1
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Ladror D, Gu C, Tong V, Schammel A, Gavrilyuk J, Haight A, Sarvaiya H. Preclinical Characterization of Catabolic Pathways and Metabolism of ABBV-011, a Novel Calicheamicin-Based SEZ6-Targeting Antibody-Drug Conjugate. Drug Metab Dispos 2024; 52:135-142. [PMID: 38050039 DOI: 10.1124/dmd.123.001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
Antibody-drug conjugates (ADC) have gained momentum for treatment of cancers, with 14 ADCs currently approved for commercial use worldwide. Calicheamicin is one of the payloads contributing to this trend, being used for both gemtuzumab ozogamicin (GO; trade name: Mylotarg) and inotuzumab ozogamicin (IO; trade name: Besponsa). Here we discuss the catabolic pathway and metabolism of ABBV-011, a novel SEZ6-targeted, calicheamicin-based ADC being investigated for the treatment of small cell lung cancer (SCLC). Specifically, our investigation has found that disulfide bond cleavage in N-acetyl-γ-calicheamicin payload is a key liability that potentially impacts overall stability of the ADC. To our knowledge, there have been no reported observations of disulfide bond cleavage of calicheamicin ADCs. ABBV-011 utilizes a novel linker structure, leading to a distinct metabolic profile when compared with GO and IO. Despite this difference in linker structures, we propose that this liability may also be relevant for other calicheamicin ADCs. Multiple data sets supporting our investigation were acquired as part of the preclinical development of ABBV-011 and demonstrate the utility of in vitro experiments to characterize potential ADC candidates prior to clinical trials. SIGNIFICANCE STATEMENT: Several in vitro and in vivo stability studies of ABBV-011, a calicheamicin-based antibody-drug conjugate (ADC), identified circulating metabolites and catabolites and suggested that disulfide cleavage may be a key liability for the conjugated linker-payload. These observations may be relevant to other disulfide-linked ADCs such as gemtuzumab ozogamicin (Mylotarg) and inotuzumab ozogamicin (Besponsa), both of which have reported similar half-lives that possibly indicate instability.
Collapse
Affiliation(s)
- Daniel Ladror
- AbbVie Inc., North Chicago, Illinois (D.L., A.H.) and AbbVie Inc., South San Francisco, California (C.G., V.T., J.G., A.S., H.S.)
| | - Christine Gu
- AbbVie Inc., North Chicago, Illinois (D.L., A.H.) and AbbVie Inc., South San Francisco, California (C.G., V.T., J.G., A.S., H.S.)
| | - Vince Tong
- AbbVie Inc., North Chicago, Illinois (D.L., A.H.) and AbbVie Inc., South San Francisco, California (C.G., V.T., J.G., A.S., H.S.)
| | - Alexander Schammel
- AbbVie Inc., North Chicago, Illinois (D.L., A.H.) and AbbVie Inc., South San Francisco, California (C.G., V.T., J.G., A.S., H.S.)
| | - Julia Gavrilyuk
- AbbVie Inc., North Chicago, Illinois (D.L., A.H.) and AbbVie Inc., South San Francisco, California (C.G., V.T., J.G., A.S., H.S.)
| | - Anthony Haight
- AbbVie Inc., North Chicago, Illinois (D.L., A.H.) and AbbVie Inc., South San Francisco, California (C.G., V.T., J.G., A.S., H.S.)
| | - Hetal Sarvaiya
- AbbVie Inc., North Chicago, Illinois (D.L., A.H.) and AbbVie Inc., South San Francisco, California (C.G., V.T., J.G., A.S., H.S.)
| |
Collapse
|
3
|
Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15:2229101. [PMID: 37639687 PMCID: PMC10464553 DOI: 10.1080/19420862.2023.2229101] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
The antibody-drug conjugate (ADC) field has undergone a renaissance, with substantial recent developmental investment and subsequent drug approvals over the past 6 y. In November 2022, ElahereTM became the latest ADC to be approved by the US Food and Drug Administration (FDA). To date, over 260 ADCs have been tested in the clinic against various oncology indications. Here, we review the clinical landscape of ADCs that are currently FDA approved (11), agents currently in clinical trials but not yet approved (164), and candidates discontinued following clinical testing (92). These clinically tested ADCs are further analyzed by their targeting tumor antigen(s), linker, payload choices, and highest clinical stage achieved, highlighting limitations associated with the discontinued drug candidates. Lastly, we discuss biologic engineering modifications preclinically demonstrated to improve the therapeutic index that if incorporated may increase the proportion of molecules that successfully transition to regulatory approval.
Collapse
|
4
|
A phase 1 safety and bioimaging trial of antibody DS-8895a against EphA2 in patients with advanced or metastatic EphA2 positive cancers. Invest New Drugs 2022; 40:747-755. [DOI: 10.1007/s10637-022-01237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
5
|
DeLaitsch AT, Pridgen JR, Tytla A, Peach ML, Hu R, Farnsworth DW, McMillan AK, Flanagan N, Temme JS, Nicklaus MC, Gildersleeve JC. Selective Recognition of Carbohydrate Antigens by Germline Antibodies Isolated from AID Knockout Mice. J Am Chem Soc 2022; 144:4925-4941. [PMID: 35282679 PMCID: PMC10506689 DOI: 10.1021/jacs.1c12745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Germline antibodies, the initial set of antibodies produced by the immune system, are critical for host defense, and information about their binding properties can be useful for designing vaccines, understanding the origins of autoantibodies, and developing monoclonal antibodies. Numerous studies have found that germline antibodies are polyreactive with malleable, flexible binding pockets. While insightful, it remains unclear how broadly this model applies, as there are many families of antibodies that have not yet been studied. In addition, the methods used to obtain germline antibodies typically rely on assumptions and do not work well for many antibodies. Herein, we present a distinct approach for isolating germline antibodies that involves immunizing activation-induced cytidine deaminase (AID) knockout mice. This strategy amplifies antigen-specific B cells, but somatic hypermutation does not occur because AID is absent. Using synthetic haptens, glycoproteins, and whole cells, we obtained germline antibodies to an assortment of clinically important tumor-associated carbohydrate antigens, including Lewis Y, the Tn antigen, sialyl Lewis C, and Lewis X (CD15/SSEA-1). Through glycan microarray profiling and cell binding, we demonstrate that all but one of these germline antibodies had high selectivity for their glycan targets. Using molecular dynamics simulations, we provide insights into the structural basis of glycan recognition. The results have important implications for designing carbohydrate-based vaccines, developing anti-glycan monoclonal antibodies, and understanding antibody evolution within the immune system.
