay. Blood samples were collected for biochemical analysis. The expression levels of AhR and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) protein were evaluated by western-blot assay. Our data show that with the increase of DIM dose (0, 5, 10, 20 mg/kg/day), AhR protein gradually decreased as CYP1A1 protein increased. The weight of the tumors found in the treated animals was significantly lower than that of the control group (0.845±0.096 vs. 1.275±0.236 g, 0.768±0.161 vs. 1.275±0.236 g, 0.607±0.106 vs. 1.275±0.236 g, P<0.05). TUNEL test showed that DIM induced increased apoptosis in the treatment groups in a dose-dependent manner. Blood tests also indicated that DIM showed no toxic effect on animal weight or liver and kidney function. These results indicated that DIM agent could be a safe and potent drug in therapy of gastric cancer.
Collapse
Affiliation(s)
- Mingli Su
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chenchen Qian
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Wenhua Lu
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Rongkang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
39
|
Youngren-Ortiz SR, Hill DB, Hoffmann PR, Morris KR, Barrett EG, Forest MG, Chougule MB. Development of Optimized, Inhalable, Gemcitabine-Loaded Gelatin Nanocarriers for Lung Cancer. J Aerosol Med Pulm Drug Deliv 2017; 30:299-321. [PMID: 28277892 PMCID: PMC5650720 DOI: 10.1089/jamp.2015.1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aerosol delivery of chemotherapeutic nanocarriers represents a promising alternative for lung cancer therapy. This study optimized gemcitabine (Gem)-loaded gelatin nanocarriers (GNCs) cross-linked with genipin (Gem-GNCs) to evaluate their potential for nebulized lung cancer treatment. METHODS Gem-GNCs were prepared by two-step desolvation and optimized through Taguchi design and characterized for physicochemical properties. Particle size and morphology were confirmed by scanning and transmission electron microscopy. In vitro release of Gem from Gem-GNCs performed in Dulbecco's phosphate-buffered saline and simulated lung fluid was evaluated to determine release mechanisms. Particle size stability was assessed under varying pH. Differential scanning calorimetry and powder X-ray diffraction were used to determine the presence and stability of Gem-GNC components and amorphization of Gem, respectively. Gem-GNC efficacy within A549 and H460 cells was evaluated using MTT assays. Mucus rheology upon treatment with Gem-GNCs, lactose, and normal saline control was measured. Andersen cascade impaction identified the aerodynamic particle size distribution of the nebulized formulation. RESULTS Gem-GNCs had particle size, zeta potential, entrapment efficiency, and loading efficiency of 178 ± 7.1 nm, -18.9 mV, 92.5%, and 9.1%, respectively. The Gem and formulation excipients where molecularly dispersed and configured amorphously. Gem-GNCs were stable at pH 5.4-7.4 for 72 hours. Gem release from Gem-GNCs was governed by non-Fickian controlled release due to diffusion/erosion from a matrix-based nanocarrier. Gem-GNCs elicited a 40% reduction of the complex viscosity η*(1 Hz) of human bronchial epithelial cell mucus containing 3 wt% solids to mimic mild airway disease. The nebulized Gem-GNCs had a mass median aerodynamic diameter (MMAD) of 2.0 ± 0.16 μm, geometric standard deviation (GSD) of 2.7 ± 0.16, and fine particle fraction (FPF) of 75.2% ± 2.4%. The Gem-GNC formulation did not outperform the Gem solution in A549 cells. However, in H460, Gem-GNCs outperformed the Gem IC50 reduction by ∼5-fold at 48 and 10-fold 72 hours. CONCLUSION Stable, effective, and sustained-release Gem-GNCs were developed. The nebulized Gem-GNCs had satisfactory MMAD, GSD, and FPF and the formulation reduced the dynamic complex viscosity of mucus consistent with increased mobility of nanoparticles.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
| | - David B. Hill
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Marsico Lung Institute/CF Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - Kenneth R. Morris
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- The Lachman Institute for Pharmaceutical Analysis, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University–Brooklyn Campus, Brooklyn, New York
| | - Edward G. Barrett
- Respiratory and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - M. Gregory Forest
- Carolina Center for Interdisciplinary Applied Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- Pii Center for Pharmaceutical Technology, Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
- Translational Drug and Gene Delivery Research (TransDGDR) Laboratory, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi
- Natural Products and Experimental Therapeutics Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, Hawai'i
| |
Collapse
|
40
|
Zhang Y, Zhang SX, Fu LN, Guo QX. Highly Efficient Atom-Economic Synthesis of Chiral Bis(indolyl)methanes Bearing Quaternary Stereogenic Carbon Centers. ChemCatChem 2017. [DOI: 10.1002/cctc.201700368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yan Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| | - Si-Xiang Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| | - Li-Na Fu
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| |
Collapse
|
41
|
Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation. Nutrition 2017; 43-44:89-97. [PMID: 28935151 DOI: 10.1016/j.nut.2017.06.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/05/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Dietary agents play an important role in cancer prevention and therapy because of their low toxicity and the perception that they are not a medicine. The aim of the present study was to investigate the anticancer effect of the administration of garlic and lemon aqueous extracts against breast cancer implanted in mice. METHODS We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to determine the antiproliferative effect of both extracts and their combinations. Isobolographic method was used to calculate the combination index. Balb/C mice were inoculated with EMT6/P breast cancer cells and received intragastric administration of one of three treatments (garlic alone, lemon alone, or a combination of both). Change in tumor size and survival rates were measured. TUNEL assay was used to measure apoptosis and enzyme-linked immunosorbent assay (ELISA) was used to measure vascular endothelial growth factor expression. Serum levels of interferon-γ, interleukin (IL)-2, IL-4, and IL-10 were measured using ELISA and levels of aspartate transaminase, alanine transaminase, and creatinine were determined. RESULTS The combination of both extracts acts synergistically against breast cancer in mice. Of the treated mice, 80% were cured using this combination. This combination inhibited angiogenesis, induced apoptosis, and caused systemic activation in the immune system. CONCLUSIONS The combination of garlic and lemon aqueous extracts represents a promising option to develop an anticancer food for augmenting conventional anticancer therapies. However, further testing is essential to understand the exact molecular mechanisms of this combination and to test its therapeutic effect against other cancer models.
