1
|
Upadhyayula PS, Higgins DM, Argenziano MG, Spinazzi EF, Wu CC, Canoll P, Bruce JN. The Sledgehammer in Precision Medicine: Dexamethasone and Immunotherapeutic Treatment of Glioma. Cancer Invest 2021; 40:554-566. [PMID: 34151678 DOI: 10.1080/07357907.2021.1944178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Dominique M Higgins
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Peter Canoll
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Manhattan, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| |
Collapse
|
2
|
Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. J Control Release 2020; 324:303-316. [DOI: 10.1016/j.jconrel.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
3
|
Jørgensen JT, Norregaard K, Simón Martín M, Oddershede LB, Kjaer A. Non-invasive Early Response Monitoring of Nanoparticle-assisted Photothermal Cancer Therapy Using 18F-FDG, 18F-FLT, and 18F-FET PET/CT Imaging. Nanotheranostics 2018; 2:201-210. [PMID: 29868345 PMCID: PMC5984283 DOI: 10.7150/ntno.24478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 11/22/2022] Open
Abstract
Rationale: Since its first implementation nanoparticle-assisted photothermal cancer therapy has been studied extensively, although mainly with focus on optimal nanoparticle design. However, development of efficient treatment protocols, as well as reliable and early evaluation tools in vivo, are needed to push the therapy towards clinical translation. Positron emission tomography (PET) is a non-invasive imaging technique that is currently finding extensive use for early evaluation of cancer therapies; an approach that has become of increasing interest due to its great potential for personalized medicine. Methods: In this study, we performed PET imaging to evaluate the treatment response two days after nanoparticle-assisted photothermal cancer therapy in tumor-bearing mice. We used three different tracers; 2′-deoxy-2′-18F-fluoro-D-glucose (18F-FDG), 3′-deoxy-3′-18F-fluorothymidine (18F-FLT), and O-(2'-18F-fluoroethyl)-L-tyrosine (18F-FET) to image and measure treatment induced changes in glucose uptake, cell proliferation, and amino acid transport, respectively. After therapy, tumor growth was monitored longitudinally until endpoint was reached. Results: We found that nanoparticle-assisted photothermal therapy overall inhibited tumor growth and prolonged survival. All three PET tracers had a significant decrease in tumor uptake two days after therapy and these changes correlated with future tumor growth, with 18F-FDG having the most predictive value in this tumor model. Conclusion: This study shows that 18F-FDG, 18F-FLT, and 18F-FET are all robust markers for the treatment response of photothermal therapy, and demonstrate that PET imaging can be used for stratification and optimization of the therapy. Furthermore, having a selection of PET tracers that can reliably measure treatment response is highly valuable as the individual tracer might be excluded in certain applications where physiological processes limit their contrast to background.
Collapse
Affiliation(s)
- Jesper Tranekjær Jørgensen
- Cluster for Molecular Imaging, Dept. of Biomedical Sciences and Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet and University of Copenhagen, Denmark
| | - Kamilla Norregaard
- Cluster for Molecular Imaging, Dept. of Biomedical Sciences and Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet and University of Copenhagen, Denmark
| | - Marina Simón Martín
- Cluster for Molecular Imaging, Dept. of Biomedical Sciences and Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet and University of Copenhagen, Denmark
| | | | - Andreas Kjaer
- Cluster for Molecular Imaging, Dept. of Biomedical Sciences and Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet and University of Copenhagen, Denmark
| |
Collapse
|
4
|
Weller A, O'Brien MER, Ahmed M, Popat S, Bhosle J, McDonald F, Yap TA, Du Y, Vlahos I, deSouza NM. Mechanism and non-mechanism based imaging biomarkers for assessing biological response to treatment in non-small cell lung cancer. Eur J Cancer 2016; 59:65-78. [PMID: 27016624 DOI: 10.1016/j.ejca.2016.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022]
Abstract
Therapeutic options in locally advanced non-small cell lung cancer (NSCLC) have expanded in the past decade to include a palate of targeted interventions such as high dose targeted thermal ablations, radiotherapy and growing platform of antibody and small molecule therapies and immunotherapies. Although these therapies have varied mechanisms of action, they often induce changes in tumour architecture and microenvironment such that response is not always accompanied by early reduction in tumour mass, and evaluation by criteria other than size is needed to report more effectively on response. Functional imaging techniques, which probe the tumour and its microenvironment through novel positron emission tomography and magnetic resonance imaging techniques, offer more detailed insights into and quantitation of tumour response than is available on anatomical imaging alone. Use of these biomarkers, or other rational combinations as readouts of pathological response in NSCLC have potential to provide more accurate predictors of treatment outcomes. In this article, the robustness of the more commonly available positron emission tomography and magnetic resonance imaging biomarker indices is examined and the evidence for their application in NSCLC is reviewed.
