1
|
Zhang S, Xu R, Hu M, Choueiry F, Jin N, Li J, Mo X, Zhu J. Distinct plasma molecular profiles between early-onset and late-onset colorectal cancer patients revealed by metabolic and lipidomic analyses. J Pharm Biomed Anal 2024; 241:115978. [PMID: 38237540 PMCID: PMC11181242 DOI: 10.1016/j.jpba.2024.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Colorectal cancer (CRC) incidence in younger adults has been steadily rising, warranting an in-depth investigation into the distinctions between early-onset CRC (EOCRC, < 50 years) and late-onset CRC (LOCRC, ≥ 50 years). Despite extensive study of clinical, pathological, and molecular traits, differentiating EOCRC from LOCRC and identifying potential biomarkers remain elusive. We analyzed plasma samples from healthy individuals, EOCRC, and LOCRC patients using liquid-chromatography mass spectrometry (LC/MS)-based metabolomics and lipidomics. Distinct polar metabolite and lipid profiles with significant metabolites altered in CRC group (e.g., choline and DG 40:4) were identified. Notably, EOCRC exhibited distinct polar metabolomic and differential lipidomic profiles compared to LOCRC, with polar metabolites like aminoadipate and uridine contributing significantly to the difference, and originating from pathways such as lysine biosynthesis and nucleotide metabolism. Furthermore, gene set enrichment analysis (GSEA) using independent TCGA gene expression data identified pathways significantly enriched in either EOCRC or LOCRC. Integrating gene expression and metabolomics data revealed numerous associations differentiating EOCRC and LOCRC. Our multi-omics integration underscores critical molecular distinctions, offers insights into the EOCRC development mechanisms and potential plasma biomarkers for diagnosis.
Collapse
Affiliation(s)
- Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Rui Xu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ming Hu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Fouad Choueiry
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Jin
- Medical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Jieli Li
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Wei X, Chow HY, Chong HC, Leung SL, Ho MK, Lee MY, Leung YC. Arginine Is a Novel Drug Target for Arginine Decarboxylase in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:13741. [PMID: 37762044 PMCID: PMC10531272 DOI: 10.3390/ijms241813741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) has been proven to be highly reliant on arginine availability. Limiting arginine-rich foods or treating patients with arginine-depleting enzymes arginine deiminase (ADI) or arginase can suppress colon cancer. However, arginase and ADI are not the best drug candidates for CRC. Ornithine, the product of arginase, can enhance the supply of polyamine, which favors CRC cell growth, while citrulline, the product of ADI, faces the problem of arginine recycling due to the overexpression of argininosuccinate synthetase (ASS). Biosynthetic arginine decarboxylase (ADC), an enzyme that catalyzes the conversion of arginine to agmatine and carbon dioxide, may be a better choice as it combines both arginine depletion and suppression of intracellular polyamine synthesis via its product agmatine. ADC has anti-tumor potential yet has received much less attention than the other two arginine-depleting enzymes. In order to gain a better understanding of ADC, the preparation and the anti-cancer properties of this enzyme were explored in this study. When tested in vitro, ADC inhibited the proliferation of three colorectal cancer cell lines regardless of their ASS cellular expression. In contrast, ADC had a lesser cytotoxic effect on the human foreskin fibroblasts and rat primary hepatocytes. Further in vitro studies revealed that ADC induced S and G2/M phase cell-cycle arrest and apoptosis in HCT116 and LoVo cells. ADC-induced apoptosis in HCT116 cells followed the mitochondrial apoptotic pathway and was caspase-3-dependent. With all results obtained, we suggest that arginine is a potential target for treating colorectal cancer with ADC, and the anti-cancer properties of ADC should be more deeply investigated in the future.
Collapse
Affiliation(s)
- Xinlei Wei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hiu-Chi Chong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siu-Lun Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mei-Ki Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Yi Y, Wang J, Liang C, Ren C, Lian X, Han C, Sun W. LC-MS-based serum metabolomics analysis for the screening and monitoring of colorectal cancer. Front Oncol 2023; 13:1173424. [PMID: 37448516 PMCID: PMC10338013 DOI: 10.3389/fonc.2023.1173424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Background Colorectal Cancer (CRC) is a prevalent digestive system tumour with significant mortality and recurrence rates. Serum metabolomics, with its high sensitivity and high throughput, has shown potential as a tool to discover biomarkers for clinical screening and monitoring of the CRC patients. Methods Serum metabolites of 61 sex and age-matched healthy controls and 62 CRC patients (before and after surgical intervention) were analyzed using a ultra-performance liquid chromatography-high resolution mass spectrometer (UPLC-MS). Statistical methods and pathway enrichment analysis were used to identify potential biomarkers and altered metabolic pathways. Results Our analysis revealed a clear distinction in the serum metabolic profile between CRC patients and healthy controls (HCs). Pathway analysis indicated a significant association with arginine biosynthesis, pyrimidine metabolism, pantothenate, and CoA biosynthesis. Univariate and multivariate statistical analysis showed that 9 metabolites had significant diagnostic value for CRC, among them, Guanosine with Area Under the Curve (AUC) values of 0.951 for the training group and0.998 for the validation group. Furthermore, analysis of four specific metabolites (N-Phenylacetylasparticacid, Tyrosyl-Gamma-glutamate, Tyr-Ser and Sphingosine) in serum samples of CRC patients before and after surgery indicated a return to healthy levels after an intervention. Conclusion Our results suggest that serum metabolomics may be a valuable tool for the screening and monitoring of CRC patients.
Collapse
Affiliation(s)
- Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjian Wang
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengtong Liang
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Lian
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Mass spectrometry-based metabolomics approach and in vitro assays revealed promising role of 2,3-dihydroquinazolin-4(1H)-one derivatives against colorectal cancer cell lines. Eur J Pharm Sci 2023; 182:106378. [PMID: 36638899 DOI: 10.1016/j.ejps.2023.106378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Colorectal cancer (CRC) is the most frequent form of gastrointestinal cancer and one of the major causes of human mortality worldwide. Many of the current CRC therapies have limitations due to multidrug resistance and/or severe side effects. Quinazoline derivatives are promising lead compounds with a wide range of pharmacological actions. In this study, the effect of seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues as potential anticancer agents against two CRC cell lines (HCT116 and SW480) was investigated using cell viability proliferation, migration, adhesion and invasion assays. A liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics approach was used to identify the underlying biochemical pathways disturbed in treated-HCT116 cells. Cell viability proliferation assay revealed that four compounds (C2, C3, C5, and C7) had IC50 < 10 µM with C5 displaying the most potent cytotoxic effect (IC50 1.4 and 0.3 µM against HCT116 and SW480, respectively). Additionally, the compounds showed suppression of wound closure after 72 h, and both C2 and C5 significantly decreased the number of adherent cells and suppressed HCT116 cells invasion. Metabolomics study revealed that C5 induced significant perturbations in the level of several metabolites including spermine, polyamines, glutamine, creatine and carnitine, and altered biochemical processes essential for cell proliferation and progression such as amino acids biosynthesis and metabolism, redox homeostasis, energy related processes (e.g., fatty acid oxidation, second Warburg like effect) and one-carbon metabolism. Our findings indicate that 2,3-dihydroquinazolin-4(1H)-one analogues, particularly C5, have promising anticancer properties, and shed light on the role of metabolomics in identifying new therapeutic targets and providing better understanding of the pathways altered in treated cancer cells.
