1
|
Javanmardifard Z, Rahmani S, Bayat H, Mirtavoos-Mahyari H, Ghanei M, Mowla SJ. A comprehensive in silico analysis and experimental validation of miRNAs capable of discriminating between lung adenocarcinoma and squamous cell carcinoma. Front Genet 2024; 15:1419099. [PMID: 39381140 PMCID: PMC11460580 DOI: 10.3389/fgene.2024.1419099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Background Accurate differentiation between lung adenocarcinoma (AC) and lung squamous cell carcinoma (SCC) is crucial owing to their distinct therapeutic approaches. MicroRNAs (miRNAs) exhibit variable expression across subtypes, making them promising biomarkers for discrimination. This study aimed to identify miRNAs with robust discriminatory potential between AC and SCC and elucidate their clinical significance. Methods MiRNA expression profiles for AC and SCC patients were obtained from The Cancer Genome Atlas (TCGA) database. Differential expression analysis and supervised machine learning methods (Support Vector Machine, Decision trees and Naïve Bayes) were employed. Clinical significance was assessed through receiver operating characteristic (ROC) curve analysis, survival analysis, and correlation with clinicopathological features. Validation was conducted using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Furthermore, signaling pathway and gene ontology enrichment analyses were conducted to unveil biological functions. Results Five miRNAs (miR-205-3p, miR-205-5p, miR-944, miR-375 and miR-326) emerged as potential discriminative markers. The combination of miR-944 and miR-326 yielded an impressive area under the curve of 0.985. RT-qPCR validation confirmed their biomarker potential. miR-326 and miR-375 were identified as prognostic factors in AC, while miR-326 and miR-944 correlated significantly with survival outcomes in SCC. Additionally, exploration of signaling pathways implicated their involvement in key pathways including PI3K-Akt, MAPK, FoxO, and Ras. Conclusion This study enhances our understanding of miRNAs as discriminative markers between AC and SCC, shedding light on their role as prognostic indicators and their association with clinicopathological characteristics. Moreover, it highlights their potential involvement in signaling pathways crucial in non-small cell lung cancer pathogenesis.
Collapse
Affiliation(s)
- Zahra Javanmardifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Rahmani
- School of Computer Science, Institute for Research in Fundamental Science (IPM), Tehran, Iran
| | - Hadi Bayat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Hanifeh Mirtavoos-Mahyari
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Wang J, Ma S, Ge K, Xu R, Shen F, Gao X, Yao Y, Chen Y, Chen Y, Gao F, Wu G. Face-to-face Assembly Strategy of Au Nanocubes: Induced Generation of Broad Hotspot Regions for SERS-Fluorescence Dual-Signal Detection of Intracellular miRNAs. Anal Chem 2024; 96:8922-8931. [PMID: 38758935 DOI: 10.1021/acs.analchem.3c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
While designing anisotropic noble metal nanoparticles (NPs) can enhance the signal intensity of Raman dyes, more sensitive surface-enhanced Raman scattering (SERS) probes can be designed by oriented self-assembly of noble metal nanomaterials into dimers or higher-order nanoclusters. In this study, we engineered a self-assembly strategy in living cells for real-time fluorescence and SERS dual-channel detection of intracellular microRNAs (miRNAs), using Mg2+-dependent 8-17E DNAzyme sequences as the driving motors, gold nanocubes (AuNCs) as the driver components, and three-branched double-stranded DNA as the linking tool. The assembly selects adenine in DNA as a reporter molecule, simplifying the labeling process of Raman reporter molecules and reducing the synthesis process. In addition, adenine is stably distributed between the faces of AuNCs and the wide hotspot region gives good reproducibility of the adenine SERS signal. In this strategy, the SERS channel was consistently stable and more sensitive compared to the fluorescence channel. Among them, the detection limit of the SERS channel was 2.1 pM and the coefficient of variation was 1.26% in the in vitro liquid phase and 1.49% in MCF-7 cells. The strategy successfully achieved accurate tracking and quantification of miRNA-21 in cancer cells, showing good reproducibility in complex samples as well as cells. The reported strategy provides ideas for exploring intracellular specific triggering of nanoparticles for precise control of self-assembly.
Collapse
Affiliation(s)
- Jiwei Wang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Xu
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fuzhi Shen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
3
|
Liu J, Zhang F, Wang J, Wang Y. MicroRNA‑mediated regulation in lung adenocarcinoma: Signaling pathways and potential therapeutic implications (Review). Oncol Rep 2023; 50:211. [PMID: 37859595 PMCID: PMC10603552 DOI: 10.3892/or.2023.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) poses a significant global health burden owing to its high incidence rate and unfavorable prognosis, driven by frequent recurrence and drug resistance. Understanding the biological mechanisms underlying LUAD is imperative to developing advanced therapeutic strategies. Recent research has highlighted the role of dysregulated microRNAs (miRNAs) in LUAD progression through diverse signaling pathways, including the Wnt and AKT pathways. Of particular interest is the novel pathological mechanism involving the interaction between competing endogenous RNAs (ceRNAs) and miRNAs. This review critically analyzed the impact of aberrant miRNA expression on LUAD development, shedding light on the associated signaling pathways. It also highlighted the emerging significance of ceRNA‑miRNA interactions in LUAD pathogenesis. Elucidating the intricate regulatory networks involving miRNAs and ceRNAs presents a promising avenue for the development of potential therapeutic interventions and diagnostic biomarkers in LUAD. Further research in this area is essential to advance precision medicine approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
- Department of Rehabilitation Medicine, Huludao Central Hospital, Huludao, Liaoning 125000, P.R. China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
4
|
Song Y, Zhou J, Zhao X, Zhang Y, Xu X, Zhang D, Pang J, Bao H, Ji Y, Zhan M, Wang Y, Ou Q, Hu J. Lineage tracing for multiple lung cancer by spatiotemporal heterogeneity using a multi-omics analysis method integrating genomic, transcriptomic, and immune-related features. Front Oncol 2023; 13:1237308. [PMID: 37799479 PMCID: PMC10548834 DOI: 10.3389/fonc.2023.1237308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction The distinction between multiple primary lung cancer (MPLC) and intrapulmonary metastasis (IPM) holds clinical significance in staging, therapeutic intervention, and prognosis assessment for multiple lung cancer. Lineage tracing by clinicopathologic features alone remains a clinical challenge; thus, we aimed to develop a multi-omics analysis method delineating spatiotemporal heterogeneity based on tumor genomic profiling. Methods Between 2012 and 2022, 11 specimens were collected from two patients diagnosed with multiple lung cancer (LU1 and LU2) with synchronous/metachronous tumors. A novel multi-omics analysis method based on whole-exome sequencing, transcriptome sequencing (RNA-Seq), and tumor neoantigen prediction was developed to define the lineage. Traditional clinicopathologic reviews and an imaging-based algorithm were performed to verify the results. Results Seven tissue biopsies were collected from LU1. The multi-omics analysis method demonstrated that three synchronous tumors observed in 2018 (LU1B/C/D) had strong molecular heterogeneity, various RNA expression and immune microenvironment characteristics, and unique neoantigens. These results suggested that LU1B, LU1C, and LU1D were MPLC, consistent with traditional lineage tracing approaches. The high mutational landscape similarity score (75.1%), similar RNA expression features, and considerable shared neoantigens (n = 241) revealed the IPM relationship between LU1F and LU1G which were two samples detected simultaneously in 2021. Although the multi-omics analysis method aligned with the imaging-based algorithm, pathology and clinicopathologic approaches suggested MPLC owing to different histological types of LU1F/G. Moreover, controversial lineage or misclassification of LU2's synchronous/metachronous samples (LU2B/D and LU2C/E) traced by traditional approaches might be corrected by the multi-omics analysis method. Spatiotemporal heterogeneity profiled by the multi-omics analysis method suggested that LU2D possibly had the same lineage as LU2B (similarity score, 12.9%; shared neoantigens, n = 71); gefitinib treatment and EGFR, TP53, and RB1 mutations suggested the possibility that LU2E might result from histology transformation of LU2C despite the lack of LU2C biopsy and its histology. By contrast, histological interpretation was indeterminate for LU2D, and LU2E was defined as a primary or progression lesion of LU2C by histological, clinicopathologic, or imaging-based approaches. Conclusion This novel multi-omics analysis method improves the accuracy of lineage tracing by tracking the spatiotemporal heterogeneity of serial samples. Further validation is required for its clinical application in accurate diagnosis, disease management, and improving prognosis.
Collapse
Affiliation(s)
- Yijun Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiebai Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaotian Zhao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Xu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Donghui Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Center, Shanghai, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hairong Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengna Zhan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yulin Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jie Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Center, Shanghai, China
| |
Collapse
|
5
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
6
|
Wu X, Huang G, Li W, Chen Y. Ethnicity-specific association between TERT rs2736100 (A > C) polymorphism and lung cancer risk: a comprehensive meta-analysis. Sci Rep 2023; 13:13271. [PMID: 37582820 PMCID: PMC10427644 DOI: 10.1038/s41598-023-40504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
The rs2736100 (A > C) polymorphism of the second intron of Telomerase reverse transcriptase (TERT) has been confirmed to be closely associated with the risk of Lung cancer (LC), but there is still no unified conclusion on the results of its association with LC. This study included Genome-wide association studies (GWAS) and case-control studies reported so far on this association between TERT rs2736100 polymorphism and LC to clarify such a correlation with LC and the differences in it between different ethnicities and different types of LC. Relevant literatures published before May 7, 2022 on 'TERT rs2736100 polymorphism and LC susceptibility' in PubMed, EMbase, CENTRAL, MEDLINE databases were searched through the Internet, and data were extracted. Statistical analysis of data was performed in Revman5.3 software, including drawing forest diagrams, drawing funnel diagrams and so on. Sensitivity and publication bias analysis were performed in Stata 12.0 software. The C allele of TERT rs2736100 was associated with the risk of LC (Overall population: [OR] = 1.21, 95%CI [1.17, 1.25]; Caucasians: [OR] = 1.11, 95%CI [1.06, 1.17]; Asians: [OR] = 1.26, 95%CI [1.21, 1.30]), and Asians had a higher risk of LC than Caucasians (C vs. A: Caucasians: [OR] = 1.11 /Asians: [OR]) = 1.26). The other gene models also showed similar results. The results of stratified analysis of LC patients showed that the C allele was associated with the risk of Non-small-cell lung carcinoma (NSCLC) and Lung adenocarcinoma (LUAD), and the risk of NSCLC and LUAD in Asians was higher than that in Caucasians. The C allele was associated with the risk of Lung squamous cell carcinoma (LUSC) and Small cell lung carcinoma(SCLC) in Asians but not in Caucasians. NSCLC patients ([OR] = 1.27) had a stronger correlation than SCLC patients ([OR] = 1.03), and LUAD patients ([OR] = 1.32) had a stronger correlation than LUSC patients ([OR] = 1.09).In addition, the C allele of TERT rs2736100 was associated with the risk of LC, NSCLC and LUAD in both smoking groups and non-smoking groups, and the risk of LC in non-smokers of different ethnic groups was higher than that in smokers. In the Asians, non-smoking women were more at risk of developing LUAD. The C allele of TERT rs2736100 is a risk factor for LC, NSCLC, and LUAD in different ethnic groups, and the Asian population is at a more common risk. The C allele is a risk factor for LUSC and SCLC in Asians but not in Caucasians. And smoking is not the most critical factor that causes variation in TERT rs2736100 to increase the risk of most LC (NSCLC, LUAD). Therefore, LC is a multi-etiological disease caused by a combination of genetic, environmental and lifestyle factors.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Gao Huang
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China.
| |
Collapse
|
7
|
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int 2022; 22:381. [PMID: 36457043 PMCID: PMC9713203 DOI: 10.1186/s12935-022-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.