Collapse
Affiliation(s)
- Andrew T DeLaitsch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jacey R Pridgen
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Avery Tytla
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Rayleen Hu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David W Farnsworth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Aislinn K McMillan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Natalie Flanagan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, Nath LR. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 2022; 24:407-431. [PMID: 34595736 DOI: 10.1007/s12094-021-02707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.
Collapse
Affiliation(s)
- M Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - A R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - B Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - A R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - G K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - L R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
7
|
Chang HP, Li Z, Shah DK. Development of a Physiologically-Based Pharmacokinetic Model for Whole-Body Disposition of MMAE Containing Antibody-Drug Conjugate in Mice. Pharm Res 2022; 39:1-24. [PMID: 35044590 DOI: 10.1007/s11095-021-03162-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To quantitate and mathematically characterize the whole-body pharmacokinetics (PK) of different ADC analytes following administration of an MMAE-conjugated ADC in tumor-bearing mice. METHODS The PK of different ADC analytes (total antibody, total drug, unconjugated drug) was measured following administration of an MMAE-conjugated ADC in tumor-bearing mice. The PK of ADC analytes was compared with the whole-body PK of the antibody and drug obtained following administration of these molecules alone. An ADC PBPK model was developed by linking antibody PBPK model with small-molecule PBPK model, where the drug was assumed to deconjugate in DAR-dependent manner. RESULTS Comparison of antibody biodistribution coefficient (ABC) values for total antibody suggests that conjugation of drug did not significantly affect the PK of antibody. Comparison of tissue:plasma AUC ratio (T/P) for the conjugated drug and total antibody suggests that in certain tissues (e.g., spleen) ADC may demonstrate higher deconjugation. It was observed that the tissue distribution profile of the drug can be altered following its conjugation to antibody. For example, MMAE distribution to the liver was found to increase while its distribution to the heart was found to decrease upon conjugation to antibody. MMAE exposure in the tumor was found to increase by ~20-fold following administration as conjugate (i.e., ADC). The PBPK model was able to a priori predict the PK of all three ADC analytes in plasma, tissues, and tumor reasonably well. CONCLUSIONS The ADC PBPK model developed here serves as a platform for translational and clinical investigations of MMAE containing ADCs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
8
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
9
|
Cahuzac H, Devel L. Analytical Methods for the Detection and Quantification of ADCs in Biological Matrices. Pharmaceuticals (Basel) 2020; 13:ph13120462. [PMID: 33327644 PMCID: PMC7765153 DOI: 10.3390/ph13120462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Understanding pharmacokinetics and biodistribution of antibody–drug conjugates (ADCs) is a one of the critical steps enabling their successful development and optimization. Their complex structure combining large and small molecule characteristics brought out multiple bioanalytical methods to decipher the behavior and fate of both components in vivo. In this respect, these methods must provide insights into different key elements including half-life and blood stability of the construct, premature release of the drug, whole-body biodistribution, and amount of the drug accumulated within the targeted pathological tissues, all of them being directly related to efficacy and safety of the ADC. In this review, we will focus on the main strategies enabling to quantify and characterize ADCs in biological matrices and discuss their associated technical challenges and current limitations.
Collapse
|
10
|
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020; 25:E4764. [PMID: 33081383 PMCID: PMC7587605 DOI: 10.3390/molecules25204764] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| |
Collapse
|
11
|
Ge Z, Guo L, Wu G, Li J, Sun Y, Hou Y, Shi J, Song S, Wang L, Fan C, Lu H, Li Q. DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904857. [PMID: 32191376 DOI: 10.1002/smll.201904857] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Effective drug delivery systems that can systematically and selectively transport payloads to disease cells remain a challenge. Here, a targeting ligand-modified DNA origami nanostructure (DON) as an antibody-drug conjugate (ADC)-like carrier for targeted prostate cancer therapy is reported. Specifically, DON of six helical bundles is modified with a ligand 2-[3-(1,3-dicarboxy propyl)-ureido] pentanedioic acid (DUPA) against prostate-specific membrane antigen (PSMA), to serve as the antibody for drug conjugation in ADC. Doxorubicin (Dox) is then loaded to DON through intercalation to dsDNA. This platform features in spatially controllable organization of targeting ligands and high drug loading capacity. With this nanocomposite, selective delivery of Dox to the PSMA+ cancer cell line LNCaP is readily achieved. The consequent therapeutic efficacy is critically dependent on the numbers of targeting ligand assembled on DON. This target-specific and biocompatible drug delivery platform with high maximum tolerated doses shows immense potential for developing novel nanomedicine.
Collapse
Affiliation(s)
- Zhilei Ge
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linjie Guo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yunlong Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiye Shi
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Li
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
13
|
Incorporation of a Hydrophilic Spacer Reduces Hepatic Uptake of HER2-Targeting Affibody-DM1 Drug Conjugates. Cancers (Basel) 2019; 11:cancers11081168. [PMID: 31416167 PMCID: PMC6721809 DOI: 10.3390/cancers11081168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been validated. Biodistribution studies in mice revealed an elevated hepatic uptake of the AffiDC, but histopathological examination of livers showed no major signs of toxicity. However, previous clinical experience with antibody drug conjugates have revealed a moderate- to high-grade hepatotoxicity in treated patients, which merits efforts to also minimize hepatic uptake of the AffiDCs. In this study, the aim was to reduce the hepatic uptake of AffiDCs and optimize their in vivo targeting properties. We have investigated if incorporation of hydrophilic glutamate-based spacers adjacent to MC-DM1 in the AffiDC, (ZHER2:2891)2-ABD-MC-DM1, would counteract the hydrophobic nature of MC-DM1 and, hence, reduce hepatic uptake. Two new AffiDCs including either a triglutamate-spacer-, (ZHER2:2891)2-ABD-E3-MC-DM1, or a hexaglutamate-spacer-, (ZHER2:2891)2-ABD-E6-MC-DM1 next to the site of MC-DM1 conjugation were designed. We radiolabeled the hydrophilized AffiDCs and compared them, both in vitro and in vivo, with the previously investigated (ZHER2:2891)2-ABD-MC-DM1 drug conjugate containing no glutamate spacer. All three AffiDCs demonstrated specific binding to HER2 and comparable in vitro cytotoxicity. A comparative biodistribution study of the three radiolabeled AffiDCs showed that the addition of glutamates reduced drug accumulation in the liver while preserving the tumor uptake. These results confirmed the relation between DM1 hydrophobicity and liver accumulation. We believe that the drug development approach described here may also be useful for other affinity protein-based drug conjugates to further improve their in vivo properties and facilitate their clinical translatability.