Collapse
|
42
|
Regressions of Breast Carcinoma Syngraft Following Treatment with Piperine in Combination with Thymoquinone. Sci Pharm 2017; 85:scipharm85030027. [PMID: 28671634 PMCID: PMC5620515 DOI: 10.3390/scipharm85030027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) and piperine, the active ingredients in cumin (Nigella sativa) and black pepper (Piper longum), respectively, exhibit various bioactivities including anticancer effects. The aim of the present study is to investigate the antineoplastic activity of a combination of TQ and piperine against breast cancer implanted in mice. The antiproliferative effects of TQ, piperine, and a combination of both agents were tested against mouse epithelial breast cancer cell line (EMT6/P) using MTT assay. The isobolographic method was used to calculate the combination index (CI). Degree of angiogenesis inhibition was detected by measuring vascular endothelial growth factor (VEGF) levels in tissue culture for all treatments. EMT6/P cells were inoculated in Balb/C mice and the antitumor effect of TQ, piperine, and their combination was assessed. Changes in tumor size were calculated for all treatments. Tumor histology was examined using the hematoxylin/eosin staining protocol. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) colorimetric assay and caspase-3 activity assays were used to detect apoptosis. Serum levels of interferon (INF)-γ, interleukin (IL)-4, IL-2, and IL-10 were measured using ELISA and treatment toxicity was evaluated by measuring serum levels of aspartate transaminase (AST), alanine transaminase (ALT), and creatinine. A clear synergistic antiproliferative interaction between TQ and piperine was observed with CI value of 0.788. The combination therapy resulted in significant reduction in tumor size with percentage cure of 60% and percentage death of 0%. High degrees of apoptosis and geographical necrosis were induced in tumors treated with the combination therapy. Combination therapy caused significant decrease in VEGF expression and increased serum INF-γ levels. Normal serum levels of AST, ALT, and creatinine were observed in tumor-bearing mice treated with the combination therapy. The combination of TQ and piperine acts synergistically to target breast cancer in vitro and in vivo. This novel combination exerts its effect by angiogenesis inhibition, apoptosis induction, and shifting the immune response toward T helper1 response. This combination therapy deserves further investigation (including measurement of hypoxia-inducible factor (HIF)1α to be used in clinical studies.
Collapse
|
43
|
Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. ASIAN PAC J TROP MED 2017; 10:400-408. [PMID: 28552110 DOI: 10.1016/j.apjtm.2017.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To test the anticancer potential activity of the combination of thymoquinone (TQ) and resveratrol (RES) against breast cancer in mice. METHODS The antiproliferative activity of TQ, RES and their combination was assessed against three breast cancer cell lines and one normal cells using MTT assay. The combination index was calculated using isobolographic method. Balb/C mice were inoculated with EMT6/P cells and in vivo antitumor activity was evaluated. RESULTS The combination therapy also caused significant decrease in tumor size with a percentage cure of 60%. The combination therapy induced geographic necrosis, enhanced apoptosis, and decreased VEGF expression. Serum levels of IFN-γ were elevated in mice treated with combination therapy with no liver or kidney toxicity. CONCLUSIONS The combination of TQ and RES against breast cancer in mice can work synergistically. The anticancer effect of this combination is mediated by apoptosis induction, angiogenesis inhibition and immune modulation.
Collapse
|
44
|
Falah RR, Talib WH, Shbailat SJ. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther Adv Med Oncol 2017; 9:235-252. [PMID: 28491145 PMCID: PMC5405996 DOI: 10.1177/1758834016687482] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background: The effects of metformin (MET) and curcumin (CUR) single treatments have been tested against breast cancer; however, their combination has not been explored. Here, we evaluated the antitumor activity of MET and CUR combination against breast cancer in mice. Materials and methods: The antiproliferative activity of single and combined treatments against breast cancer cell lines was determined. Vascular endothelial growth factor (VEGF) and Trp53 expression was examined in EMT6/P cells. In vivo studies were carried out by inoculating BALB/c mice with EMT6/P cells and examining tumor growth and apoptosis induction in tumor sections. Furthermore, serum levels of different cytokines and transaminases and creatinine were measured to detect the immune response and toxicity, respectively. Results: The combination treatment exhibited the highest effects against tumor proliferation and growth. It significantly reduced VEGF expression, induced Trp53 independent apoptosis, triggered Th2 immune response and showed no toxicity. Conclusion: The combination can be a potential therapeutic option to treat breast cancer. However, further testing is needed to measure the exact serum levels of MET and CUR and to further explain the obtained results.
