1
|
Ibrahim A, Montgomery EA. Gastrointestinal Stromal Tumors: Variants and Some Pitfalls That They Create. Adv Anat Pathol 2024; 31:354-363. [PMID: 39466697 DOI: 10.1097/pap.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The diagnosis of gastrointestinal stromal tumors (GISTs) is generally straightforward using a combination of histologic evaluation and pertinent immunohistochemical staining with CD117/kit and DOG-1 (discovered on GIST) antibodies. However, this tumor can be challenging in cases with an unusual morphology, in limited biopsies, for those in uncommon sites, post-treatment, and when other neoplasms express CD117/kit and DOG-1, thereby mimicking GIST. Finding epithelioid GISTs in the stomach in younger patients should prompt testing for succinate dehydrogenase (SHD)-deficiency using immunohistochemical staining for subunit B (SDHB). However, SDH-deficient GISTs can also arise in older patients, or as part of the Carney triad or Carney-Stratakis syndrome. GISTs with PDGFRA mutations can also prove difficult if they lack kit expression. It is also important to consider morphologic and immunophenotypic changes associated with treatment, including the potential absence of kit expression, particularly in GISTs that have metastasized. Therefore, obtaining clinical information regarding prior therapy with a tyrosine kinase inhibitor (TKI) is crucial.
Collapse
Affiliation(s)
- Ammoura Ibrahim
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | | |
Collapse
|
2
|
Boichuk S, Dunaev P, Galembikova A, Valeeva E. Fibroblast Growth Factor 2 (FGF2) Activates Vascular Endothelial Growth Factor (VEGF) Signaling in Gastrointestinal Stromal Tumors (GIST): An Autocrine Mechanism Contributing to Imatinib Mesylate (IM) Resistance. Cancers (Basel) 2024; 16:3103. [PMID: 39272961 PMCID: PMC11394061 DOI: 10.3390/cancers16173103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
3
|
Takaki EO, Kiyono K, Obuchi Y, Yamauchi T, Watanabe T, Matsumoto H, Karimine M, Kuniyoshi Y, Nishikori S, Yokoyama F, Nishimori H, Nabeshima H, Nakamura K. A PDE3A-SLFN12 Molecular Glue Exhibits Significant Antitumor Activity in TKI-Resistant Gastrointestinal Stromal Tumors. Clin Cancer Res 2024; 30:3603-3621. [PMID: 38864850 PMCID: PMC11325149 DOI: 10.1158/1078-0432.ccr-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Gastrointestinal stromal tumor (GIST), the most common mesenchymal tumor with KIT or PDGFRA driver mutations, is typically treated with tyrosine kinase inhibitors (TKI). However, resistance to TKIs due to secondary mutations is a common challenge in advanced GISTs. In addition, there are currently no effective therapies for several other molecular subtypes, such as succinate dehydrogenase-deficient GISTs. Therefore, novel therapeutic strategies are needed. EXPERIMENTAL DESIGN To address this need, we tested the efficacy of a novel non-TKI compound, OPB-171775, using patient-derived xenograft models of GISTs. In parallel, we sought to elucidate the mechanism of action of the compound. RESULTS Our study revealed that OPB-171775 exhibited significant efficacy against GISTs regardless of their KIT mutation status by inducing complex formation between phosphodiesterase 3A (PDE3A) and Schlafen family member 12 (SLFN12), which are highly expressed in GISTs, leading to SLFN12 RNase-mediated cell death. Furthermore, we identified the activation of general control non-derepressible 2 and its downstream response as an effector pathway of SLFN12 in mediating anticancer activity and revealed potential pharmacodynamic markers. CONCLUSIONS These findings suggest that OPB-171775, with its significant efficacy, could potentially serve as a novel and effective treatment option for advanced GISTs, particularly those resistant to TKIs.
Collapse
Affiliation(s)
- Emiri O. Takaki
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Kunihiko Kiyono
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Yutaka Obuchi
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Takeshi Yamauchi
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Takashi Watanabe
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Hideki Matsumoto
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Miho Karimine
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Yuki Kuniyoshi
- Office of Bioinformatics, Department of Drug Discovery Strategy, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Shingo Nishikori
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Fumiharu Yokoyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Hikaru Nishimori
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Hiroshi Nabeshima
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Kazuhide Nakamura
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| |
Collapse
|
4
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Beecroft JR, Brar S, Feng X, Hamilton T, Han-Lee C, Henning JW, Josephy PD, Khalili K, Ko YJ, Lemieux C, Liu DM, MacDonald DB, Noujaim J, Pollett A, Salawu A, Saleh R, Smrke A, Warren BE, Zbuk K, Razak AA. Pan-Canadian consensus recommendations for GIST management in high- and low-throughput centres across Canada. Ther Adv Med Oncol 2024; 16:17588359241266179. [PMID: 39386314 PMCID: PMC11461906 DOI: 10.1177/17588359241266179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 10/12/2024] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are mesenchymal tumours that originate from the interstitial cells of Cajal. GISTs are mainly driven by gain-of-function mutations in receptor tyrosine kinase or platelet-derived growth factor receptor alpha. Surgical resection is the only curative treatment for localized tumours and all currently approved medical GIST treatments are based on orally available tyrosine kinase inhibitors. Recent discoveries in the molecular and clinical features of GISTs have greatly impacted GIST management. Due to the provincially rather than nationally administered Canadian healthcare system, there have been inconsistencies in the treatment of GISTs across the country. Therefore, guidance on the latest knowledge, clinical management and treatment of GIST is needed to standardize the approach to GIST management nationwide. To establish pan-Canadian guidance, provide up-to-date data and harmonize the clinical practice of GIST management in high- and low-throughput centres across Canada; a panel of 20 physicians with extensive clinical experience in GIST management reviewed relevant literature. This included radiologists, pathologists, interventional radiologists, surgeons and medical oncologists across Canada. The structured literature focused on seven key domains: molecular profiling, radiological techniques/reporting, targeted localized therapy, intricacies of systemic treatments, emerging tests, multidisciplinary care and patient advocacy. This literature review, along with clinical expertise and opinion, was used to develop this concise and clinically relevant consensus paper to harmonize the knowledge and clinical practice on GIST management across Canada. The content presented here will help guide healthcare providers, especially in Canada, in terms of approaching and managing GIST.
Collapse
Affiliation(s)
- J. Robert Beecroft
- Division of Interventional Radiology, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, Toronto, ON, Canada
| | - Savtaj Brar
- Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Xiaolan Feng
- Division of Medical Oncology, Tom Baker Cancer Center, Calgary, AB, Canada
| | - Trevor Hamilton
- Department of Surgery, BC Cancer, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Cheng Han-Lee
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| | - Jan-Willem Henning
- Department of Oncology, Tom Baker Cancer Centre, Cuming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Korosh Khalili
- Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yoo-Joung Ko
- Department of Medicine, St. Michael’s Hospital, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher Lemieux
- Division of Hematology and Medical Oncology, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - David M. Liu
- Department of Radiology, University of British Columbia, School of Biomedical Engineering, Vancouver, BC, Canada
- Department of Interventional Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - D. Blair MacDonald
- Department of Medical Radiology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Noujaim
- Division of Medical Oncology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, QC, Canada
| | - Aaron Pollett
- Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Abdulazeez Salawu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Ramy Saleh
- Division of Medical Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alannah Smrke
- Division of Medical Oncology, BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Blair E. Warren
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kevin Zbuk
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Albiruni Abdul Razak
- Division of Medical Oncology, Princess Margaret Cancer Centre, Mount Sinai Hospital, University of Toronto, 610 University Ave., Toronto, ON M2G 2M9, Canada
| |
Collapse
|
6
|
Papachristos AJ, Serrao-Brown H, Gill AJ, Clifton-Bligh R, Sidhu SB. Medullary Thyroid Cancer: Molecular Drivers and Immune Cellular Milieu of the Tumour Microenvironment-Implications for Systemic Treatment. Cancers (Basel) 2024; 16:2296. [PMID: 39001359 PMCID: PMC11240419 DOI: 10.3390/cancers16132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
In this review, we explore the underlying molecular biology of medullary thyroid carcinoma (MTC) and its interplay with the host immune system. MTC is consistently driven by a small number of specific pathogenic variants, beyond which few additional genetic events are required for tumorigenesis. This explains the exceedingly low tumour mutational burden seen in most MTC, in contrast to other cancers. However, because of the low tumour mutational burden (TMB), there is a correspondingly low level of tumour-associated neoantigens that are presented to the host immune system. This reduces tumour visibility and vigour of the anti-tumour immune response and suggests the efficacy of immunotherapy in MTC is likely to be poor, acknowledging this inference is largely based on the extrapolation of data from other tumour types. The dominance of specific RET (REarranged during Transfection) pathogenic variants in MTC tumorigenesis rationalizes the observed efficacy of the targeted RET-specific tyrosine kinase inhibitors (TKIs) in comparison to multi-kinase inhibitors (MKIs). Therapeutic durability of pathway inhibitors is an ongoing research focus. It may be limited by the selection pressure TKI treatment creates, promoting survival of resistant tumour cell clones that can escape pathway inhibition through binding-site mutations, activation of alternate pathways, and modulation of the cellular and cytokine milieu of the tumour microenvironment (TME).
Collapse
Affiliation(s)
- Alexander J Papachristos
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Hazel Serrao-Brown
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Anthony J Gill
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Roderick Clifton-Bligh
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Department of Endocrinology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Stanley B Sidhu
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
7
|
Huang J, Chen J. Pharmacokinetics and pharmacodynamic evaluation of hyaluronic acid-modified imatinib-loaded PEGylated liposomes in CD44-positive Gist882 tumor-bearing mice. J Liposome Res 2024; 34:97-112. [PMID: 37401372 DOI: 10.1080/08982104.2023.2228888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
To develop a PEGylated and CD44-targeted liposomes, enabled by surface coating with hyaluronic acid (HA) via amide bond to improve the efficacy of imatinib mesylate (IM), for tumor-targeted cytoplasmic drug delivery. HA was covalently grafted on DSPE-PEG2000-NH2 polymer. HA-modified or unmodified PEGylated liposomes were prepared with ethanol injection method, and the stability, drug release, and cytotoxicity of these liposomes were studied. Meanwhile, intracellular drug delivery efficiency, antitumor efficacy, and pharmacokinetics were also investigated. Ex vivo fluorescence biodistribution was also detected by small animal imaging. In addition, endocytosis mechanism was also explored HA-coated PEGylated liposomes (137.5 nm ± 10.24) had a negative zeta potential (-29.3 mV ± 5.44) and high drug loading (27.8%, w/w). The liposomes were stable with cumulative drug leakage (<60%) under physiological conditions. Blank liposomes were nontoxic to Gist882 cells, and IM-loaded liposomes had higher cytotoxicity to Gist882 cells. HA-modified PEGylated liposomes were internalized more effectively than non-HA coating via CD44-mediated endocytosis. Besides, the cellular uptake of HA-modified liposomes also partly depends on caveolin-medicated endocytosis and micropinocytosis. In rats, both liposomes produced a prolonged half-life of IM (HA/Lp/IM: 14.97h; Lp/IM: 11.15h) by 3- to 4.5-folds compared with the IM solution (3.61h). HA-decorated PEGylated liposomes encapsulated IM exhibited strong inhibitory effect on tumor growth in Gist882 cell-bearing nude mice and formation of 2D/3D tumor spheroids. The Ki67 immunohistochemistry result was consistent with the above results. IM-loaded PEGylated liposomes modified with HA exerted the excellent anti-tumor effect on tumor-bearing mice and more drugs accumulated into the tumor site.