Collapse
Affiliation(s)
- A Weller
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, UK.
| | - M E R O'Brien
- Department of Medicine, Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - M Ahmed
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - S Popat
- Department of Medicine, Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - J Bhosle
- Department of Medicine, Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - F McDonald
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - T A Yap
- Department of Medicine, Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - Y Du
- Department of Nuclear Medicine, Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - I Vlahos
- Radiology Department, St George's Hospital NHS Trust, London, SW17 0QT, UK
| | - N M deSouza
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, UK
| |
Collapse
|
5
|
Schelhaas S, Wachsmuth L, Viel T, Honess DJ, Heinzmann K, Smith DM, Hermann S, Wagner S, Kuhlmann MT, Müller-Tidow C, Kopka K, Schober O, Schäfers M, Schneider R, Aboagye EO, Griffiths J, Faber C, Jacobs AH. Variability of Proliferation and Diffusion in Different Lung Cancer Models as Measured by 3'-Deoxy-3'-¹⁸F-Fluorothymidine PET and Diffusion-Weighted MR Imaging. J Nucl Med 2014; 55:983-8. [PMID: 24777288 DOI: 10.2967/jnumed.113.133348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/15/2014] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Molecular imaging allows the noninvasive assessment of cancer progression and response to therapy. The aim of this study was to investigate molecular and cellular determinants of 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET and diffusion-weighted (DW) MR imaging in lung carcinoma xenografts. METHODS Four lung cancer cell lines (A549, HTB56, EBC1, and H1975) were subcutaneously implanted in nude mice, and growth was followed by caliper measurements. Glucose uptake and tumor proliferation were determined by (18)F-FDG and (18)F-FLT PET, respectively. T2-weighted MR imaging was performed, and the apparent diffusion coefficient (ADC) was determined by DW MR imaging as an indicator of cell death. Imaging findings were correlated to histology with markers for tumor proliferation (Ki67, 5-bromo-2'-deoxyuridine [BrdU]) and cell death (caspase-3, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling). The expression of human equilibrative nucleoside transporter 1 (hENT1), thymidine kinase 1 (TK1), thymidylate synthase, and thymidine phosphorylase (TP) were analyzed by Western blot and immunohistochemistry. Thymidine levels were determined by liquid chromatography-mass spectrometry. RESULTS Xenografts varied with respect to in vivo growth rates. MR imaging and PET revealed intratumoral heterogeneities, which were confirmed by histology. (18)F-FLT uptake differed significantly between tumor lines, with A549 and H1975 demonstrating the highest radiotracer accumulation (A549, 8.5 ± 3.2; HTB56, 4.4 ± 0.7; EBC1, 4.4 ± 1.2; and H1975, 12.1 ± 3.5 maximal percentage injected dose per milliliter). In contrast, differences in (18)F-FDG uptake were only marginal. No clear relationship between (18)F-FLT accumulation and immunohistochemical markers for tumor proliferation (Ki67, BrdU) as well as hENT1, TK1, or TS expression was detected. However, TP was highly expressed in A549 and H1975 xenografts, which was accompanied by low tumor thymidine concentrations, suggesting that tumor thymidine levels influence (18)F-FLT uptake in the tumor models investigated. MR imaging revealed higher ADC values within proliferative regions of H1975 and A549 tumors than in HTB56 and EBC1. These ADC values were negatively correlated with cell density but not directly related to cell death. CONCLUSION A direct relationship of (18)F-FLT with proliferation or ADC with cell death might be complicated by the interplay of multiple processes at the cellular and physiologic levels in untreated tumors. This issue must be considered when using these imaging modalities in preclinical or clinical settings.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Thomas Viel
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Davina J Honess
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | - Kathrin Heinzmann
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | | | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University Hospital of Münster, Münster, Germany
| | - Klaus Kopka
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Otmar Schober
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom; and
| | - John Griffiths
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
6
|
Harders SW, Balyasnikowa S, Fischer BM. Functional imaging in lung cancer. Clin Physiol Funct Imaging 2013; 34:340-55. [PMID: 24289258 PMCID: PMC4413794 DOI: 10.1111/cpf.12104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022]
Abstract
Lung cancer represents an increasingly frequent cancer diagnosis worldwide. An increasing awareness on smoking cessation as an important mean to reduce lung cancer incidence and mortality, an increasing number of therapy options and a steady focus on early diagnosis and adequate staging have resulted in a modestly improved survival. For early diagnosis and precise staging, imaging, especially positron emission tomography combined with CT (PET/CT), plays an important role. Other functional imaging modalities such as dynamic contrast-enhanced CT (DCE-CT) and diffusion-weighted MR imaging (DW-MRI) have demonstrated promising results within this field. The purpose of this review is to provide the reader with a brief and balanced introduction to these three functional imaging modalities and their current or potential application in the care of patients with lung cancer.