Collapse
Affiliation(s)
- Xuechun Bai
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Ying Xu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yan Liang
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Dandan Li
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
8
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
9
|
The Role of the Selected miRNAs as Diagnostic, Predictive and Prognostic Markers in Non-Small-Cell Lung Cancer. J Pers Med 2022; 12:jpm12081227. [PMID: 36013176 PMCID: PMC9410235 DOI: 10.3390/jpm12081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, overtaking colon, breast, and prostate cancer-related deaths. Due to the limited diagnostic possibilities, it is often diagnosed after it has reached an advanced stage. The delayed diagnosis significantly worsens the patient’s prognosis. In recent years, we have observed an increased interest in the use of microRNAs (miRNAs) as diagnostic, predictive, and prognostic markers in non-small-cell lung cancer (NSCLC). The abnormal expression levels of the miRNAs could be used to detect NSCLC in its early stages while it is still asymptomatic. This could drastically improve the clinical outcome. Furthermore, some miRNAs could serve as promising predictive and prognostic factors for NSCLC. Some of the currently available studies have shown a correlation between the miRNAs’ levels and the sensitivity of tumour cells to different treatment regimens. Analysing and modulating the miRNAs’ expression could be a way to predict and improve the treatment’s outcome.
Collapse
|
10
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
11
|
Molecular Radiobiology in Non-Small Cell Lung Cancer: Prognostic and Predictive Response Factors. Cancers (Basel) 2022; 14:cancers14092202. [PMID: 35565331 PMCID: PMC9101029 DOI: 10.3390/cancers14092202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The identification of prognostic and predictive gene signatures of response to cancer treatment (radiotherapy) could help in making therapeutic decisions in patients affected by NSCLC. There are multiple proposals for gene signatures that attempt to predict survival or predict response to treatment (not radiotherapy), but they mainly focus on early stages or metastasis at diagnosis. In contrast, there have been few studies that raise these predictive and/or prognostic elements in nonmetastatic locally advanced stages, where treatment with ionizing radiation plays an important role. In this work, we review in depth previous works discovering the prognostic and predictive response factors in non-small cell lung cancer, specially focused on non-deeply studied radiation-based therapy. Abstract Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, generating huge economic and social impacts that have not slowed in recent years. Oncological treatment for this neoplasm usually includes surgery, chemotherapy, treatments on molecular targets and ionizing radiation. The prognosis in terms of overall survival (OS) and the different therapeutic responses between patients can be explained, to a large extent, by the existence of widely heterogeneous molecular profiles. The identification of prognostic and predictive gene signatures of response to cancer treatment, could help in making therapeutic decisions in patients affected by NSCLC. Given the published scientific evidence, we believe that the search for prognostic and/or predictive gene signatures of response to radiotherapy treatment can significantly help clinical decision-making. These signatures may condition the fractions, the total dose to be administered and/or the combination of systemic treatments in conjunction with radiation. The ultimate goal is to achieve better clinical results, minimizing the adverse effects associated with current cancer therapies.
Collapse
|
12
|
Peinado-Serrano J, Quintanal-Villalonga Á, Muñoz-Galvan S, Verdugo-Sivianes EM, Mateos JC, Ortiz-Gordillo MJ, Carnero A. A Six-Gene Prognostic and Predictive Radiotherapy-Based Signature for Early and Locally Advanced Stages in Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14092054. [PMID: 35565183 PMCID: PMC9099638 DOI: 10.3390/cancers14092054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The search for prognostic and/or predictive gene signatures of the response to radiotherapy treatment can significantly aid clinical decision making. These signatures can condition the fractionation, the total dose to be administered, and/or the combination of systemic treatments and radiation. The ultimate goal is to achieve better clinical results, as well as to minimize the adverse effects associated with current cancer therapies. To this end, we analyzed the intrinsic radiosensitivity of 15 NSCLC lines and found the differences in gene expression levels between radiosensitive and radioresistant lines, resulting in a potentially applicable six-gene signature in NSCLC patients. The six-gene signature had the ability to predict overall survival and progression-free survival (PFS), which could translate into a prediction of the response to the cancer treatment received. Abstract Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, generating an enormous economic and social impact that has not stopped growing in recent years. Cancer treatment for this neoplasm usually includes surgery, chemotherapy, molecular targeted treatments, and ionizing radiation. The prognosis in terms of overall survival (OS) and the disparate therapeutic responses among patients can be explained, to a great extent, by the existence of widely heterogeneous molecular profiles. The main objective of this study was to identify prognostic and predictive gene signatures of response to cancer treatment involving radiotherapy, which could help in making therapeutic decisions in patients with NSCLC. To achieve this, we took as a reference the differential gene expression pattern among commercial cell lines, differentiated by their response profile to ionizing radiation (radiosensitive versus radioresistant lines), and extrapolated these results to a cohort of 107 patients with NSCLC who had received radiotherapy (among other therapies). We obtained a six-gene signature (APOBEC3B, GOLM1, FAM117A, KCNQ1OT1, PCDHB2, and USP43) with the ability to predict overall survival and progression-free survival (PFS), which could translate into a prediction of the response to the cancer treatment received. Patients who had an unfavorable prognostic signature had a median OS of 24.13 months versus 71.47 months for those with a favorable signature, and the median PFS was 12.65 months versus 47.11 months, respectively. We also carried out a univariate analysis of multiple clinical and pathological variables and a bivariate analysis by Cox regression without any factors that substantially modified the HR value of the proposed gene signature.
Collapse
Affiliation(s)
- Javier Peinado-Serrano
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Radiation Oncology, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | | | - Sandra Muñoz-Galvan
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan C. Mateos
- Radiation Physics Department, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Departamento de Fisiología Médica y Biofisica, Universidad de Sevilla, 41013 Seville, Spain
| | - María J. Ortiz-Gordillo
- Department of Radiation Oncology, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
13
|
Ma Q, Zhang J, Huang J, Wang X, Xiao F, Xing H, Wang Y, Guo Y, Shi B, Song Z, Liu D, Si C, Horinouchi H, Liang C. Decreased miR-940 expression can predict a negative prognosis in early-stage nonsmoking female lung adenocarcinoma. Transl Lung Cancer Res 2022; 10:4293-4302. [PMID: 35004257 PMCID: PMC8674601 DOI: 10.21037/tlcr-21-906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Background Early-stage female lung adenocarcinoma is the most common type of lung cancer encountered in thoracic surgery departments. Tumor-node-metastasis (TNM) staging does not adequately explain a significant stratification phenomenon in the prognosis of patients with stage I lung adenocarcinoma. We aimed to investigate the contributory role of miR-940 in the prognosis prediction. Methods We analyzed the microRNA (miRNA) expression level in tumor tissues (high-risk group vs. low-risk group) from 12 non-smoking female patients with stage I lung adenocarcinoma using miRNA array. Bioinformatic analyses of miR-940 were also carried out based on the public database. Then, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) tests of the tissue samples were further validated. And miR-940's function was analyzed and potential target genes were predicted. Results In all, 24 miRNAs were found to be significantly different between the high-risk group and low-risk group. The expression level of miR-940 was lower in tumor tissue (P=0.011), and the survival rate in the high miR-940 group was higher [hazard ratio (HR) =0.688; P=0.011]. Gene Ontology (GO) analysis showed that the assembly functions of targets regulated by miR-940 were mainly enriched in regulation of myeloid cell differentiation, G1/S transition of mitotic cell cycle, and cellular response to environmental stimulus. miR-940 is involved in transforming growth factor-beta (TGF-beta) signaling pathway; TNF signaling pathway; and estrogen signaling pathway. The number of lung adenocarcinoma cells (A549) was significantly decreased after miR-940 was transfected. Ten epithelial-to-mesenchymal-transition (EMT)-associated genes (MMP9, ZEB1, CDH1, KRT8, KRT18 KET19, TWIST1, VIM, SNAI1, and SNAI2) were found to be significantly related to miR-940. Conclusions The present study showed that miR-940 might be a protective factor for positive prognosis in early stage nonsmoking female lung adenocarcinoma, with transforming growth factor-beta (TGF-beta) pathway, TNF pathway, and matrix metalloprotein (MMP9) being potential targets.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jingjing Huang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaowei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Huajie Xing
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Yongqing Guo
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bin Shi
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyi Song
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Deruo Liu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Diagnostic value of PPARδ and miRNA-17 expression levels in patients with non-small cell lung cancer. Sci Rep 2021; 11:24136. [PMID: 34921177 PMCID: PMC8683395 DOI: 10.1038/s41598-021-03312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
The PPARδ gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including carcinogenesis. Specific biological and clinical roles of PPARδ in non-small cell lung cancer (NSCLC) is not fully explained. The association of PPARα with miRNA regulators (e.g. miRNA-17) has been documented, suggesting the existence of a functional relationship of all PPARs with epigenetic regulation. The aim of the study was to determine the PPARδ and miR-17 expression profiles in NSCLC and to assess their diagnostic value in lung carcinogenesis. PPARδ and miR-17 expressions was assessed by qPCR in NSCLC tissue samples (n = 26) and corresponding macroscopically unchanged lung tissue samples adjacent to the primary lesions served as control (n = 26). PPARδ and miR-17 expression were significantly lower in NSCLC than in the control (p = 0.0001 and p = 0.0178; respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential in discriminating NSCLC from the control with an area under the curve (AUC) of 0.914 for PPARδ and 0.692 for miR-17. Significant increase in PPARδ expression in the control for current smokers vs. former smokers (p = 0.0200) and increase in miR-17 expression in control tissue adjacent to adenocarcinoma subtype (p = 0.0422) were observed. Overexpression of miR-17 was observed at an early stage of lung carcinogenesis, which may suggest that it acts as a putative oncomiR. PPARδ and miR-17 may be markers differentiating tumour tissue from surgical margin and miR-17 may have diagnostic role in NSCLC histotypes differentiation.