Collapse
Affiliation(s)
- Ju Huang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Jian Chen
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
8
|
Boichuk S, Dunaev P, Skripova V, Galembikova A, Bikinieva F, Shagimardanova E, Gazizova G, Deviatiiarov R, Valeeva E, Mikheeva E, Vasilyeva M, Kopnin P, Strelnikov V, Kiyamova R. Unraveling the Mechanisms of Sensitivity to Anti-FGF Therapies in Imatinib-Resistant Gastrointestinal Stromal Tumors (GIST) Lacking Secondary KIT Mutations. Cancers (Basel) 2023; 15:5354. [PMID: 38001614 PMCID: PMC10670741 DOI: 10.3390/cancers15225354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
We showed previously that inhibition of KIT signaling in GISTs activates FGFR-signaling pathway rendering cancer cells resistant to receptor tyrosine kinase inhibitor (RTKi) imatinib mesylate (IM) (Gleevec) despite of absence of secondary KIT mutations and thereby illustrating a rationale for the combined (e.g., KIT- and FGFR-targeted) therapies. We show here that long-term culture of IM-resistant GISTs (GIST-R1) with IM substantially down-regulates KIT expression and induces activation of the FGFR-signaling cascade, evidenced by increased expression of total and phosphorylated forms of FGFR1 and 2, FGF-2, and FRS-2, the well-known adaptor protein of the FGF-signaling cascade. This resulted in activation of both AKT- and MAPK-signaling pathways shown on mRNA and protein levels, and rendered cancer cells highly sensitive to pan-FGFR-inhibitors (BGJ 398, AZD 4547, and TAS-120). Indeed, we observed a significant decrease of IC50 values for BGJ 398 in the GIST subclone (GIST-R2) derived from GIST-R1 cells continuously treated with IM for up to 12 months. An increased sensitivity of GIST-R2 cells to FGFR inhibition was also revealed on the xenograft models, illustrating a substantial (>70%) decrease in tumor size in BGJ 398-treated animals when treated with this pan-FGFR inhibitor. Similarly, an increased intra-tumoral apoptosis as detected by immunohistochemical (IHC)-staining for cleaved caspase-3 on day 5 of the treatment was found. As expected, both BGJ 398 and IM used alone lacked the pro-apoptotic and growth-inhibitory activities on GIST-R1 xenografts, thereby revealing their resistance to these TKis when used alone. Important, the knockdown of FGFR2, and, in much less content, FGF-2, abrogated BGJ 398's activity against GIST-R2 cells both in vitro and in vivo, thereby illustrating the FGF-2/FGFR2-signaling axis in IM-resistant GISTs as a primary molecular target for this RTKi. Collectively, our data illustrates that continuous inhibition of KIT signaling in IM-resistant GISTs lacking secondary KIT mutations induced clonal heterogeneity of GISTs and resulted in accumulation of cancer cells with overexpressed FGF-2 and FGFR1/2, thereby leading to activation of FGFR-signaling. This in turn rendered these cells extremely sensitive to the pan-FGFR inhibitors used in combination with IM, or even alone, and suggests a rationale to re-evaluate the effectiveness of FGFR-inhibitors in order to improve the second-line therapeutic strategies for selected subgroups of GIST patients (e.g., IM-resistant GISTs lacking secondary KIT mutations and exhibiting the activation of the FGFR-signaling pathway).
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow 127051, Russia
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Vera Skripova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Firyuza Bikinieva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
- Loginov Moscow Clinical Scientific Center, Moscow 111123, Russia
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
| | - Ekaterina Mikheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Maria Vasilyeva
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Pavel Kopnin
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Vladimir Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow 115522, Russia;
| | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| |
Collapse
|
9
|
Venkataraman V, George S, Cote GM. Molecular Advances in the Treatment of Advanced Gastrointestinal Stromal Tumor. Oncologist 2023:oyad167. [PMID: 37315115 PMCID: PMC10400151 DOI: 10.1093/oncolo/oyad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Most gastrointestinal stromal tumors (GIST) are driven by activating mutations in Proto-oncogene c-KIT (KIT) or PDGFRA receptor tyrosine kinases (RTK). The emergence of effective therapies targeting these mutations has revolutionized the management of advanced GIST. However, following initiation of first-line imatinib, a tyrosine kinase inhibitor (TKI), nearly all patients will develop resistance within 2 years through the emergence of secondary resistance mutations in KIT, typically in the Adenosine Triphosphate (ATP)-binding site or activation loop of the kinase domain. Moreover, some patients have de novo resistance to imatinib, such as those with mutations in PDGFRA exon 18 or those without KIT or PDGFRA mutation. To target resistance, research efforts are primarily focused on developing next-generation inhibitors of KIT and/or PDGFRA, which can inhibit alternate receptor conformations or unique mutations, and compounds that impact complimentary pathogenic processes or epigenetic events. Here, we review the literature on the medical management of high-risk localized and advanced GIST and provide an update on clinical trial approaches to this disease.
Collapse
Affiliation(s)
- Vinayak Venkataraman
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| | - Suzanne George
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Gregory M Cote
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| |
Collapse
|
10
|
Teranishi R, Takahashi T, Kurokawa Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Makino T, Nakajima K, Eguchi H, Doki Y. Long-term response to pimitespib in postoperative recurrent gastrointestinal stromal tumors with PDGFRA D842V mutation: a case report. Surg Case Rep 2023; 9:54. [PMID: 37027098 PMCID: PMC10082137 DOI: 10.1186/s40792-023-01637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Exon 18 D842V, which is a point mutation from aspartic acid to valine at codon 842, is the most frequent mutation in Platelet-Derived Growth Factor Receptor alpha (PDGFRA)-mutated gastrointestinal stromal tumor (GIST). In the Japanese GIST guidelines, no standard systematic therapy is available for this type of GIST, which is refractory after recurrence. Recently, pimitespib (PIMI), a novel heat shock protein 90 (HSP90) inhibitor, was approved for the treatment of advanced GIST in a phase III study. This report presents a case of a long-term response to PIMI in GIST with PDGFRA D842V mutation. CASE PRESENTATION A 55-year-old woman was diagnosed with primary GIST of the stomach and underwent partial gastrectomy. Eight years after the operation, recurrent GISTs were identified as multiple recurrent peritoneal GISTs in the upper right abdomen and pelvic cavity. We administered tyrosine kinase inhibitors, but they achieved poor effects. After failure of the standard treatment, PIMI was administered and achieved a partial response in the patient. The highest reduction rate was 32.7%. After PIMI failed, we performed multiplex gene panel testing, which revealed the PDGFRA D842V mutation. CONCLUSIONS We report the first case of long-term response to PIMI in PDGFRA D842V mutant GIST. Pimitespib may be effective for treating GIST harboring this mutation by inhibiting HSP90.
Collapse
Affiliation(s)
- Ryugo Teranishi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Masucci MT, Motti ML, Minopoli M, Di Carluccio G, Carriero MV. Emerging Targeted Therapeutic Strategies to Overcome Imatinib Resistance of Gastrointestinal Stromal Tumors. Int J Mol Sci 2023; 24:6026. [PMID: 37046997 PMCID: PMC10094678 DOI: 10.3390/ijms24076026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common malignant mesenchymal neoplasms of the gastrointestinal tract. The gold standard for the diagnosis of GISTs is morphologic analysis with an immunohistochemical evaluation plus genomic profiling to assess the mutational status of lesions. The majority of GISTs are driven by gain-of-function mutations in the proto-oncogene c-KIT encoding the tyrosine kinase receptor (TKR) known as KIT and in the platelet-derived growth factor-alpha receptor (PDGFRA) genes. Approved therapeutics are orally available as tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA oncogenic activation. Among these, imatinib has changed the management of patients with unresectable or metastatic GISTs, improving their survival time and delaying disease progression. Nevertheless, the majority of patients with GISTs experience disease progression after 2-3 years of imatinib therapy due to the development of secondary KIT mutations. Today, based on the identification of new driving oncogenic mutations, targeted therapy and precision medicine are regarded as the new frontiers for GISTs. This article reviews the most important mutations in GISTs and highlights their importance in the current understanding and treatment options of GISTs, with an emphasis on the most recent clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Masucci
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Letizia Motti
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| |
Collapse
|
12
|
Impact of ABCG2 and ABCB1 Polymorphisms on Imatinib Plasmatic Exposure: An Original Work and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24043303. [PMID: 36834713 PMCID: PMC9963452 DOI: 10.3390/ijms24043303] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Adequate imatinib plasma levels are necessary to guarantee an efficacious and safe treatment in gastrointestinal stromal tumor (GIST) and chronic myeloid leukemia (CML) patients. Imatinib is a substrate of the drug transporters ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) that can affect its plasma concentration. In the present study, the association between three genetic polymorphisms in ABCB1 (rs1045642, rs2032582, rs1128503) and one in ABCG2 (rs2231142) and the imatinib plasma trough concentration (Ctrough) was investigated in 33 GIST patients enrolled in a prospective clinical trial. The results of the study were meta-analyzed with those of other seven studies (including a total of 649 patients) selected from the literature through a systematic review process. The ABCG2 c.421C>A genotype demonstrated, in our cohort of patients, a borderline association with imatinib plasma trough levels that became significant in the meta-analysis. Specifically, homozygous carriers of the ABCG2 c.421 A allele showed higher imatinib plasma Ctrough with respect to the CC/CA carriers (Ctrough, 1463.2 ng/mL AA, vs. 1196.6 ng/mL CC + AC, p = 0.04) in 293 patients eligible for the evaluation of this polymorphism in the meta-analysis. The results remained significant under the additive model. No significant association could be described between ABCB1 polymorphisms and imatinib Ctrough, neither in our cohort nor in the meta-analysis. In conclusion, our results and the available literature studies sustain an association between ABCG2 c.421C>A and imatinib plasma Ctrough in GIST and CML patients.