Collapse
Affiliation(s)
- Rabah Rashad Falah
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, 11931-166, Jordan
| | - Seba Jamal Shbailat
- Department of Biology and Biotechnology, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
45
|
Price DN, McBride AA, Anton M, Kusewitt DF, Norenberg JP, MacKenzie DA, Thompson TA, Muttil P. Longitudinal Assessment of Lung Cancer Progression in Mice Using the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging. PLoS One 2016; 11:e0169107. [PMID: 28036366 PMCID: PMC5201271 DOI: 10.1371/journal.pone.0169107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.
Collapse
Affiliation(s)
- Dominique N. Price
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Amber A. McBride
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Sandia National Laboratory, Albuquerque, New Mexico, United States of America
| | - Martina Anton
- Institute of Molecular Immunology/Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Donna F. Kusewitt
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Jeffrey P. Norenberg
- New Mexico Center for Isotopes in Medicine, Albuquerque, New Mexico, United States of America
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, United States of America
| | - Debra A. MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Todd A. Thompson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, United States of America
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
46
|
Enhanced Anticancer Activity of PF-04691502, a Dual PI3K/mTOR Inhibitor, in Combination With VEGF siRNA Against Non-small-cell Lung Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e384. [PMID: 27845769 PMCID: PMC5155322 DOI: 10.1038/mtna.2016.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cause of cancer deaths in both men and women in the United States accounting for about 27% of all cancer deceases. In our effort to develop newer therapy for lung cancer, we evaluated the combinatory antitumor effect of siRNA targeting VEGF and the PI3K/mTOR dual inhibitor PF-04691502. We analyzed the anticancer effect of siRNA VEGF and PF-04691502 combination on proliferation, colony formation and migration of A549 and H460 lung cancer cells. Additionally, we assessed the combination treatment antiangiogenic effect on human umbilical vein endothelial cells. Here, we show for the first time that the antiangiogenic siRNA VEGF potentiates the PF-04691502 anticancer activity against non–small-cell lung cancer. We observed a significant (P < 0.05) decrease in cell viability, colony formation, and migration for the combination comparing with the single drug treatment. We also showed a significant (P < 0.05) enhanced effect of the combination treatment inhibiting angiogenesis progression and tube formation organization compared to the single drug treatment groups. Our findings demonstrated an enhanced synergistic anticancer effect of siRNA VEGF and PF-04691502 combination therapy by targeting two main pathways involved in lung cancer cell survival and angiogenesis which will be useful for future preclinical studies and potentially for lung cancer patient management.
Collapse
|
47
|
Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorg Chem 2016; 68:56-63. [DOI: 10.1016/j.bioorg.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022]
|
48
|
Imran S, Taha M, Ismail NH, Fayyaz S, Khan KM, Choudhary MI. Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies. Bioorg Chem 2016; 68:90-104. [DOI: 10.1016/j.bioorg.2016.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
49
|
Siadatifard SH, Abdoli-Senejani M, Bodaghifard MA. An efficient method for synthesis of bis(indolyl)methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312009.2016.1188435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Patel K, Doddapaneni R, Chowdhury N, Boakye CH, Behl G, Singh M. Tumor stromal disrupting agent enhances the anticancer efficacy of docetaxel loaded PEGylated liposomes in lung cancer. Nanomedicine (Lond) 2016; 11:1377-92. [PMID: 27171485 DOI: 10.2217/nnm.16.37] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM Therapeutic efficacy of anticancer nanomedicine is compromised by tumor stromal barriers. The present study deals with the development of docetaxel loaded PEGylated liposomes (DTXPL) and to investigate the effect of tumor stroma disrupting agent, telmisartan, on anticancer efficacy of DTXPL. METHODS DTXPL was prepared using proprietary modified hydration method. Effect of oral telmisartan treatment on tumor uptake of coumarin-6 liposomes and anticancer efficacy of DTXPL was evaluated in orthotopic xenograft lung tumor bearing mice. RESULTS DTXPL (105.7 ± 3.8 nm) showed very high physical stability, negligible hemolysis, 428% enhancement in bioavailability with significantly higher intratumoral uptake. Marked reduction in collagen-I, MMP2/9 and lung tumor weight were observed in DTXPL+telmisartan group. CONCLUSION Combination of DTXPL with telmisartan could significantly enhance clinical outcome in lung cancer.
Collapse
Affiliation(s)
- Ketan Patel
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ravi Doddapaneni
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nusrat Chowdhury
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Cedar Ha Boakye
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Gautam Behl
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Mandip Singh
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|