Collapse
Affiliation(s)
- S W Harders
- Deparment of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | |
Collapse
|
7
|
Ng TSC, Wert D, Sohi H, Procissi D, Colcher D, Raubitschek AA, Jacobs RE. Serial diffusion MRI to monitor and model treatment response of the targeted nanotherapy CRLX101. Clin Cancer Res 2013; 19:2518-27. [PMID: 23532891 DOI: 10.1158/1078-0432.ccr-12-2738] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Targeted nanotherapies are being developed to improve tumor drug delivery and enhance therapeutic response. Techniques that can predict response will facilitate clinical translation and may help define optimal treatment strategies. We evaluated the efficacy of diffusion-weighted magnetic resonance imaging to monitor early response to CRLX101 (a cyclodextrin-based polymer particle containing the DNA topoisomerase I inhibitor camptothecin) nanotherapy (formerly IT-101), and explored its potential as a therapeutic response predictor using a mechanistic model of tumor cell proliferation. EXPERIMENTAL DESIGN Diffusion MRI was serially conducted following CRLX101 administration in a mouse lymphoma model. Apparent diffusion coefficients (ADCs) extracted from the data were used as treatment response biomarkers. Animals treated with irinotecan (CPT-11) and saline were imaged for comparison. ADC data were also input into a mathematical model of tumor growth. Histological analysis using cleaved-caspase 3, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, Ki-67, and hematoxylin and eosin (H&E) were conducted on tumor samples for correlation with imaging results. RESULTS CRLX101-treated tumors at day 2, 4, and 7 posttreatment exhibited changes in mean ADC = 16 ± 9%, 24 ± 10%, 49 ± 17%, and size (TV) = -5 ± 3%, -30 ± 4%, and -45 ± 13%, respectively. Both parameters were statistically greater than controls [p(ADC) ≤ 0.02, and p(TV) ≤ 0.01 at day 4 and 7], and noticeably greater than CPT-11-treated tumors (ADC = 5 ± 5%, 14 ± 7%, and 18 ± 6%; TV = -15 ± 5%, -22 ± 13%, and -26 ± 8%). Model-derived parameters for cell proliferation obtained using ADC data distinguished CRLX101-treated tumors from controls (P = 0.02). CONCLUSIONS Temporal changes in ADC specified early CRLX101 treatment response and could be used to model image-derived cell proliferation rates following treatment. Comparisons of targeted and nontargeted treatments highlight the utility of noninvasive imaging and modeling to evaluate, monitor, and predict responses to targeted nanotherapeutics.
