1
|
Ayed A. The role of natural products versus miRNA in renal cell carcinoma: implications for disease mechanisms and diagnostic markers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6417-6437. [PMID: 38691151 DOI: 10.1007/s00210-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Natural products are chemical compounds produced by living organisms. They are isolated and purified to determine their function and can potentially be used as therapeutic agents. The ability of some bioactive natural products to modify the course of cancer is fascinating and promising. In the past 50 years, there have been advancements in cancer therapy that have increased survival rates for localized tumors. However, there has been little progress in treating advanced renal cell carcinoma (RCC), which is resistant to radiation and chemotherapy. Oncogenes and tumor suppressors are two roles played by microRNAs (miRNAs). They are involved in important pathogenetic mechanisms like hypoxia and epithelial-mesenchymal transition (EMT); they control apoptosis, cell growth, migration, invasion, angiogenesis, and proliferation through target proteins involved in various signaling pathways. Depending on their expression pattern, miRNAs may identify certain subtypes of RCC or distinguish tumor tissue from healthy renal tissue. As diagnostic biomarkers of RCC, circulating miRNAs show promise. There is a correlation between the expression patterns of several miRNAs and the prognosis and diagnosis of patients with RCC. Potentially high-risk primary tumors may be identified by comparing original tumor tissue with metastases. Variations in miRNA expression between treatment-sensitive and therapy-resistant patients' tissues and serum allow for the estimation of responsiveness to target therapy. Our knowledge of miRNAs' function in RCC etiology has a tremendous uptick. Finding and validating their gene targets could have an immediate effect on creating anticancer treatments based on miRNAs. Several miRNAs have the potential to be used as biomarkers for diagnosis and prognosis. This review provides an in-depth analysis of the current knowledge regarding natural compounds and their modes of action in combating cancer. Also, this study aims to give information about the diagnostic and prognostic value of miRNAs as cancer biomarkers and their involvement in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, P.O Box 551, 61922, Bisha, Saudi Arabia.
| |
Collapse
|
2
|
Hong SH, Lee YJ, Jang EB, Hwang HJ, Kim ES, Son DH, Park SY, Moon HS, Yoon YE. Therapeutic Efficacy of YM155 to Regulate an Epigenetic Enzyme in Major Subtypes of RCC. Int J Mol Sci 2023; 25:216. [PMID: 38203388 PMCID: PMC10779260 DOI: 10.3390/ijms25010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and includes more than 10 subtypes. Compared to the intensively investigated clear cell RCC (ccRCC), the underlying mechanisms and treatment options of other subtypes, including papillary RCC (pRCC) and chromogenic RCC (chRCC), are limited. In this study, we analyzed the public databases for ccRCC, pRCC, and chRCC and found that BIRC5 was commonly overexpressed in a large cohort of pRCC and chRCC patients as well as ccRCC and was closely related to the progression of RCCs. We investigated the potential of BIRC5 as a therapeutic target for these three types of RCCs. Loss and gain of function studies showed the critical role of BIRC5 in cancer growth. YM155, a BIRC5 inhibitor, induced a potent tumor-suppressive effect in the three types of RCC cells and xenograft models. To determine the mechanism underlying the anti-tumor effects of YM155, we examined epigenetic modifications in the BIRC5 promoter and found that histone H3 lysine 27 acetylation (H3K27Ac) was highly enriched on the promoter region of BIRC5. Chromatin-immunoprecipitation analysis revealed that H3K27Ac enrichment was significantly decreased by YM155. Immunohistochemistry of xenografted tissue showed that overexpression of BIRC5 plays an important role in malignancy in RCC. Furthermore, high expression of P300 was significantly associated with the progression of RCC. Our findings demonstrate the P300-H3K27Ac-BIRC5 cascade in three types of RCC and provide a therapeutic path for future research on RCC.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Young Ju Lee
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Eun Bi Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Hyun Ji Hwang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Eun Song Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Da Hyeon Son
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Sung Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Hong Sang Moon
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| |
Collapse
|
3
|