Collapse
|
13
|
Khosroyani HM, Klug LR, Heinrich MC. TKI Treatment Sequencing in Advanced Gastrointestinal Stromal Tumors. Drugs 2023; 83:55-73. [PMID: 36607590 PMCID: PMC10029090 DOI: 10.1007/s40265-022-01820-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Prior to the early 2000s, patients with advanced gastrointestinal stromal tumors (GIST) had very poor prognoses owing to a lack of effective therapies. The development of tyrosine kinase inhibitors at the turn of the century significantly improved the overall survival for patients with GIST. The resounding success of imatinib in the first clinical trial of a tyrosine kinase inhibitor to treat GIST led to its approval for first-line therapy for advanced GIST; this study was open to all comers and not restricted to any GIST subtype(s). The trials that led to the approvals of second-, third-, and fourth-line therapy for advanced GIST were also open to all patients with advanced/metastatic GIST. Only in retrospect do we realize the role that the molecular subtypes played in the results observed in these studies. In this review, we discuss the studies that led to the US Food and Drug Administration approval of imatinib (first line), sunitinib (second line), regorafenib (third line), and ripretinib (fourth line) for advanced KIT-mutant GIST. In addition, we review how information about GIST molecular subtypes has been used to accelerate the approval of other targeted therapies for non-KIT mutant GIST, leading to the approval of five additional drugs indicated for the treatment of specific GIST molecular subtypes. We also discuss how our understanding of the molecular subtypes will play a role in the next generation of therapeutic approaches for treating advanced GIST.
Collapse
Affiliation(s)
- Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
| |
Collapse
|
14
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022; 23:16091. [PMID: 36555740 PMCID: PMC9785196 DOI: 10.3390/ijms232416091] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
15
|
Dutch Gastrointestinal Stromal Tumor (GIST) Registry Data Comparing Sunitinib with Imatinib Dose Escalation in Second-Line Advanced Non-KIT Exon 9 Mutated GIST Patients. Target Oncol 2022; 17:627-634. [PMID: 36374447 PMCID: PMC9684294 DOI: 10.1007/s11523-022-00926-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Background The prognosis of patients with advanced gastrointestinal stromal tumor (GIST) has improved greatly after the introduction of imatinib. However, primary or secondary resistance to imatinib occurs in the majority of patients. Sunitinib is the standard second line treatment in exon-9 mutated GIST. Objective We compared the clinical outcomes of sunitinib with imatinib dose escalation in patients with progressive advanced non-KIT exon 9 mutated GIST after failure of first line imatinib. Patients and Methods A retrospective study was performed, retrieving data from a real-life database (Dutch GIST Registry) including patients with GIST treated with sunitinib or imatinib dose escalation after failure on first line imatinib 400 mg daily. Primary outcome measures were progression free survival (PFS) and overall survival (OS). Results In total, 110 patients were included, 72 (65.5%) patients were treated with sunitinib (group A) and 38 (34.5%) received an imatinib dose escalation (group B). Important prognostic features at baseline, such as tumor size, stage at diagnosis, mitotic count and localization were equally distributed in both groups. No significant difference (p = 0.88) between median PFS in group A [8.7 months (95% CI 5.6–11.3)] and group B [5.6 months, (95% CI 2.6–8.7)] was observed. Moreover, the OS was similar between group A and group B; 63.2 months and 63.4 months, respectively. Conclusion This study represents a proper sample size cohort containing detailed data on mutational status of patients with advanced GIST. We illustrated that imatinib dose escalation could serve as a good alternative for sunitinib as second-line treatment in patients with a non-KIT exon 9 mutation.
Collapse
|
16
|
Wang C, Shen Z, Jiang K, Gao Z, Ye Y. Establishment of the prediction model and biological mechanism exploration for secondary imatinib-resistant in gastrointestinal stromal tumor. Scand J Gastroenterol 2022; 57:1334-1343. [PMID: 35723035 DOI: 10.1080/00365521.2022.2087475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A gastrointestinal stromal tumor (GIST) is mostly driven by the auto-activated, mutant KIT receptor tyrosine kinase gene or by the platelet-derived growth factor receptor alpha. Inhibition of KIT-signaling is the primary molecular target therapy for GIST, which is performed by the drug imatinib clinically. However, more than half of advanced or metastatic GIST develop secondary resistance to imatinib within 2 years after initiation of treatment, and the mechanism of acquired imatinib-resistant in GIST remains unclear. Therefore, we designed the present study, and firstly analyzed the gene expression profile of imatinib-resistant and sensitive GIST from GEO DataSet and identified 44 differential expressed genes. Then, a model including nine genes with their expressed coefficients was identified as a risk score to predict imatinib-resistant GIST. Internal and external validation of the prediction model was performed through the ROC curve, and the area under the curve was 0.967 (95%CI 0.901-1.000) and 0.917 (95%CI 0.753-1.000), separately. Lastly, the effect of immune, m6A, pyroptosis, and ferroptosis-related genes on imatinib-resistant GIST was also assessed because DNA replication was the most enriched biological function of DEGs after functional annotation, pathway enrichment, and protein-protein interaction network analyses. In conclusion, the present study established a novel model to predict secondary imatinib-resistant GIST. Meanwhile, the bioinformatic mining results provided potential and promising targets for imatinib-resistant therapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Gastrointestinal Surgery, Peking University Peoplès Hospital, Beijing, PR China.,Laboratory of Surgical Oncology, Peking University Peoplès Hospital, Beijing, PR China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University Peoplès Hospital, Beijing, PR China
| | - Zhanlong Shen
- Department of Gastrointestinal Surgery, Peking University Peoplès Hospital, Beijing, PR China.,Laboratory of Surgical Oncology, Peking University Peoplès Hospital, Beijing, PR China
| | - Kewei Jiang
- Department of Gastrointestinal Surgery, Peking University Peoplès Hospital, Beijing, PR China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University Peoplès Hospital, Beijing, PR China
| | - Zhidong Gao
- Department of Gastrointestinal Surgery, Peking University Peoplès Hospital, Beijing, PR China.,Laboratory of Surgical Oncology, Peking University Peoplès Hospital, Beijing, PR China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University Peoplès Hospital, Beijing, PR China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University Peoplès Hospital, Beijing, PR China.,Laboratory of Surgical Oncology, Peking University Peoplès Hospital, Beijing, PR China
| |
Collapse
|
17
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
18
|
Khachatryan V, Muazzam A, Hamal C, Velugoti LSDR, Tabowei G, Gaddipati GN, Mukhtar M, Alzubaidee MJ, Dwarampudi RS, Mathew S, Bichenapally S, Mohammed L. The Role of Regorafenib in the Management of Advanced Gastrointestinal Stromal Tumors: A Systematic Review. Cureus 2022; 14:e28665. [PMID: 36199644 PMCID: PMC9526434 DOI: 10.7759/cureus.28665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Regorafenib, a multi-kinase inhibitor, has been widely used to treat patients with gastrointestinal stromal tumors (GIST) who failed the initial treatment with imatinib and sunitinib. This systematic review aims to demonstrate the efficacy and safety of regorafenib for patients with metastatic and/or unresectable GIST. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to perform this systematic review. We searched PubMed, Science Direct, and Cochrane databases to identify relevant articles based on predefined selection criteria. The implication of the search strategy results in 776 records from all databases. We excluded conference abstracts, discussion articles, case reports, case series, systematic reviews, and other observational non-intervention studies from the study, along with the articles published in languages other than English. After the screening and quality assessment, 10 studies were selected for final review - two randomized controlled trials and eight non-randomized prospective and retrospective review articles of intervention. Regorafenib improved the survival rates of patients after the failure of imatinib and sunitinib treatment, with an acceptable safety profile. Close monitoring of the patients may be needed to detect and manage the grade 4 or higher adverse events.
Collapse
Affiliation(s)
- Vahe Khachatryan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Asmaa Muazzam
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chandani Hamal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Godfrey Tabowei
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Greeshma N Gaddipati
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Mukhtar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed J Alzubaidee
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sheena Mathew
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sumahitha Bichenapally
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
19
|
Huang WK, Wu CE, Wang SY, Chang CF, Chou WC, Chen JS, Yeh CN. Systemic Therapy for Gastrointestinal Stromal Tumor: Current Standards and Emerging Challenges. Curr Treat Options Oncol 2022; 23:1303-1319. [PMID: 35976553 PMCID: PMC9402763 DOI: 10.1007/s11864-022-00996-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Gastrointestinal stromal tumor (GIST), though rare, is the most common mesenchymal tumors of the gastrointestinal tract. KIT or PDGFRα mutation plays as an oncogenic driver in the majority of GISTs. Surgical resection is the only curative treatment for localized disease. The discovery of imatinib with promising anti-tumor effect and successive tyrosine kinase inhibitors (TKI), including second-line sunitinib and third-line regorafenib, revolutionized the management of advanced and metastatic GIST over the past two decades. Recently, ripretinib and avapritinib were approved for the fourth line setting and for PDGFRA exon 18-mutant GIST in first-line setting, respectively. Despite multi-line TKIs exerted ability of disease control, drug resistance remained an obstacle for preventing rapid disease progression. Experimental TKIs or novel therapeutic targets may further improve treatment efficacy. Immune checkpoint inhibitors such as anti-programmed cell death protein-1 (PD1) and anti-CTL-associated antigen 4 (CTLA-4) showed moderate response in early phase trials composed of heavily pretreated patients. KIT/PDGFRα wild-type GISTs are generally less sensitive to imatinib and late-line TKIs. Recent studies demonstrated that targeting fibroblast growth factor receptor signaling may be a potential target for the wild-type GISTs.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Yu Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Surgery and GIST team, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Fu Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Shi Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Surgery and GIST team, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 2022; 19:328-341. [PMID: 35217782 PMCID: PMC11488293 DOI: 10.1038/s41571-022-00606-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jason D Kent
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
21
|
Teranishi R, Takahashi T, Nishida T, Hirota S, Kurokawa Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Makino T, Motoori M, Omori T, Nakajima K, Eguchi H, Doki Y. Efficacy and safety of regorafenib in Japanese patients with advanced gastrointestinal stromal tumors. Int J Clin Oncol 2022; 27:1164-1172. [PMID: 35435530 DOI: 10.1007/s10147-022-02159-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Regorafenib is an oral multi-kinase inhibitor that has been established as third-line treatment for patients after the failure of imatinib and sunitinib. However, since clinical data of regorafenib in the Japanese population are still lacking, the management of regorafenib is mainly based on the clinical experience of each oncologist. The aim of this study was to evaluate the efficacy and safety of regorafenib in a Japanese population. METHODS Thirty-three patients treated with regorafenib for metastatic and recurrent gastrointestinal stromal tumors were retrospectively enrolled. This study investigated the anti-tumor effect, including overall survival, progression-free survival, and safety, which was evaluated based on the incidence of adverse events. RESULTS The median overall survival of patients treated with regorafenib was 23.8 months and the 1-year overall survival rate was 80.0%, the median progression-free survival was 7.1 months and the 1-year progression-free survival rate was 40.2%. The responses to regorafenib were partial response in 3 cases (9.1%), stable disease in 17 (51.5%), progressive disease in 10 (30.3%), and non-evaluable in 3 (9.1%). The disease control rate was 54.0%. Treatment-related adverse events were reported in all patients, with the most common being hand-foot syndrome (72.7%), followed by liver damage (36.4%) and diarrhea (27.3%), and six patients (20.0%) were discontinued due to adverse events. CONCLUSION This is the first report of Japanese patients with gastrointestinal stromal tumors treated with regorafenib. Regorafenib showed efficacy and a manageable safety profile in Japanese patients with advanced gastrointestinal stromal tumors, which was comparable with previous studies.