Collapse
|
14
|
Antibody–Drug Conjugates: Future Directions in Clinical and Translational Strategies to Improve the Therapeutic Index. Clin Cancer Res 2019; 25:5441-5448. [DOI: 10.1158/1078-0432.ccr-19-0272] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
|
15
|
White JB, Fleming R, Masterson L, Ruddle BT, Zhong H, Fazenbaker C, Strout P, Rosenthal K, Reed M, Muniz-Medina V, Howard P, Dixit R, Wu H, Hinrichs MJ, Gao C, Dimasi N. Design and characterization of homogenous antibody-drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs 2019; 11:500-515. [PMID: 30835621 DOI: 10.1080/19420862.2019.1578611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.
Collapse
Affiliation(s)
- Jason B White
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Ben T Ruddle
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Haihong Zhong
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | | | - Patrick Strout
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | - Kim Rosenthal
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Molly Reed
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | | | - Philip Howard
- b Spirogen Ltd , QMB Innovation Center , London , UK
| | - Rakesh Dixit
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Changshou Gao
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
16
|
Yang J, Kong P, Yang J, Jia Z, Hu X, Wang Z, Cui H, Bi Y, Qian Y, Li H, Wang F, Yang B, Yan T, Ma Y, Zhang L, Cheng C, Song B, Li Y, Xu E, Liu H, Gao W, Wang J, Liu Y, Zhai Y, Chang L, Wang Y, Zhang Y, Shi R, Liu J, Wang Q, Cheng X, Cui Y. High TSTA3 Expression as a Candidate Biomarker for Poor Prognosis of Patients With ESCC. Technol Cancer Res Treat 2018; 17:1533033818781405. [PMID: 29950151 PMCID: PMC6048620 DOI: 10.1177/1533033818781405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Esophageal squamous cell carcinoma is the sixth most lethal cancer worldwide and the
fourth most lethal cancer in China. Tissue-specific transplantation antigen P35B codifies
the enzyme GDP-d-mannose-4,6-dehydratase, which participates in the biosynthesis
of GDP-l-fucose. GDP-l-fucose is an important substrate involved in the
biosynthesis of many glycoproteins. Cancer cells are often accompanied by the changes in
glycoprotein structure, which affects the adhesion, invasion, and metastasis of cells. It
is not clear whether tissue-specific transplantation antigen P35B has any effect on the
development of esophageal squamous cell carcinoma. We used an immunohistochemical method
to assess the expression of tissue-specific transplantation antigen P35B in 104 esophageal
squamous cell carcinoma samples. The results showed tissue-specific transplantation
antigen P35B expression was associated with some clinical features in patients, such as
age (P = .017), clinical stage (P = .010), and lymph
node metastasis (P = .043). Kaplan-Meier analysis and log-rank test
showed that patients with esophageal squamous cell carcinoma having high tissue-specific
transplantation antigen P35B expression had a worse prognosis compared to the patients
with low expression (P = .048). Multivariate Cox proportional hazards
regression model showed that high expression of tissue-specific transplantation antigen
P35B could predict poor prognosis for patients with esophageal squamous cell carcinoma
independently. In conclusion, abnormal fucosylation might participate in the progress of
esophageal squamous cell carcinoma and tissue-specific transplantation antigen P35B may
serve as a novel biomarker for prognosis of patients with esophageal squamous cell
carcinoma.
Collapse
Affiliation(s)
- Jie Yang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,3 Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Pengzhou Kong
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian Yang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhiwu Jia
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiaoling Hu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,4 Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zianyi Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,5 Taiyuan Lingde Secondary School, Taiyuan, Shanxi, PR China
| | - Heyang Cui
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanghui Bi
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yu Qian
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hongyi Li
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Fang Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Bin Yang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,6 Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Ting Yan
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanchun Ma
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ling Zhang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Caixia Cheng
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,7 Department of Pathology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Bin Song
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,8 Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yaoping Li
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,9 Department of Anorectum, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Enwei Xu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,10 Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Haiyan Liu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Wei Gao
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,11 Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, PR China.,12 Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Juan Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yiqian Liu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yuanfang Zhai
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,13 Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Lu Chang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yi Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yingchun Zhang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,13 Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ruyi Shi
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jing Liu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,14 Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Qi Wang
- 3 Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiaolong Cheng
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,13 Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yongping Cui
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
17
|
Fu Y, Ho M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib Ther 2018; 1:33-43. [PMID: 30294716 PMCID: PMC6161754 DOI: 10.1093/abt/tby007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Currently, four antibody-drug conjugates (ADCs) are approved by the Food and Drug Administration or the European Medicine Agency to treat cancer patients. More than 60 ADCs are in clinical development for cancer therapy. More than 60% of ADCs in clinical trials employ microtubule inhibitors as their payloads. A better understanding of payloads other than microtubule inhibitors, especially DNA-damaging agents, is important for further development of ADCs. In this review, we highlight an emerging trend of using DNA-damaging agents as payloads for ADCs. This review summarizes recent advances in our understanding gained from ongoing clinical studies; it will help to define the utility of DNA-damaging payloads for ADCs as cancer therapeutics. Future directions of the development of ADCs are also discussed, focusing on targeting drug resistance and combination treatment with immunotherapy.
Collapse
Affiliation(s)
- Ying Fu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
18
|
Warnders FJ, Lub-de Hooge MN, de Vries EGE, Kosterink JGW. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds. Med Res Rev 2018; 38:1837-1873. [PMID: 29635825 DOI: 10.1002/med.21498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Newly developed protein drugs that target tumor-associated antigens are often modified in order to increase their therapeutic effect, tumor exposure, and safety profile. During the development of protein drugs, molecular imaging is increasingly used to provide additional information on their in vivo behavior. As a result, there are increasing numbers of studies that demonstrate the effect of protein modification on whole body distribution and tumor uptake of protein drugs. However, much still remains unclear about how to interpret obtained biodistribution data correctly. Consequently, there is a need for more insight in the correct way of interpreting preclinical and clinical imaging data. Summarizing the knowledge gained to date may facilitate this interpretation. This review therefore provides an overview of specific protein properties and modifications that can affect biodistribution and tumor uptake of anticancer antibodies, antibody fragments, and nonimmunoglobulin scaffolds. Protein properties that are discussed in this review are molecular size, target interaction, FcRn binding, and charge. Protein modifications that are discussed are radiolabeling, fluorescent labeling drug conjugation, glycosylation, humanization, albumin binding, and polyethylene glycolation.