Collapse
|
15
|
Zuo M, Yao L, Wen L, Shen J, Zhang N, Bai T, Huang Q. The expression of miRNA-216b is negatively correlated with 18F-FDG uptake in non-small cell lung cancer. World J Surg Oncol 2021; 19:262. [PMID: 34470640 PMCID: PMC8411519 DOI: 10.1186/s12957-021-02376-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to investigate the correlation between miRNA-216b expression in patients with non-small cell lung cancer (NSCLC) and 18F-fluorodeoxyglucose (FDG) uptake by PET/CT and to explore the clinical application value of 18F-FDG PET/CT in miRNA-216b based on therapy for NSCLC. Methods Eighty patients with NSCLC and 40 healthy subjects were enrolled in our study. The SUVmax of the lesion area by PET/CT imaging was calculated. SUVmax represented the highest concentration of 18F-FDG in the lesion. The expression of miRNA-216b in the plasma and fiber bronchoscopic puncture of NSCLC patients was detected by RT qPCR. Then Pearson correlation analysis was used to analyze the correlation between miRNA-216b expression and 18F-FDG uptake in patients with different types of NSCLC. Results Compared with healthy subjects, SUVmax of early adenocarcinoma and advanced adenocarcinoma were increased. Compared with healthy subjects, SUVmax of early squamous and advanced squamous were increased. And the SUVmax content of advanced adenocarcinoma and squamous cell carcinoma was higher than that of early adenocarcinoma and squamous cell carcinoma. Compared with healthy subjects, the expression of miRNA-216b in the plasma of patients with early and advanced adenocarcinoma was reduced, and the expression of miRNA-216b in the plasma of patients with early and advanced squamous cell carcinoma was reduced. Compared with adjacent tissues, the expression of miRNA-216b in early adenocarcinoma tissues and advanced adenocarcinoma tissues was reduced, and the expression in early squamous cell carcinoma and advanced squamous cell carcinoma was reduced. Pearson correlation analysis showed a negative correlation between SUVmax and miRNA-216b (plasma and tissue) in patients with four types of NSCLC. Conclusion miRNA-216b expression was negatively correlated with 18F-FDG uptake in NSCLC. miRNA-216b could be used for the classification and staging of non-small cell lung cancer. 18F-FDG PET/CT may be used to evaluate the therapeutic response in application of miRNA-216b-based cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02376-2.
Collapse
Affiliation(s)
- Mingfei Zuo
- Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161002, Heilongjiang, China
| | - Lan Yao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161002, Heilongjiang, China
| | - Lijuan Wen
- Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161002, Heilongjiang, China
| | - Jianfei Shen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161002, Heilongjiang, China
| | - Na Zhang
- Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161002, Heilongjiang, China
| | - Tian Bai
- Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161002, Heilongjiang, China
| | - Qicheng Huang
- Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161002, Heilongjiang, China.
| |
Collapse
|
16
|
Wu Y, Huang HC, Qin LX. Making External Validation Valid for Molecular Classifier Development. JCO Precis Oncol 2021; 5:PO.21.00103. [PMID: 34377885 PMCID: PMC8345919 DOI: 10.1200/po.21.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Accurate assessment of a molecular classifier that guides patient care is of paramount importance in precision oncology. Recent years have seen an increasing use of external validation for such assessment. However, little is known about how it is affected by ubiquitous unwanted variations in test data because of disparate experimental handling and by the use of data normalization for alleviating such variations. METHODS In this paper, we studied these issues using two microarray data sets for the same set of tumor samples and additional data simulated by resampling under various levels of signal-to-noise ratio and different designs for array-to-sample allocation. RESULTS We showed that (1) unwanted variations can lead to biased classifier assessment and (2) data normalization mitigates the bias to varying extents depending on the specific method used. In particular, frozen normalization methods for test data outperform their conventional forms in terms of both reducing the bias in accuracy estimation and increasing robustness to handling effects. We make available our benchmarking tool as an R package on GitHub for performing such evaluation on additional methods for normalization and classification. CONCLUSION Our findings thus highlight the importance of proper test-data normalization for valid assessment by external validation and call for caution on the choice of normalization method for molecular classifier development.
Collapse
Affiliation(s)
- Yilin Wu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Huei-Chung Huang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2021; 20:90-101. [PMID: 31573883 DOI: 10.2174/1566524019666191001113511] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Lung cancer is the first cause of cancer death in the world due to its high prevalence, aggressiveness, late diagnosis, lack of effective treatment and poor prognosis. It also shows high rate of recurrence, metastasis and drug resistance. All these problems highlight the urgent needs for developing new strategies using noninvasive biomarkers for early detection, metastasis and recurrence of disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression post-transcriptionally. These molecules found to be abnormally expressed in increasing number of human disease conditions including cancer. miRNAs could be detected in body fluids such as blood, serum, urine and sputum, which leads us towards the idea of using them as non-invasive biomarker for cancer detection and monitoring cancer treatment and recurrence. miRNAs are found to be deregulated in lung cancer initiation and progression and could regulate lung cancer cell proliferation and invasion. In this review, we summarized recent progress and discoveries in microRNAs regulatory role in lung cancer initiation and progression. In addition, the role of microRNAs in EGFR signaling pathway regulation is discussed briefly.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Abstract
The epigenetic landscape, which in part includes DNA methylation, chromatin organization, histone modifications, and noncoding RNA regulation, greatly contributes to the heterogeneity that makes developing effective therapies for lung cancer challenging. This review will provide an overview of the epigenetic alterations that have been implicated in all aspects of cancer pathogenesis and progression as well as summarize clinical applications for targeting epigenetics in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yvonne L Chao
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
19
|
El Founini Y, Chaoui I, Dehbi H, El Mzibri M, Abounader R, Guessous F. MicroRNAs: Key Regulators in Lung Cancer. Microrna 2021; 10:109-122. [PMID: 34047262 DOI: 10.2174/2211536610666210527102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs have emerged as key regulators of the genome upon gene expression profiling and genome-wide sequencing. Among these noncoding RNAs, microRNAs are short noncoding RNAs that regulate a plethora of functions, biological processes and human diseases by targeting the messenger RNA stability through 3'UTR binding, leading to either mRNA cleavage or translation repression, depending on microRNA-mRNA complementarity degree. Additionally, strong evidence has suggested that dysregulation of miRNAs contribute to the etiology and progression of human cancers, such as lung cancer, the most common and deadliest cancer worldwide. Indeed, by acting as oncogenes or tumor suppressors, microRNAs control all aspects of lung cancer malignancy, including cell proliferation, survival, migration, invasion, angiogenesis, cancer stem cells, immune-surveillance escape, and therapy resistance; and their expressions are often associated with clinical parameters. Moreover, several deregulated microRNAs in lung cancer are carried by exosomes, microvesicles and secreted in body fluids, mainly the circulation where they conserve their stable forms. Subsequently, seminal efforts have been focused on extracellular microRNAs levels as noninvasive diagnostic and prognostic biomarkers in lung cancer. In this review, focusing on recent literature, we summarize the deregulation, mechanisms of action, functions and highlight clinical applications of miRNAs for better management and design of future lung cancer targeted therapies.
Collapse
Affiliation(s)
- Younes El Founini
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco.,Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Imane Chaoui
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Mohammed El Mzibri
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Fadila Guessous
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States.,Department of Biological Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| |
Collapse
|
20
|
MacDonagh L, Gallagher MF, Ffrench B, Gasch C, Gray SG, Reidy M, Nicholson S, Leonard N, Ryan R, Young V, O'Leary JJ, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. MicroRNA expression profiling and biomarker validation in treatment-naïve and drug resistant non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:1773-1791. [PMID: 34012792 PMCID: PMC8107736 DOI: 10.21037/tlcr-20-959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background In the absence of targetable mutations or immune checkpoints, cisplatin-doublet chemotherapy remains the standard of care in non-small cell lung cancer (NSCLC). Drug resistance has however become a significant clinical challenge. Exploring a role for small non-coding microRNAs (miRNA) as biomarker candidates in cisplatin resistant (CisR) lung cancer is lacking and warrants further investigation. Methods miRNA expression profiling was assessed in a panel of cisplatin sensitive and resistant NSCLC cell lines and validated by qPCR. Modulation of altered miRNAs was studied using antagomiRs and pre-miRs while functional assays were used to assess cisplatin response. The translational relevance of these miRNAs as potential biomarkers was assessed in serum and matched normal and tumour lung tissues from chemo-naïve NSCLC patients, in addition to xenograft formalin-fixed paraffin-embedded (FFPE) tumours derived from cisplatin sensitive and resistant cell lines. Results Differential expression of a 5-miR signature (miR-30a-3p, miR-30b-5p, miR-30c-5p, miR-34a-5p, miR-4286) demonstrated their ability to distinguish between normal and tumour lung tissue and between NSCLC histologies. In squamous cell carcinoma (SqCC), tissue miRNA expression was associated with poor survival. miR-4286 showed promise as a blood-based diagnostic biomarker that could distinguish between adenocarcinoma and SqCC histologies. In a xenograft model of cisplatin resistance, using 7-9 week old female NOD/SCID mice (NOD.CB17-Prkdcscid/NCrCrl), a 5-miRNA panel showed altered expression between sensitive and resistant tumours. Conclusions This study identified a panel of miRNAs which may have diagnostic and prognostic potential as novel biomarkers in lung cancer and furthermore, may have a predictive role in monitoring the emergence of resistance to cisplatin.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Michael F Gallagher
- Histopathology Department, Sir Patrick Dun Laboratories, Central Pathology Laboratory, St. James's Hospital & Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Brendan Ffrench
- Histopathology Department, Sir Patrick Dun Laboratories, Central Pathology Laboratory, St. James's Hospital & Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Claudia Gasch
- Histopathology Department, Sir Patrick Dun Laboratories, Central Pathology Laboratory, St. James's Hospital & Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Marie Reidy
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | | | - Niamh Leonard
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Ronan Ryan
- Department of Cardiothoracic Surgery, St. James's Hospital, Dublin, Ireland
| | - Vincent Young
- Department of Cardiothoracic Surgery, St. James's Hospital, Dublin, Ireland
| | - John J O'Leary
- Histopathology Department, Sir Patrick Dun Laboratories, Central Pathology Laboratory, St. James's Hospital & Pathology Research Laboratory, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Dublin, Ireland.,Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Dublin, Ireland.,Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Xia J, Luo M, Dai L, Wang L, Wang L, Zhu J. Serum exosomal microRNAs as predictive markers for EGFR mutations in non-small-cell lung cancer. J Clin Lab Anal 2021; 35:e23743. [PMID: 33682961 PMCID: PMC8128312 DOI: 10.1002/jcla.23743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Current therapeutic drugs show positive effects on non–small‐cell lung cancer (NSCLC) patients with mutant epidermal growth factor receptor (EGFR) expression, whereas a lesser beneficial effect is generally noted on NSCLC patients with wild‐type EGFR. Therefore, identification of new detection methods for the accurate clinical diagnosis of NSCLC is essential. Methods In this study, tumor‐derived exosomes from the plasma of EGFR mutation and wild‐type NSCLC patients were isolated. Extensive exosomal miRNA profiling of EGFR mutation and wild‐type NSCLC patients, in comparison with healthy individuals, was performed using miRNA‐sequencing analysis. Results The variation of exosomal miRNA expression between control group (NR) and NCSLC samples (AM and AW) was identified. 96 significantly different expressed miRNAs were identified. Of these, 39 miRNAs were upregulated and 57 were downregulated. 11 miRNAs were downregulated, and 31 miRNAs were upregulated in the miRNA expression between NR and AM. Compared with healthy donors, 54 upregulated miRNAs and 36 downregulated miRNAs were observed in samples from AW patients. 40 different expressed miRNAs were identified in AM samples, compared with AW. Ten of upregulated miRNAs are miR‐260, miR‐1169, miR‐117, miR‐15b‐5p, miRNA‐731, miR‐342‐5p, miR‐ 898, miR‐1384, miR‐56, and miR‐1214. Ten of downregulated miRNAs are miR‐99b‐5p, miR‐1116, miR‐689, miR‐818, miR‐604, miR‐72, miR‐955, miR‐403, miR‐1228, and miR‐836. Conclusion The exosomal miR‐1169 and miR‐260 as potential candidates, which contain specific characteristics that can distinguish between wild‐type EGFR and mutant EGFR NSCLC patients in early‐stage cancers.