Collapse
|
5
|
Lu Y, Hao C, Yu S, Ma Z, Fu X, Qin M, Ding M, Xu Z, Fan L. Cationic amino acid transporter-1 (CAT-1) promotes fibroblast-like synoviocyte proliferation and cytokine secretion by taking up L-arginine in rheumatoid arthritis. Arthritis Res Ther 2022; 24:234. [PMID: 36253807 PMCID: PMC9575222 DOI: 10.1186/s13075-022-02921-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background
Abnormal proliferation of fibroblast-like synoviocytes (FLSs) in the synovial lining layer is the primary cause of synovial hyperplasia and joint destruction in rheumatoid arthritis (RA). Currently, the relationship between metabolic abnormalities and FLS proliferation is a new focus of investigation. However, little is known regarding the relationship between amino acid metabolism and RA. Methods The concentrations of amino acids and cytokines in the synovial fluid of RA (n = 9) and osteoarthritis (OA, n = 9) were detected by LC–MS/MS and CBA assay, respectively. The mRNA and protein expression of cationic amino acid transporter-1 (CAT-1) were determined in FLSs isolated from RA and OA patients by real-time PCR and western blotting. MTT assay, cell cycle, apoptosis, invasion, and cytokine secretion were determined in FLSs knocked down of CAT-1 using siRNA or treated with D-arginine under normoxic and hypoxic culture conditions. A mouse collagen-induced arthritis (CIA) model was applied to test the therapeutic potential of blocking the uptake of L-arginine in vivo. Results L-rginine was upregulated in the synovial fluid of RA patients and was positively correlated with the elevation of the cytokines IL-1β, IL-6, and IL-8. Further examination demonstrated that CAT-1 was the primary transporter for L-arginine and was overexpressed on RA FLSs compared to OA FLSs. Moreover, knockdown of CAT-1 using siRNA or inhibition of L-arginine uptake using D-arginine significantly suppressed L-arginine metabolism, cell proliferation, migration, and cytokine secretion in RA FLSs under normoxic and hypoxic culture conditions in vitro but increased cell apoptosis in a dose-dependent manner. Meanwhile, in vivo assays revealed that an L-arginine-free diet or blocking the uptake of L-arginine using D-arginine suppressed arthritis progression in CIA mice. Conclusion CAT-1 is upregulated and promotes FLS proliferation by taking up L-arginine, thereby promoting RA progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02921-8.
Collapse
Affiliation(s)
- Ying Lu
- Clinical Laboratory Department, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China. .,Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi Province, China.
| | - Chongbo Hao
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Shanshan Yu
- Clinical Laboratory Department, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Zuan Ma
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Xuelian Fu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Mingqing Qin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Menglei Ding
- Clinical Laboratory Department, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Zengguang Xu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China.
| | - Lieying Fan
- Clinical Laboratory Department, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China.
| |
Collapse
|
6
|
Gao H, Li H, Wang J, Xu C, Zhu Y, Tuluhong D, Li X, Wang S, Li J. Polyamine synthesis enzyme AMD1 is closely related to the tumorigenesis and prognosis of human breast cancer. Exp Cell Res 2022; 417:113235. [DOI: 10.1016/j.yexcr.2022.113235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
|
7
|
Wu X, Liu Y, Ao H, Yang P, Zhu Z. A metabolomics strategy to identify potential biomarkers associated with human laryngeal cancer based on dried blood spot mass spectrometry approach. Medicine (Baltimore) 2022; 101:e28820. [PMID: 35212275 PMCID: PMC8878607 DOI: 10.1097/md.0000000000028820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Laryngeal cancer (LC) as one of common malignant tumors in the head and neck region accounted for 1% to 5% of new cancer cases and was ranked as the third otolaryngology cancer. However, some patients with LC were diagnosed at the advanced stage, which can cause delayed diagnosis and treatment. It is an urgent task to seek effective biomarkers for the early diagnosis of LC aimed at alleviating suffering.A combination of dried blood spot sampling and direct infusion mass spectrometry technology was applied to 39 patients with LC and 53 healthy individuals. Multiple algorithms towards 93 metabolites including amino acids and carnitine/acylcarnitines were run for selecting differential metabolites. Furthermore, leave-one-out cross-validation method was used to evaluate diagnostic performance of selected metabolite biomarkers.A biomarker panel consisting of arginine, proline, hexacosanoic carnitine, ornithine /citrulline, and 3-hydroxy-octadecenoylcarnitine exhibited potential to distinguish patients with LC from healthy individuals, with a sensitivity of 0.8974 and a specificity of 0.8302 in leave-one-out cross-validation model.The metabolomic analysis of LC patients is beneficial to screen disease-associated biomarkers and develop new diagnostic approaches.
Collapse
Affiliation(s)
- Xue Wu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Research Centre for Southern Deer at Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Research Centre for Medical data at Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongting Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Huaixuan Ao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Research Centre for Medical data at Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Peng Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Research Centre for Medical data at Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhitu Zhu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
8
|
Kassie F, Jian Bagherpoor A, Kovacs K, Seelig D. Combinatory lung tumor inhibition by myo-inositol and iloprost/rapamycin: association with immunomodulation. Carcinogenesis 2022; 43:547-556. [PMID: 35147705 DOI: 10.1093/carcin/bgac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 02/09/2022] [Indexed: 11/12/2022] Open
Abstract
Although both preclinical and clinical studies have suggested that myo-inositol (MI) may be a safe and effective lung cancer chemopreventive agent, its efficacy is moderate. To test whether the chemopreventive agents iloprost (IL) or rapamycin enhance the lung tumor inhibitory effects of MI, A/J mice were treated with the tobacco smoke carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and, beginning one week after the end of NNK treatment, given MI, IL, rapamycin, MI+IL or MI+rapamycin for 17 weeks. Analyses of the number and size of tumors on the surface of the lung have indicated that MI, IL, rapamycin, MI+IL and MI+rapamycin reduced the multiplicity of NNK-induced lung tumors by 41%, 34%, 46%, 79% and 67%, respectively, and larger tumors (lung tumors with a diameter of 1-2 mm or > 2 mm) were absent in the MI+IL and MI+rapamycin groups. These results clearly indicated that MI+IL and MI+rapamycin are more effective than MI alone in inhibiting the formation and growth of lung tumors. Assessment of the immunomodulatory effects of the drugs showed that whereas MI+rapamycin and MI+IL increased the infiltration of lung tumors by CD4 + and CD8 + T cells, MI+rapamycin reduced the expression of the immune checkpoint protein programmed-death ligand-1 (PD-L1). Moreover, all treatments, except IL, increased apoptosis, whereas cell proliferation was markedly suppressed in all treated groups. In summary, these results suggest that IL and rapamycin could enhance the efficacy of MI in lung cancer chemoprevention trials.
Collapse
Affiliation(s)
- Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | | | - Katalin Kovacs
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Davis Seelig
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
9
|
Differential Expression of Polyamine Pathways in Human Pancreatic Tumor Progression and Effects of Polyamine Blockade on Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13246391. [PMID: 34945011 PMCID: PMC8699198 DOI: 10.3390/cancers13246391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Pancreatic cancer has a five-year survival rate of less than 8% and is the fourth leading cause of cancer death in the United States. Existing therapeutics have failed to improve pancreatic ductal adenocarcinoma (PDAC) patient outcomes. There has been success with other tumor types in targeting aberrant polyamine upregulation as a therapeutic strategy. The present study identified dysregulation of polyamine pathways to be evident in human PDAC progression. Additionally, reduced survival of pancreatic cancer patients was associated with increased expression of specific polyamine-related genes. Polyamine blockade therapy significantly increased overall survival of pancreatic tumor-bearing mice, along with macrophage presence (F4/80) and significantly increased T-cell co-stimulatory marker (CD86) in the tumor microenvironment. Based on these findings, we hypothesized that a polyamine blockade therapy could potentially prime the tumor microenvironment to be more susceptible to existing therapeutics. Future studies which test polyamine blockade therapy with existing therapeutics could increase the molecular tools available to treat PDAC. Abstract Pancreatic cancer is the fourth leading cause of cancer death. Existing therapies only moderately improve pancreatic ductal adenocarcinoma (PDAC) patient prognosis. The present study investigates the importance of the polyamine metabolism in the pancreatic tumor microenvironment. Relative mRNA expression analysis identified differential expression of polyamine biosynthesis, homeostasis, and transport mediators in both pancreatic epithelial and stromal cells from low-grade pancreatic intraepithelial neoplasia (PanIN-1) or primary PDAC patient samples. We found dysregulated mRNA levels that encode for proteins associated with the polyamine pathway of PDAC tumors compared to early lesions. Next, bioinformatic databases were used to assess expression of select genes involved in polyamine metabolism and their impact on patient survival. Higher expression of pro-polyamine genes was associated with poor patient prognosis, supporting the use of a polyamine blockade therapy (PBT) strategy for inhibiting pancreatic tumor progression. Moreover, PBT treatment of syngeneic mice injected intra-pancreatic with PAN 02 tumor cells resulted in increased survival and decreased tumor weights of PDAC-bearing mice. Histological assessment of PBT-treated tumors revealed macrophage presence and significantly increased expression of CD86, a T cell co-stimulatory marker. Collectively, therapies which target polyamine metabolism can be used to disrupt tumor progression, modulate tumor microenvironment, and extend overall survival.