Collapse
Affiliation(s)
- Frank-Jan Warnders
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,PharmacoTherapy, Epidemiology & Economy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
20
|
Burvenich IJG, Parakh S, Parslow AC, Lee ST, Gan HK, Scott AM. Receptor Occupancy Imaging Studies in Oncology Drug Development. AAPS JOURNAL 2018. [DOI: 10.1208/s12248-018-0203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Gill SE, Zhang Q, Keeney GL, Cliby WA, Weroha SJ. Investigation of factors affecting the efficacy of 3C23K, a human monoclonal antibody targeting MISIIR. Oncotarget 2017; 8:85214-85223. [PMID: 29156714 PMCID: PMC5689604 DOI: 10.18632/oncotarget.19620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
MISIIR is a potential target for ovarian cancer (OC) therapy due to its tissue-specific pattern of expression. 3C23K is a novel therapeutic monoclonal anti-MISIIR antibody designed to recruit effector cells and promote cell death through ADCC (antibody dependent cell-mediated cytotoxicity). Our objective was to determine the tolerability and efficacy of 3C23K in OC patient-derived xenografts (PDX) and to identify factors affecting efficacy. Quantitative RT-PCR, immunohistochemistry (IHC), and flow cytometry were used to categorize MISIIR expression in established PDX models derived from primary OC patients. We selected two high expressing models and two low expressing models for in vivo testing. One xenograft model using an MISIIR over-expressing SKOV3ip cell line (Z3) was a positive control. The primary endpoint was change in tumor size. The secondary endpoint was final tumor mass. We observed no statistically significant differences between control and treated animals. The lack of response could be secondary to a number of variables including the lack of known biomarkers of response, the low membrane expression of MISIIR, and a limited ability of 3C23K to induce ADCC in PDX models. Further study is needed to determine the magnitude of ovarian cancer response to 3C23K and also if there is a threshold surface expression to predict response.
Collapse
Affiliation(s)
- Sarah E Gill
- Department of Gynecologic Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Qing Zhang
- Department of Gynecologic Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary L Keeney
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - William A Cliby
- Department of Gynecologic Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - S John Weroha
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU, Asghar K. Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors. Onco Targets Ther 2017; 10:463-476. [PMID: 28176942 PMCID: PMC5268369 DOI: 10.2147/ott.s119362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Amnah Mahroo
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Kaenat Nasir
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Rai Khalid Farooq
- Department of Physiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nasir Jalal
- Department of Molecular and Cellular Pharmacology, Health Sciences Platform, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Kashif Asghar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad; Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
23
|
Burvenich IJ, Lee FT, Guo N, Gan HK, Rigopoulos A, Parslow AC, O'Keefe GJ, Gong SJ, Tochon-Danguy H, Rudd SE, Donnelly PS, Kotsuma M, Ohtsuka T, Senaldi G, Scott AM. In Vitro and In Vivo Evaluation of 89Zr-DS-8273a as a Theranostic for Anti-Death Receptor 5 Therapy. Am J Cancer Res 2016; 6:2225-2234. [PMID: 27924159 PMCID: PMC5135445 DOI: 10.7150/thno.16260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/28/2016] [Indexed: 01/20/2023] Open
Abstract
Background: DS-8273a, an anti-human death receptor 5 (DR5) agonistic antibody, has cytotoxic activity against human cancer cells and induces apoptosis after specific binding to DR5. DS-8273a is currently being used in clinical Phase I trials. This study evaluated the molecular imaging of DR5 expression in vivo in mouse tumor models using SPECT/CT and PET/MRI, as a tool for drug development and trial design. Methods: DS-8273a was radiolabeled with indium-111 and zirconium-89. Radiochemical purity, immunoreactivity, antigen binding affinity and serum stability were assessed in vitro. In vivo biodistribution and pharmacokinetic studies were performed, including SPECT/CT and PET/MR imaging. A dose-escalation study using a PET/MR imaging quantitative analysis was also performed to determine DR5 receptor saturability in a mouse model. Results: 111In-CHX-A″-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a showed high immunoreactivity (100%), high serum stability, and bound to DR5 expressing cells with high affinity (Ka, 1.02-1.22 × 1010 M-1). The number of antibodies bound per cell was 32,000. In vivo biodistribution studies showed high and specific uptake of 111In-CHX-A″-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a in DR5 expressing COLO205 xenografts, with no specific uptake in normal tissues or in DR5-negative CT26 xenografts. DR5 receptor saturation was observed in vivo by biodistribution studies and quantitative PET/MRI analysis. Conclusion: 89Zr-Df-Bz-NCS-DS-8273a is a potential novel PET imaging reagent for human bioimaging trials, and can be used for effective dose assessment and patient response evaluation in clinical trials.
Collapse
|
24
|
Burvenich IJG, Farrugia W, Lee FT, Catimel B, Liu Z, Makris D, Cao D, O'Keefe GJ, Brechbiel MW, King D, Spirkoska V, Allan LC, Ramsland PA, Scott AM. Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor. MAbs 2016; 8:775-86. [PMID: 27030023 DOI: 10.1080/19420862.2016.1156285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic.