Collapse
Affiliation(s)
- Junbo Xia
- Department of Pulmonary Medicine, Affiliated Hangzhou First people's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Luo
- Department of Pulmonary Medicine, Affiliated Hangzhou First people's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lujun Dai
- Department of Pulmonary Medicine, Affiliated Hangzhou First people's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liusheng Wang
- Department of Pulmonary Medicine, Affiliated Hangzhou First people's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Limin Wang
- Department of Pulmonary Medicine, Affiliated Hangzhou First people's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First people's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Clinico-Pathological Importance of miR-146a in Lung Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020274. [PMID: 33578944 PMCID: PMC7916675 DOI: 10.3390/diagnostics11020274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a well-known malignant tumor of the respiratory tract, which has caused a significant level of damage to human health in the 21st century. Micro-RNAs (miRNAs) are tiny, non-coding RNA stem-loop structures with a length of roughly 20–25 nucleotides that function as powerful modulators of mRNA and protein products of a gene. miRNAs may modulate many biological processes involving growth, differentiation, proliferation, and cell death and play a key role in the pathogenesis of various types of malignancies. Several accumulating pieces of evidence have proven that miRNA, especially miR-146a, are crucial modulators of innate immune response sequences. A novel and exciting cancer research field has involved miRNA for the detection and suppression of cancer. However, the actual mechanism which is adopted by these miRNA is still unclear. miRNAs have been used as a cancer-associated biomarker in several studies, suggesting their altered expression in various cancers compared to the normal cells. The amount of expression of miRNA can also be used to determine the stage of the disease, aiding in early detection. In breast, pancreatic, and hepatocellular carcinoma, and gastric cancer, cancer cell proliferation and metastasis has been suppressed by miR-146a. Changes in miR-146a expression levels have biomarker importance and possess a high potential as a therapeutic target in lung cancer. It retards epithelial-mesenchymal transition and promotes the therapeutic action of anticancer agents in lung cancer. Studies have also suggested that miR-146a affects gene expression through different signaling pathways viz. TNF-α, NF-κB and MEK-1/2, and JNK-1/2. Further research is required for understanding the molecular mechanisms of miR-146a in lung cancer. The potential role of miR-146a as a diagnostic marker of lung cancer must also be analyzed. This review summarizes the tumor-suppressing, anti-inflammatory, and antichemoresistive nature of miR-146a in lung cancer.
Collapse
|
23
|
Rodríguez M, Ajona D, Seijo LM, Sanz J, Valencia K, Corral J, Mesa-Guzmán M, Pío R, Calvo A, Lozano MD, Zulueta JJ, Montuenga LM. Molecular biomarkers in early stage lung cancer. Transl Lung Cancer Res 2021; 10:1165-1185. [PMID: 33718054 PMCID: PMC7947407 DOI: 10.21037/tlcr-20-750] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low dose computed tomography (LDCT) screening, together with the recent advances in targeted and immunotherapies, have shown to improve non-small cell lung cancer (NSCLC) survival. Furthermore, screening has increased the number of early stage-detected tumors, allowing for surgical resection and multimodality treatments when needed. The need for improved sensitivity and specificity of NSCLC screening has led to increased interest in combining clinical and radiological data with molecular data. The development of biomarkers is poised to refine inclusion criteria for LDCT screening programs. Biomarkers may also be useful to better characterize the risk of indeterminate nodules found in the course of screening or to refine prognosis and help in the management of screening detected tumors. The clinical implications of these biomarkers are still being investigated and whether or not biomarkers will be included in further decision-making algorithms in the context of screening and early lung cancer management still needs to be determined. However, it seems clear that there is much room for improvement even in early stage lung cancer disease-free survival (DFS) rates; thus, biomarkers may be the key to refine risk-stratification and treatment of these patients. Clinicians’ capacity to register, integrate, and analyze all the available data in both high risk individuals and early stage NSCLC patients will lead to a better understanding of the disease’s mechanisms, and will have a direct impact in diagnosis, treatment, and follow up of these patients. In this review, we aim to summarize all the available data regarding the role of biomarkers in LDCT screening and early stage NSCLC from a multidisciplinary perspective. We have highlighted clinical implications, the need to combine risk stratification, clinical data, radiomics, molecular information and artificial intelligence in order to improve clinical decision-making, especially regarding early diagnostics and adjuvant therapy. We also discuss current and future perspectives for biomarker implementation in routine clinical practice.
Collapse
Affiliation(s)
- María Rodríguez
- Department of Thoracic Surgery, Clínica Universidad de Navarra, Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Luis M Seijo
- Department of Pulmonology, Clínica Universidad de Navarra, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Julián Sanz
- Department of Pathology, Clínica Universidad de Navarra, Madrid, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jesús Corral
- Department of Oncology, Clínica Universidad de Navarra, Madrid, Spain
| | - Miguel Mesa-Guzmán
- Department of Thoracic Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rubén Pío
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, University of Navarra, Pamplona, Spain
| | - María D Lozano
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, University of Navarra, Pamplona, Spain.,Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier J Zulueta
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pulmonology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, University of Navarra, Pamplona, Spain
| |
Collapse
|
24
|
Huang HY, Li J, Tang Y, Huang YX, Chen YG, Xie YY, Zhou ZY, Chen XY, Ding SY, Luo MF, Jin CN, Zhao LS, Xu JT, Zhou Y, Lin YCD, Hong HC, Zuo HL, Hu SY, Xu PY, Li X, Huang HD. MethHC 2.0: information repository of DNA methylation and gene expression in human cancer. Nucleic Acids Res 2021; 49:D1268-D1275. [PMID: 33270889 PMCID: PMC7779066 DOI: 10.1093/nar/gkaa1104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
DNA methylation is an important epigenetic regulator in gene expression and has several roles in cancer and disease progression. MethHC version 2.0 (MethHC 2.0) is an integrated and web-based resource focusing on the aberrant methylomes of human diseases, specifically cancer. This paper presents an updated implementation of MethHC 2.0 by incorporating additional DNA methylomes and transcriptomes from several public repositories, including 33 human cancers, over 50 118 microarray and RNA sequencing data from TCGA and GEO, and accumulating up to 3586 manually curated data from >7000 collected published literature with experimental evidence. MethHC 2.0 has also been equipped with enhanced data annotation functionality and a user-friendly web interface for data presentation, search, and visualization. Provided features include clinical-pathological data, mutation and copy number variation, multiplicity of information (gene regions, enhancer regions, and CGI regions), and circulating tumor DNA methylation profiles, available for research such as biomarker panel design, cancer comparison, diagnosis, prognosis, therapy study and identifying potential epigenetic biomarkers. MethHC 2.0 is now available at http://awi.cuhk.edu.cn/∼MethHC.
Collapse
Affiliation(s)
- Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yun Tang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yi-Xian Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yi-Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yue-Yang Xie
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Zhe-Yuan Zhou
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xin-Yi Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Si-Yuan Ding
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Meng-Fan Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Chen-Nan Jin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Le-Shan Zhao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Jia-Tong Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Ying Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsiao-Chin Hong
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Si-Yao Hu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Pei-Yi Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xin Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| |
Collapse
|
25
|
Kalinke L, Thakrar R, Janes SM. The promises and challenges of early non-small cell lung cancer detection: patient perceptions, low-dose CT screening, bronchoscopy and biomarkers. Mol Oncol 2020; 15:2544-2564. [PMID: 33252175 PMCID: PMC8486568 DOI: 10.1002/1878-0261.12864] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer survival statistics are sobering with survival ranking among the poorest of all cancers despite the addition of targeted therapies and immunotherapies. However, improvements in tools for early detection hold promise. The Nederlands–Leuvens Longkanker Screenings Onderzoek (NELSON) trial recently corroborated the findings from the previous National Lung Screening Trial low‐dose Computerised Tomography (NLST) screening trial in reducing lung cancer mortality. Biomarker research and development is increasing at pace as the molecular life histories of lung cancers become further unravelled. Low‐dose CT screening (LDCT) is effective but targets only those at the highest risk and is burdensome on healthcare. An optimally designed CT screening programme at best will only detect a low proportion of overall lung cancers as only those at very high‐risk meet screening criteria. Biomarkers that help risk stratify suitable patients for LDCT screening, and those that assist in determining which LDCT detected nodules are likely to represent malignant disease are needed. Some biomarkers have been proposed as standalone lung cancer diagnosis tools. Bronchoscopy technology is improving, with better capacity to identify and obtain samples from early lung cancers. Clinicians need to be aware of each early lung cancer detection method’s inherent limitations. We anticipate that the future of early lung cancer diagnosis will involve a synergistic, multimodal approach, combining several early detection methods.
Collapse
Affiliation(s)
- Lukas Kalinke
- Lungs for Living Research Centre, University College London, UK
| | - Ricky Thakrar
- Lungs for Living Research Centre, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, University College London, UK
| |
Collapse
|
26
|
Beyond Conventional: The New Horizon of Anti-Angiogenic microRNAs in Non-Small Cell Lung Cancer Therapy. Int J Mol Sci 2020; 21:ijms21218002. [PMID: 33121202 PMCID: PMC7663714 DOI: 10.3390/ijms21218002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.