Collapse
Affiliation(s)
- Ryugo Teranishi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan.
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78, Fukushima-ku, Osaka City, Osaka, 553-0003, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Masaaki Motoori
- Department of Surgery, Osaka General Medical Center, 3-1-56, Bandai-Higashi, Sumiyoshi-ku, Osaka City, Osaka, 558-8558, Japan
| | - Takeshi Omori
- Department of Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka City, Osaka, 541-8567, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Liu J, Gao J, Wang A, Jiang Z, Qi S, Qi Z, Liu F, Yu K, Cao J, Chen C, Hu C, Wu H, Wang L, Wang W, Liu Q, Liu J. Nintedanib overcomes drug resistance from upregulation of FGFR signaling and imatinib-induced KIT mutations in gastrointestinal stromal tumors. Mol Oncol 2022; 16:1761-1774. [PMID: 35194937 PMCID: PMC9019892 DOI: 10.1002/1878-0261.13199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Drug resistance remains a major challenge in the clinical treatment of gastrointestinal stromal tumours (GISTs). While acquired on‐target mutations of mast/stem cell growth factor receptor (KIT) kinase is the major resistance mechanism, activation of alternative signalling pathways may also play a role. Although several second‐ and third‐generation KIT kinase inhibitors have been developed that could overcome some of the KIT mutations conferring resistance, the low clinical responses and narrow safety window have limited their broad application. The present study revealed that nintedanib not only overcame resistance induced by a panel of KIT primary and secondary mutations, but also overcame ERK‐reactivation‐mediated resistance caused by the upregulation of fibroblast growth factor (FGF) activity. In preclinical models of GISTs, nintedanib significantly inhibited the proliferation of imatinib‐resistant cells, including GIST‐5R, GIST‐T1/T670I and GIST patient‐derived primary cells. In addition, it also exhibited dose‐dependent inhibition of ERK phosphorylation upon FGF ligand stimulation. In vivo antitumour activity was also observed in several xenograft GIST models. Considering the well‐documented safety and pharmacokinetic profiles of nintedanib, this finding provides evidence for the repurposing of nintedanib as a new therapy for the treatment of GIST patients with de novo or acquired resistance to imatinib.
Collapse
Affiliation(s)
- Juan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jingjing Gao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Feiyang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Kailin Yu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
23
|
Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers (Basel) 2022; 14:cancers14030778. [PMID: 35159045 PMCID: PMC8833781 DOI: 10.3390/cancers14030778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Currently, the therapeutic arsenal to fight cancers is extensive. Among these, antibody–drug conjugates (ADCs) consist in an antibody linked to a cytotoxic agent, allowing a specific delivery to tumor cells. ADCs are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology. Abstract Antibody–drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.
Collapse
|
24
|
Li J, Guo S, Sun Z, Fu Y. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Front Cell Dev Biol 2022; 10:808591. [PMID: 35174150 PMCID: PMC8841737 DOI: 10.3389/fcell.2022.808591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the gastrointestinal tracts and a model for the targeted therapy of solid tumors because of the oncogenic driver mutations in KIT and PDGDRA genes, which could be effectively inhibited by the very first targeted agent, imatinib mesylate. Most of the GIST patients could benefit a lot from the targeted treatment of this receptor tyrosine kinase inhibitor. However, more than 50% of the patients developed resistance within 2 years after imatinib administration, limiting the long-term effect of imatinib. Noncoding RNAs (ncRNAs), the non-protein coding transcripts of human, were demonstrated to play pivotal roles in the resistance of various chemotherapy drugs. In this review, we summarized the mechanisms of how ncRNAs functioning on the drug resistance in GIST. During the drug resistance of GIST, there were five regulating mechanisms where the functions of ncRNAs concentrated: oxidative phosphorylation, autophagy, apoptosis, drug target changes, and some signaling pathways. Also, these effects of ncRNAs in drug resistance were divided into two aspects. How ncRNAs regulate drug resistance in GIST was further summarized according to ncRNA types, different drugs and categories of resistance. Moreover, clinical applications of these ncRNAs in GIST chemotherapies concentrated on the prognostic biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuning Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| |
Collapse
|
25
|
Balogun OS, Osinowo AO, Abdulkareem FB, Ajayi OO, Atoyebi OA, Rocha-Afodu JTD. Clinicopathological features, risk profile assessment, and the surgical outcome of gastrointestinal stromal tumors in Lagos, Nigeria. Ann Afr Med 2022; 21:432-438. [PMID: 36412347 PMCID: PMC9850878 DOI: 10.4103/aam.aam_172_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs originate from the interstitial cells of Cajal and are most commonly found in the stomach. Most available reports on GISTs in the Sub-Sahara Africa were in case reports and case series. Aim To report our local experience and challenges in the management of GISTs in 33 patients in Lagos, Nigeria. Methodology This is a descriptive study of adult patients of 16 years and above managed for GISTs at the Lagos University Teaching Hospital and some Lagos private hospital facilities between January 2015 and March 2021. Information on the patients' demographic characteristics, clinicopathological features, surgery performed, and postoperative complications were retrieved from the hospital's medical records for analysis. Data analysis was carried out using IBM SPSS Statistics for Windows, Version 23.0., Armonk, NY, USA: IBM Corp. Results Thirty-three patients comprising 19 males and 14 females with a male: female ratio of 1.4:1 were included in the study. The mean age at presentation was 52.5 years. Abdominal pain (69.7%) and anemic symptoms (45.4%) were the principal modes of presentation. Abdominal computed tomography (CT) scan revealed stomach as the primary source of GISTs in 75.8% of patients. Forty-five percent of the patients had CT features of local organ invasion and 27.2% had features of metastasis. Surgical resection was feasible in 28 (84.8%) patients. Postoperative mortality was recorded in two patients with recurrent GISTs. Histological cell types were spindle cell (57.6%), mixed spindle and epithelioid (24.2%), and epithelioid (18.2%). Joensuu high-risk tumors (64. 3%) were the most prevalent in our series. Conclusion Advanced-stage disease and features of anemia were hallmarks of GISTs among patients in this series. Surgical resection of GIST may be possible in some cases of advanced disease. Spindle cell types and high-risk GISTs were the most common pathological varieties in our patients.
Collapse
Affiliation(s)
- Olanrewaju Samuel Balogun
- Department of Surgery, General Surgery Unit, Lagos University Teaching Hospital, Lagos, Nigeria,Address for correspondence: Dr. Olanrewaju Samuel Balogun, Department of Surgery, College of Medicine, Lagos University Teaching Hospital, University of Lagos, Nigeria. E-mail:
| | - Adedapo Olumide Osinowo
- Department of Surgery, General Surgery Unit, Lagos University Teaching Hospital, Lagos, Nigeria
| | | | - Olugbenga O. Ajayi
- Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Oluwole Ayoola Atoyebi
- Department of Surgery, General Surgery Unit, Lagos University Teaching Hospital, Lagos, Nigeria
| | | |
Collapse
|
26
|
Targeted therapy for drug-tolerant persister cells after imatinib treatment for gastrointestinal stromal tumours. Br J Cancer 2021; 125:1511-1522. [PMID: 34611306 DOI: 10.1038/s41416-021-01566-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the effectiveness of tyrosine kinase inhibitors (TKI), gastrointestinal stromal tumours (GIST) develop after the withdrawal of TKI. Based on previous studies, a subpopulation of drug-tolerant cells called "persister cells" may be responsible for the recurrence and have thus, gained attention as a novel target in cancer therapy. METHODS The metabolic changes were investigated in imatinib-derived persister GIST cells. We investigated the efficacy and the mechanism of GPX4 inhibitor, which is known as a major inducer of "ferroptosis". We also evaluated the effects of RSL3 to the gefitinib-derived persister lung cancer cells. RESULTS We demonstrated a downregulation of glucose metabolism, subsequent decrease in the glutathione level and sensitivity to glutathione peroxidase 4 (GPX4) inhibitor, RSL3 in persister cells. As the cell death induced by RSL3 was found to be "iron-dependent" and "caspase-independent", loss of GPX4 function could have possibly induced selective persister cell ferroptotic death. In the xenograft model, we confirmed the inhibition of tumour regrowth after discontinuation of imatinib treatment. Moreover, RSL3 prevented the growth of gefitinib-derived persister lung cancer cells. CONCLUSIONS RSL3 combined with TKI may be a promising therapy for both GIST and epidermal growth factor receptor-mutated lung cancer.