Yamaguchi M. Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers (Basel) 2023; 15:5489. [PMID: 38001749 PMCID: PMC10670417 DOI: 10.3390/cancers15225489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Regucalcin, a calcium-binding protein lacking the EF-hand motif, was initially discovered in 1978. Its name is indicative of its function in calcium signaling regulation. The rgn gene encodes for regucalcin and is situated on the X chromosome in both humans and vertebrates. Regucalcin regulates pivotal enzymes involved in signal transduction and has an inhibitory function, which includes protein kinases, protein phosphatases, cysteinyl protease, nitric oxide dynthetase, aminoacyl-transfer ribonucleic acid (tRNA) synthetase, and protein synthesis. This cytoplasmic protein is transported to the nucleus where it regulates deoxyribonucleic acid and RNA synthesis as well as gene expression. Overexpression of regucalcin inhibits proliferation in both normal and cancer cells in vitro, independent of apoptosis. During liver regeneration in vivo, endogenous regucalcin suppresses cell growth when overexpressed. Regucalcin mRNA and protein expressions are significantly downregulated in tumor tissues of patients with various types of cancers. Patients exhibiting upregulated regucalcin in tumor tissue have shown prolonged survival. The decrease of regucalcin expression is linked to the advancement of cancer. Overexpression of regucalcin carries the potential for preventing and treating carcinogenesis. Additionally, extracellular regucalcin has displayed control over various types of human cancer cells. Regucalcin may hold a prominent role as a regulatory factor in cancer development. Supplying the regucalcin gene could prove to be a valuable asset in cancer treatment. The therapeutic value of regucalcin suggests its potential significance in treating cancer patients. This review delves into the most recent research on the regulatory role of regucalcin in human cancer development, providing a novel approach for treatment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA
| |
Collapse
|
4
|
Chen Y, Lu Z, Qi C, Yu C, Li Y, Huan W, Wang R, Luo W, Shen D, Ding L, Ren L, Xie H, Xue D, Wang M, Ni K, Xia L, Qian J, Li G. N 6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer 2022; 21:111. [PMID: 35538475 PMCID: PMC9087993 DOI: 10.1186/s12943-022-01549-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sunitinib resistance can be classified into primary and secondary resistance. While accumulating research has indicated several underlying factors contributing to sunitinib resistance, the precise mechanisms in renal cell carcinoma are still unclear. Methods RNA sequencing and m6A sequencing were used to screen for functional genes involved in sunitinib resistance. In vitro and in vivo experiments were carried out and patient samples and clinical information were obtained for clinical analysis. Results We identified a tumor necrosis factor receptor-associated factor, TRAF1, that was significantly increased in sunitinib-resistant cells, resistant cell-derived xenograft (CDX-R) models and clinical patients with sunitinib resistance. Silencing TRAF1 increased sunitinib-induced apoptotic and antiangiogenic effects. Mechanistically, the upregulated level of TRAF1 in sunitinib-resistant cells was derived from increased TRAF1 RNA stability, which was caused by an increased level of N6-methyladenosine (m6A) in a METTL14-dependent manner. Moreover, in vivo adeno-associated virus 9 (AAV9) -mediated transduction of TRAF1 suppressed the sunitinib-induced apoptotic and antiangiogenic effects in the CDX models, whereas knockdown of TRAF1 effectively resensitized the sunitinib-resistant CDXs to sunitinib treatment. Conclusions Overexpression of TRAF1 promotes sunitinib resistance by modulating apoptotic and angiogenic pathways in a METTL14-dependent manner. Targeting TRAF1 and its pathways may be a novel pharmaceutical intervention for sunitinib-treated patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01549-1.
Collapse
Affiliation(s)
- Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Chao Qi
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Chenhao Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Wang Huan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Danyang Shen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Liangliang Ren
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Kangxin Ni
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Kaur P, Mohamed NE, Archer M, Figueiro MG, Kyprianou N. Impact of Circadian Rhythms on the Development and Clinical Management of Genitourinary Cancers. Front Oncol 2022; 12:759153. [PMID: 35356228 PMCID: PMC8959649 DOI: 10.3389/fonc.2022.759153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The circadian system is an innate clock mechanism that governs biological processes on a near 24-hour cycle. Circadian rhythm disruption (i.e., misalignment of circadian rhythms), which results from the lack of synchrony between the master circadian clock located in the suprachiasmatic nuclei (SCN) and the environment (i.e., exposure to day light) or the master clock and the peripheral clocks, has been associated with increased risk of and unfavorable cancer outcomes. Growing evidence supports the link between circadian disruption and increased prevalence and mortality of genitourinary cancers (GU) including prostate, bladder, and renal cancer. The circadian system also plays an essential role on the timely implementation of chronopharmacological treatments, such as melatonin and chronotherapy, to reduce tumor progression, improve therapeutic response and reduce negative therapy side effects. The potential benefits of the manipulating circadian rhythms in the clinical setting of GU cancer detection and treatment remain to be exploited. In this review, we discuss the current evidence on the influence of circadian rhythms on (disease) cancer development and hope to elucidate the unmet clinical need of defining the extensive involvement of the circadian system in predicting risk for GU cancer development and alleviating the burden of implementing anti-cancer therapies.