Collapse
|
27
|
Pop-Bica C, Pintea S, Magdo L, Cojocneanu R, Gulei D, Ferracin M, Berindan-Neagoe I. The Clinical Utility of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC). A Systematic Review and Meta-Analysis. Front Oncol 2020; 10:516850. [PMID: 33194579 PMCID: PMC7604406 DOI: 10.3389/fonc.2020.516850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a problem worldwide due to its rapid progression and low rate of response to treatment. The heterogeneity of these tumors observed in histopathology exam but also in the mutational status and gene expression pattern makes this malignancy difficult to treat in clinic. The present study investigated the effect of miR-21 and let-7 family members as prognostic biomarkers in NSCLC patients based on the results published in different studies regarding this subject until March 2019. The analysis revealed that these two transcripts are steady biomarkers for prediction of patient outcome or survival. Upregulated expression of miR-21 is associated with poor outcome of patients with NSCLC [HR = 1.87, 95% CI = (1.41, 2.47), p < 0.001]. The analysis regarding let-7 family, specifically let-7a/b/e/f, revealed that downregulated expression of these transcripts predicts poor outcome for NSCLC patients [HR = 2.61, 95% CI = (1.58, 4.30), p < 0.001]. Besides, the reliability of these microRNAs is reflected in the fact that their prognostic significance is constant given the different sample types (tissue, FFPE tissue, serum, serum/plasma or exosomes) used in the selected studies.
Collapse
Affiliation(s)
- Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sebastian Pintea
- Department of Psychology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine MedFuture, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Manuela Ferracin
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricută", Cluj-Napoca, Romania
| |
Collapse
|
28
|
Shen C, Li J, Che G. Prognostic value of let-7 in lung cancer: systematic review and meta-analysis. Transl Cancer Res 2020; 9:6354-6361. [PMID: 35117243 PMCID: PMC8799185 DOI: 10.21037/tcr-20-1240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide and the overall survival of patients with non-small cell lung cancer has not been improved. Let-7 family has been shown to act as tumor suppressors by inhibiting oncogenes and key regulators of mitogenic pathways, while far fewer clinical studies addressing the association between let-7 expression and the disease prognosis have been published up to date. Therefore, our meta-analysis aims to determine the prognostic significance of let-7 expression in lung cancer patients. METHODS PubMed, EMBASE, the Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for full-text literature citations. We applied the hazard ratio (HR) with 95% confidence interval (CI) as the appropriate summarized statistics. Q-test and I2 statistic were used to estimate the level of heterogeneity. The publication bias was detected by Begg's test and Egger's test. RESULTS Seven eligible studies involving 2,262 patients were selected for this meta-analysis. The combined HR for the seven eligible studies was 0.61 (95% CI: 0.53-0.70, P<0.00001) and heterogeneity of overall prognosis was relatively high (I2=76.4%, P=0.000). We conducted a further subgroup analysis, including an evaluation of the relationship between let-7 expression, lung cancer pathology, race, and sample size. All the results revealed that a significantly low let-7 expression in patients was an indicator of poor survival. Neither Begg's test nor Egger's test found publication bias in any analysis. CONCLUSIONS The present evidence indicates that the low let-7 expression can be considered as a significant predictor of worse prognosis in patients with lung cancer. The findings of our meta-analysis may be further confirmed in the future by the use of more updated review pooling and more relevant investigations.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jue Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Hanafi AR, Jayusman AM, Alfasunu S, Sadewa AH, Pramono D, Heriyanto DS, Haryana SM. [Serum MiRNA as Predictive and Prognosis Biomarker in Advanced Stage Non-small Cell Lung Cancer in Indonesia]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:321-332. [PMID: 32283582 PMCID: PMC7260391 DOI: 10.3779/j.issn.1009-3419.2020.104.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background and objective Lung cancer is the most common cause of death in men in the world and in Indonesia where non-small cell carcinoma lung cancer (NSCLC) constitutes 85% of all lung cancer cases. The high mortality rate is due to a poor prognosis and is often diagnosed as having advanced stages. If it is known at the initial stage, the prognosis of lung cancer will be better. Prognosis can be predicted with a marker of prognostic biology, one of which is micro RNA (miRNA). This study aims to prove that serum miRNA can be predictive biological marker and prognosis in NSCLC patients in Indonesia. Methods This study was cohort retrospective among 52 subjects in "Dharmais" Hospital National Cancer Center. Sample was obtained from patients' serum. MiR-34, miR-148, miR-155 and miR-222 serum are measured through Real-Time PCR (qPCR). Data were analyzed and interpreted with descriptive analysis, bivariate analysis (Mann Whitney-U for two type of variables or Kruskal-Wallis for more than two type of variables. Kaplan-Meier analysis was used to know association between characteristic which are sociodemographic, performance status, clinico-pathology, and survival rate in miRNA expression. Results From this study, miRNA expression: miR-34 (46.15%), miR-148 (23.08%), miR-155 (40.38%) and miR-222 (32.69%). Performance status score was statistically significant correlation with miR-148 (P=0.049) and miR-222 (P=0.018). High miR-34 is associated with multiple M1b metastatic type (P=0.020), cancer cell type (adenocarcinoma, P=0.009) and adenocarcinoma epidermal growth factor receptor (EGFR) mutation (negative, P=0.031). There was a significant correlation between the high miR-222 as a poor prognosis in advanced stage NSCLC with M1b metastasis (Median Survival/MS: 27 d, P=0.049) and positive EGFR mutations (MS: 74 d, P=0.049) and correlation of miR-155 with adenocarcinoma (MS: 69 d, P=0.034) and positive EGFR gene mutations (MS: 58 d, P=0.023). Conclusion High miR-34 expression in advanced stage NSCLC is the predictive factor for multiple metastatic, adenocarcinoma cell type and adenocarcinoma negative EGFR mutation. High expression of miR-155 and miR-222 are poor prognoses, especially high miR-222 found in metastasis M1b and positive EGFR mutation and miR-155 found in adenocarcinoma and positive EGFR gene mutations. Further studies regarding correlation between miRNA and survival rate are needed.
Collapse
Affiliation(s)
- Arif R Hanafi
- Department of Pulmonology, ''Dharmais'' Hospital National Cancer Center, Jakarta 11420, Indonesia
| | - Achmad M Jayusman
- Department of Pulmonology, ''Dharmais'' Hospital National Cancer Center, Jakarta 11420, Indonesia
| | - Serafim Alfasunu
- Department of Pulmonology, ''Dharmais'' Hospital National Cancer Center, Jakarta 11420, Indonesia
| | - Ahmad H Sadewa
- Faculty of Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Dibyo Pramono
- Faculty of Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Didik S Heriyanto
- Faculty of Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Sofia M Haryana
- Faculty of Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| |
Collapse
|
30
|
Di Agostino S. The Impact of Mutant p53 in the Non-Coding RNA World. Biomolecules 2020; 10:biom10030472. [PMID: 32204575 PMCID: PMC7175150 DOI: 10.3390/biom10030472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), micro RNAs (miRNAs), and extracellular RNAs (exRNAs) are new groups of RNAs with regulation activities that have low or no protein-coding ability. Emerging evidence suggests that deregulated expression of these non-coding RNAs is associated with the induction and progression of diverse tumors throughout epigenetic, transcriptional, and post-transcriptional modifications. A consistent number of non-coding RNAs (ncRNAs) has been shown to be regulated by p53, the most important tumor suppressor of the cells frequently mutated in human cancer. It has been shown that some mutant p53 proteins are associated with the loss of tumor suppressor activity and the acquisition of new oncogenic functions named gain-of-function activities. In this review, we highlight recent lines of evidence suggesting that mutant p53 is involved in the expression of specific ncRNAs to gain oncogenic functions through the creation of a complex network of pathways that influence each other.
Collapse
|
31
|
Wu Q, Yu L, Lin X, Zheng Q, Zhang S, Chen D, Pan X, Huang Y. Combination of Serum miRNAs with Serum Exosomal miRNAs in Early Diagnosis for Non-Small-Cell Lung Cancer. Cancer Manag Res 2020; 12:485-495. [PMID: 32021461 PMCID: PMC6982436 DOI: 10.2147/cmar.s232383] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose Circulating microRNAs (miRNAs) have shown the potential for non-invasive diagnosis of various types of malignancies at an early stage. The aim of the study was to explore the feasibility of a combination of 8 serum miRNAs related to non-small-cell lung cancer (NSCLC) with the corresponding serum exosomal miRNAs in early diagnosis for the patients with NSCLC. Methods We measured 8 serum miRNAs and the corresponding serum exosomal miRNAs including miR-21-5p, miR-126-3p, miR-141-3p, miR-146a-5p, miR-155-5p, miR-222-3p, miR-223-3p, and miR-486-5p in 48 patients with early NSCLC at stages I/II, 32 patients with lung benign lesion (LBL), and 48 healthy control (HC) by quantitative real-time polymerase chain reaction (qRT-PCR). Results The expression levels of 4 serum miRNAs including miR-21-5p, miR-141-3p, miR-222-3p, and miR-486-5p, and 2 serum exosomal miRNAs including miR-146a-5p and miR-486-5p in the early NSCLC group were significantly different from that in the LBL group and the HC group (P < 0.01). The areas under the receiver operating characteristic curves (AUC) of the 4 serum miRNAs and 2 serum exosomal miRNAs in the early NSCLC group were ≥0.697, of which serum exosomal miR-146a-5p and miR-486-5p were 0.813 and 0.886, respectively, and higher than that of the 4 serum miRNAs. Additionally, a combination of 4 serum miRNAs with 2 serum exosomal miRNAs improved the AUC to 0.960 for the patients with NSCLC at early stages, with a sensitivity of 85.42% and a specificity of 92.50%. Conclusion This study suggests that serum exosomal miRNAs other than serum miRNAs might be preferable biomarkers for the patients with NSCLC at early stages, and a combination of serum miRNAs with serum exosomal miRNAs contributes to the further improvement of early diagnosis for NSCLC.
Collapse
Affiliation(s)
- Qingwei Wu
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Lili Yu
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Xiaoqing Lin
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Qingzhu Zheng
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Songgao Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Dunyan Chen
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Xiaojie Pan
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Yi Huang
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China.,Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| |
Collapse
|
32
|
Gu Y, Shi X, Wang X, Liu X, Xie Y. Expression profile of miRNA in NSCLC tissues in middle-altitude area. Oncol Lett 2020; 19:783-794. [PMID: 31897195 PMCID: PMC6924178 DOI: 10.3892/ol.2019.11176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/25/2019] [Indexed: 11/07/2022] Open
Abstract
Micro ribonucleic acid (miRNA) expression profile in non-small cell lung cancer (NSCLC) tissues in middle-altitude area was analyzed using the Affymetrix chip technique, to predict the target genes of abnormally-expressed miRNAs, and to analyze the target gene-related signaling pathways and cell biological functions regulated by them. The difference in miRNA expression profile in NSCLC tissues was analyzed using the Affymetrix chip technique. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for the verification of some differentially-expressed miRNAs. The genes predicted by at least 6 out of 12 commonly used prediction methods of miRNA target genes, based on miRWalk2.0, were considered as target genes. The functions of differentially-expressed miRNA target genes were analyzed via Gene Ontology (GO) enrichment analysis, and the main signaling pathways involving target genes were analyzed via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. There was abnormal expression of miRNAs in NSCLC tissues in the middle-altitude area. There were 140,405 target genes predicted for differentially-expressed miRNAs. The GO enrichment analysis of the functions of the target genes of differentially expressed miRNAs revealed that they mainly influence the binding process of intracellular components to protein, the positive regulation of biological process and the regulation of metabolic process. Moreover, these target genes were mainly enriched in the immunity, gene expression, metabolism and signal transduction, among which signal transduction was enriched with the most genes. The expression levels of miRNA-139-5p and miRNA-150-5p in lung cancer group were lower than those in the control group. The expression of miRNAs in NSCLC tissues in the middle-altitude area is abnormal, and most miRNAs are downregulated.