Collapse
|
27
|
Kang YK, George S, Jones RL, Rutkowski P, Shen L, Mir O, Patel S, Zhou Y, von Mehren M, Hohenberger P, Villalobos V, Brahmi M, Tap WD, Trent J, Pantaleo MA, Schöffski P, He K, Hew P, Newberry K, Roche M, Heinrich MC, Bauer S. Avapritinib Versus Regorafenib in Locally Advanced Unresectable or Metastatic GI Stromal Tumor: A Randomized, Open-Label Phase III Study. J Clin Oncol 2021; 39:3128-3139. [PMID: 34343033 PMCID: PMC8478403 DOI: 10.1200/jco.21.00217] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Primary or secondary mutations in KIT or platelet-derived growth factor receptor alpha (PDGFRA) underlie tyrosine kinase inhibitor resistance in most GI stromal tumors (GISTs). Avapritinib selectively and potently inhibits KIT- and PDGFRA-mutant kinases. In the phase I NAVIGATOR study (NCT02508532), avapritinib showed clinical activity against PDGFRA D842V-mutant and later-line KIT-mutant GIST. VOYAGER (NCT03465722), a phase III study, evaluated efficacy and safety of avapritinib versus regorafenib as third-line or later treatment in patients with unresectable or metastatic GIST. PATIENTS AND METHODS VOYAGER randomly assigned patients 1:1 to avapritinib 300 mg once daily (4 weeks continuously) or regorafenib 160 mg once daily (3 weeks on and 1 week off). Primary end point was progression-free survival (PFS) by central radiology per RECIST version 1.1 modified for GIST. Secondary end points included objective response rate, overall survival, safety, disease control rate, and duration of response. Regorafenib to avapritinib crossover was permitted upon centrally confirmed disease progression. RESULTS Four hundred seventy-six patients were randomly assigned (avapritinib, n = 240; regorafenib, n = 236). Median PFS was not statistically different between avapritinib and regorafenib (hazard ratio, 1.25; 95% CI, 0.99 to 1.57; 4.2 v 5.6 months; P = .055). Overall survival data were immature at cutoff. Objective response rates were 17.1% and 7.2%, with durations of responses of 7.6 and 9.4 months for avapritinib and regorafenib; disease control rates were 41.7% (95% CI, 35.4 to 48.2) and 46.2% (95% CI, 39.7 to 52.8). Treatment-related adverse events (any grade, grade ≥ 3) were similar for avapritinib (92.5% and 55.2%) and regorafenib (96.2% and 57.7%). CONCLUSION Primary end point was not met. There was no significant difference in median PFS between avapritinib and regorafenib in patients with molecularly unselected, late-line GIST.
Collapse
Affiliation(s)
- Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Suzanne George
- Department of Medical Oncology, Sarcoma Center, Dana Farber Cancer Institute, Boston, MA
| | - Robin L. Jones
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Piotr Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | | | - Margaret von Mehren
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, University of Heidelberg (UMM), Mannheim, Germany
| | - Victor Villalobos
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO
- Currently at Janssen Oncology, Aurora, CO
| | | | - William D. Tap
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Jonathan Trent
- Department of Medicine, University of Miami-Sylvester Comprehensive Cancer Center, Miami, FL
| | | | - Patrick Schöffski
- Department of General Medicine Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Kevin He
- Blueprint Medicines Corporation, Cambridge, MA
| | - Paggy Hew
- Blueprint Medicines Corporation, Cambridge, MA
| | | | - Maria Roche
- Blueprint Medicines Corporation, Cambridge, MA
| | - Michael C. Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, OR
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, DKTK-Partner-Site, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Kim JO, Kim KH, Baek EJ, Park B, So MK, Ko BJ, Ko HJ, Park SG. A novel anti-c-Kit antibody-drug conjugate to treat wild-type and activating-mutant c-Kit-positive tumors. Mol Oncol 2021; 16:1290-1308. [PMID: 34407310 PMCID: PMC8936518 DOI: 10.1002/1878-0261.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
c‐Kit overexpression and activating mutations, which are reported in various cancers, including gastrointestinal stromal tumor (GIST), small‐cell lung cancer (SCLC), acute myeloid leukemia, acral melanoma, and systemic mastocytosis (SM), confer resistance to tyrosine kinase inhibitors (TKIs). To overcome TKI resistance, an anti‐c‐Kit antibody–drug conjugate was developed in this study to treat wild‐type and mutant c‐Kit‐positive cancers. NN2101, a fully human IgG1, was conjugated to DM1, a microtubule inhibitor, through N‐succinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐1‐carboxylate (SMCC) (to give NN2101‐DM1). The antitumor activity of NN2101‐DM1 was evaluated in vitro and in vivo using various cancer cell lines. NN2101‐DM1 exhibited potent growth‐inhibitory activities against c‐Kit‐positive cancer cell lines. In a mouse xenograft model, NN2101‐DM1 exhibited potent growth‐inhibitory activities against imatinib‐resistant GIST and SM cells. In addition, NN2101‐DM1 exhibited a significantly higher anti‐cancer effect than carboplatin/etoposide against SCLC cells where c‐Kit does not mediate cancer pathogenesis. Furthermore, the combination of NN2101‐DM1 with imatinib in imatinib‐sensitive GIST cells induced complete remission compared with treatment with NN2101‐DM1 or imatinib alone in mouse xenograft models. These results suggest that NN2101‐DM1 is a potential therapeutic agent for wild‐type and mutant c‐Kit‐positive cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | | | - Eun Ji Baek
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | - Bomi Park
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | - Min Kyung So
- New Drug Development Center, Osong Medical Innovation Foundation, Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medicinal Sciences, Sungshin Women's University, Seoul, Korea
| | | | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon-si, Korea.,Novelty Nobility, Seongnam-si, Korea
| |
Collapse
|
29
|
Gupta A, Ma S, Che K, Pobbati AV, Rubin BP. Inhibition of PI3K and MAPK pathways along with KIT inhibitors as a strategy to overcome drug resistance in gastrointestinal stromal tumors. PLoS One 2021; 16:e0252689. [PMID: 34324512 PMCID: PMC8320897 DOI: 10.1371/journal.pone.0252689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Activating mutations in KIT/PDGFRA receptor tyrosine kinases drive gastrointestinal stromal tumors (GIST). KIT/PDGFRA inhibitors, such as imatinib do not evoke an effective cytocidal response, leaving room for quiescence and development of multiple secondary resistance mutations. As the majority of the secondary resistance clones activate PI3K and MAPK pathways, we investigated whether combined targeting of KIT/PI3K/MAPK (KPM) pathways overcomes drug resistance and quiescence in GIST cells. We monitored the proliferation of imatinib-sensitive and-resistant GIST cell lines after treating them with various combinations of drugs to inhibit KPM pathways. Cytocidal response was evaluated through proliferation, apoptosis and colony outgrowth assays. Combined inhibition of KPM signaling pathways using a KPM inhibitor cocktail decreased the survival of drug-resistant GIST cells and dramatically reduced their proliferation. Downstream pathway analysis showed that the residual PI3K/MAPK signaling observed after KIT inhibitor treatment plays a role in mediating quiescence and drug resistance. The KPM inhibitor cocktail with sunitinib or regorafenib effectively induced apoptosis and prevented colony outgrowth after long-term drug removal, suggesting that it can be used as an effective strategy against quiescence and drug resistance in metastatic GIST.
Collapse
Affiliation(s)
- Anu Gupta
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
30
|
Molecular-Genetic Basis of Gastrointestinal Stromal Tumor Personalized Therapy by Receptor Tyrosine Kinase Inhibitors (A Review). Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Bauer S, George S, von Mehren M, Heinrich MC. Early and Next-Generation KIT/PDGFRA Kinase Inhibitors and the Future of Treatment for Advanced Gastrointestinal Stromal Tumor. Front Oncol 2021; 11:672500. [PMID: 34322383 PMCID: PMC8313277 DOI: 10.3389/fonc.2021.672500] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor an activating mutation in either the KIT or PDGFRA receptor tyrosine kinases. Approval of imatinib, a KIT/PDGFRA tyrosine kinase inhibitor (TKI), meaningfully improved the treatment of advanced GIST. Other TKIs subsequently gained approval: sunitinib as a second-line therapy and regorafenib as a third-line therapy. However, resistance to each agent occurs in almost all patients over time, typically due to secondary kinase mutations. A major limitation of these 3 approved therapies is that they target the inactive conformation of KIT/PDGFRA; thus, their efficacy is blunted against secondary mutations in the kinase activation loop. Neither sunitinib nor regorafenib inhibit the full spectrum of KIT resistance mutations, and resistance is further complicated by extensive clonal heterogeneity, even within single patients. To combat these limitations, next-generation TKIs were developed and clinically tested, leading to 2 new USA FDA drug approvals in 2020. Ripretinib, a broad-spectrum KIT/PDGFRA inhibitor, was recently approved for the treatment of adult patients with advanced GIST who have received prior treatment with 3 or more kinase inhibitors, including imatinib. Avapritinib, a type I kinase inhibitor that targets active conformation, was approved for the treatment of adults with unresectable or metastatic GIST harboring a PDGFRA exon 18 mutation, including PDGFRA D842V mutations. In this review, we will discuss how resistance mutations have driven the need for newer treatment options for GIST and compare the original GIST TKIs with the next-generation KIT/PDGFRA kinase inhibitors, ripretinib and avapritinib, with a focus on their mechanisms of action.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Margaret von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Michael C. Heinrich
- Department of Medicine, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
32
|
Lu X, Pang Y, Cao H, Liu X, Tu L, Shen Y, Jia X, Lee JC, Wang Y. Integrated Screens Identify CDK1 as a Therapeutic Target in Advanced Gastrointestinal Stromal Tumors. Cancer Res 2021; 81:2481-2494. [PMID: 33727226 DOI: 10.1158/0008-5472.can-20-3580] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Oncogenic KIT or PDGFRA receptor tyrosine kinase mutations are compelling therapeutic targets in gastrointestinal stromal tumor (GIST), and treatment with the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with advanced GIST. Polyclonal emergence of KIT/PDGFRA secondary mutations is the main mechanism of imatinib progression, making it challenging to overcome KIT/PDGFRA-inhibitor resistance. It is unclear whether there are other therapeutic targets in advanced GIST. Using genome-wide transcriptomic profiling of advanced versus early-stage GIST and CRISPR knockout functional screens, we demonstrate that CDK1 is frequently highly expressed in advanced GIST but not in early-stage GIST across three patient cohorts. High expression of CDK1 was associated with malignancy in GIST. CDK1 was critically required for advanced GIST, including imatinib-resistant GIST. CDK1 ablation led to robust proliferation inhibition. A mass spectrometry-based proteomics screen further revealed that AKT is a novel substrate of CDK1 kinase in GIST. CDK1 bound AKT and regulated its phosphorylation, thereby promoting GIST proliferation and progression. Importantly, a pharmacologic inhibitor of CDK1, RO-3306, disrupted GIST cell proliferation in CDK1 highly expressed GIST but not in CDK1-negative GIST cells and nontransformed fibroblast cells. Treatment with RO-3306 reduced tumor growth in both imatinib-resistant and imatinib-sensitive GIST xenograft mouse models. Our findings suggest that CDK1 represents a druggable therapeutic target in GIST and warrants further testing in clinical trials. SIGNIFICANCE: These findings propose CDK1 as a novel cell-cycle-independent vulnerability in gastrointestinal stromal tumors, representing a new therapeutic opportunity for patients with advanced disease.