Collapse
|
10
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
11
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
12
|
Bian X, Shi D, Xing K, Zhou H, Lu L, Yu D, Wu W. AMD1 upregulates hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation. Clin Transl Med 2021; 11:e352. [PMID: 33783988 PMCID: PMC7989706 DOI: 10.1002/ctm2.352] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND S-adenosylmethionine decarboxylase proenzyme (AMD1) is a key enzyme involved in the synthesis of spermine (SPM) and spermidine (SPD), which are associated with multifarious cellular processes. It is also found to be an oncogene in multiple cancers and a potential target for tumor therapy. Nevertheless, the role AMD1 plays in hepatocellular carcinoma (HCC) is still unknown. METHODS HCC samples were applied to detect AMD1 expression and evaluate its associations with clinicopathological features and prognosis. Subcutaneous and orthotopic tumor mouse models were constructed to analyze the proliferation and metastasis of HCC cells after AMD1 knockdown or overexpression. Drug sensitive and tumor sphere assay were performed to investigate the effect of AMD1 on HCC cells stemness. Real-time quantitative PCR (qRT-PCR), western blot, immunohistochemical (IHC) and m6A-RNA immunoprecipitation (Me-RIP) sequencing/qPCR were applied to explore the potential mechanisms of AMD1 in HCC. Furthermore, immunofluorescence, co-IP (Co-IP) assays, and mass spectrometric (MS) analyses were performed to verify the proteins interacting with AMD1. RESULTS AMD1 was enriched in human HCC tissues and suggested a poor prognosis. High AMD1 level could promote SRY-box transcription factor 2 (SOX2), Kruppel like factor 4 (KLF4), and NANOG expression of HCC cells through obesity-associated protein (FTO)-mediated mRNA demethylation. Mechanistically, high AMD1 expression increased the levels of SPD in HCC cells, which could modify the scaffold protein, Ras GTPase-activating-like protein 1 (IQGAP1) and enhance the interaction between IQGAP1 and FTO. This interaction could enhance the phosphorylation and decrease the ubiquitination of FTO. CONCLUSIONS AMD1 could stabilize the interaction of IQGAP1 with FTO, which then promotes FTO expression and increases HCC stemness. AMD1 shows prospects as a prognostic predictor and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Xinyu Bian
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongmin Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kailin Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lili Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dahai Yu
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
13
|
Impact of protein on the composition and metabolism of the human gut microbiota and health. Proc Nutr Soc 2020; 80:173-185. [PMID: 33349284 DOI: 10.1017/s0029665120008022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The composition and metabolic activity of the bacteria that inhabit the large intestine can have a major impact on health. Despite considerable inter-individual variation across bacterial species, the dominant phyla are generally highly conserved. There are several exogenous and gut environmental factors that play a role in modulating the composition and activities of colonic bacteria including diet with intakes of different macronutrients, including protein, accounting for approximately 20% of the microbial variation. Certain bacterial species tend to be considered as generalists and can metabolise a broad range of substrates, including both carbohydrate- and protein-derived substrates, whilst other species are specialists with a rather limited metabolic capacity. Metabolism of peptides and amino acids by gut bacteria can result in the formation of a wide range of metabolites several of which are considered deleterious to health including nitrosamines, heterocyclic amines and hydrogen sulphide as some of these products are genotoxic and have been linked to colonic disease. Beneficial metabolites however include SCFA and certain species can use amino acids to form butyrate which is the major energy source for colonocytes. The impact on health may however depend on the source of these products. In this review, we consider the impact of diet, particularly protein diets, on modulating the composition of the gut microbiota and likely health consequences and the potential impact of climate change and food security.
Collapse
|
14
|
Fernández-Reina A, Urdiales JL, Sánchez-Jiménez F. What We Know and What We Need to Know about Aromatic and Cationic Biogenic Amines in the Gastrointestinal Tract. Foods 2018; 7:E145. [PMID: 30181486 PMCID: PMC6164962 DOI: 10.3390/foods7090145] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Biogenic amines derived from basic and aromatic amino acids (B/A-BAs), polyamines, histamine, serotonin, and catecholamines are a group of molecules playing essential roles in many relevant physiological processes, including cell proliferation, immune response, nutrition and reproduction. All these physiological effects involve a variety of tissue-specific cellular receptors and signalling pathways, which conforms to a very complex network that is not yet well-characterized. Strong evidence has proved the importance of this group of molecules in the gastrointestinal context, also playing roles in several pathologies. This work is based on the hypothesis that integration of biomedical information helps to reach new translational actions. Thus, the major aim of this work is to combine scientific knowledge on biomolecules, metabolism and physiology of the main B/A-BAs involved in the pathophysiology of the gastrointestinal tract, in order to point out important gaps in information and other facts deserving further research efforts in order to connect molecular information with pathophysiological observations.
Collapse
Affiliation(s)
- Alberto Fernández-Reina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
- CIBER de Enfermedades Raras & IBIMA, Instituto de Salud Carlos III, 29010 Málaga, Spain.
| | - Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
- CIBER de Enfermedades Raras & IBIMA, Instituto de Salud Carlos III, 29010 Málaga, Spain.
| |
Collapse
|
15
|
Murray-Stewart T, Dunworth M, Lui Y, Giardiello FM, Woster PM, Casero RA. Curcumin mediates polyamine metabolism and sensitizes gastrointestinal cancer cells to antitumor polyamine-targeted therapies. PLoS One 2018; 13:e0202677. [PMID: 30138353 PMCID: PMC6107220 DOI: 10.1371/journal.pone.0202677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/07/2018] [Indexed: 12/27/2022] Open
Abstract
Curcumin, a natural polyphenol that contributes to the flavor and yellow pigment of the spice turmeric, is known for its antioxidant, anti-inflammatory, and anticarcinogenic properties. Capable of affecting the initiation, promotion, and progression of carcinogenesis through multiple mechanisms, curcumin has potential utility for both chemoprevention and chemotherapy. Previous studies demonstrated that curcumin can inhibit ornithine decarboxylase (ODC) activity in human leukemia and breast cancer cells, and pretreatment with dietary curcumin blocks carcinogen-induced ODC activity in rodent models of skin, colon, and renal cancer. The current study investigated the regulation of polyamine metabolism in human gastric and colon carcinoma cell lines in response to curcumin. Curcumin treatment significantly induced spermine oxidase (SMOX) mRNA and activity, which results in the generation of hydrogen peroxide, a source of ROS. Simultaneously, curcumin down regulated spermidine/spermine N1-acetyltransferase (SSAT) activity and the biosynthetic enzymes ODC and S-adenosylmethionine decarboxylase (SAMDC), thereby diminishing intracellular polyamine pools. Combination treatments using curcumin with the ODC inhibitor 2-difluoromethylornithine (DFMO), an agent currently in clinical chemoprevention trials, significantly enhanced inhibition of ODC activity and decreased growth of GI cancer cell lines beyond that observed with either agent alone. Similarly, combining curcumin with the polyamine analogue bis(ethyl)norspermine enhanced growth inhibition that was accompanied by enhanced accumulation of the analogue and decreased intracellular polyamine levels beyond those observed with either agent alone. Importantly, cotreatment with curcumin permitted the lowering of the effective dose of ODC inhibitor or polyamine analogue. These studies provide insight into the polyamine-related mechanisms involved in the cancer cell response to curcumin and its potential as a chemopreventive or chemotherapeutic agent in the GI tract.
Collapse
Affiliation(s)
- Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Matthew Dunworth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yuan Lui
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Francis M. Giardiello
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Patrick M. Woster
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States of America
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
16
|
Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. Med Sci (Basel) 2018; 6:medsci6010012. [PMID: 29419804 PMCID: PMC5872169 DOI: 10.3390/medsci6010012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl) is an irreversible suicide inhibitor of ornithine decarboxylase (ODC), the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any disease state where rapid growth is a key process leading to pathology. The compound was originally discovered as an anticancer drug, but its effectiveness was disappointing. However, DFMO was successfully developed to treat African sleeping sickness and is currently one of few clinically used drugs to combat this neglected tropical disease. The other Food and Drug Administration (FDA) approved application for DFMO is as an active ingredient in the hair removal cream Vaniqa. In recent years, renewed interest in DFMO for hyperproliferative diseases has led to increased research and promising preclinical and clinical trials. This review explores the use of DFMO for the treatment of African sleeping sickness and hirsutism, as well as its potential as a chemopreventive and chemotherapeutic agent against colorectal cancer and neuroblastoma.