Collapse
Affiliation(s)
- Yuhai Gu
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuefeng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xinying Wang
- Graduate School of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Xia Liu
- Graduate School of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Youbang Xie
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
33
|
Ishola AA, La'ah AS, Le HD, Nguyen VQ, Yang YP, Chou SJ, Tai HY, Chien CS, Wang ML. Non-coding RNA and lung cancer progression. J Chin Med Assoc 2020; 83:8-14. [PMID: 31770191 DOI: 10.1097/jcma.0000000000000225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lung cancer (LC) is a major killer disease globally. This situation is further supported by yearly increase in new LC cases and its poor 5-year survival which is less than 15%. Although a large percentage of LC cases have been attributed to smoking, a considerable amount of nonsmokers also develops this disease, thereby suggesting a genetic and/or epigenetic undertone to LC development. Several growth-related genes such as epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) as well as tumor suppressor genes such as p53 have been implicated in LC pathogenesis and progression. Likewise, the genome only contains approximately 1% of coding regions. Hence, noncoding portion of the genome such as noncoding RNAs (ncRNAs) has been studied and discovered to play a cogent role in LC pathogenesis. More precisely, microRNAs (miRNAs) and long ncRNAs (lncRNAs) have been studied for decades. Posttranscriptional gene modulation function of miRNAs is well established and characterized. Likewise, the antagonizing interaction between lncRNAs and miRNAs had also been proven to further control gene expression during healthy and disease conditions like LC. More recently, renewed attention toward circular RNAs [circular RNAs (circRNAs)] study showed that circRNAs can also sponge miRNAs to modulate gene expressions too. Hence, miRNAs, lncRNAs, and circRNAs seem to function within a circuit to optimally determine which gene is needed to be upregulated or downregulated in biological system. Therefore, this review will discuss important ncRNAs, namely miRNA, lncRNA, and circRNA in LC progression. Paracrine effect of exosomal ncRNA will be also reviewed. In addition, the prospect of these ncRNAs in enhancing better LC treatment will be highlighted as well.
Collapse
Affiliation(s)
- Afeez Adekunle Ishola
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Anita Silas La'ah
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Hung Dinh Le
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Viet Quoc Nguyen
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Pharmaceutical Science, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Jie Chou
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Yun Tai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
34
|
Ko EA, Kim YW, Lee D, Choi J, Kim S, Seo Y, Bang H, Kim JH, Ko JH. Expression of potassium channel genes predicts clinical outcome in lung cancer. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:529-537. [PMID: 31680775 PMCID: PMC6819903 DOI: 10.4196/kjpp.2019.23.6.529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022]
Abstract
Lung cancer is the most common cause of cancer deaths worldwide and several molecular signatures have been developed to predict survival in lung cancer. Increasing evidence suggests that proliferation and migration to promote tumor growth are associated with dysregulated ion channel expression. In this study, by analyzing high-throughput gene expression data, we identify the differentially expressed K+ channel genes in lung cancer. In total, we prioritize ten dysregulated K+ channel genes (5 up-regulated and 5 down-regulated genes, which were designated as K-10) in lung tumor tissue compared with normal tissue. A risk scoring system combined with the K-10 signature accurately predicts clinical outcome in lung cancer, which is independent of standard clinical and pathological prognostic factors including patient age, lymph node involvement, tumor size, and tumor grade. We further indicate that the K-10 potentially predicts clinical outcome in breast and colon cancers. Molecular signature discovered through K+ gene expression profiling may serve as a novel biomarker to assess the risk in lung cancer.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seongtae Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Yelim Seo
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul 06973, Korea
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
35
|
Zeng SG, Xie JH, Zeng QY, Dai SH, Wang Y, Wan XM, Zhou XL. MicroRNA-497-5p negatively regulates the proliferation and cisplatin resistance of non-small cell lung cancer cells by targeting YAP1 and TEAD1. Transl Cancer Res 2019; 8:2470-2480. [PMID: 35116999 PMCID: PMC8798955 DOI: 10.21037/tcr.2019.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/27/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are crucial regulators in the pathological processes and drug resistance of lung cancer. In this study, we investigated the role of miR-497-5p in modulating the function of non-small cell lung cancer (NSCLC). METHODS MiR-497-5p expression in lung cancer tissues and cells was evaluated by qRT-PCR. Cell proliferation was evaluated by CCK-8 assay and colony-formation assay. Cell cycle and cell apoptosis were detected by flow cytometry. The effect of miR-497-5p on the expression of Yes-associated protein 1 (YAP1) and TEA domain family member 1 (TEAD1) was analyzed by qRT-PCR, Western blot and luciferase activity assay. RESULTS The expression of miR-497-5p was significantly downregulated in lung cancer tissues and cells compared with paired normal tissues and cells. Overexpression of miR-497-5p induced growth retardation and apoptosis of A549 lung cancer cells. Mechanistically, YAP1 and TEAD1 were targeted and downregulated by miR-497-5p. Finally, we found that miR-497-5p increased cisplatin chemosensitivity in A549 cells. CONCLUSIONS MiR-497-5p suppresses cell proliferation and resistance to cisplatin in NSCLC by downregulating the expression of YAP1 and TEAD1.
Collapse
Affiliation(s)
- Shang-Gan Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jian-Hong Xie
- Department of Surgery, Suichuan People’s Hospital, Ji’an 343900, China
| | - Qun-Ying Zeng
- Department of Surgery, Suichuan People’s Hospital, Ji’an 343900, China
| | - Shao-Hua Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Mei Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Liang Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
36
|
Halvorsen AR, Ragle Aure M, Õjlert ÅK, Brustugun OT, Solberg S, Nebdal D, Helland Å. Identification of microRNAs involved in pathways which characterize the expression subtypes of NSCLC. Mol Oncol 2019; 13:2604-2615. [PMID: 31505091 PMCID: PMC6887593 DOI: 10.1002/1878-0261.12571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of microRNAs is a common mechanism in the development of lung cancer, but the relationship between microRNAs and expression subtypes in non‐small‐cell lung cancer (NSCLC) is poorly explored. Here, we analyzed microRNA expression from 241 NSCLC samples and correlated this with the expression subtypes of adenocarcinomas (AD) and squamous cell carcinomas (SCC) to identify microRNAs specific for each subtype. Gene set variation analysis and the hallmark gene set were utilized to calculate gene set scores specific for each sample, and these were further correlated with the expression of the subtype‐specific microRNAs. In ADs, we identified nine aberrantly regulated microRNAs in the terminal respiratory unit (TRU), three in the proximal inflammatory (PI), and nine in the proximal proliferative subtype (PP). In SCCs, 1, 5, 5, and 9 microRNAs were significantly dysregulated in the basal, primitive, classical, and secretory subtypes, respectively. The subtype‐specific microRNAs were highly correlated to specific gene sets, and a distinct pattern of biological processes with high immune activity for the AD PI and SCC secretory subtypes, and upregulation of cell cycle‐related processes in AD PP, SCC primitive, and SCC classical subtypes were found. Several in silico predicted targets within the gene sets were identified for the subtype‐specific microRNAs, underpinning the findings. The results were significantly validated in the LUAD (n = 492) and LUSC (n = 380) TCGA dataset (False discovery rates‐corrected P‐value < 0.05). Our study provides novel insight into how expression subtypes determined with discrete biological processes may be regulated by subtype‐specific microRNAs. These results may have importance for the development of combinatory therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Ann Rita Halvorsen
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Åsa Kristina Õjlert
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Steinar Solberg
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Norway
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
37
|
Gan Z, Zou Q, Lin Y, Huang X, Huang Z, Chen Z, Xu Z, Lv Y. Construction and validation of a seven-microRNA signature as a prognostic tool for lung squamous cell carcinoma. Cancer Manag Res 2019; 11:5701-5709. [PMID: 31417313 PMCID: PMC6593749 DOI: 10.2147/cmar.s191637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/23/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: The aim of this study was to construct and validate a microRNA (miR)-based signature as a prognostic tool for lung squamous cell carcinoma (LUSC). Materials and methods: With the use of mature miR expression profiles downloaded from The Cancer Genome Atlas database, we identified differentially expressed miRs between LUSC and matched healthy lung tissue. Thereafter, we carried out an evaluation of the association of differentially expressed miRs with overall survival (OS) with the use of univariate and multivariate Cox regression analysis. This analysis was eventually employed for the construction of a miR-based signature, which effectively predicted the prognosis. The functional enrichment analysis of the miRs included in the signature was used to explore their potential molecular mechanism in LUSC. Results: A total of 316 miRs were differentially expressed between LUSC and matched healthy lung tissues in the training set. Following the univariate and multivariate Cox regression analysis, we found that seven miRs were independent prognostic factors. Each patient received a signature index ranging from 0 to 7. Patients with LUSC were divided into high-risk, intermediate-risk, and low-risk groups in accordance with their signature index and the OS in the three groups was significantly different. This finding remains consistent in the validation set. Besides that, this seven-miR signature remained an independent prognostic factor in comparison with routine clinicopathologic features. The seven-miR signature is a promising biomarker for predicting the 5-year survival rate of LUSC with an area under the receiver operating characteristic curveof 0.712 in the training set and 0.688 in the validation set, respectively. The target genes of seven miRs may be involved in various pathways associated with lung cancer, for instance the mitogen-activated protein kinase signaling pathway and the Wnt signaling pathway. Conclusion: Using this signature, patients with LUSC can be divided into high-risk, intermediate-risk, and low-risk groups for more personalized management.
Collapse
Affiliation(s)
- Zuhuan Gan
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Qiyun Zou
- Department 1 of Internal Medicine, Affiliated Langdong Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiaoyuan Huang
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zhong Huang
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zhichao Chen
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zihai Xu
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Yufeng Lv
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| |
Collapse
|
38
|
Sherafatian M, Arjmand F. Decision tree-based classifiers for lung cancer diagnosis and subtyping using TCGA miRNA expression data. Oncol Lett 2019; 18:2125-2131. [PMID: 31423286 DOI: 10.3892/ol.2019.10462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer has the world's highest cancer- associated mortality rate, making biomarker discovery for this cancer a pressing issue. Machine learning approaches to identify molecular biomarkers are not as prevalent as screening of potential biomarkers by differential expression analysis. However, several differentially expressed miRNAs involved in cancer have been identified using this approach. The availability of The Cancer Genome Atlas (TCGA) allows the use of machine-learning methods for the molecular profiling of tumors. The present study employed empirical negative control microRNAs (miRs) in lung cancer to normalize lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) datasets from TCGA to model decision trees in order to classify lung cancer status and subtype. The two primary classification models consisted of four miRNAs for lung cancer diagnosis and subtyping. hsa-miR-183 and hsa-miR-135b were used to distinguish lung tumors from normal samples taken from tissues adjacent to the tumor site, and hsa-miR-944 and hsa-miR-205 to further classify the tumors into LUAD and LUSC major subtypes. Specific cancer status classification models were also presented for each subtype.