Collapse
Affiliation(s)
- Xiaojing Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuzhi Pang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Tu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaona Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jen-Chieh Lee
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
33
|
George S, Jones RL, Bauer S, Kang YK, Schöffski P, Eskens F, Mir O, Cassier PA, Serrano C, Tap WD, Trent J, Rutkowski P, Patel S, Chawla SP, Meiri E, Gordon M, Zhou T, Roche M, Heinrich MC, von Mehren M. Avapritinib in Patients With Advanced Gastrointestinal Stromal Tumors Following at Least Three Prior Lines of Therapy. Oncologist 2021; 26:e639-e649. [PMID: 33453089 PMCID: PMC8018324 DOI: 10.1002/onco.13674] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Most gastrointestinal stromal tumors (GIST) driven by KIT or platelet-derived growth factor receptor A (PDGFRA) mutations develop resistance to available tyrosine kinase inhibitor (TKI) treatments. NAVIGATOR is a two-part, single-arm, dose escalation and expansion study designed to evaluate safety and antineoplastic activity of avapritinib, a selective, potent inhibitor of KIT and PDGFRA, in patients with unresectable or metastatic GIST. MATERIALS AND METHODS Eligible patients were 18 years or older with histologically or cytologically confirmed unresectable GIST and Eastern Cooperative Oncology Group performance status ≤2 and initiated avapritinib at 300 mg or 400 mg once daily. Primary endpoints were safety in patients who initiated avapritinib at 300 mg or 400 mg once daily and overall response rate (ORR) in patients in the safety population with three or more previous lines of TKI therapy. RESULTS As of November 16, 2018, in the safety population (n = 204), the most common adverse events (AEs) were nausea (131 [64%]), fatigue (113 [55%]), anemia (102 [50%]), cognitive effects (84 [41%]), and periorbital edema (83 [41%]); 17 (8%) patients discontinued due to treatment-related AEs, most frequently confusion, encephalopathy, and fatigue. ORR in response-evaluable patients with GIST harboring KIT or non-D842V PDGFRA mutations and with at least three prior therapies (n = 103) was 17% (95% confidence interval [CI], 10-25). Median duration of response was 10.2 months (95% CI, 7.2-10.2), and median progression-free survival was 3.7 months (95% CI, 2.8-4.6). CONCLUSION Avapritinib has manageable toxicity with meaningful clinical activity as fourth-line or later treatment in some patients with GIST with KIT or PDGFRA mutations. IMPLICATIONS FOR PRACTICE In the NAVIGATOR trial, avapritinib, an inhibitor of KIT and platelet-derived growth factor receptor A tyrosine kinases, provided durable responses in a proportion of patients with advanced gastrointestinal stromal tumors (GIST) who had received three or more prior therapies. Avapritinib had a tolerable safety profile, with cognitive adverse events manageable with dose interruptions and modification in most cases. These findings indicate that avapritinib can elicit durable treatment responses in some patients with heavily pretreated GIST, for whom limited treatment options exist.
Collapse
Affiliation(s)
- Suzanne George
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robin L Jones
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Patrick Schöffski
- University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Ferry Eskens
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | | | - Cesar Serrano
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - William D Tap
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| | - Jonathan Trent
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Piotr Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Sant P Chawla
- Sarcoma Oncology Center, Santa Monica, California, USA
| | - Eval Meiri
- Cancer Treatment Center of America, Atlanta, Georgia, USA
| | - Michael Gordon
- HonorHealth Research Institute, Scottsdale, Arizona, USA
| | - Teresa Zhou
- Blueprint Medicines Corporation, Cambridge, Massachusetts, USA
| | - Maria Roche
- Blueprint Medicines Corporation, Cambridge, Massachusetts, USA
| | - Micahel C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Sarcomas are a diverse group of rare solid tumors with limited treatment options for patients with advanced, inoperable disease. Cabozantinib is a tyrosine kinase inhibitor currently approved for advanced renal cell, hepatocellular, and medullary thyroid carcinoma. Cabozantinib has potent activity against a variety of kinases, including MET, vascular endothelial growth factor receptor, and AXL, that are associated with sarcoma growth and development. Here we review the preclinical findings and clinical development of cabozantinib in the treatment of soft tissue sarcoma, gastrointestinal stromal tumors (GIST), osteosarcoma, and Ewing sarcoma. RECENT FINDINGS In vitro, cabozantinib has shown relevant activity in inhibiting the growth and viability of soft tissue sarcoma, GIST, osteosarcoma, and Ewing sarcoma tumor cell lines. Cabozantinib also promoted the regression of GIST in various murine xenografts, including imatinib-resistant models. More than 10 prospective trials with cabozantinib that included patients with sarcomas have been completed or are currently ongoing. Clinical activity with cabozantinib has been recently reported in phase 2 clinical trials for patients with GIST and for patients with osteosarcoma or Ewing sarcoma. SUMMARY Cabozantinib has shown promising activity for the treatment of various sarcomas, supporting further evaluation in this setting.
Collapse
|
35
|
Mohammadi M, Gelderblom H. Systemic therapy of advanced/metastatic gastrointestinal stromal tumors: an update on progress beyond imatinib, sunitinib, and regorafenib. Expert Opin Investig Drugs 2020; 30:143-152. [PMID: 33252274 DOI: 10.1080/13543784.2021.1857363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Discovery of oncogenic mutations in the KIT and PDGFRA tyrosine kinase receptor was a crucial step for the development of tyrosine kinase inhibitors (TKIs). Since then, GIST became a model for the development of molecular-targeted therapy, which led to dramatically improved median overall survival of advanced GIST. Still, further progress is needed after third-line or for TKI resistant mutations. Areas covered: In this review, after a brief introduction on imatinib, sunitinib, and regorafenib, an overview of TKIs that was evaluated beyond these drugs is provided, with a main focus on the novel approved TKIs. Expert opinion: Combination therapies have thus far not fulfilled their promise in GIST, nor did immunotherapy. Increased understanding of GIST and advances in the development of molecular-targeted drugs led to the introduction of ripretinib and avapritinib. Furthermore, NTRK inhibitors became available for ultrarare NTRK fusions. Solutions for NF1 and BRAF mutated and SDH-deficient GIST are still to be awaited. This all underlines the need for adequate molecular profiling of high-risk GISTs before treatment is started. Possibly by using circulating tumor DNA in the future, targeting resistance mutations with specific drugs along the course of the disease would be easier, avoiding multiple tumor biopsies.
Collapse
Affiliation(s)
- Mahmoud Mohammadi
- Department of Medical Oncology, Leiden University Medical Center , Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
36
|
Ethyl-2-amino-pyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anticancer Drugs 2020; 30:475-484. [PMID: 30986804 DOI: 10.1097/cad.0000000000000753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We showed recently that ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) exhibit potent antiproliferative activities against a broad spectrum of soft tissue sarcoma and gastrointestinal stromal tumor (GIST) cell lines in vitro. The molecular mechanism of action was owing to inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to the accumulation of tumor cells in the M-phase and induction of apoptosis. Given that more than 50% of the patients with GISTs develop resistance to imatinib (IM) over the 2 years of IM-based therapy, we examined whether EAPCs exhibit activity against IM-resistant GISTs in vitro and in vivo. A real-time antiproliferation assay illustrated the potent antiproliferative activities of EAPCs against IM-sensitive and IM-resistant GISTs. This was in agreement with the colony formation assay, which revealed potent antiproliferative activities of EAPCs against IM-resistant GISTs, being much stronger when compared with IM and doxorubicin, a topoisomerase II inhibitor. Next, we tested the efficacy of EAPCs in the xenograft model of GISTs, exhibiting secondary IM resistance owing to RTK switch (loss of c-KIT/gain of FGFR2α). A total of 30 5- to 8-week-old female nu/nu mice were subcutaneously inoculated into the flank areas with IM-resistant GIST-T1-R cells (100 μl of 1×10 GIST T-1R cells/ml suspension, in Dulbecco's PBS). Mice were randomized as control (untreated), IM (50 mg/kg), EAPC-20 (10 mg/kg) or EAPC-24 (10 mg/kg) and were treated orally for 10 days. IM has a minor inhibitory effect on tumor size, thus revealing GIST resistance to IM. In contrast, both of EAPCs effectively reduced the tumor size. This was associated with an increased intratumoral apoptosis as detected by immunohistochemical staining for cleaved caspase-3 on day 5 of the treatment. Furthermore, both EAPCs significantly reduced the proliferative activity of tumor cells in the central zones of tumors as measured by positivity for Ki-67 staining. More importantly, in EAPC-24-treated GISTs, the histological response was mainly characterized by the induction of necrosis, whereas EAPC-20 induced the signs of intratumoral fibrosis and myxoid degeneration. Collectively, our data suggest that EAPC-20 and EAPC-24 are the perspective antitumor agents that exhibit antiproliferative and cytotoxic activity against GISTs exhibiting secondary resistance to IM.
Collapse
|
37
|
Spectrum of activity of dasatinib against mutant KIT kinases associated with drug-sensitive and drug-resistant gastrointestinal stromal tumors. Gastric Cancer 2020; 23:837-847. [PMID: 32291709 DOI: 10.1007/s10120-020-01069-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The majority of GISTs express mutationally activated KIT. Imatinib and sunitinib are approved KIT-inhibiting therapies. Their efficacy is usually hampered by the acquired multiple secondary drug-resistance KIT mutations. The most problematic resistance subset is GISTs with acquisition of secondary mutations in the KIT activation loop. Here, we establish the spectrum of activity of dasatinib against a comprehensive collection of clinically relevant KIT mutants associated with drug-sensitive and drug-resistant GIST. METHODS The cellular and in vitro activities of tyrosine kinase inhibitors (TKIs) against mutant KIT were assessed using a panel of engineered and GIST-derived cell lines. The in vivo activities of dasatinib were determined using TKI-resistant xenograft models. RESULTS In engineered and GIST-derived cell lines, dasatinib potently inhibited KIT with primary mutations in exon 11 or 9 and a range of secondary imatinib-resistant mutations in exons 13 and 14, encoding the ATP-binding pocket, and in exons 17 and 18, encoding the activation loop, with the exception of a substitution at codon T670. Our data show that dasatinib is more potent than imatinib or sunitinib at inhibiting the activity of drug-resistant KIT mutants. Dasatinib also induces regression in GIST-derived xenograft models containing these secondary mutations. A major determinant of the efficacy of dasatinib for the treatment of advanced GIST is the activity of this inhibitor against KIT mutants. CONCLUSION Dasatinib shows efficacy in cancer models, inhibiting a wide range of oncogenic primary and drug-resistant KIT mutants. These results have implications for the further development of dasatinib precision therapy in GIST patients.