Collapse
Affiliation(s)
- Priya Kaur
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mariana G. Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| |
Collapse
|
6
|
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:9118. [PMID: 34502028 PMCID: PMC8431379 DOI: 10.3390/ijms22179118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| |
Collapse
|
7
|
Park JS, Lee ME, Kim SH, Jang WS, Ham WS. Development of a highly pulmonary metastatic orthotopic renal cell carcinoma murine model. Biol Open 2021; 10:256557. [PMID: 33913471 PMCID: PMC8084570 DOI: 10.1242/bio.058566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of renal cell carcinoma (RCC) is high, and its outcomes remain poor. Mortality is attributable largely to metastatic disease and a dearth of effective therapeutic interventions. The lungs are the most common metastatic site. To elucidate the biological mechanisms underlying pulmonary metastasis and identify superior therapeutic strategies, we developed a novel and clinically relevant murine RCC model exhibiting enhanced pulmonary metastasis. Mice underwent intrarenal implantation using luciferase-expressing Renca, a murine renal adenocarcinoma cell line. Primary renal tumor progression and development of metastatic lung lesions were monitored in live mice using bioluminescent imaging, followed by post-mortem organ assessment. Cells were isolated from pulmonary metastases for reimplantation, followed by repeat monitoring and assessment. This process was repeated once more for a total of two in vivo passages to select for pulmonary metastatic Renca cell subpopulations. However, a single round of in vivo selection was sufficient to produce a near-maximally metastatic subpopulation. Relative to Renca cell-implanted mice, subpopulation-implanted mice exhibited shorter implantation-metastasis intervals (5 days), shorter implantation-moribundity intervals (sacrificed at 18.6±2.9 versus 22.3±1.1 days), a higher number of metastatic lung lesions at 23 days (183.9±39.0 versus 172.6±38.2) and poorer survival. Implantation of cells derived from the second round of in vivo selection produced no further significant differences in the above metrics. This model consistently and efficiently recapitulates RCC pulmonary metastasis while allowing in vivo monitoring of tumor progression, thereby facilitating elucidation of the molecular mechanisms underlying pulmonary metastasis and evaluation of therapeutic modalities.
Collapse
Affiliation(s)
- Jee Soo Park
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung Eun Lee
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Hwan Kim
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Sik Jang
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Sik Ham
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
8
|
CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. Br J Cancer 2020; 123:1749-1756. [PMID: 32968206 PMCID: PMC7723036 DOI: 10.1038/s41416-020-01087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multi-targeted tyrosine kinase inhibitors (TKIs) are the standard of care for patients with advanced clear cell renal cell carcinoma (ccRCC). However, a significant number of ccRCC patients are primarily refractory to targeted therapeutics, showing neither disease stabilisation nor clinical benefits. METHODS We used CRISPR/Cas9-based high-throughput loss of function (LOF) screening to identify cellular factors involved in the resistance to sunitinib. Next, we validated druggable molecular factors that are synthetically lethal with sunitinib treatment using cell and animal models of ccRCC. RESULTS Our screening identified farnesyltransferase among the top hits contributing to sunitinib resistance in ccRCC. Combined treatment with farnesyltransferase inhibitor lonafarnib potently augmented the anti-tumour efficacy of sunitinib both in vitro and in vivo. CONCLUSION CRISPR/Cas9 LOF screening presents a promising approach to identify and target cellular factors involved in the resistance to anti-cancer therapeutics.