Collapse
|
17
|
Abstract
This chapter provides an overview of how the polyamine pathway has been exploited as a target for the treatment and prevention of multiple forms of cancer, since this pathway is disrupted in all cancers. It is divided into three main sections. The first explores how the polyamine pathway has been targeted for chemotherapy, starting from the first drug to target it, difluoromethylornithine (DFMO) to the large variety of polyamine analogues that have been synthesised and tested throughout the years with all their potentials and pitfalls. The second section focuses on the use of polyamines as vectors for drug delivery. Knowing that the polyamine transport system is upregulated in cancers and that polyamines naturally bind to DNA, a range of polyamine analogues and polyamine-like structures have been synthesised to target epigenetic regulators, with encouraging results. Furthermore, the use of polyamines as transport vectors to introduce toxic/bioactive/fluorescent agents more selectively to the intended target in cancer cells is discussed. The last section concentrates on chemoprevention, where the different strategies that have been undertaken to interfere with polyamine metabolism and function for antiproliferative intervention are outlined and discussed.
Collapse
Affiliation(s)
- Elisabetta Damiani
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Heather M Wallace
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
18
|
Regulation of Polyamine Metabolism by Curcumin for Cancer Prevention and Therapy. Med Sci (Basel) 2017; 5:medsci5040038. [PMID: 29258259 PMCID: PMC5753667 DOI: 10.3390/medsci5040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
Curcumin (diferuloylmethane), the natural polyphenol responsible for the characteristic yellow pigment of the spice turmeric (Curcuma longa), is traditionally known for its antioxidant, anti-inflammatory, and anticarcinogenic properties. Capable of affecting the initiation, promotion, and progression of carcinogenesis through multiple mechanisms, curcumin has potential utility for both chemoprevention and chemotherapy. In human cancer cell lines, curcumin has been shown to decrease ornithine decarboxylase (ODC) activity, a rate-limiting enzyme in polyamine biosynthesis that is frequently upregulated in cancer and other rapidly proliferating tissues. Numerous studies have demonstrated that pretreatment with curcumin can abrogate carcinogen-induced ODC activity and tumor development in rodent tumorigenesis models targeting various organs. This review summarizes the results of curcumin exposure with regard to the modulation of polyamine metabolism and discusses the potential utility of this natural compound in conjunction with the exploitation of dysregulated polyamine metabolism in chemopreventive and chemotherapeutic settings.
Collapse
|
19
|
Kim HI, Schultz CR, Buras AL, Friedman E, Fedorko A, Seamon L, Chandramouli GVR, Maxwell GL, Bachmann AS, Risinger JI. Ornithine decarboxylase as a therapeutic target for endometrial cancer. PLoS One 2017; 12:e0189044. [PMID: 29240775 PMCID: PMC5730160 DOI: 10.1371/journal.pone.0189044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022] Open
Abstract
Ornithine Decarboxylase (ODC) a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA) with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR) in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05). Difluoromethylornithine (DFMO) a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT) and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023). ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd]) known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006), [Spd] (p<0.0001)) and blood plasma ([Put] (p<0.0001), [Spd] (p = 0.0049)) of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence.
Collapse
Affiliation(s)
- Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Andrea L. Buras
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
- Spectrum Health, Grand Rapids, Michigan, United States of America
| | | | - Alyssa Fedorko
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
- Spectrum Health, Grand Rapids, Michigan, United States of America
| | - Leigh Seamon
- Spectrum Health, Grand Rapids, Michigan, United States of America
| | | | - G. Larry Maxwell
- Department of Obsteterics and Gynecology, Inova Fairfax Women’s Hospital, Falls Church, Virginia, United States of America
| | - André S. Bachmann
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
- * E-mail: (JR); (AB)
| | - John I. Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
- Spectrum Health, Grand Rapids, Michigan, United States of America
- * E-mail: (JR); (AB)
| |
Collapse
|
20
|
Phanstiel O. An overview of polyamine metabolism in pancreatic ductal adenocarcinoma. Int J Cancer 2017; 142:1968-1976. [PMID: 29134652 DOI: 10.1002/ijc.31155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest major cancers, with a five year survival rate of less than 8%. With current therapies only giving rise to modest life extension, new approaches are desperately needed. Even though targeting polyamine metabolism is a proven anticancer strategy, there are no reports, which thoroughly survey the literature describing the role of polyamine biosynthesis and transport in PDAC. This review seeks to fill this void by describing what is currently known about polyamine metabolism in PDAC and identifies new targets and opportunities to treat this disease. Due to the pleiotropic effects that polyamines play in cells, this review covers diverse areas ranging from polyamine metabolism (biosynthesis, catabolism and transport), as well as the potential role of polyamines in desmoplasia, autophagy and immune privilege. Understanding these diverse roles provides the opportunity to design new therapies to treat this deadly cancer via polyamine depletion.
Collapse
Affiliation(s)
- Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL
| |
Collapse
|
21
|
Abstract
Familial adenomatous polyposis (FAP) has always been first and foremost a surgical disease, whose treatment with colectomy has long been known to reduce risk of premature cancer death. The notion of reducing polyp burden and potentially delaying surgical intervention has spawned a host of "chemoprevention" trials. In this paper I selectively review the findings from these studies, highlighting trial design issues and in particular some of the limitations of historical and existing trial endpoint measures. Nonsteroidal anti-inflammatory agents have been the most commonly employed chemopreventive agents. Sulindac, largely by historical accident, has been the most extensively studied, and is widely considered the standard of care when a clinical decision to intervene medically is made. Newer trials are evaluating combinations of agents in order to take advantage of differing mechanisms of action, in the hope of achieving synergy, as no single agent predictably or completely suppresses adenoma growth. Some of these studies and other single-agent interventions are discussed, though an exploration of the various mechanisms of action is beyond the scope of this paper. It is essential that future trials focus on the issue of "clinical benefit", not simply because the US Food and Drug Administration has insisted on it, but because only real evidence-based advances can improve the standard of medical care for FAP patients. Hence my focus on issues of trial design and clinically relevant endpoints.
Collapse
|
22
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
23
|
Alexiou GA, Lianos GD, Ragos V, Galani V, Kyritsis AP. Difluoromethylornithine in cancer: new advances. Future Oncol 2017; 13:809-819. [PMID: 28125906 DOI: 10.2217/fon-2016-0266] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Difluoromethylornithine (DFMO; eflornithine) is an irreversible suicide inhibitor of the enzyme ornithine decarboxylase which is involved in polyamine synthesis. Polyamines are important for cell survival, thus DFMO was studied as an anticancer agent and as a chemoprevention agent. DFMO exhibited mainly cytostatic activity and had single agent efficacy as well as activity in combination with other chemotherapeutic drugs for some cancers and leukemias. Herewith, we summarize the current knowledge of the anticancer and chemopreventive properties of DFMO and assess the status of clinical trials.
Collapse
Affiliation(s)
- George A Alexiou
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Georgios D Lianos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vassileios Ragos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Athanassios P Kyritsis
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| |
Collapse
|
24
|
Hammerling U, Bergman Laurila J, Grafström R, Ilbäck NG. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Crit Rev Food Sci Nutr 2016; 56:614-34. [PMID: 25849747 DOI: 10.1080/10408398.2014.972498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiology and experimental studies provide an overwhelming support of the notion that diets high in red or processed meat accompany an elevated risk of developing pre-neoplastic colorectal adenoma and frank colorectal carcinoma (CRC). The underlying mechanisms are disputed; thus several hypotheses have been proposed. A large body of reports converges, however, on haem and nitrosyl haem as major contributors to the CRC development, presumably acting through various mechanisms. Apart from a potentially higher intestinal mutagenic load among consumers on a diet rich in red/processed meat, other mechanisms involving subtle interference with colorectal stem/progenitor cell survival or maturation are likewise at play. From an overarching perspective, suggested candidate mechanisms for red/processed meat-induced CRC appear as three partly overlapping tenets: (i) increased N-nitrosation/oxidative load leading to DNA adducts and lipid peroxidation in the intestinal epithelium, (ii) proliferative stimulation of the epithelium through haem or food-derived metabolites that either act directly or subsequent to conversion, and (iii) higher inflammatory response, which may trigger a wide cascade of pro-malignant processes. In this review, we summarize and discuss major findings of the area in the context of potentially pertinent mechanisms underlying the above-mentioned association between consumption of red/processed meat and increased risk of developing CRC.