Collapse
|
38
|
Zhang H, Liu Q. Prognostic Indicators for Gastrointestinal Stromal Tumors: A Review. Transl Oncol 2020; 13:100812. [PMID: 32619820 PMCID: PMC7327422 DOI: 10.1016/j.tranon.2020.100812] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are potentially malignancies that can occur anywhere in the digestive tract. Tyrosine kinase inhibitors (TKIs) such as imatinib have proven effective since the discovery of KIT and PDGFRA. The current version of NCNN, ESMO and EURACAN guidelines recognized that the three main prognostic factors are the mitotic rate, tumor size and tumor site. In addition, tumor rupture is also recognized as an independent risk factor. However, recent evidence shows that various types of gene mutations are associated with prognosis, and influencing factors such as gastrointestinal bleeding and high Ki67 index have been associated with poor prognosis. It shows that the current risk classification is still insufficient and controversial. With the emergence of more and more lack mutation in KIT/PDGFRA GISTs (KIT/PDGFRA wild-type GISTs) or drug resistance genes, primary and secondary drug resistance problems are caused, which makes the treatment of late or metastatic GIST face challenges. Therefore, this article will review the clinicopathological characteristics of GIST, the special molecular subtypes and other factors that may affect prognosis. We will also explore reliable prognostic markers for better postoperative management and improve the prognosis of patients with GIST.
Collapse
Affiliation(s)
- Haixin Zhang
- Department of Trauma center, The First Hospital of China Medical University, Shenyang, China
| | - Qi Liu
- Department of Trauma center, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
39
|
Inhibition of FGF2-Mediated Signaling in GIST-Promising Approach for Overcoming Resistance to Imatinib. Cancers (Basel) 2020; 12:cancers12061674. [PMID: 32599808 PMCID: PMC7352302 DOI: 10.3390/cancers12061674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs. Conversely, FGF-2 rescued the growth of IM-naive GISTs treated by IM and protected them from IM-induced apoptosis, consistent with the possible involvement of FGF-2 in tumor response to IM-based therapy. Indeed, increased FGF-2 levels in serum and tumor specimens were found in IM-treated mice bearing IM-resistant GIST xenografts, whereas BGJ398 used in combination with IM effectively inhibited their growth. Similarly, increased FGF-2 expression in tumor specimens from IM-treated patients revealed the activation of FGF2-signaling in GISTs in vivo. Collectively, the continuation of IM-based therapy for IM-resistant GISTs might facilitate disease progression by promoting the malignant behavior of tumors in an FGF2-dependent manner. This provides a rationale to evaluate the effectiveness of the inhibitors of FGF-signaling for IM-resistant GISTs.
Collapse
|
40
|
Arshad J, Ahmed J, Subhawong T, Trent JC. Progress in determining response to treatment in gastrointestinal stromal tumor. Expert Rev Anticancer Ther 2020; 20:279-288. [PMID: 32191549 DOI: 10.1080/14737140.2020.1745068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Gastrointestinal stromal tumor (GIST) is the most common malignant mesenchymal tumor of the gastrointestinal system. Multiple advances in the management of GIST from the discovery of KIT/PDGRA and other genetic alterations have led to the development of multiple tyrosine kinase inhibitors. Response assessment in GIST is determined with iRECIST (Response Evaluation Criteria in Solid Tumors), PERCIST (PET response criteria in solid tumors), or Choi criteria. Molecular genotyping of the tissue samples is the recent standard for diagnosis, treatment, and response to treatment.Areas covered: In this study, we provide a brief overview of the history of the GIST, molecular sequencing, available treatment options and clinical trials, radiologic response assessment, and the role of ctDNA in response evaluation.Expert opinion: Future GIST management is related to the development of sensitive assays to detect genetic alterations for initial diagnosis, treatment selection, monitoring the response to treatment, resistant mutations, and predicting survival.
Collapse
Affiliation(s)
- Junaid Arshad
- Miller School of Medicine/Sylvester Comprehensive Cancer Centre, University of Miami, Miami, FL, USA
| | - Jibran Ahmed
- Department of Hematology and Medical Oncology, Westchester Medical Center, Valhalla, NY, USA
| | - Ty Subhawong
- Miller School of Medicine/Sylvester Comprehensive Cancer Centre, University of Miami, Miami, FL, USA
| | - Jonathan C Trent
- Miller School of Medicine/Sylvester Comprehensive Cancer Centre, University of Miami, Miami, FL, USA
| |
Collapse
|
41
|
Verret B, Sourisseau T, Stefanovska B, Mosele F, Tran-Dien A, André F. The Influence of Cancer Molecular Subtypes and Treatment on the Mutation Spectrum in Metastatic Breast Cancers. Cancer Res 2020; 80:3062-3069. [PMID: 32245795 DOI: 10.1158/0008-5472.can-19-3260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing has sparked the exploration of cancer genomes, with the aim of discovering the genetic etiology of the disease and proposing rationally designed therapeutic interventions. Driver gene alterations have been comprehensively charted, but the improvement of cancer patient management somewhat lags behind these basic breakthroughs. Recently, large-scale sequencing that focused on metastasis, the main cause of cancer-related deaths, has shed new light on the driving forces at work during disease progression, particularly in breast cancer. Despite a fairly stable pool of driver genetic alterations between early and late disease, a number of therapeutically targetable mutations have been found enriched in metastatic samples. The molecular processes fueling disease progression have been delineated in recent studies and the clonal composition of breast cancer samples can be examined in detail. Here we discuss how these findings may be combined to improve the diagnosis of breast cancer to better select patients at risk, and to identify targeted agents to treat advanced diseases and to design therapeutic strategies exploiting vulnerabilities of cancer cells rooted in their ability to evolve and drive disease progression.
Collapse
Affiliation(s)
- Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Sourisseau
- Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| | | | - Fernanda Mosele
- Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| | | | - Fabrice André
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France. .,Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| |
Collapse
|
42
|
Bombac A, Zakotnik B, Bucic M, Setrajcic Dragos V, Gazic B, Stegel V, Klancar G, Novakovic S. Mutational spectrum and classification of novel mutations in patients with metastatic gastrointestinal stromal tumours. Int J Oncol 2020; 56:1468-1478. [PMID: 32236636 PMCID: PMC7170035 DOI: 10.3892/ijo.2020.5028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/28/2020] [Indexed: 11/06/2022] Open
Abstract
In total, ~85% of malignant gastrointestinal stromal tumours (GISTs) harbour activating mutations in one of the genes KIT or PDGFRA, while 10‑15% of all GISTs have no detectable KIT or PDGFRA mutations, but could have alterations in genes of the succinate dehydrogenase complex or in BRAF, PIK3CA or rarely RAS family genes. The clinical benefit of tyrosine kinase inhibitors, such as imatinib, depends on the GIST genotype, therefore molecular characterization of GIST has a crucial role in overall management of GIST. The aim of the present study was to molecularly characterize a cohort of 70 patients with metastatic GISTs from the Slovenian Cancer Registry (National Cancer Registry) treated between January 2002 and December 2011. Exons 9, 11, 13 and 17 of the KIT gene and exons 12, 14 and 18 of the PDGFRA gene were analysed by direct Sanger sequencing. All KIT/PDGFRA wild‑type GISTs were tested for the presence of mutations in hot spot regions of KRAS, NRAS, BRAF, PIK3CA and AKT1 genes. Novel variants were characterized and classified using Cancer Genome Interpreter and according to The American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. In total, 60 (85.7%) patients had mutations in KIT and 2 (2.9%) in PDGFRA. Whereas, 8 (11.4%) patients with GIST had no mutation in either of the analysed genes. The majority of GIST cases (n=52) had a mutation in KIT exon 11, where 40 different mutations were detected. Eight of the variants were novel: c.1652_1672del, c.1653_1660delinsAA, c.1665_1672delinsCC, c.1668_1686del, c.1676_1720del, c.1715_1756dup, c.1721_1765dup, and c.1722_1766dup. Mutation frequencies of KIT and PDGFRA genes observed in Slovenian patients are comparable with those in other European populations. In the present group of patients analysed, the most frequently mutated region was exon 11 in the KIT gene, responsible for coding juxtamembrane domain of KIT protein. In this region, eight novel mutations were identified and classified as likely pathogenic driver variants. In addition, the present study identified 6 patients with secondary KIT mutation and 1 patient with double mutant GIST, who had two different mutations in PDGFRA exon 14.
Collapse
Affiliation(s)
- Alenka Bombac
- Department of Molecular Diagnostics, Institute of Oncology, Ljubljana 1000, Slovenia
| | - Branko Zakotnik
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana 1000, Slovenia
| | - Marina Bucic
- Department of Molecular Diagnostics, Institute of Oncology, Ljubljana 1000, Slovenia
| | - Vita Setrajcic Dragos
- Department of Molecular Diagnostics, Institute of Oncology, Ljubljana 1000, Slovenia
| | - Barbara Gazic
- Department of Pathology, Institute of Oncology Ljubljana, Ljubljana 1000, Slovenia
| | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology, Ljubljana 1000, Slovenia
| | - Gasper Klancar
- Department of Molecular Diagnostics, Institute of Oncology, Ljubljana 1000, Slovenia
| | - Srdjan Novakovic
- Department of Molecular Diagnostics, Institute of Oncology, Ljubljana 1000, Slovenia
| |
Collapse
|
43
|
Liu P, Tan F, Liu H, Li B, Lei T, Zhao X. The Use of Molecular Subtypes for Precision Therapy of Recurrent and Metastatic Gastrointestinal Stromal Tumor. Onco Targets Ther 2020; 13:2433-2447. [PMID: 32273716 PMCID: PMC7102917 DOI: 10.2147/ott.s241331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor in the digestive tract. Tyrosine kinase inhibitors (TKIs), represented by imatinib, sunitinib, and regorafenib, have become the main treatment for recurrent and metastatic GISTs. With the wide application of mutation analysis and the precision medicine, molecular characteristics have been determined that not only predict the prognosis of patients with recurrent and metastatic GISTs, but also are closely related to the efficacy of first-, second- and third-line TKIs for GISTs, as well as other TKIs. Despite the significant effects of TKIs, the emergence of primary and secondary resistance ultimately leads to treatment failure and tumor progression. Currently, due to the signal transmission of KIT/PDGFRA during onset and tumor progression, strategies to counteract drug resistance include the replacement of TKIs and the development of new drugs that are directed towards carcinogenic mutations. In addition, it is also the embodiment of precision medicine for GISTs to explore new carcinogenic mechanisms and develop new drugs relying on new biotechnology. Surgery can benefit specific patients but its major purpose is to diminish the resistant clones. However, the prognosis of recurrent and metastatic patients is still unsatisfactory. Therefore, it is worth paying attention to how to maximize the benefits for patients.