Collapse
Affiliation(s)
- Ingrid J G Burvenich
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia.,b School of Cancer Medicine, La Trobe University , Melbourne , VIC , Australia
| | - William Farrugia
- c Centre for Biomedical Research, Burnet Institute , Melbourne , VIC , Australia
| | - Fook T Lee
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Bruno Catimel
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Zhanqi Liu
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Dahna Makris
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Diana Cao
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Graeme J O'Keefe
- b School of Cancer Medicine, La Trobe University , Melbourne , VIC , Australia.,d Department of Molecular Imaging and Therapy, Austin Health , Melbourne , Australia
| | - Martin W Brechbiel
- e Radioimmune Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute , Bethesda , MD , USA
| | - Dylan King
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Violeta Spirkoska
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Laura C Allan
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Paul A Ramsland
- c Centre for Biomedical Research, Burnet Institute , Melbourne , VIC , Australia.,f School of Science, RMIT University , Bundoora , VIC , Australia.,g Department of Immunology , Monash University , Melbourne , VIC , Australia.,h Department of Surgery Austin Health , University of Melbourne , Heidelberg , VIC , Australia
| | - Andrew M Scott
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia.,b School of Cancer Medicine, La Trobe University , Melbourne , VIC , Australia.,d Department of Molecular Imaging and Therapy, Austin Health , Melbourne , Australia.,i Faculty of Medicine, University of Melbourne , Melbourne , VIC , Australia
| |
Collapse
|
25
|
Burvenich IJG, Parakh S, Gan HK, Lee FT, Guo N, Rigopoulos A, Lee ST, Gong S, O'Keefe GJ, Tochon-Danguy H, Kotsuma M, Hasegawa J, Senaldi G, Scott AM. Molecular Imaging and Quantitation of EphA2 Expression in Xenograft Models with 89Zr-DS-8895a. J Nucl Med 2016; 57:974-80. [PMID: 26940768 DOI: 10.2967/jnumed.115.169839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Subtype A2 of the erythropoietin-producing hepatocellular tyrosine kinase (EphA2) cell surface receptor is expressed in a range of epithelial cancers. This study evaluated the molecular imaging of EphA2 expression in vivo in mouse tumor models using SPECT/MR and PET/MR and a humanized anti-EphA2 antibody, DS-8895a. METHODS DS-8895a was labeled with (111)In, (125)I, and (89)Zr and assessed for radiochemical purity, immunoreactivity (Lindmo analysis), antigen-binding affinity (Scatchard analysis), and serum stability in vitro. In vivo biodistribution, imaging, and pharmacokinetic studies were performed with SPECT/MR and PET/MR. A dose-escalation study was also performed to determine EphA2 receptor saturability through tissue and imaging quantitative analysis. RESULTS All conjugates demonstrated good serum stability and specific binding to EphA2-expressing cells in vitro. In vivo biodistribution studies showed high uptake of (111)In-CHX-A″-DTPA-DS-8895a and (89)Zr-Df-Bz-NCS-DS-8895a in EphA2-expressing xenograft models, with no specific uptake in normal tissues. In comparison, retention of (125)I-DS-8895a in tumors was lower because of internalization of the radioconjugate and dehalogenation. These results were confirmed by SPECT/MR and PET/MR. EphA2 receptor saturation was observed at the 30 mg/kg dose. CONCLUSION Molecular imaging of tumor uptake of DS-8895a allows noninvasive measurement of EphA2 expression in tumors in vivo and determination of receptor saturation. (89)Zr-Df-Bz-NCS-DS-8895a is suited for human bioimaging trials on the basis of superior imaging characteristics and will inform DS-8895a dose assessment and patient response evaluation in clinical trials.
Collapse
Affiliation(s)
- Ingrid J G Burvenich
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia School of Cancer Medicine, La Trobe University, Melbourne, Australia Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia School of Cancer Medicine, La Trobe University, Melbourne, Australia Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia
| | - Fook-Thean Lee
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Sze-Ting Lee
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Sylvia Gong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Graeme J O'Keefe
- Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Henri Tochon-Danguy
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Masakatsu Kotsuma
- Translational Medicine and Clinical Pharmacology Department, Daiichi-Sankyo Co., Ltd., Tokyo, Japan
| | - Jun Hasegawa
- Biologics Pharmacology Research Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo, Japan
| | - Giorgio Senaldi
- Department of Translational Medicine and Clinical Pharmacology, Daiichi-Sankyo Pharma Development, Edison, New Jersey; and
| | - Andrew M Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
26
|
Tibbitts J, Canter D, Graff R, Smith A, Khawli LA. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs 2015; 8:229-45. [PMID: 26636901 PMCID: PMC4966629 DOI: 10.1080/19420862.2015.1115937] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein therapeutics represent a diverse array of biologics including antibodies, fusion proteins, and therapeutic replacement enzymes. Since their inception, they have revolutionized the treatment of a wide range of diseases including respiratory, vascular, autoimmune, inflammatory, infectious, and neurodegenerative diseases, as well as cancer. While in vivo pharmacokinetic, pharmacodynamic, and efficacy studies are routinely carried out for protein therapeutics, studies that identify key factors governing their absorption, distribution, metabolism, and excretion (ADME) properties have not been fully investigated. Thorough characterization and in-depth study of their ADME properties are critical in order to support drug discovery and development processes for the production of safer and more effective biotherapeutics. In this review, we discuss the main factors affecting the ADME characteristics of these large macromolecular therapies. We also give an overview of the current tools, technologies, and approaches available to investigate key factors that influence the ADME of recombinant biotherapeutic drugs, and demonstrate how ADME studies will facilitate their future development.
Collapse
|
27
|
Drake PM, Rabuka D. An emerging playbook for antibody-drug conjugates: lessons from the laboratory and clinic suggest a strategy for improving efficacy and safety. Curr Opin Chem Biol 2015; 28:174-80. [PMID: 26342601 DOI: 10.1016/j.cbpa.2015.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023]
Abstract
Antibody-drug conjugates (ADCs) have become de rigueur for pharmaceutical oncology drug development pipelines. There are more than 40 ADCs undergoing clinical trials and many more in preclinical development. The field has rushed to follow the initial successes of Kadcyla™ and Adcetris™, and moved forward with new targets without much pause for optimization. In some respects, the ADC space has become divided into the clinical realm-where the proven technologies continue to represent the bulk of clinical candidates with a few exceptions-and the research realm-where innovations in conjugation chemistry and linker technologies have suggested that there is much room for improvement in the conventional methods. Now, two and four years after the approvals of Kadcyla™ and Adcetris™, respectively, consensus may at last be building that these two drugs rely on rather unique target antigens that enable their success. It is becoming increasingly clear that future target antigens will require additional innovative approaches. Next-generation ADCs have begun to move out of the lab and into the clinic, where there is a pressing need for continued innovation to overcome the twin challenges of safety and efficacy.
Collapse
Affiliation(s)
| | - David Rabuka
- Catalent Pharma Solutions, Emeryville, CA 94608, USA.
| |
Collapse
|
28
|
Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 2015; 33:733-5. [DOI: 10.1038/nbt.3212] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/31/2015] [Indexed: 11/09/2022]
|
29
|
Kamath AV, Iyer S. Challenges and advances in the assessment of the disposition of antibody-drug conjugates. Biopharm Drug Dispos 2015; 37:66-74. [PMID: 25904406 PMCID: PMC5032988 DOI: 10.1002/bdd.1957] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/17/2015] [Accepted: 04/01/2015] [Indexed: 11/26/2022]
Abstract
Antibody‐drug conjugates (ADCs) are a rapidly growing therapeutic platform for the treatment of cancer. ADCs consist of a cytotoxic small molecule drug linked to an antibody to provide targeted delivery of the cytotoxic agent to the tumor. Understanding the pharmacokinetics (PK) and pharmacodynamics (PD) of ADCs is crucial in their design to optimize dose and regimen, to maximize efficacy and to minimize toxicity in patients. Significant progress has been made in recent years in this area, however, many fundamental questions still remain. This review discusses factors to consider while assessing the disposition of ADCs, and the unique challenges associated with these therapeutics. Current tools that are available and strategies to enable appropriate assessment are also discussed. © 2015 Genentech Inc. Biopharmaceutics & Drug Disposition Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Amrita V Kamath
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, South San Francisco, CA, USA
| | - Suhasini Iyer
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
30
|
Dingjan T, Spendlove I, Durrant LG, Scott AM, Yuriev E, Ramsland PA. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Mol Immunol 2015; 67:75-88. [PMID: 25757815 DOI: 10.1016/j.molimm.2015.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/18/2022]
Abstract
Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy.