Collapse
Affiliation(s)
- Thomas S C Ng
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Multimodality imaging of tumor and bone response in a mouse model of bony metastasis. Transl Oncol 2012; 5:415-21. [PMID: 23323156 DOI: 10.1593/tlo.12298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 01/31/2023] Open
Abstract
Cancer drug development generally performs in vivo evaluation of treatment effects that have traditionally relied on detection of morphologic changes. The emergence of new targeted therapies, which may not result in gross morphologic changes, has spurred investigation into more specific imaging methods to quantify response, such as targeted fluorescent probes and bioluminescent cells. The present study investigated tissue response to docetaxel or zoledronic acid (ZA) in a mouse model of bony metastasis. Intratibial implantations of breast cancer cells (MDA-MB-231) were monitored throughout this study using several modalities: molecular resonance imaging (MRI) tumor volume and apparent diffusion coefficient (ADC), micro-computed tomography (µCT) bone volume, bioluminescence imaging (BLI) reporting cancer cell apoptosis, and fluorescence using Osteosense 800 and CatK 680-FAST. Docetaxel treatment resulted in tumor cell kill reflected by ADC and BLI increases and tumor volume reduction, with delayed bone recovery seen in µCT prefaced by increased osteoblastic activity (Osteosense 800). In contrast, the ZA treatment group produced similar values in MRI, BLI, and Osteosense 800 fluorescence imaging readouts when compared to controls. However, µCT bone volume increased significantly by the first week post-treatment and the CatK 680-FAST signal was slightly diminished by 4 weeks following ZA treatment. Multimodality imaging provides a more comprehensive tool for new drug evaluation and efficacy screening through identification of morphology as well as function and apoptotic signaling.
Collapse
|
9
|
Corroyer-Dulmont A, Pérès EA, Petit E, Guillamo JS, Varoqueaux N, Roussel S, Toutain J, Divoux D, MacKenzie ET, Delamare J, Ibazizène M, Lecocq M, Jacobs AH, Barré L, Bernaudin M, Valable S. Detection of glioblastoma response to temozolomide combined with bevacizumab based on μMRI and μPET imaging reveals [18F]-fluoro-L-thymidine as an early and robust predictive marker for treatment efficacy. Neuro Oncol 2012; 15:41-56. [PMID: 23115160 DOI: 10.1093/neuonc/nos260] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The individualized care of glioma patients ought to benefit from imaging biomarkers as precocious predictors of therapeutic efficacy. Contrast enhanced MRI and [(18)F]-fluorodeoxyglucose (FDG)-PET are routinely used in clinical settings; their ability to forecast the therapeutic response is controversial. The objectives of our preclinical study were to analyze sensitive µMRI and/or µPET imaging biomarkers to predict the efficacy of anti-angiogenic and/or chemotherapeutic regimens. Human U87 and U251 orthotopic glioma models were implanted in nude rats. Temozolomide and/or bevacizumab were administered. µMRI (anatomical, diffusion, and microrheological parameters) and µPET ([(18)F]-FDG and [(18)F]-fluoro-l-thymidine [FLT]-PET) studies were undertaken soon (t(1)) after treatment initiation compared with late anatomical µMRI evaluation of tumor volume (t(2)) and overall survival. In both models, FDG and FLT uptakes were attenuated at t(1) in response to temozolomide alone or with bevacizumab. The distribution of FLT, reflecting intratumoral heterogeneity, was also modified. FDG was less predictive for treatment efficacy than was FLT (also highly correlated with outcome, P < .001 for both models). Cerebral blood volume was significantly decreased by temozolomide + bevacizumab and was correlated with survival for rats with U87 implants. While FLT was highly predictive of treatment efficacy, a combination of imaging biomarkers was superior to any one alone (P < .0001 in both tumors with outcome). Our results indicate that FLT is a sensitive predictor of treatment efficacy and that predictability is enhanced by a combination of imaging biomarkers. These findings may translate clinically in that individualized glioma treatments could be decided in given patients after PET/MRI examinations.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- CNRS, UMR ISTCT 6301, CERVOxy and LDM-TEP groups. GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 CAEN cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Balyasnikova S, Löfgren J, de Nijs R, Zamogilnaya Y, Højgaard L, Fischer BM. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:458-474. [PMID: 23145362 PMCID: PMC3484424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/21/2012] [Indexed: 06/01/2023]
Abstract
After more than 20 years of research, a fully integrated PET/MR scanner was launched in 2010 enabling simultaneous acquisition of PET and MR imaging. Currently, no clinical indication for combined PET/MR has been established, however the expectations are high. In this paper we will discuss some of the challenges inherent in this new technology, but focus on potential applications for simultaneous PET/MR in the field of oncology. Methods and tracers for use with the PET technology will be familiar to most readers of this journal; thus this paper aims to provide a short and basic introduction to a number of different MRI techniques, such as DWI-MR (diffusion weighted imaging MR), DCE-MR (dynamic contrast enhanced MR), MRS (MR spectroscopy) and MR for attenuation correction of PET. All MR techniques presented in this paper have shown promising results in the treatment of patients with solid tumors and could be applied together with PET increasing the amount of information about the tissues of interest. The potential clinical benefit of applying PET/MR in staging, radiotherapy planning and treatment evaluation in oncology, as well as the research perspectives for the use of PET/MR in the development of new tracers and drugs will be discussed.