Collapse
Affiliation(s)
- Ulf Hammerling
- a Cancer Pharmacology & Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| | - Jonas Bergman Laurila
- b Sahlgrenska Biobank, Gothia Forum, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Roland Grafström
- c Institute of Environmental Medicine, The Karolinska Institute , Stockholm , Sweden.,d Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland , Turku , Finland
| | - Nils-Gunnar Ilbäck
- e Clinical Microbiology & Infectious Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| |
Collapse
|
25
|
Evageliou NF, Haber M, Vu A, Laetsch TW, Murray J, Gamble LD, Cheng NC, Liu K, Reese M, Corrigan KA, Ziegler DS, Webber H, Hayes CS, Pawel B, Marshall GM, Zhao H, Gilmour SK, Norris MD, Hogarty MD. Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression. Clin Cancer Res 2016; 22:4391-404. [PMID: 27012811 DOI: 10.1158/1078-0432.ccr-15-2539] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. EXPERIMENTAL DESIGN We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. RESULTS An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. CONCLUSIONS Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.
Collapse
Affiliation(s)
- Nicholas F Evageliou
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Annette Vu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jayne Murray
- Children's Cancer Institute Australia, Sydney, Australia
| | - Laura D Gamble
- Children's Cancer Institute Australia, Sydney, Australia
| | | | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Megan Reese
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Corrigan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David S Ziegler
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia. School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, Sydney, Australia
| | - Hannah Webber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Candice S Hayes
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Huaqing Zhao
- Department of Biostatistics, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Murray D Norris
- Children's Cancer Institute Australia, Sydney, Australia. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Abstract
Aspirin (acetylsalicylic acid) has become one of the most commonly used drugs, given its role as an analgesic, antipyretic and agent for cardiovascular prophylaxis. Several decades of research have provided considerable evidence demonstrating its potential for the prevention of cancer, particularly colorectal cancer. Broader clinical recommendations for aspirin-based chemoprevention strategies have recently been established; however, given the known hazards of long-term aspirin use, larger-scale adoption of an aspirin chemoprevention strategy is likely to require improved identification of individuals for whom the protective benefits outweigh the harms. Such a precision medicine approach may emerge through further clarification of aspirin's mechanism of action.
Collapse
Affiliation(s)
- David A Drew
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, 55 Fruit Street, Bartlett Ext. 9, Boston, Massachusetts 02114, USA
| | - Yin Cao
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, and Harvard T.H. Chan School of Public Health, Department of Nutrition, 55 Fruit Street, Bartlett Ext. 9, Boston, Massachusetts 02114, USA
| | - Andrew T Chan
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, GRJ-825C, Boston, Massachusetts 02114, USA
| |
Collapse
|
27
|
Nowotarski SL, Feith DJ, Shantz LM. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. CANCER GROWTH AND METASTASIS 2015; 8:17-27. [PMID: 26380554 PMCID: PMC4558889 DOI: 10.4137/cgm.s21219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Department of Biochemistry, The Pennsylvania State University Berks College, Reading, PA, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
28
|
Elkady AI, Hussein RAEH, Abu-Zinadah OA. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination. World J Gastroenterol 2014; 20:15275-88. [PMID: 25386076 PMCID: PMC4223261 DOI: 10.3748/wjg.v20.i41.15275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/29/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. METHODS Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. RESULTS Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin/cyclin-dependent kinase-4 and c-Myc. CONCLUSION These data suggest that a combination of CAERS and CFEZO is a promising treatment for the prevention of colon cancer.
Collapse
|
29
|
LINSALATA MICHELE, ORLANDO ANTONELLA, RUSSO FRANCESCO. Pharmacological and dietary agents for colorectal cancer chemoprevention: Effects on polyamine metabolism (Review). Int J Oncol 2014; 45:1802-12. [DOI: 10.3892/ijo.2014.2597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
|
30
|
Park MH, Igarashi K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther (Seoul) 2014; 21:1-9. [PMID: 24009852 PMCID: PMC3762300 DOI: 10.4062/biomolther.2012.097] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/31/2023] Open
Abstract
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.
Collapse
Affiliation(s)
- Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
31
|
Agostinelli E, Condello M, Tempera G, Macone A, Bozzuto G, Ohkubo S, Calcabrini A, Arancia G, Molinari A. The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: a new therapeutic approach. Int J Oncol 2014; 45:1109-22. [PMID: 24969157 DOI: 10.3892/ijo.2014.2502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
It has been confirmed that multidrug resistant (MDR) melanoma cells (M14 ADR2) are more sensitive than their wild-type counterparts (M14 WT) to H2O2 and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. The metabolites formed by BSAO and spermine are more toxic, in M14 cells, than exogenous H2O2 and acrolein, even though their concentration is lower during the initial phase of incubation due to their more gradual release than the exogenous products. Binding of BSAO to the cell membrane and release of the reaction products of spermine into the immediate vicinity of the cells, or directly into the cells, may explain the apparently paradoxical phenomenon. Both WT and MDR cells, after pre-treatment for 24 h, or longer, with the lysosomotropic compound chloroquine (CQ), show to be sensitized to subsequent exposure to BSAO/spermine enzymatic system. Evidence of ultrastructural aberrations and acridine orange release from lysosomes is presented in this study that is in favor of the permeabilization of the lysosomal membrane as the major cause of sensitization by CQ. Pre-treatment with CQ amplifies the ability of the metabolites formed from spermine by oxidative deamination to induce cell death. Melanocytes, differently from melanoma cells, were unaffected by the enzymatic system, even when preceded by CQ treatment. Since it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumour cells, it is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.
Collapse
Affiliation(s)
- Enzo Agostinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences, Sapienza University of Rome and CNR, Ι-00185 Rome, Italy
| | - Maria Condello
- Department of Technology and Health, Italian National Institute of Health, I-00161 Rome, Italy
| | - Giampiero Tempera
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences, Sapienza University of Rome and CNR, Ι-00185 Rome, Italy
| | - Alberto Macone
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences, Sapienza University of Rome and CNR, Ι-00185 Rome, Italy
| | - Giuseppina Bozzuto
- Department of Technology and Health, Italian National Institute of Health, I-00161 Rome, Italy
| | - Shinji Ohkubo
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences, Sapienza University of Rome and CNR, Ι-00185 Rome, Italy
| | - Annarica Calcabrini
- Department of Technology and Health, Italian National Institute of Health, I-00161 Rome, Italy
| | - Giuseppe Arancia
- Department of Technology and Health, Italian National Institute of Health, I-00161 Rome, Italy
| | - Agnese Molinari
- Department of Technology and Health, Italian National Institute of Health, I-00161 Rome, Italy
| |
Collapse
|
32
|
Abstract
An expanding body of evidence supports a role for gut microbes in the etiology of cancer. Previously, the focus was on identifying individual bacterial species that directly initiate or promote gastrointestinal malignancies; however, the capacity of gut microbes to influence systemic inflammation and other downstream pathways suggests that the gut microbial community may also affect risk of cancer in tissues outside of the gastrointestinal tract. Functional contributions of the gut microbiota that may influence cancer susceptibility in the broad sense include (1) harvesting otherwise inaccessible nutrients and/or sources of energy from the diet (i.e., fermentation of dietary fibers and resistant starch); (2) metabolism of xenobiotics, both potentially beneficial or detrimental (i.e., dietary constituents, drugs, carcinogens, etc.); (3) renewal of gut epithelial cells and maintenance of mucosal integrity; and (4) affecting immune system development and activity. Understanding the complex and dynamic interplay between the gut microbiome, host immune system, and dietary exposures may help elucidate mechanisms for carcinogenesis and guide future cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Meredith A J Hullar
- Cancer Prevention Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, M4-B402, PO Box 19024, Seattle, WA, 98109, USA
| | | | | |
Collapse
|
33
|
Lu Y, Wang W, Wang J, Yang C, Mao H, Fu X, Wu Y, Cai J, Han J, Xu Z, Zhuang Z, Liu Z, Hu H, Chen B. Overexpression of arginine transporter CAT-1 is associated with accumulation of L-arginine and cell growth in human colorectal cancer tissue. PLoS One 2013; 8:e73866. [PMID: 24040099 PMCID: PMC3765253 DOI: 10.1371/journal.pone.0073866] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 07/31/2013] [Indexed: 12/31/2022] Open
Abstract
We previously showed that L-arginine (Arg) accumulates in colorectal cancer tissues. The aim of this study was to investigate the mechanism by which Arg accumulates and determine its biological significance. The concentration of Arg and Citrulline (Cit) in sera and tumor tissues from colorectal cancer (CRC) patients was analyzed by high-performance liquid chromatography (HPLC). The expression of Arg transporters was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis of tissue microarray. We also transfected the colon cancer cell line HCT-116 with siRNA specific for the Arg transporter CAT-1 and measured the induction of apoptosis by flow cytometry and cell proliferation by MTT assay. Consistent with our previous results, serum Arg and Cit concentrations in colorectal cancer patients were significantly lower than those in normal volunteers, while Arg and Cit concentrations in colorectal cancer tissues were significantly higher than in matched adjacent normal colon tissues. Quantitative RT-PCR showed that the CAT-1 gene was highly overexpressed in 70.5% of colorectal cancer tissue samples relative to adjacent normal colon tissues in all 122 patients with colorectal cancer. Immunohistochemical analysis of tissue microarray confirmed that the expression of CAT-1 was higher in all 25 colorectal cancer tissues tested. CAT-1 siRNA significantly induced apoptosis of HCT-116 cells and subsequently inhibited cell growth by 20–50%. Our findings indicate that accumulation of L-Arg and Cit and cell growth in colorectal cancer tissues is associated with over-expression of the Arg transporter gene CAT-1. Our results may be useful for the development of molecular diagnostic tools and targeted therapy for colorectal cancer.