Collapse
Affiliation(s)
- Masih Sherafatian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Fateme Arjmand
- Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
39
|
Zhong J, Ren X, Chen Z, Zhang H, Zhou L, Yuan J, Li P, Chen X, Liu W, Wu D, Yang X, Liu J. miR-21-5p promotes lung adenocarcinoma progression partially through targeting SET/TAF-Iα. Life Sci 2019; 231:116539. [PMID: 31176779 DOI: 10.1016/j.lfs.2019.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Although SET(I2PP2A) and miRNAs are reported to play a pivotal role in lung cancer, the underlying mechanisms have remained obscure. To address this issue, we investigated how miRNAs and SET participate in the progression of lung cancer. METHODS miRNAs that target SET were predicted from multiple miRNA databases. Three human NSCLC cell lines and two normal lung cell lines were used to evaluate aberrant miRNA and SET expressions. A dual luciferase reporter assay system was employed to verify the interaction between miRNA and SET. Stable miRNA knockdown and SET overexpression in A549 cells were achieved through lentivirus transfection; the corresponding influences on lung cancer progression were also examined. RESULTS In this study, A549 was the sole cell line to lack SET/TAF-Iα expression, which was inversely correlated with the up-regulation of miR-21-5p. SET was subsequently revealed as the direct target site of miR-21-5p in A549 cells. The stable miR-21-5p knockdown and SET/TAF-Iα overexpression were shown to markedly enhance the expression of SET/TAF-Iα and to inhibit the migration, invasion, proliferation as well as the in vivo tumorigenicity of A549 cells. CONCLUSION We suggest that SET/TAF-Iα might be a tumor suppressing factor regulated by miR-21-5p in lung adenocarcinoma. This might provide a target for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xiaohu Ren
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Zhihong Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Hang Zhang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Li Zhou
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Jianhui Yuan
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Ping Li
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xiao Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Wei Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Desheng Wu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xifei Yang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Jianjun Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
40
|
Caramori G, Ruggeri P, Mumby S, Ieni A, Lo Bello F, Chimankar V, Donovan C, Andò F, Nucera F, Coppolino I, Tuccari G, Hansbro PM, Adcock IM. Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Targets 2019; 23:539-553. [DOI: 10.1080/14728222.2019.1615884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Federica Lo Bello
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Filippo Andò
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Nucera
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
- Faculty of Science, Ultimo, and Centenary Institute, Centre for Inflammation, University of Technology Sydney, Sydney, Australia
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
41
|
Malik S, Zafar Paracha R, Khalid M, Nisar M, Siddiqa A, Hussain Z, Nawaz R, Ali A, Ahmad J. MicroRNAs and their target mRNAs as potential biomarkers among smokers and non-smokers with lung adenocarcinoma. IET Syst Biol 2019; 13:69-76. [PMID: 33444474 PMCID: PMC8687273 DOI: 10.1049/iet-syb.2018.5040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
Lung adenocarcinoma is one of the major causes of mortality. Current methods of diagnosis can be improved through identification of disease specific biomarkers. MicroRNAs are small non-coding regulators of gene expression, which can be potential biomarkers in various diseases. Thus, the main objective of this study was to gain mechanistic insights into genetic abnormalities occurring in lung adenocarcinoma by implementing an integrative analysis of miRNAs and mRNAs expression profiles in the case of both smokers and non-smokers. Differential expression was analysed by comparing publicly available lung adenocarcinoma samples with controls. Furthermore, weighted gene co-expression network analysis is performed which revealed mRNAs and miRNAs significantly correlated with lung adenocarcinoma. Moreover, an integrative analysis resulted in identification of several miRNA-mRNA pairs which were significantly dysregulated in non-smokers with lung adenocarcinoma. Also two pairs (miR-133b/Protein Kinase C Zeta (PRKCZ) and miR-557/STEAP3) were found specifically dysregulated in smokers. Pathway analysis further revealed their role in important signalling pathways including cell cycle. This analysis has not only increased the authors' understanding about lung adenocarcinoma but also proposed potential biomarkers. However, further wet laboratory studies are required for the validation of these potential biomarkers which can be used to diagnose lung adenocarcinoma.
Collapse
Affiliation(s)
- Sumaria Malik
- Research Center For Modeling & Simulation (RCMS)National University of Sciences and Technology (NUST)Sector H‐12IslamabadPakistan
| | - Rehan Zafar Paracha
- Research Center For Modeling & Simulation (RCMS)National University of Sciences and Technology (NUST)Sector H‐12IslamabadPakistan
| | - Maryam Khalid
- Research Center For Modeling & Simulation (RCMS)National University of Sciences and Technology (NUST)Sector H‐12IslamabadPakistan
| | - Maryum Nisar
- Research Center For Modeling & Simulation (RCMS)National University of Sciences and Technology (NUST)Sector H‐12IslamabadPakistan
| | - Amnah Siddiqa
- Research Center For Modeling & Simulation (RCMS)National University of Sciences and Technology (NUST)Sector H‐12IslamabadPakistan
| | - Zamir Hussain
- Research Center For Modeling & Simulation (RCMS)National University of Sciences and Technology (NUST)Sector H‐12IslamabadPakistan
| | - Raheel Nawaz
- School of ComputingMathematics and Digital Technology, Manchester Metropolitan UniversityGM459 Geoffrey Manton BuildingManchesterEngland
| | - Amjad Ali
- Atta‐ur‐Rahman School of Applied Biosciences – ASABNational University of Sciences and Technology (NUST)Sector H‐ 12IslamabadPakistan
| | - Jamil Ahmad
- Research Center For Modeling & Simulation (RCMS)National University of Sciences and Technology (NUST)Sector H‐12IslamabadPakistan
| |
Collapse
|
42
|
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by exosomes. Mol Cancer 2019; 18:58. [PMID: 30925921 PMCID: PMC6441190 DOI: 10.1186/s12943-019-0970-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance can arise within tumor cells because of genetic or phenotypic changes (intrinsic resistance), or it can be the result of an interaction with the tumor microenvironment (extrinsic resistance). Exosomes are membranous vesicles 40 to 100 nm in diameter constitutively released by almost all cell types, and mediate cell-to-cell communication by transferring mRNAs, miRNAs, DNAs and proteins causing extrinsic therapy resistance. They transfer therapy resistance by anti-apoptotic signalling, increased DNA-repair or delivering ABC transporters to drug sensitive cells. As functional mediators of tumor-stroma interaction and of epithelial to mesenchymal transition, exosomes also promote environment-mediated therapy resistance. Exosomes may be used in anticancer therapy exploiting their delivery function. They may effectively transfer anticancer drugs or RNAs in the context of gene therapy reducing immune stimulatory effects of these drugs and hydrophilic qualities facilitating crossing of cell membranes.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria.,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ute Ganswindt
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria. .,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
43
|
Sun G, Ding X, Bi N, Wang Z, Wu L, Zhou W, Zhao Z, Wang J, Zhang W, Fan J, Zhang W, Dong X, Lv N, Song Y, Zhan Q, Wang L. Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma. PLoS Genet 2019; 15:e1007888. [PMID: 30707694 PMCID: PMC6374053 DOI: 10.1371/journal.pgen.1007888] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/13/2019] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Brain metastasis (BM) is a major complication of lung adenocarcinoma (LAD). An investigation of the pathogenic mechanisms of BM, as well as the identification of appropriate molecular markers, is necessary. The aim of this study was to determine the expression patterns of microRNAs (miRNAs) in LAD with BM, and to investigate the biological role of these miRNAs during tumorigenesis. miRNA array profiles were used to identify BM-associated miRNAs. These miRNAs were independently validated in 155 LAD patients. Several in vivo and in vitro assays were performed to verify the effects of miRNAs on BM. We identified six miRNAs differentially expressed in patients with BM as compared to patients with BM. Of these, miR-4270 and miR-423-3p were further investigated. miR-4270 and miR-423-3p directly targeted MMP19 and P21, respectively, to influence cell viability, migration, and colony formation in vitro. miR-4270 downregulation and miR-423-3p upregulation was associated with an increased risk of BM in LAD patients. Thus, our results suggested that miR-4270 and miR-423-3p might play an important role in BM pathogenesis in LAD patients, and that these miRNAs might be useful prognostic and clinical treatment targets.
Collapse
Affiliation(s)
- Guogui Sun
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Hebei, China
| | - Xiao Ding
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, Shandong Provincial Hospital, Shandong, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwu Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Hebei, China
| | - Lihong Wu
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingbo Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Fan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - WenJue Zhang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Dong
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Lv
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - LuHua Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Santerre M, Chatila W, Wang Y, Mukerjee R, Sawaya BE. HIV-1 Nef promotes cell proliferation and microRNA dysregulation in lung cells. Cell Cycle 2019; 18:130-142. [PMID: 30563405 DOI: 10.1080/15384101.2018.1557487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. Lung cancer is the most frequent non-AIDS-defining malignancies in HIV-infected patients. The mechanism of the increased risk for lung cancer in HIV-1 patients is poorly understood. HIV-1 Nef protein has been suggested to be one of the key players in HIV-related lung disease. In here, we showed the involvement of Nef protein in cell modifications such as fibroblasts (IMR-90) and normal (BEAS-2B) or cancerous (A549) epithelial cells. We demonstrated that Nef protein reprograms initial stages of lung cancer (e.g. changes in the metabolism, improved cell survival and invasion, increase the angiogenesis factor VEGF). Additionally, we showed that Nef is provoking a global decrease of mature miRNA and a decrease of DICER1 and AGO expression in lung cells. MiRNAs play a crucial role in cell signaling and homeostasis, functioning as oncogenes or tumor suppressors, and their dysregulation can contribute to the tumorigenic process. These results showed that HIV-1 Nef protein is directly involved in preventing cell death and contributes to tumor progression.