Collapse
Affiliation(s)
- Svetlana Balyasnikova
- Department of Radiology, The N. N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences 24, Kashirskoe Shosse, Moscow, 115478, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Ng TSC, Bading JR, Park R, Sohi H, Procissi D, Colcher D, Conti PS, Cherry SR, Raubitschek AA, Jacobs RE. Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med 2012; 53:1102-9. [PMID: 22661534 DOI: 10.2967/jnumed.111.099861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. METHODS Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following (64)Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. RESULTS The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both (18)F-FDG and a (64)Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing diffusion MRI and radiolabeled antibody uptake patterns over time and visualized movement of antibodies from the vascular space into the tumor mass. CONCLUSION The MRI-compatible PET scanner provided tumor images that were quantitatively accurate and spatially concordant with autoradiography and the small-animal PET examination. Cooccurrence matrix approaches enabled effective analysis of multimodal image sets. These observations confirm the ability of the current simultaneous PET/MRI system to provide accurate observations of intratumoral function and serve as a benchmark for future evaluations of hybrid instrumentation.
Collapse
Affiliation(s)
- Thomas S C Ng
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Galbán S, Lemasson B, Williams TM, Li F, Heist KA, Johnson TD, Leopold JS, Chenevert TL, Lawrence TS, Rehemtulla A, Mikkelsen T, Holland EC, Galbán CJ, Ross BD. DW-MRI as a biomarker to compare therapeutic outcomes in radiotherapy regimens incorporating temozolomide or gemcitabine in glioblastoma. PLoS One 2012; 7:e35857. [PMID: 22536446 PMCID: PMC3334987 DOI: 10.1371/journal.pone.0035857] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/23/2012] [Indexed: 01/22/2023] Open
Abstract
The effectiveness of the radiosensitizer gemcitabine (GEM) was evaluated in a mouse glioma along with the imaging biomarker diffusion-weighted magnetic resonance imaging (DW-MRI) for early detection of treatment effects. A genetically engineered murine GBM model [Ink4a-Arf−/− PtenloxP/loxP/Ntv-a RCAS/PDGF(+)/Cre(+)] was treated with gemcitabine (GEM), temozolomide (TMZ) +/− ionizing radiation (IR). Therapeutic efficacy was quantified by contrast-enhanced MRI and DW-MRI for growth rate and tumor cellularity, respectively. Mice treated with GEM, TMZ and radiation showed a significant reduction in growth rates as early as three days post-treatment initiation. Both combination treatments (GEM/IR and TMZ/IR) resulted in improved survival over single therapies. Tumor diffusion values increased prior to detectable changes in tumor volume growth rates following administration of therapies. Concomitant GEM/IR and TMZ/IR was active and well tolerated in this GBM model and similarly prolonged median survival of tumor bearing mice. DW-MRI provided early changes to radiosensitization treatment warranting evaluation of this imaging biomarker in clinical trials.