Collapse
Affiliation(s)
- Ying Lu
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Weimin Wang
- Department of Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Junchen Wang
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huiming Mao
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xuelian Fu
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yanling Wu
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jingping Cai
- Department of Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Junyi Han
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zengguang Xu
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhongmin Liu
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hai Hu
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
- * E-mail: (HH); (BC)
| | - Bingguan Chen
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
- * E-mail: (HH); (BC)
| |
Collapse
|
34
|
Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol 2013; 170:4-16. [PMID: 23347064 PMCID: PMC3764843 DOI: 10.1111/bph.12109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022] Open
Abstract
Histamine, serotonin and dopamine are biogenic amines involved in intercellular communication with multiple effects on human pathophysiology. They are products of two highly homologous enzymes, histidine decarboxylase and l-aromatic amino acid decarboxylase, and transmit their signals through different receptors and signal transduction mechanisms. Polyamines derived from ornithine (putrescine, spermidine and spermine) are mainly involved in intracellular effects related to cell proliferation and death mechanisms. This review summarizes structural and functional evidence for interactions between components of all these amine metabolic and signalling networks (decarboxylases, transporters, oxidases, receptors etc.) at cellular and tissue levels, distinct from nervous and neuroendocrine systems, where the crosstalk among these amine-related components can also have important pathophysiological consequences. The discussion highlights aspects that could help to predict and discuss the effects of intervention strategies.
Collapse
Affiliation(s)
- F Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Spain.
| | | | | | | |
Collapse
|
35
|
Hu Y, McIntosh GH, Le Leu RK, Nyskohus LS, Woodman RJ, Young GP. Combination of selenium and green tea improves the efficacy of chemoprevention in a rat colorectal cancer model by modulating genetic and epigenetic biomarkers. PLoS One 2013; 8:e64362. [PMID: 23717604 PMCID: PMC3662759 DOI: 10.1371/journal.pone.0064362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/12/2013] [Indexed: 02/08/2023] Open
Abstract
Dietary supplementation of selenium and green tea holds promise in cancer prevention. In this study, we evaluated the efficacies of selenium and green tea administered individually and in combination against colorectal cancer in an azoxymethane (AOM)-induced rat colonic carcinogenesis model and determined the underlying mechanisms of the protection. Four-week old Sprague-Dawley male rats were fed with diets containing 0.5% green tea extract, 1 ppm selenium as selenium-enriched milk protein, or combination of 1 ppm selenium and 0.5% green tea extract. Animals received 2 AOM (15 mg/kg) treatments to induce colonic oncogenesis. Rats were killed 8 or 30 wk later after the last AOM to examine the effect of dietary intervention on aberrant crypt foci (ACF) formation or tumor development. On sacrifice, colons were examined for ACF and tumors, the mRNA levels of SFRP5 and Cyclin D1, and the proteins levels of ß-catenin, COX-2, Ki-67, DNMT1 and acetyl histone H3. The combination of selenium and green tea resulted in a significant additive inhibition of large ACF formation, this effect was greater than either selenium or green tea alone, P<0.01; the combination also had a significant additive inhibition effect on all tumor endpoints, the effect of the combination diet on tumor incidence, multiplicity and size was greater than selenium or green tea alone, P<0.01. Rats fed the combination diet showed marked reduction of DNMT1 expression and induction of histone H3 acetylation, which were accompanied by restoration of SFRP5 mRNA in normal-appearing colonic crypts. The combination diet also significantly reduced ß-catenin nuclear translocation, Cyclin D1 expression and cell proliferation. These data show, for the first time, that combination of selenium and green tea is more effective in suppressing colorectal oncogenesis than either agent alone. The preventive effect is associated with regulation of genetic and epigenetic biomarkers implicated in colonic carcinogenesis.
Collapse
Affiliation(s)
- Ying Hu
- Flinders Centre for Innovation in Cancer, Flinders University of South Australia, Adelaide, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Vanrell MC, Cueto JA, Barclay JJ, Carrillo C, Colombo MI, Gottlieb RA, Romano PS. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity. Autophagy 2013; 9:1080-93. [PMID: 23697944 DOI: 10.4161/auto.24709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings.
Collapse
Affiliation(s)
- María C Vanrell
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
37
|
Mohammed A, Janakiram NB, Brewer M, Vedala K, Steele VE, Rao CV. Multitargeted low-dose GLAD combination chemoprevention: a novel and promising approach to combat colon carcinogenesis. Neoplasia 2013; 15:481-90. [PMID: 23633920 PMCID: PMC3638351 DOI: 10.1593/neo.13282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 01/01/2023]
Abstract
Preclinical studies have shown that gefitinib, licofelone, atorvastatin, and α-difluoromethylornithine (GLAD) are promising colon cancer chemopreventive agents. Because low-dose combination regimens can offer potential additive or synergistic effects without toxicity, GLAD combination was tested for toxicity and chemopreventive efficacy for suppression of intestinal tumorigenesis in adenomatous polyposis coli (APC)(Min/+) mice. Six-week-old wild-type and APC(Min/+) mice were fed modified American Institute of Nutrition 76A diets with or without GLAD (25 + 50 + 50 + 500 ppm) for 14 weeks. Dietary GLAD caused no signs of toxicity based on organ pathology and liver enzyme profiles. GLAD feeding strongly inhibited (80-83%, P < .0001) total intestinal tumor multiplicity and size in APC(Min/+) mice (means ± SEM tumors for control vs GLAD were 67.1 ± 5.4 vs. 11.3 ± 1.1 in males and 72.3 ± 8.9 vs 14.5 ± 2.8 in females). Mice fed GLAD had >95% fewer polyps with sizes of >2 mm compared with control mice and showed 75% and 85% inhibition of colonic tumors in males and females, respectively. Molecular analyses of polyps suggested that GLAD exerts efficacy by inhibiting cell proliferation, inducing apoptosis, decreasing β-catenin and caveolin-1 levels, increasing caspase-3 cleavage and p21, and modulating expression profile of inflammatory cytokines. These observations demonstrate that GLAD, a novel cocktail of chemopreventive agents at very low doses, suppresses intestinal tumorigenesis in APC(Min/+) mice with no toxicity. This novel strategy to prevent colorectal cancer is an important step in developing agents with high efficacy without unwanted side effects.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Gerner EW. Abstract CN04-03: Development of NSAID eflornithine combinations for treating cancer risk factors. Cancer Prev Res (Phila) 2012. [DOI: 10.1158/1940-6207.prev-12-cn04-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDS) have been found to be potent inhibitors of carcinogenesis in both preclinical models and in randomized controlled prospective clinical trials in humans. NSAIDS exert their anti-carcinogenic effects by inhibiting cyclooxygenases (COXs) involved in arachidonic acid metabolism and by COX-independent mechanisms. Empirical data indicates eflornithine (difluoromethylornithine or DFMO), an enzyme-activated inhibitor of ornithine decarboxylase (ODC) (Meyskens and Gerner, 1999), is one of the most potent agents known acting in combination with NSAIDS to inhibit carcinogenesis in rodent models (Steele and Lubet, 2010). At least part of the rationale for combining NSAIDS with eflornithine for inhibition of carcinogenesis is that eflornithine inhibits the activity of ODC, the first enzyme in polyamine synthesis, while NSAIDS activate the spermidine/spermine acetyltransferase (SAT1), which targets polyamines for export by specific solute carrier transporters (Gerner and Meyskens, 2009). Thus, NSAIDS and eflornithine both reduce tissue levels of the growth-associated polyamines, but by complementary mechanisms. A clinical trial of the combination of eflornithine and the NSAID sulindac showed dramatic treatment-associated reductions of metachronous colorectal