Collapse
Affiliation(s)
- Tamir Dingjan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian Spendlove
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, University of Nottingham, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Lindy G Durrant
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, University of Nottingham, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Elizabeth Yuriev
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Paul A Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia; Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC 3084, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, WA 6845, Australia.
| |
Collapse
|
31
|
Kamath AV, Iyer S. Preclinical Pharmacokinetic Considerations for the Development of Antibody Drug Conjugates. Pharm Res 2014; 32:3470-9. [PMID: 25446773 PMCID: PMC4596897 DOI: 10.1007/s11095-014-1584-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Antibody drug conjugates (ADCs) are an emerging new class of targeted therapeutics for cancer that use antibodies to deliver cytotoxic drugs to cancer cells. There are two FDA approved ADCs on the market and over 30 ADCs in the clinical pipeline against a number of different cancer types. The structure of an ADC is very complex with multiple components and considerable efforts are ongoing to determine the attributes necessary for clinical success. Understanding the pharmacokinetics of an ADC and how it impacts efficacy and toxicity is a critical part of optimizing ADC design and delivery i.e., dose and schedule. This review discusses the pharmacokinetic considerations for an ADC and tools and strategies that can be used to evaluate molecules at the preclinical stage.
Collapse
Affiliation(s)
- Amrita V Kamath
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, 1 DNA Way (Mailstop 463A), South San Francisco, CA, 94080, USA.
| | - Suhasini Iyer
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, 1 DNA Way (Mailstop 463A), South San Francisco, CA, 94080, USA
| |
Collapse
|
32
|
Han TH, Zhao B. Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab Dispos 2014; 42:1914-20. [PMID: 25048520 DOI: 10.1124/dmd.114.058586] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of therapeutics that are designed to deliver potent small-molecule drugs selectively to cells that express a specific target antigen while limiting systemic exposure to the drug. This is accomplished by conjugating a potent drug onto an antibody-based therapeutic with a linker that is exquisitely stable in plasma. The development of an effective ADC requires optimizing a number of design elements and an extensive understanding of absorption, distribution, metabolism/catabolism, and elimination (ADME) processes for the ADC construct. Furthermore, as ADCs are a combination of an antibody and small-molecule drug, understanding key aspects of the ADME of each individual component is needed. This review aims to provide considerations for the development of ADCs from an ADME point of view.
Collapse
Affiliation(s)
- Tae H Han
- Stem CentRx, Inc. (T.H.H.), South San Francisco, California; Seattle Genetics, Inc. (B.Z.), Bothell, Washington
| | - Baiteng Zhao
- Stem CentRx, Inc. (T.H.H.), South San Francisco, California; Seattle Genetics, Inc. (B.Z.), Bothell, Washington
| |
Collapse
|
33
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065 DOI: 10.1186/2052-8426-2-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 01/15/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|
34
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 11/21/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- />Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|
35
|
Vugts DJ, Heuveling DA, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen GAMS, Nayak TK. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: Prelude to Phase 1 clinical studies. MAbs 2013; 6:567-75. [PMID: 24492295 DOI: 10.4161/mabs.27415] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RG7356 is a humanized antibody targeting the constant region of CD44. RG7356 was radiolabeled with (89)Zr for preclinical evaluations in tumor xenograft-bearing mice and normal cynomolgus monkeys to enable study of its biodistribution and the role of CD44 expression on RG7356 uptake. Studies with (89)Zr-RG7356 were performed in mice bearing tumor xenografts that differ in the level of CD44 expression (CD44(+) or CD44(-)) and RG7356 responsiveness (resp or non-resp): MDA-MB-231 (CD44(+), resp), PL45 (CD44(+), non-resp) and HepG2 (CD44(-), non-resp). Immuno-PET whole body biodistribution studies were performed in normal cynomolgus monkeys to determine normal organ uptake after administration of a single dose. At 1, 2, 3, and 6 days after injection, (89)Zr-RG7356 uptake in MDA-MB-231 (CD44(+), resp) xenografts was nearly constant and about 9 times higher than in HepG2 (CD44(-), non-resp) xenografts (range 27.44 ± 12.93 to 33.13 ± 7.42% ID/g vs. 3.25 ± 0.38 to 3.90 ± 0.58% ID/g). Uptake of (89)Zr-RG7356 was similar in MDA-MB-231 (CD44(+), resp) and PL45 (CD44(+), non-resp) xenografts. Studies in monkeys revealed antibody uptake in spleen, salivary glands and bone marrow, which might be related to the level of CD44 expression. (89)Zr-RG7356 uptake in these normal organs decreased with increasing dose levels of unlabeled RG7356. (89)Zr-RG7356 selectively targets CD44(+) responsive and non-responsive tumors in mice and CD44(+) tissues in monkeys. These studies indicate the importance of accurate antibody dosing in humans to obtain optimal tumor targeting. Moreover, efficient binding of RG7356 to CD44(+) tumors may not be sufficient in itself to drive an anti-tumor response.
Collapse
Affiliation(s)
- Danielle J Vugts
- Department of Otolaryngology-Head and Neck Surgery; VU University Medical Center; Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine; VU University Medical Center; Amsterdam, the Netherlands
| | - Derrek A Heuveling
- Department of Otolaryngology-Head and Neck Surgery; VU University Medical Center; Amsterdam, the Netherlands
| | - Marijke Stigter-van Walsum
- Department of Otolaryngology-Head and Neck Surgery; VU University Medical Center; Amsterdam, the Netherlands
| | - Stefan Weigand
- Discovery Oncology; Pharma Research and Early Development; Roche Diagnostics Gmb; Penzberg, Germany
| | - Mats Bergstrom
- Oncology Translational Imaging; Pharma Research and Early Development; F Hoffmann-La Roche Ltd; Basel, Switzerland
| | - Guus A M S van Dongen
- Department of Otolaryngology-Head and Neck Surgery; VU University Medical Center; Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine; VU University Medical Center; Amsterdam, the Netherlands
| | - Tapan K Nayak
- Oncology Translational Imaging; Pharma Research and Early Development; F Hoffmann-La Roche Ltd; Basel, Switzerland
| |
Collapse
|
36
|
Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 2013; 40:1181-210. [PMID: 23999966 DOI: 10.1007/s10295-013-1331-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Microbes from two of the three domains of life, the Prokarya, and Eukarya, continue to serve as rich sources of structurally complex chemical scaffolds that have proven to be essential for the development of anticancer therapeutics. This review describes only a handful of exemplary natural products and their derivatives as well as those that have served as elegant blueprints for the development of novel synthetic structures that are either currently in use or in clinical or preclinical trials together with some of their earlier analogs in some cases whose failure to proceed aided in the derivation of later compounds. In every case, a microbe has been either identified as the producer of secondary metabolites or speculated to be involved in the production via symbiotic associations. Finally, rapidly evolving next-generation sequencing technologies have led to the increasing availability of microbial genomes. Relevant examples of genome mining and genetic manipulation are discussed, demonstrating that we have only barely scratched the surface with regards to harnessing the potential of microbes as sources of new pharmaceutical leads/agents or biological probes.