Collapse
|
9
|
Zhang X, Wang F, Wang Z, Yang X, Yu H, Si S, Lu J, Zhou Z, Lu Q, Wang Z, Yang H. ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m 6A-dependent manner. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:646. [PMID: 32566583 PMCID: PMC7290639 DOI: 10.21037/atm-20-3079] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background The modification and regulation of N6-methyladenosine (m6A) at mRNA level can affect the development and progression in various tumors. ALKBH5, as an m6A demethylase, plays different roles in tumors by regulating the m6A modification of mRNA. However, its role in renal cell carcinoma (RCC) remains unclear. Methods First, levels of ALKBH5 in RCC tissues and cell lines were verified by qRT-PCR and western blot. We analyzed the relationship between ALKBH5 and the clinicopathological characteristics of RCC patients and the influence of ALKBH5 on the prognosis of patients. Then we generated ALBKH5-overexpression, ALBKH5-knockdown stable RCC cell lines and their control cell lines. Through cell proliferation assay, colony formation assay, cell invasion and tumor migration assay, cell cycle assay and xenograft studies, we studied the ALKBH5 roles in RCC cell lines. AURKB was predicted to be its potential target based on TCGA database analysis and verified by western blot. The role of AURKB in RCC was verified by TCGA database and Kaplan-Meier analysis with TMA immunohistochemical analysis. Finally, the specific molecular mechanism of ALKBH5 targeting AURKB was explored by dual-luciferase reporter assay, RNA immunoprecipitation (RIP), m6A dot-blot assay, m6A RNA Immunoprecipitation (MeRIP) assay, and mRNA stability assay. Results We found that ALKBH5 was highly expressed in both RCC tumor tissues and cell lines. Clinicopathological analysis showed that high ALKBH5 expression was associated with larger tumor volume (P=0.017) and higher TNM staging (P=0.006), and worse prognosis (log rank: P=0.0199). The cellular functional assays showed that stably overexpression ALKBH5 could promote the cell proliferation, colony formation, cell migration and cell invasion of renal cell carcinoma cells in vitro and promote tumor growth in vivo. In contrast, ALKBH5 knocked down inhibited cell proliferation, colony formation, migration and invasion of renal cell carcinoma cells in vitro. Based on TCGA database analysis, AURKB was predicted highly expressed in RCC and a potential target of ALKBH5. Both database prediction and TMA immunohistochemical analysis supported that AURKB could affect the prognosis of RCC patients (P values of 5.5e-08 and 0.0004, respectively) and was regulated by ALKBH5 expression level. Subsequent mechanism experiments showed that ALKBH5 regulated the expression of AURKB by regulating the stability of AURKB mRNA in the m6A-dependent manner, and finally promoted cell proliferation. Furthermore, we found that hypoxia-induced HIF could up-regulate both expressions of AURKB and ALKBH5. Conclusions Our findings suggest that ALKBH5 may play a carcinogenic role in renal cell carcinoma by stabilizing AURKB mRNA in a m6A-dependent manner. These data suggest that ALKBH5 may play a key role in RCC and targeting the ALKBH5 signaling pathway may be a promising strategy for the treatment of RCC.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuhui Si
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiancheng Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zijian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
Gao L, He RQ, Huang ZG, Dang YW, Gu YY, Yan HB, Li SH, Chen G. Genome-wide Analysis of the Alternative Splicing Profiles Revealed Novel Prognostic Index for Kidney Renal Cell Clear Cell Carcinoma. J Cancer 2020; 11:1542-1554. [PMID: 32047561 PMCID: PMC6995393 DOI: 10.7150/jca.36998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
Alternative splicing (AS) is a major mechanism that greatly enhanced the diversity of proteome. Mounting evidence demonstrated that aberration of AS are important steps for the initiation and progression of human cancers. Here, we comprehensively investigated the association between whole landscape of AS profiles and the survival outcome of renal cell carcinoma (RCC) patients using RNA-seq data from TCGA SpliceSeq. Because of the limited number size of deaths in kidney chromophobe renal cell carcinoma (KICH) and papillary renal cell carcinoma (KIRP) TCGA cohorts, we only conducted survival analysis in kidney clear renal cell carcinoma (KIRC). We further constructed prognostic index (PI) based on prognosis-related AS events and built correlation network for splicing factors and prognosis-related AS events. According to the results, a total of 5351 AS events in 3522 genes were