adenomas in patients with prior sporadic colorectal polyps (Meyskens et al., 2008). Several clinical trials in progress or soon to commence will further test the hypothesis that NSAID eflornithine combinations can successfully treat cancer risk factors in patients with specific cancers, or risk of cancer. One group of clinical trials involves patients with neuroblastoma (NB). Patients with poor prognosis NB often have tumors in which MYCN is overexpressed. Preclinical data indicates that MYCN as well as c-MYC drive expression of ODC and other genes in the polyamine pathway, and that inhibiting this pathway with eflornithine suppressed carcinogenesis in mouse models of NB (Hogarty et al., 2008). Likewise, COX-2 is expressed in NB tumors and cell lines, and COX-2 inhibitors such as celecoxib can suppress the growth of NB xenografts (Ponthan et al., 2007). The Neuroblastoma and Medulloblastoma Translational Research Consortium (NMTRC) and the New Approaches to Neuroblastoma Therapy (NANT) group are conducting clinical trials to evaluate the safety and efficacy of eflornithine alone or in combination with NSAIDS and other agents in patients with high risk NB. The NMTRC is conducting an especially novel prevention trial of eflornithine in patients with high risk NB in remission (NCT01586260). Eflornithine NSAID combinations are also being evaluated in other MYC-associated diseases. Familial adenomatous polyposis (FAP) is a genetic syndrome associated with increased risk of colon cancer and other neoplasia and is caused by mutation/deletions in the adenomatous polyposis coli (APC) tumor suppressor gene. MYC mediates intestinal tumorigenesis (Ignatenko et al., 2006) and combinations of eflornithine and NSAIDS are potent inhibitors of intestinal carcinogenesis (Ignatenko et al., 2008) in murine models of FAP. Notable is the change in clinical management of FAP patients over the past two decades. FAP is now managed primarily by surgery, with duodenal polyposis and desmoid disease constituting two current significant clinical problems. An international consortium will be evaluating the combination of eflornithine and sulindac in adult patients with FAP, using time to FAP-related events as the primary outcome (NCT01483144). This same combination will be evaluated in patients with prior sporadic colon cancer in a study to be conducted by a national cooperative group (S0820, Adenoma and second primary prevention trial, NCT01349881) (Rial et al., 2012). These and other trials have been designed to include assessment of a range of biological correlates, including genetic (Zell et al., 2010), tissue (Thompson et al., 2010) and urinary markers (Hiramatsu et al., 2005) of disease prognosis and prediction of treatment responses, including therapy-associated toxicities.
Citation Format: Eugene W. Gerner. Development of NSAID eflornithine combinations for treating cancer risk factors. [abstract]. In: Proceedings of the Eleventh Annual AACR International Conference on Frontiers in Cancer Prevention Research; 2012 Oct 16-19; Anaheim, CA. Philadelphia (PA): AACR; Cancer Prev Res 2012;5(11 Suppl):Abstract nr CN04-03.
Collapse
|
39
|
Zell JA, Lin BS, Madson N, McLaren CE, Gerner EW, Meyskens FL. Role of obesity in a randomized placebo-controlled trial of difluoromethylornithine (DFMO) + sulindac for the prevention of sporadic colorectal adenomas. Cancer Causes Control 2012; 23:1739-44. [PMID: 22907422 PMCID: PMC3443348 DOI: 10.1007/s10552-012-0051-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/07/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Chemoprevention with the polyamine-inhibitory regimen difluoromethylornithine (DFMO) + sulindac markedly reduces risk of recurrent adenoma in colorectal adenoma patients. Obesity is associated with risk of colorectal adenoma and colorectal cancer. This study investigates how obesity influences risk of recurrent adenoma after prolonged treatment with DFMO + sulindac versus placebo. METHODS Our analysis included subjects enrolled in the phase III colorectal adenoma prevention clinical trial investigating DFMO + sulindac versus placebo. Patients were classified by obesity (body mass index, BMI ≥ 30 kg/m(2)) status at baseline. Pearson χ(2) statistic and Mann-Whitney U test were used to compare baseline characteristics, including rectal tissue polyamine levels. Log-binomial regression analysis was used to determine the risk ratio (RR) of recurrent adenomas, adjusted for covariates and an interaction term for obesity and treatment. RESULTS The final analytic cohort was comprised of 267 patients. In separate regression models, the risk of adenoma recurrence after treatment compared to placebo was similar for obese (RR = 0.32, 95 % CI 15-71) and non-obese patients (RR = 0.27, 95 % CI 15-49). No significant interaction was detected between obesity, treatment, and risk of colorectal adenoma in the full regression model (p (interaction) = 0.91). CONCLUSIONS Obesity does not substantially modify the colorectal adenoma risk reduction ascribed to DFMO + sulindac versus placebo.
Collapse
Affiliation(s)
- Jason A Zell
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Vargas AJ, Wertheim BC, Gerner EW, Thomson CA, Rock CL, Thompson PA. Dietary polyamine intake and risk of colorectal adenomatous polyps. Am J Clin Nutr 2012; 96:133-41. [PMID: 22648715 PMCID: PMC3374737 DOI: 10.3945/ajcn.111.030353] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Putrescine, spermidine, and spermine are the polyamines required for human cell growth. The inhibition of ornithine decarboxylase (ODC), which is the rate-limiting enzyme of polyamine biosynthesis, decreases tumor growth and the development of colorectal adenomas. A database was developed to estimate dietary polyamine exposure and relate exposure to health outcomes. OBJECTIVE We hypothesized that high polyamine intake would increase risk of colorectal adenoma and that the allelic variation at ODC G>A +316 would modify the association. DESIGN Polyamine exposure was estimated in subjects pooled (n = 1164) from the control arms of 2 randomized trials for colorectal adenoma prevention [Wheat Bran Fiber low-fiber diet arm (n = 585) and Ursodeoxycholic Acid placebo arm (n = 579)] by using baseline food-frequency questionnaire data. All subjects had to have a diagnosis of colorectal adenoma to be eligible for the trial. RESULTS A dietary intake of polyamines above the median amount in the study population was associated with 39% increased risk of colorectal adenoma at follow-up (adjusted OR: 1.39; 95% CI: 1.06, 1.83) in the pooled sample. In addition, younger participants (OR: 1.94; 95% CI: 1.23, 3.08), women (OR: 2.43; 95% CI: 1.48, 4.00), and ODC GG genotype carriers (OR: 1.59; 95% CI: 1.00, 2.53) had significantly increased odds of colorectal adenoma if they consumed above-median polyamine amounts. CONCLUSIONS This study showed a role for dietary polyamines in colorectal adenoma risk. Corroboration of these findings would confirm a previously unrecognized, modifiable dietary risk factor for colorectal adenoma.
Collapse
Affiliation(s)
- Ashley J Vargas
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Kumar KN, Raja SB, Vidhya N, Devaraj SN. Ellagic acid modulates antioxidant status, ornithine decarboxylase expression, and aberrant crypt foci progression in 1,2-dimethylhydrazine-instigated colon preneoplastic lesions in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3665-3672. [PMID: 22439659 DOI: 10.1021/jf204128z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chemoprevention offers a novel approach to control the incidence of colorectal cancer (CRC), which is a fatal cause of malignancies in both Western and Asia countries. Ornithine decarboxylase (ODC) functions as a cell transition factor by regulating the biosynthesis of polyamines, which, allied with aberrant crypt foci (ACF) proliferation, cause early lesions of CRC. This study exemplifies the chemopreventive efficacy of ellagic acid (EA) in 1,2-dimethylhydrazine (DMH) initiated CRC in rats. Subcutaneous injection of DMH (40 mg/kg body weight twice a week for 2 weeks) to the rats resulted in elevated expression of ODC, a genetic marker for CRC, and its transcription factor myelocytomatosis oncogene (c-myc). Furthermore, increased levels of lipid peroxidation and hydroperoxides with diminished levels of antioxidants including superoxide dismutase, catalase, and reduced glutathione were also observed in the tissues of DMH-intoxicated rats. Oral supplementation of EA significantly influences maintenance of antioxidant status and transcriptional inactivation of ODC expression, reducing ACF proliferation and/or progression, thus signifying the chemopreventive efficacy of EA against CRC.