Collapse
|
37
|
Shah DK, Betts AM. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 2013; 5:297-305. [PMID: 23406896 DOI: 10.4161/mabs.23684] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tissue vs. plasma concentration profiles have been generated from a physiologically-based pharmacokinetic model of monoclonal antibody (mAb). Based on the profiles, we hypothesized that a linear relationship between the plasma and tissue concentrations of non-binding mAbs could exist; and that the relationship may be generally constant irrespective of the absolute mAb concentration, time, and animal species being analyzed. The hypothesis was verified for various tissues in mice, rat, monkey, and human using mAb or antibody-drug conjugate tissue distribution data collected from diverse literature. The relationship between the plasma and various tissue concentrations was mathematically characterized using the antibody biodistribution coefficient (ABC). Estimated ABC values suggest that typically the concentration of mAb in lung is 14.9%, heart 10.2%, kidney 13.7%, muscle 3.97%, skin 15.7%, small intestine 5.22%, large intestine 5.03%, spleen 12.8%, liver 12.1%, bone 7.27%, stomach 4.98%, lymph node 8.46%, adipose 4.78%, brain 0.351%, pancreas 6.4%, testes 5.88%, thyroid 67.5% and thymus is 6.62% of the plasma concentration. The validity of using the ABC to predict mAb concentrations in different tissues of mouse, rat, monkey, and human species was evaluated by generating validation data sets, which demonstrated that predicted concentrations were within 2-fold of the observed concentrations. The use of ABC to infer tissue concentrations of mAbs and related molecules provides a valuable tool for investigating preclinical or clinical disposition of these molecules. It can also help eliminate or optimize biodistribution studies, and interpret efficacy or toxicity of the drug in a particular tissue.
Collapse
Affiliation(s)
- Dhaval K Shah
- Translational Research Group, Department of Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT, USA.
| | | |
Collapse
|
38
|
Gorovits B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake. Cancer Immunol Immunother 2013; 62:217-23. [PMID: 23223907 PMCID: PMC11028486 DOI: 10.1007/s00262-012-1369-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
Antibody-drug conjugates (ADCs) are developed with the goal of increasing compound therapeutic index by specific and targeted delivery of a toxic payload to the site of action while considerably reducing damage to normal tissues. Yet, off-target hepatic toxicities have been reported for several ADC. Locations of these off-target toxicities coincide with the reported locations of cell surface mannose receptor (MR). The relative proportion of agalactosylated glycans on the Fc domain (G0F vs. G1F and G2F components) in monoclonal antibody (mAb)-based biotherapeutics is closer to some disease state IgG rather than to a normal serum-derived immunoglobulin. The lack of the terminal galactose on a G0F glycan creates an opportunity for the mAb to interact with soluble and cell surface MRs. MR is a known multi-domain lectin that specifically binds and internalizes glycoproteins and immune complexes with relatively high G0F content and has been found on the surface of various cell types, including immune cells of myeloid lineage, endothelial cells, and hepatic and splenic sinusoids. In this review paper it is proposed that the mechanism of the off-target toxicities for ADC biotherapeutics is at least in part driven by the carbohydrates, specifically agalactosylated glycans, such as G0F, their interactions with MR and resulting glycan-derived cellular uptake of ADCs. Several case studies are reviewed presenting corroborating information.
Collapse
|
39
|
Rabu C, McIntosh R, Jurasova Z, Durrant L. Glycans as targets for therapeutic antitumor antibodies. Future Oncol 2012; 8:943-60. [PMID: 22894669 DOI: 10.2217/fon.12.88] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycans represent a vast class of molecules that modify either proteins or lipids. They exert and regulate important and complex functions in both normal and cancer cell metabolism. As such, the most immunogenic glycans have been targeted in passive and active immunotherapy in human cancer for the past 25 years but it is only recently that techniques have become available to uncover novel glycan targets. The main focus of this review article is to highlight why and how monoclonal antibodies (mAbs) recognizing glycans, and in particular the glycans expressed on glycolipids, are being used in various strategies to target and kill cancer cells. The article reports on the historical use of mAbs and on very recent progress made in antitumor therapy using the anti-GD2 mAb and the antiganglioside mAbs, anti-N-glycolylneuraminic acid mAb and anti-Lewis mAb. Anti-GD2 is showing great promise in Phase III clinical trials in adjuvant treatment of neuroblastoma. Racotumomab, an anti-idiotypic mAb mimicking N-glycolylneuraminic acid-containing gangliosides, is currently being tested in a randomized, controlled Phase II/III clinical trial. This article also presents various strategies used by different groups to develop mAbs against these naturally poorly immunogenic glycans.
Collapse
Affiliation(s)
- Catherine Rabu
- Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, NG5 1PB, UK
| | | | | | | |
Collapse
|
40
|
Ding H, Wu F. Image guided biodistribution and pharmacokinetic studies of theranostics. Am J Cancer Res 2012; 2:1040-53. [PMID: 23227121 PMCID: PMC3516836 DOI: 10.7150/thno.4652] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/17/2012] [Indexed: 11/05/2022] Open
Abstract
Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review.