significantly correlated with the overall survival (OS) of kidney clear cell renal cell carcinoma (KIRC) patients. Seven of the PI models exhibited preferable prognosis-predicting capacity for KIRC with PI-ALL reaching the highest area under curve value of 0.875. The splicing regulatory network between splicing factors and prognosis-related AS events depicted a tangled web of relationships between them. One of the splicing factors: KHDRBS3 was validated by immunohistochemistry to be down-regulated in KIRC tissues. In conclusion, the powerful efficiency of risk stratification of PI models indicated the potential of AS signature as promising prognostic markers for KIRC and the splicing regulation network provided possible genetic mechanism of KIRC.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hai-Biao Yan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
11
|
Reguera-Nuñez E, Man S, Xu P, Hilberg F, Kerbel RS. Variable impact of three different antiangiogenic drugs alone or in combination with chemotherapy on multiple bone marrow-derived cell populations involved in angiogenesis and immunity. Angiogenesis 2019; 22:535-546. [DOI: 10.1007/s10456-019-09677-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
12
|
Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Cancer Ther 2019; 17:1355-1364. [PMID: 29967214 DOI: 10.1158/1535-7163.mct-17-1299] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. It is categorized into various subtypes, with clear cell RCC (ccRCC) representing about 85% of all RCC tumors. The lack of sensitivity to chemotherapy and radiation therapy prompted research efforts into novel treatment options. The development of targeted therapeutics, including multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, has been a major breakthrough in ccRCC therapy. More recently, other therapeutic strategies, including immune checkpoint inhibitors, have emerged as effective treatment options against advanced ccRCC. Furthermore, recent advances in disease biology, tumor microenvironment, and mechanisms of resistance formed the basis for attempts to combine targeted therapies with newer generation immunotherapies to take advantage of possible synergy. This review focuses on the current status of basic, translational, and clinical studies on mechanisms of resistance to systemic therapies in ccRCC. Mol Cancer Ther; 17(7); 1355-64. ©2018 AACR.
Collapse
Affiliation(s)
- Peter Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shreyas Joshi
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pooja Ghatalia
- Division of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Kutikov
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert G Uzzo
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Vladimir M Kolenko
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Alonso-Gordoa T, García-Bermejo ML, Grande E, Garrido P, Carrato A, Molina-Cerrillo J. Targeting Tyrosine kinases in Renal Cell Carcinoma: "New Bullets against Old Guys". Int J Mol Sci 2019; 20:E1901. [PMID: 30999623 PMCID: PMC6515337 DOI: 10.3390/ijms20081901] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the seventh most frequently diagnosed tumor in adults in Europe and represents approximately 2.5% of cancer deaths. The molecular biology underlying renal cell carcinoma (RCC) development and progression has been a key milestone in the management of this type of tumor. The discovery of Von Hippel Lindau (VHL) gene alterations that arouse in 50% of ccRCC patients, leads the identification of an intracellular accumulation of HIF and, consequently an increase of VEGFR expression. This change in cell biology represents a new paradigm in the treatment of metastatic renal cancer by targeting angiogenesis. Currently, there are multiple therapeutic drugs available for advanced disease, including therapies against VEGFR with successful results in patients´ survival. Other tyrosine kinases' pathways, including PDGFR, Axl or MET have emerged as key signaling pathways involved in RCC biology. Indeed, promising new drugs targeting those tyrosine kinases have exhibited outstanding efficacy. In this review we aim to present an overview of the central role of these tyrosine kinases' activities in relevant biological processes for kidney cancer and their usefulness in RCC targeted therapy development. In the immunotherapy era, angiogenesis is still an "old guy" that the medical community is trying to fight using "new bullets".
Collapse
Affiliation(s)
- Teresa Alonso-Gordoa
- Medical Oncology Department, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Research Institute, (IRYCIS), 28034 Madrid, Spain.
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Center, 28034 Madrid, Spain.