Collapse
Affiliation(s)
- Peng Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Heli Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha410008, Hunan, People’s Republic of China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Xianhui Zhao
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| |
Collapse
|
44
|
Pottier C, Fresnais M, Gilon M, Jérusalem G, Longuespée R, Sounni NE. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers (Basel) 2020; 12:cancers12030731. [PMID: 32244867 PMCID: PMC7140093 DOI: 10.3390/cancers12030731] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are key regulatory signaling proteins governing cancer cell growth and metastasis. During the last two decades, several molecules targeting RTKs were used in oncology as a first or second line therapy in different types of cancer. However, their effectiveness is limited by the appearance of resistance or adverse effects. In this review, we summarize the main features of RTKs and their inhibitors (RTKIs), their current use in oncology, and mechanisms of resistance. We also describe the technological advances of artificial intelligence, chemoproteomics, and microfluidics in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs. Finally, we discuss the interest of therapeutic combination of different RTKIs or with other molecules for personalized treatments, and the challenge for effective combination with less toxic and off-target effects.
Collapse
Affiliation(s)
- Charles Pottier
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
- Correspondence:
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie Gilon
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| | - Guy Jérusalem
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| |
Collapse
|
45
|
Saito Y, Takahashi T, Obata Y, Nishida T, Ohkubo S, Nakagawa F, Serada S, Fujimoto M, Ohkawara T, Nishigaki T, Sugase T, Koh M, Ishida T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Nakajima K, Yamasaki M, Hirota S, Naka T, Mori M, Doki Y. TAS-116 inhibits oncogenic KIT signalling on the Golgi in both imatinib-naïve and imatinib-resistant gastrointestinal stromal tumours. Br J Cancer 2020; 122:658-667. [PMID: 31857719 PMCID: PMC7054534 DOI: 10.1038/s41416-019-0688-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/16/2019] [Accepted: 11/28/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Despite the effectiveness of imatinib mesylate (IM), most gastrointestinal stromal tumours (GISTs) develop IM resistance, mainly due to the additional kinase-domain mutations accompanied by concomitant reactivation of KIT tyrosine kinase. Heat-shock protein 90 (HSP90) is one of the chaperone molecules required for appropriate folding of proteins such as KIT. METHODS We used a novel HSP90 inhibitor, TAS-116, which showed specific binding to HSP90α/β with low toxicity in animal models. The efficacy and mechanism of TAS-116 against IM-resistant GIST were evaluated by using IM-naïve and IM-resistant GIST cell lines. We also evaluated the effects of TAS-116 on the other HSP90 client protein, EGFR, by using lung cell lines. RESULTS TAS-116 inhibited growth and induced apoptosis in both IM-naïve and IM-resistant GIST cell lines with KIT activation. We found KIT was activated mainly in intracellular compartments, such as trans-Golgi cisternae, and TAS-116 reduced autophosphorylated KIT in the Golgi apparatus. In IM-resistant GISTs in xenograft mouse models, TAS-116 caused tumour growth inhibition. We found that TAS-116 decreased phosphorylated EGFR levels and inhibited the growth of EGFR-mutated lung cancer cell lines. CONCLUSION TAS-116 may be a novel promising drug to overcome tyrosine kinase inhibitor-resistance in both GIST and EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Yurina Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuuki Obata
- National Cancer Center Hospital, Tsukiji, Japan
| | | | | | | | | | | | | | - Takahiko Nishigaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahito Sugase
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiro Koh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomo Ishida
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
46
|
Mu J, Sun P, Ma Z, Sun P. Bromodomain and extraterminal domain inhibitor enhances the antitumor effect of imatinib in gastrointestinal stromal tumours. J Cell Mol Med 2020; 24:2519-2530. [PMID: 31957165 PMCID: PMC7028844 DOI: 10.1111/jcmm.14945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
In gastrointestinal stromal tumours (GISTs), the function of bromodomain-containing 4 (BRD4) remains underexplored. BRD4 mRNA abundance was quantified in GISTs. In the current study, we investigated the role of BRD4 in GISTs. Our results show a significant enhancement in BRD4 mRNA and a shift from very low-risk/low-risk to high-risk levels as per NCCN specifications. Overexpression of BRD4 correlated with unfavourable genotype, nongastric location, enhanced risk and decreased disease-free survival, which were predicted independently. Knockout of BRD4 in vitro suppressed KIT expression, which led to inactivation of the KIT/PI3K/AKT/mTOR pathway, impeded migration and cell growth and made the resistant GIST cells sensitive to imatinib. The expression of KIT was repressed by a BRD4 inhibitor JQ1, which also induced myristoylated-AKT-suppressible caspases 3 and 9 activities, induced LC3-II, exhibited dose-dependent therapeutic synergy with imatinib and attenuated the activation of the PI3K/AKT/mTOR pathway. In comparison with their single therapy, the combination of JQ1/imatinib more efficiently suppressed the growth of xenografts and exhibited a reduction in KIT phosphorylation, a decrease in Ki-67 and in the levels of phosphorylated PI3K/AKT/mTOR and enhanced TUNEL staining. Thus, we characterized the biological, prognostic and therapeutic implications of overexpressed BRD4 in GIST and observed that JQ1 suppresses KIT transactivation and nullifies the activation of PI3K/AKT/mTOR, providing a potential strategy for treating imatinib-resistant GIST through dual blockade of KIT and BRD4.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastric and Colorectal SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Pengfei Sun
- Changchun Railway Medical Insurance Management OfficeChangchunChina
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe second hospital of Jilin UniversityChangchunChina
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe second hospital of Jilin UniversityChangchunChina
| |
Collapse
|
47
|
Mao P, Bao G, Wang YC, Du CW, Yu X, Guo XY, Li RC, Wang MD. PDZ-Binding Kinase-Dependent Transcriptional Regulation of CCNB2 Promotes Tumorigenesis and Radio-Resistance in Glioblastoma. Transl Oncol 2019; 13:287-294. [PMID: 31874375 PMCID: PMC6931196 DOI: 10.1016/j.tranon.2019.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence has indicated that PDZ binding kinase (PBK) promotes proliferation, invasion, and therapeutic resistance in a variety of cancer types. However, the physiological function and therapy-resistant role of PBK in GBM remain underexplored. In this study, PBK was identified as one of the most therapy-resistant genes with significantly elevated expression level in GBM. Moreover, the high expression level of PBK was essential for GBM tumorigenesis and radio-resistance both in vitro and in vivo. Clinically, aberrant activation of PBK was correlated with poor clinical prognosis. In addition, inhibition of PBK dramatically enhanced the efficacy of radiation therapy in GBM cells. Mechanically, PBK-dependent transcriptional regulation of CCNB2 was critical for tumorigenesis and radio-resistance in GBM cells. Collectively, PBK promotes tumorigenesis and radio-resistance in GBM and may serve as a novel therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiao-Ye Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Rui-Chun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
48
|
Kalfusova A, Linke Z, Kalinova M, Krskova L, Hilska I, Szabova J, Vicha A, Kodet R. Gastrointestinal stromal tumors – Summary of mutational status of the primary/secondary KIT/PDGFRA mutations, BRAF mutations and SDH defects. Pathol Res Pract 2019; 215:152708. [DOI: 10.1016/j.prp.2019.152708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 02/08/2023]
|
49
|
Hemming ML, Heinrich MC, Bauer S, George S. Translational insights into gastrointestinal stromal tumor and current clinical advances. Ann Oncol 2019; 29:2037-2045. [PMID: 30101284 DOI: 10.1093/annonc/mdy309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common soft tissue sarcoma of the gastrointestinal tract and, in the vast majority of cases, is characterized by activating mutations in KIT or, less commonly, PDGFRA. Mutations in these type III receptor tyrosine kinases (RTKs) account for over 85% of GIST cases, and the majority of KIT primary mutations respond to treatment with the tyrosine kinase inhibitor (TKI) imatinib. However, drug resistance develops over time, most commonly due to secondary kinase mutations. Sunitinib and regorafenib are approved for the treatment of imatinib-resistant GIST in the second and third lines, respectively. However, resistance to these agents also develops and new therapeutic options are needed. In addition, a small number of GISTs harbor primary activating mutations that are resistant to currently available TKIs, highlighting an additional unmet medical need. Several novel and selective TKIs that overcome known mechanisms of resistance in GIST have been developed and show promise in early clinical trials. Additional emerging targeted therapies in GIST include modulation of cellular signaling pathways downstream of KIT, antibodies targeting KIT and PDGFRA and immune checkpoint inhibitors. These advancements highlight the rapid evolution in the understanding of this malignancy and provide perspective on the encouraging horizon of current and forthcoming therapeutic strategies for GIST.
Collapse
Affiliation(s)
- M L Hemming
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - M C Heinrich
- VA Health Care System and Knight Cancer Institute, Oregon Health and Science University, Oregon, USA
| | - S Bauer
- Sarcoma Center, Western German Cancer Center and German Cancer Consortium (DKTK), Essen, Germany
| | - S George
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
50
|
Li GZ, Raut CP. Targeted therapy and personalized medicine in gastrointestinal stromal tumors: drug resistance, mechanisms, and treatment strategies. Onco Targets Ther 2019; 12:5123-5133. [PMID: 31308690 PMCID: PMC6612765 DOI: 10.2147/ott.s180763] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. Since the discovery that the KIT and PDGFRA receptor tyrosine kinases are the primary oncogenic drivers in the vast majority of GISTs, targeted therapy with tyrosine kinase inhibitors has been the mainstay of treatment for this disease. Using molecular profiling of tumor specimens, researchers also discovered that KIT and PDGFRA mutations are non-random and occur in specific regions of the receptors, and furthermore, that particular genotypes predicted response or resistance to targeted therapy. Imatinib, the first tyrosine kinase inhibitor used to treat GIST, remains the first-line therapy in advanced GIST and the only therapy confirmed through clinical trials in the adjuvant or neoadjuvant setting for resectable disease. Resistance to imatinib is well described and is either primary or secondary. Primary resistance is associated with specific tumor genotypes, so genotyping of individual patient tumors helps guide decision-making into whether to offer imatinib and at what dose. Secondary resistance occurs due to the acquisition of secondary mutations during therapy. Currently, the main strategy to combat imatinib resistance is to switch to another tyrosine kinase inhibitor, because imatinib-resistant GIST is usually still oncogenically addicted to KIT/PDGFRA signaling. Surgery can also be used to combat resistant disease in select settings. Unfortunately, progression-free and overall survival remains dismal for patients who develop imatinib-resistant disease, and further research into alternative strategies is still needed.
Collapse
Affiliation(s)
- George Z Li
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Chandrajit P Raut
- Center for Sarcoma and Bone Oncology, Dana Farber Cancer Center, Boston, MA, USA
| |
Collapse
|