Collapse
|
41
|
Xu X, Vugmeyster Y. Challenges and opportunities in absorption, distribution, metabolism, and excretion studies of therapeutic biologics. AAPS JOURNAL 2012; 14:781-91. [PMID: 22864668 DOI: 10.1208/s12248-012-9388-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/26/2012] [Indexed: 01/18/2023]
Abstract
With the advancement of biotechnology in the last two decades, optimized and novel modalities and platforms of biologic moieties have emerged rapidly in drug discovery pipelines. In addition, new technologies for delivering therapeutic biologics (e.g., needle-free devices, nanoparticle complexes), as well as novel approaches for disease treatments (e.g., stem cell therapy, individualized medicine), continue to be developed. While pharmacokinetic studies are routinely carried out for therapeutic biologics, experiments that elucidate underlying mechanisms for clearance and biodistribution or identify key factors that govern absorption, distribution, metabolism, and excretion (ADME) of biologics often are not thoroughly conducted. Realizing the importance of biologics as therapeutic agents, pharmaceutical industry has recently begun to move the research focus from small molecules only to a blended portfolio consisting of both small molecules and biologics. This trend brings many opportunities for scientists working in the drug disposition research field. In anticipation of these opportunities and associated challenges, this review highlights impact of ADME studies on clinical and commercial success of biologics, with a particular focus on emerging applications and technologies and linkage with mechanistic pharmacokinetic/pharmacodynamic modeling and biomarker research.
Collapse
Affiliation(s)
- Xin Xu
- National Center for Translational Therapeutics, National Institutes of Health, 9800 Medical Center Dr, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
42
|
Pharmacokinetic Considerations for Antibody Drug Conjugates. Pharm Res 2012; 29:2354-66. [DOI: 10.1007/s11095-012-0800-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/31/2012] [Indexed: 02/04/2023]
|
43
|
Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. CANCER IMMUNITY 2012; 12:14. [PMID: 22896759 PMCID: PMC3380347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Andrew M. Scott
- Ludwig Institute for Cancer Research, Melbourne, Australia
- University of Melbourne and Centre for PET, Austin Hospital, Melbourne, Australia
| | - James P. Allison
- Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jedd D. Wolchok
- Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Medical College of Cornell University, New York, NY, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Ludwig Institute for Cancer Research at Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
44
|
Abstract
The use of monoclonal antibodies (mAbs) for cancer therapy has achieved considerable success in recent years. Antibody-drug conjugates are powerful new treatment options for lymphomas and solid tumours, and immunomodulatory antibodies have also recently achieved remarkable clinical success. The development of therapeutic antibodies requires a deep understanding of cancer serology, protein-engineering techniques, mechanisms of action and resistance, and the interplay between the immune system and cancer cells. This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.
Collapse
Affiliation(s)
- Andrew M Scott
- Ludwig Institute for Cancer Research; University of Melbourne; and Centre for PET, Austin Hospital, Melbourne, Victoria 3084, Australia.
| | | | | |
Collapse
|
45
|
Abstract
Monoclonal antibodies (mAbs) have become one of the largest classes of new therapeutic agents approved for use in oncology, and have revolutionised the treatment of many human malignancies. Clinically useful mAbs can function through several different mechanisms, including inhibition of tumour-related signalling, induction of apoptosis, inhibition of angiogenesis, enhancing host immune response against cancer and targeted delivery of payloads (such as toxins, cytotoxic agents or radioisotopes) to the tumour site. The increasing knowledge of key molecules and cellular pathways involved in tumour induction and progression has led to a rise in the proportion of therapeutic mAbs entering clinical trials. These mAbs consist of various conventional or recombinant, murine, humanised, chimeric or fully human and fusion constructs. In this review, we provide an overview of mAbs approved for use in clinical oncology and those currently in clinical development. We also discuss the mechanisms of action of anti-cancer mAbs, as well as the antigen targets recognised by these antibodies.
Collapse
Affiliation(s)
- Vinochani Pillay
- Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
46
|
Monoclonal antibody dose determination and biodistribution into solid tumors. Ther Deliv 2011; 2:333-44. [DOI: 10.4155/tde.10.91] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibodies are increasingly being used as protein therapeutics for cancer. They offer very specific binding to target molecules on the surface of cancer cells, relatively few side effects and predictable pharmacokinetics. Tumor shrinkage is seen in some patients, and an incremental improvement in survival occurs in the group. However, due to their large size and consequent slow diffusion, antibody penetration deep into tumors may be inhomogeneous. Even if only a few cells, deep in tumors, escape therapy, they can regrow and lead to clinical relapse, limiting the significant potential of monoclonal antibody therapy. This leads to questions about optimal dosing for monoclonal antibodies. Methods to determine monoclonal antibody dose include maximum-tolerated dose studies, pharmacokinetically and pharmacodynamically guided dosing, randomized dose-ranging studies, imaging of antibody biodistribution and competitive-binding studies. Limitations of these methods, and future directions to possibly overcome these limitations will be discussed.
Collapse
|
47
|
Milenic DE, Wong KJ, Baidoo KE, Nayak TK, Regino CAS, Garmestani K, Brechbiel MW. Targeting HER2: a report on the in vitro and in vivo pre-clinical data supporting trastuzumab as a radioimmunoconjugate for clinical trials. MAbs 2010; 2:550-64. [PMID: 20716957 DOI: 10.4161/mabs.2.5.13054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The potential of the HER2-targeting antibody trastuzumab as a radioimmunoconjugate useful for both imaging and therapy was investigated. Conjugation of trastuzumab with the acyclic bifunctional chelator CHX-A"-DTPA yielded a chelate:protein ratio of 3.4 ± 0.3; the immunoreactivity of the antibody unaffected. Radiolabeling was efficient, routinely yielding a product with high specific activity. Tumor targeting was evaluated in mice bearing subcutaneous (s.c.) xenografts of colorectal, pancreatic, ovarian, and prostate carcinomas. High uptake of the radioimmunoconjugate, injected intravenously (i.v.), was observed in each of the models, and the highest tumor %ID/g (51.18 ± 13.58) was obtained with the ovarian (SKOV-3) tumor xenograft. Specificity was demonstrated by the absence of uptake of 111In-trastuzumab by melanoma (A375) s.c. xenografts and 111In-HuIgG by s.c. LS-174T xenografts. Minimal uptake of i.v. injected 111In-trastuzumab in normal organs was confirmed in non-tumor-bearing mice. The in vivo behavior of 111In-trastuzumab in mice bearing intraperitoneal (i.p.) LS-174T tumors resulted in a tumor %ID/g of 130.85 ± 273.34 at 24 h. Visualization of tumor, s.c. and i.p. xenografts, was achieved by γ-scintigraphy and PET imaging. Blood pool was evident as expected, but cleared over time. The blood pharmacokinetics of i.v. and i.p. injected 111In-trastuzumab was determined in mice with and without tumors. The data from these in vitro and in vivo studies supported advancement of radiolabeled trastuzumab into two clinical studies, a Phase 0 imaging study in the Molecular Imaging Program of the National Cancer Institute and a Phase 1 radioimmunotherapy study at the University of Alabama.
Collapse
Affiliation(s)
- Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|