Collapse
Affiliation(s)
- Kasinathan Nirmal Kumar
- Department of Biochemistry, School of Life Sciences, Maraimalai (Guindy) campus, University of Madras, Chennai, Tamilnadu, India.
| | | | | | | |
Collapse
|
42
|
Welsh PA, Sass-Kuhn S, Prakashagowda C, McCloskey D, Feith D. Spermine synthase overexpression in vivo does not increase susceptibility to DMBA/TPA skin carcinogenesis or Min-Apc intestinal tumorigenesis. Cancer Biol Ther 2012; 13:358-68. [PMID: 22258329 DOI: 10.4161/cbt.19241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated a link between elevated polyamine biosynthesis and neoplastic growth, but the specific contribution of spermine synthase to epithelial tumor development has never been explored in vivo. Mice with widespread overexpression of spermine synthase (CAG-SpmS) exhibit decreased spermidine levels, increased spermine and a significant rise in tissue spermine:spermidine ratio. We characterized the response of CAG-SpmS mice to two-stage skin chemical carcinogenesis as well as spontaneous intestinal carcinogenesis induced by loss of the Apc tumor suppressor in Apc (Min) (/+) (Min) mice. CAG-SpmS mice maintained the canonical increases in ornithine decarboxylase (ODC) activity, polyamine content and epidermal thickness in response to tumor promoter treatment of the skin. The induction of S-adenosylmethionine decarboxylase (AdoMetDC) activity and its product decarboxylated AdoMet were impaired in CAG-SpmS mice, and the spermine:spermidine ratio was increased 3-fold in both untreated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated skin. The susceptibility to 7,12-dimethylbenz[a]anthracene (DMBA)/TPA skin carcinogenesis was not altered in CAG-SpmS mice, and SpmS overexpression did not modify the previously described tumor resistance of mice with targeted antizyme expression or the enhanced tumor response in mice with targeted spermidine/spermine-N ( 1) -acetyltransferase expression. CAG-SpmS/Min mice also exhibited elevated spermine:spermidine ratios in the small intestine and colon, yet their tumor multiplicity and size was similar to Min mice. Therefore, studies in two of the most widely used tumorigenesis models demonstrate that increased spermine synthase activity and the resulting elevation of the spermine:spermidine ratio does not alter susceptibility to tumor development initiated by c-Ha-Ras mutation or Apc loss.
Collapse
Affiliation(s)
- Patricia A Welsh
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
43
|
Hughes A, Saunders FR, Wallace HM. Naproxen causes cytotoxicity and induces changes in polyamine metabolism independent of cyclo-oxygenase expression. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20018j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Rial NS, Choi K, Nguyen T, Snyder B, Slepian MJ. Nuclear factor kappa B (NF-κB): a novel cause for diabetes, coronary artery disease and cancer initiation and promotion? Med Hypotheses 2011; 78:29-32. [PMID: 22014759 DOI: 10.1016/j.mehy.2011.09.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/19/2011] [Indexed: 01/07/2023]
Abstract
Obesity is a growing epidemic in the United States (US). Obesity has been recognized as a modifiable risk factor for many diverse diseases including diabetes, cardiovascular disease and cancer burden. Common contributors to obesity include a high fat diet, smoking and physical inactivity. Systemic effects of obesity include increased micro-inflammatory molecules such as nuclear factor kappa B (NF-κB) that influence the both endothelial and epithelial layers as well as the supportive stroma. An emerging risk factor for micro-inflammation also includes periodontal disease. These pro-inflammatory states are hypothesized to contribute to diabetes as well as cardiovascular disease and cancer through the direct activation of NF-κB. Therefore, a comprehensive health care strategy would include reduction of diabetes, cardiovascular and cancer risk through the decrease in micro-inflammation.
Collapse
Affiliation(s)
- Nathaniel S Rial
- University of Arizona, Department of Internal Medicine, Tucson, AZ 85724, USA.
| | | | | | | | | |
Collapse
|
45
|
Montagner D, Marzano C, Gandin V. Synthesis, characterization and cytotoxic activity of palladium (II) dithiocarbamate complexes with α,ω-diamines. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Barry EL, Mott LA, Sandler RS, Ahnen DJ, Baron JA. Variants downstream of the ornithine decarboxylase gene influence risk of colorectal adenoma and aspirin chemoprevention. Cancer Prev Res (Phila) 2011; 4:2072-82. [PMID: 21930798 DOI: 10.1158/1940-6207.capr-11-0300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Increased mucosal polyamine levels and ornithine decarboxylase (ODC) activity are associated with an increased risk of colorectal neoplasia and aspirin treatment reduces risk. Previous studies suggest that a single-nucleotide polymorphism (SNP) in the promoter of the ODC gene (rs2302615) may be associated with adenoma risk and/or response to aspirin chemoprevention. However, a comprehensive investigation of common genetic variation in the region of ODC gene is lacking. Using a tag SNP approach, we investigated associations between genotype or haplotype and adenoma risk among a cohort of 792 non-Hispanic white participants in a randomized trial of aspirin. Generalized linear regression was used to compute relative risks (RR) and 95% confidence intervals (95% CI) adjusted for age and sex. The false discovery rate was used to account for multiple testing. Interactions terms were used to assess whether genotype modified the effect of aspirin treatment. Of 15 SNPs analyzed, seven were statistically significantly associated with adenoma risk. However, in multiple SNP regression models, only two of these, located downstream of the gene, were independently associated with risk: rs11694911 (RR = 1.29; 95% CI, 1.08-1.53; P = 0.005) and rs2430420 (RR = 1.20; 95% CI, 1.03-1.40; P = 0.022). In addition, there was evidence that rs2430420 and rs28362380 modified the effect of aspirin treatment, whereas the previously investigated SNP, rs2302615, had no statistically significant main effect or interaction with aspirin treatment. Our findings suggest that common genetic variants located downstream (3') of the ODC gene influence risk of colorectal adenoma and may also impact the efficacy of aspirin chemoprevention.
Collapse
Affiliation(s)
- Elizabeth L Barry
- Department of Community and Family Medicine, Dartmouth Medical School, 46 Centerra Parkway, Suite 300, Lebanon, NH 03766, USA.
| | | | | | | | | |
Collapse
|
47
|
Cerrada-Gimenez M, Häkkinen MR, Vepsäläinen J, Auriola S, Alhonen L, Keinänen TA. Polyamine flux analysis by determination of heavy isotope incorporation from 13C, 15N-enriched amino acids into polyamines by LC–MS/MS. Amino Acids 2011; 42:451-60. [DOI: 10.1007/s00726-011-1024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/24/2011] [Indexed: 11/29/2022]
|
48
|
Hughes DJ, Hlavatá I, Soucek P, Pardini B, Naccarati A, Vodickova L, O'Morain C, Vodicka P. Ornithine decarboxylase G316A genotype and colorectal cancer risk. Colorectal Dis 2011; 13:860-4. [PMID: 20456464 DOI: 10.1111/j.1463-1318.2010.02300.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Ornithine decarboxylase (ODC) is a modifier of adenomatous polyposis coli-dependent tumourigenesis. The G316 > A polymorphism in intron 1 of the ODC gene lies between two myc-binding domains and alters the expression of the gene to affect polyamine metabolism. This variant may be associated with recurrence of colorectal adenoma. We examined whether this variant also modified the susceptibility to sporadic colorectal cancer (CRC). METHOD The G316 > A variant was analysed in a large (n = 754) CRC case-controlled series of hospital patient volunteers (n = 627) in the Czech Republic, and the relationship with cancer risk was estimated by conditional logistic regression. RESULTS After adjusting for age and sex, G316 > A was associated with no decrease in CRC risk for either heterozygotes [odds ratio 0.98, 95% confidence interval (CI) 0.77-1.23] or rare allele homozygotes (odds ratio 0.92, 95% CI 0.61-1.37). CONCLUSION The G316 > A functional variant in the ODC gene is unlikely to make much impact on reducing CRC risk regardless of the reduction in risk found for the recurrence of colorectal adenoma.
Collapse
Affiliation(s)
- D J Hughes
- Department of Clinical Medicine, Trinity College Centre for Health Sciences, Adelaide & Meath Hospital, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
This chapter provides an overview of the polyamine field and introduces the 32 other chapters that make up this volume. These chapters provide a wide range of methods, advice, and background relevant to studies of the function of polyamines, the regulation of their content, their role in disease, and the therapeutic potential of drugs targeting polyamine content and function. The methodology provided in this new volume will enable laboratories already working in this area to expand their experimental techniques and facilitate the entry of additional workers into this rapidly expanding field.
Collapse
Affiliation(s)
- Anthony E Pegg
- College of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | | |
Collapse
|