Collapse
Affiliation(s)
- Maryline Santerre
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Wissam Chatila
- b Departments of Thoracic Medicine and Surgery , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Ying Wang
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Ruma Mukerjee
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Bassel E Sawaya
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA.,c Departments of Neurology , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| |
Collapse
|
45
|
Tang H, Lv W, Sun W, Bi Q, Hao Y. miR‑505 inhibits cell growth and EMT by targeting MAP3K3 through the AKT‑NFκB pathway in NSCLC cells. Int J Mol Med 2018; 43:1203-1216. [PMID: 30628663 PMCID: PMC6365022 DOI: 10.3892/ijmm.2018.4041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, which generally regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs has been reported in numerous cancer types, including lung cancer. In the present study, the role of miR-505 in non-small cell lung cancer (NSCLC) cells was investigated. miR-505 served a tumor suppressor role in NSCLC cells. By reverse transcriptase-quantitative polymerase chain reaction detection, it was demonstrated that miR-505 was downregulated in NSCLC tissues and cell lines, which is negatively associated with large tumor size, Tumor-Node-Metastasis stage and distant metastasis in patients with NSCLC. Functional studies revealed that miR-505 inhibited cell proliferation, migration, invasion and epithelial-mesenchymal transition progress in vitro and tumor growth in vivo. Mechanically, mitogen-activated protein kinase kinase kinase 3 (MAP3K3) was identified as a direct target of miR-505 by binding to its 3′untranslated region and demonstrated to mediate the tumor suppressor roles of miR-505 in NSCLC cells. The effect of miR-505 on the activation of AKT/nuclear factor-κB (NFκB) pathway, which was downstream targets of MAP3K3, was further analyzed by western blot analysis and immunofluorescence analyses. The data demonstrated the inhibition of the AKT/NFκB pathway upon overexpressing miR-505 and the activation of AKT/NFκB pathway upon silencing miR-505. Collectively, the data revealed the novel role and target of miR-505 in NSCLC cells, which may provide novel insights regarding its role in the carcinogenesis of NSCLC and its potential values for clinical applications.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Weihong Lv
- Department of Medical, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Wenxin Sun
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Qiaojie Bi
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Yueqin Hao
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
47
|
Wang L, Liu LF, Zhou L, Liao F, Wang J. Effects of ebv-miR-BART7 on tumorigenicity, metastasis, and TRAIL sensitivity of non-small cell lung cancer. J Cell Biochem 2018; 120:10057-10068. [PMID: 30569505 DOI: 10.1002/jcb.28289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate how the Epstein-Barr virus (EBV) encoded microRNA BART7 (miR-BART7) affects tumorigenicity, metastasis, and TRAIL sensitivity of non-small cell lung cancer (NSCLC). METHODS Real time-polymerase chain reaction was performed to detect miR-BART7 expression in NSCLC cell lines. A549 and Calu-1 cells transfected with miR-BART7 inhibitors/mimics were used to do the in-vitro experiments, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Annexin V-fluorescein isothiocyanate/PI, wound-healing, transwell, clonogenic assays, Western blot analysis, and anchorage-independent growth assay. Additionally, mice were used to inject A549 cells infected with miR-BART7 inhibitors to observe the tumorigenicity and metastasis of NSCLC. RESULTS TRAIL-resistant NSCLC cell lines (H460R, A549, Calu-1, and H1299) exhibited higher miR-BART7 rather than sensitive H460 and H292 cells. After transfected with miR-BART7 inhibitors, we observed an inhibition in proliferation, migration, invasion, and colony formation, but an enhancement in apoptosis as well as expressions of caspase-3 and caspase-8 in A549 and Calu-1 cells. Besides, TRAIL elevated the migration, invasion, and anchorage-independent growth of A549 cells, which was reversed by silencing DR4 and DR5 (siDRs). However, miR-BART7 inhibitors could reduce migration, invasion, and transformation potential of TRAIL treated A549 cells. Moreover, the expression of transforming growth factor-beta 1 (TGFβ1) could be decreased by miR-BART7 inhibitors with or without TRAIL treatment. Moreover, the tumor growth, epithelial-to-mesenchymal transition, and metastasis was suppressed and tumor-free survival was extended after injection of A549-miR-BART7 inhibitors. CONCLUSION Inhibition of miR-BART7 exerted inhibitory effects on cell proliferation, migration, invasion, and colony formation, consequently facilitating cell apoptosis and raising TRAIL sensitivity, providing a new therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-Fa Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Shandong Medical College, Linyi, Shandong, China
| | - Li Zhou
- The Central Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei Liao
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ju Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
48
|
Qin A, Qian W. MicroRNA-7 inhibits colorectal cancer cell proliferation, migration and invasion via TYRO3 and phosphoinositide 3-kinase/protein B kinase/mammalian target of rapamycin pathway suppression. Int J Mol Med 2018; 42:2503-2514. [PMID: 30226533 PMCID: PMC6192780 DOI: 10.3892/ijmm.2018.3864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
MicroRNA-7 (miR-7) is a non-coding RNA that inhibits colorectal cancer (CRC) cell proliferation, migration and invasion. miR-7 effectively silences TYRO3 expression, and the close association between TYRO3 and CRC has previously been reported. Therefore, the present study aimed to assess the roles and molecular mechanisms of TYRO3 and miR-7 in the development of CRC. The expression levels of miR-7 and TYRO3 in CRC tissues and cell lines were detected by reverse transcription-quantitative polymerase chain reaction. A dual-luciferase reporter assay was also performed to confirm whether TYRO3 was a target of miR-7. The effect of miR-7 and TYRO3 on cell proliferation, migration and invasion was detected in vitro with MTT, wound healing and cell invasion assays, respectively. The expression of proteins associated with the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway was detected by western blot analysis. The results indicated that the expression of miR-7 was downregulated and the levels of TYRO3 were gradually increased in CRC tissues and cell lines. TYRO3 was identified as a functional target of miR-7, and its expression was negatively regulated by miR-7 in CRC cell lines. The functional studies demonstrated that miR-7 knockdown promoted the proliferation, migration and invasion of CRC cells, while knockdown of TYRO3 repressed these biological processes. In addition, pathway analyses revealed that the oncogenic effect of TYRO3 was associated with PI3K/AKT/mTOR pathway inhibition. In conclusion, the data suggested that miR-7 promoted the development of CRC by targeting oncogenic TYRO3, which may be mediated by inhibition of the PI3K/AKT/mTOR signaling pathway. Thus, miR-7 may serve as an independent prognostic biomarker in patients with CRC.
Collapse
Affiliation(s)
- Ancheng Qin
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Weifeng Qian
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
49
|
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2018; 70:3-20. [PMID: 30102929 DOI: 10.1016/j.mam.2018.07.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Lung cancer is the cardinal cause of cancer-related deaths with restricted recourse of therapy throughout the world. Clinical success of therapies is not very promising due to - late diagnosis, limited therapeutic tools, relapse and the development of drug resistance. Recently, small ∼20-24 nucleotides molecules called microRNAs (miRNAs) have come into the limelight as they play outstanding role in the process of tumorigenesis by regulating cell cycle, metastasis, angiogenesis, metabolism and apoptosis. miRNAs essentially regulate gene expression via post-transcriptional regulation of mRNA. Nevertheless, few studies have conceded the role of miRNAs in activation of gene expression. A large body of data generated by numerous studies is suggestive of their tumor-suppressing, oncogenic, diagnostic and prognostic biomarker roles in lung cancer. They have also been implicated in regulating cancer cell metabolism and resistance or sensitivity towards chemotherapy and radiotherapy. Further, miRNAs have also been convoluted in regulation of immune checkpoints - Programmed death 1 (PD-1) and its ligand (PD-L1). These molecules play a significant role in tumor immune escape leading to the generation of a microenvironment favouring tumor growth and progression. Therefore, it is imperative to explore the expression of miRNA and understand its relevance in lung cancer and development of anti-cancer strategies (anti - miRs, miR mimics and micro RNA sponges). In view of the above, the role of miRNA in lung cancer has been dissected and the associated mechanisms and pathways are discussed in this review.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Shweta Arora
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX-77030, USA.
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| |
Collapse
|
50
|
Yin Y, Song WW, Wang Y, Zhao W, Wu J, Xu W. MicroRNA-200 families and prognostic value in various carcinomas: A systematic review and meta-analysis. Aging Med (Milton) 2018; 1:39-45. [PMID: 31942478 PMCID: PMC6880694 DOI: 10.1002/agm2.12005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, some studies have showed that miR-200 families act as novel biomarkers for the prediction of cancer outcomes. AIMS This meta-analysis was designed to investigate the associations between miR-200 families and the prognosis of patients with various cancers. MATERIALS & METHODS Eligible published databases including PubMed, Embase and Chinese National Knowledge Infrastructure (CNKI) databases were searched for articles until October 18, 2016. We performed a meta-analysis by calculating pooled hazard ratios (HR) and 95% confidence intervals (CI). Data were extracted from studies comparing overall survival (OS), progression-free survival (PFS) or recurrence-free survival (RFS). RESULTS For OS, the pooled HR was 1.54 (95% CI: 1.01-2.33), showing that high miR-200 family was clearly related to poor survival in various carcinomas, but no significantly association was found in PFS or RFS. Subgroup analysis indicated that upregulated miR-200 family was linked to poor OS in Asians (HR = 2.19, 95% CI: 1.27-3.78) but not in Caucasians (HR = 0.94, 95% CI: 0.46-1.91). Similarly, high miR-200 expression could not clearly predict the relationship with PFS and RFS. For cancer type, high miR-200 also predicted poor OS among lung cancer patients (HR = 3.09, 95% CI: 1.75-5.46). Besides, only elevated miR-200c of the miR-200 family indicated a significantly poor OS (HR = 2.25, 95% CI: 1.39-3.64). DISCUSSION Aberrant expression of miRNAs played a crucial role in the area of human carcinomas. Many studies have indicated that miRNAs are considered promising tumor biomarkers for prognosis and potential targets for clinical treatment. We have testified that high levels of miR-200 family expression (predominantly miR-200c) are significantly associated with poor survival and prognostic outcomes of patients with cancers, especially in lung cancer. However, no statistically significant results were calculated for miR-200a/b and miR-429, and this might result from a relatively small number of articles about them. In other tumor models except lung cancer, our results indicated that high miR-200 family was not obviously associated with OS (Gastric or Colorectal cancer; Ovarian cancer; Others). In addition, some other records showed the opposite results, for they exhibited that upregulated miR-200 family level was linked to longer survival. For ethnic group, our stratified analyses showed that the Asian population predicted poor OS. While the Caucasian population did not exhibit an significant association with OS. This discrepancy might result from different hereditary backgrounds and environment exposure. Although these results have indicated that miR-200 families were promising biomarkers to predict prognosis for patients with cancers, there were several limitations in this analysis that would impact its quality. Generally, further studies should be warranted to clarify this question and to provide a new novel idea for routine clinical application. CONCLUSION Our findings suggest that miR-200 family might be a potentially useful biomarker for predicting cancer prognosis, especially for lung cancer in Asians.
Collapse
Affiliation(s)
- Yuan Yin
- Nanjing Medical UniversityJiangning District, NanjingChina
| | - Wei Wei Song
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu Wang
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Weihong Zhao
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianqing Wu
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Xu
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|