Collapse
Affiliation(s)
- Stefanie Galbán
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin Lemasson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Terence M. Williams
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fei Li
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin A. Heist
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy D. Johnson
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Judith S. Leopold
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Chenevert
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Theodore S. Lawrence
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tom Mikkelsen
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Eric C. Holland
- Departments of Cancer Biology and Genetics and Neurosurgery, and Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Craig J. Galbán
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian D. Ross
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sinkus R, Van Beers BE, Vilgrain V, DeSouza N, Waterton JC. Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer 2012; 48:425-31. [PMID: 22226479 DOI: 10.1016/j.ejca.2011.11.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/27/2011] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging (MRI) can be made sensitive to diffusion of water molecules in biological tissues: this phenomenon can be quantitated to provide a biomarker, the apparent diffusion coefficient (ADC). Over the past decade, evidence has accumulated from numerous clinical and animal studies that ADC is abnormal in tumours; that elevated ADC reflects an elevated non-cellular fraction; and that acute increases in ADC following therapy can indicate that tumour cells have been killed. However there remain substantial challenges in ensuring robust and valid ADC measurements, particularly in multicentre studies in common sites of metastasis such as lung and liver. Moreover, there is uncertainty about how best to select the timing of observation post-therapy to avoid false-negatives, and how to minimise the confounding factors which could decouple drug-induced ADC increase from drug-induced cell kill. In this review we summarise the physical basis of the biomarker, the evidence that it reflects non-viable fraction, particularly in extracranial tumours, and suggest a roadmap for validation and qualification.
Collapse
Affiliation(s)
- Ralph Sinkus
- Centre de Recherche Biomédicale Bichat Beaujon, Beaujon Hospital, Clichy, France.
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, Pittet MJ, Weissleder R. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem 2011; 22:2383-9. [PMID: 22035047 DOI: 10.1021/bc200405d] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue macrophages play a critical role both in normal physiology and in disease states. However, because of a lack of specific imaging agents, we continue to have a poor understanding of their absolute numbers, flux rates, and functional states in different tissues. Here, we describe a new macrophage specific positron emission tomography imaging agent, labeled with zirconium-89 ((89)Zr), that was based on a cross-linked, short chain dextran nanoparticle (13 nm). Following systemic administration, the particle demonstrated a vascular half-life of 3.9 h and was found to be located primarily in tissue resident macrophages rather than other white blood cells. Subsequent imaging of the probe using a xenograft mouse model of cancer allowed for quantitation of tumor-associated macrophage numbers, which are of major interest in emerging molecular targeting strategies. It is likely that the material described, which allows the visualization of macrophage biology in vivo, will likewise be useful for a multitude of human applications.
Collapse
Affiliation(s)
- Edmund J Keliher
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Braren R, Altomonte J, Settles M, Neff F, Esposito I, Ebert O, Schwaiger M, Rummeny E, Steingoetter A. Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization. J Hepatol 2011; 55:1034-40. [PMID: 21354233 DOI: 10.1016/j.jhep.2011.01.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/10/2011] [Accepted: 01/30/2011] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS The hepatocellular carcinoma (HCC) exhibits varying degrees of vascularization with more poorly differentiated carcinoma commonly exhibiting high amounts of vascularization. Transcatheter arterial embolization (TAE) of HCC tumor nodules results in varying amounts of tumor necrosis. Reliable quantification of necrosis after TAE, would aid in treatment planning and testing of novel combinatorial treatment regimen. The aim of this work was to validate different imaging parameters as individual or combined predictors of tumor necrosis after TAE in an orthotopic rat HCC tumor model. METHODS Unifocal rat HCC was imaged by T(2)-weighted MRI, quantitative dynamic contrast enhanced (DCE) MRI, diffusion weighted MRI (DWI) and [(18)F]-FDG PET imaging before (day-1) and after (days 1 and 3) TAE. Univariate and multivariate regression analyses were carried out to analyze the ability of each imaging parameter to predict the percent residual vital tumor (vtu) and vital tissue (vti) as determined by quantitative histopathology. RESULTS TAE induced a wide range of tumor necrosis. Tumor volume was the only parameter showing a correlation with vti (r(2) = 0.63) before TAE. After TAE, moderate correlations were found for FDG tracer uptake (r(2) = 0.56) and plasma tissue transfer constant (r(2) = 0.55). Correlations were higher for the extravascular extracellular volume fraction (v(e), r(2) = 0.68) and highest for the apparent diffusion coefficient (ADC, r(2) = 0.86). Multivariate analyses confirmed highest correlation of ADC and v(e) with vtu and vti. CONCLUSIONS DWI and DCE-MRI with the respective parameters ADC (day 3) and v(e) (day 1) were identified as the most promising imaging techniques for the prediction of necrosis. This study validates a preclinical platform allowing for the improved tumor stratification after TAE and thus the testing of novel combinatorial therapy approaches in HCC.
Collapse
Affiliation(s)
- Rickmer Braren
- Institute of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|