| | - Pilar Garrido
- Medical Oncology Department, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS). CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Javier Molina-Cerrillo
- Medical Oncology Department, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| |
Collapse
|
14
|
Chen YC, Huang BM, Lee WC, Chen YC. 16-Hydroxycleroda-3,13-dien-15,16-olide induces anoikis in human renal cell carcinoma cells: involvement of focal adhesion disassembly and signaling. Onco Targets Ther 2018; 11:7679-7690. [PMID: 30464516 PMCID: PMC6217210 DOI: 10.2147/ott.s173378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Clerodane diterpene, 16-hydroxycleroda-3,13-dien-15,16-olide (CD) isolated from Polyalthia longifolia Benth. & Hook. f. var. pendula was found to be a potential apoptotic inducer in human leukemia, lung cancer, and colon cancer cells. However, the molecular mechanism remains elusive in renal system. Thus, in the present study, the regulatory mechanisms of CD-induced apoptosis in clear cell renal cell carcinoma (ccRCC) cells were investigated. Materials and methods Cell proliferation was evaluated by colony formation assay and cell cycle analyses. Protein expressions of focal adhesion (FA) related complexes were examined by immunofluorescence staining and Western blot analyses. Cell migration and invasion capabilities of renal cell carcinoma (RCC) cells were determined by wound healing and Transwell assays. Results CD inhibited cell colony formations, induced cell arrest at G2/M phase, and increased subG1 cell population both in 786-O and A-498. During CD treatment, the “rounded-up” cells were observed. The immune-staining of phosphorylated focal adhesion kinase (pFAK), vinculin, and paxillin displayed disassembly of the FA. Moreover, disruption of actin stress fibers was noted after CD treatment. Consistent with the findings, the expressions of pSrc, pFAK, FAK, vinculin, vimentin, and paxillin were all downregulated by CD. In addition, CD attenuated cell migration and invasion activities accompanied by the reductions of pNF-κB, matrix metallo-proteinase (MMP)-2, MMP-9 as well as vascular endothelial growth factor expressions. Conclusion CD induced cell cycle arrest, FA complex disassembly, and the inactivation of migratory-related signaling pathways to induce apoptosis in ccRCC cells.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chang Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,
| | - Yung-Chia Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, .,Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,
| |
Collapse
|
15
|
Yamaguchi M, Osuka S, Hankinson O, Murata T. Prolonged survival of renal cancer patients is concomitant with a higher regucalcin gene expression in tumor tissues: Overexpression of regucalcin suppresses the growth of human renal cell carcinoma cells in vitro. Int J Oncol 2018; 54:188-198. [PMID: 30387835 DOI: 10.3892/ijo.2018.4611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC), which is a type of cancer found in the kidney tubule, is among the 10 most frequently occurring human cancers. Regucalcin plays a potential role as a regulator of transcriptional activity, and its downregulated expression or activity may contribute to the promotion of human cancers. In this study, we investigated the involvement of regucalcin in human RCC. Regucalcin expression was compared in 23 normal and 29 tumor samples of kidney cortex tissues of patients with clear cell RCC obtained through the Gene Expression Omnibus (GEO) database (GSE36895). Regucalcin expression was downregulated in the tumor tissues. The prolonged survival of patients with clear cell RCC was demonstrated to be associated with a higher regucalcin gene expression in the TCGA dataset. The overexpression of regucalcin suppressed the colony formation, proliferation and the death of human clear cell RCC A498 cells in vitro. Mechanistically, the overexpression of regucalcin induced the G1 and G2/M phase cell cycle arrest of A498 cells through the suppression of multiple signaling components, including Ras, PI3 kinase, Akt and mitogen‑activated protein (MAP) kinase. Importantly, the overexpression of regucalcin led to an elevation in the levels of the tumor suppressors, p53, Rb and the cell cycle inhibitor, p21. The levels of the transcription factors, c‑fos, c‑jun, nuclear factor‑κB p65, β‑catenin and signal transducer and activator of transcription 3, were suppressed by regucalcin overexpression. On the whole, the findings of this study suggest that regucalcin plays a suppressive role in the promotion of human RCC. The overexpression of regucalcin by gene delivery systems may thus prove to be a novel therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095‑1732, USA
| | - Satoru Osuka
- Department of Neurosurgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30333, USA
| | - Oliver Hankinson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095‑1732, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya 468‑8503, Japan
| |
Collapse
|
16
|
Makhov P, Naito S, Haifler M, Kutikov A, Boumber Y, Uzzo RG, Kolenko VM. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis 2018; 9:374. [PMID: 29515108 PMCID: PMC5841329 DOI: 10.1038/s41419-018-0388-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. While cure remains exceptionally infrequent in RCC patients with systemic or recurrent disease, current targeted molecular strategies, including multi-targeted tyrosine kinase inhibitors (TKIs), notably changed the treatment paradigm of advanced renal cancer. Yet, complete and durable responses have been noted in only a few cases. Our studies reveal that sunitinib triggers two resistance-promoting signaling pathways in RCC cells, which emanate from the endoplasmic reticulum (ER) stress response: a PERK-driven ER stress response that induces expression of the pro-tumorigenic cytokines IL-6, IL-8, and TNF-α, and a TRAF2-mediated NF-κB survival program that protects tumor cells against cell death. PERK blockade completely prevents sunitinib-induced expression of IL-6, IL-8 and TNF-α, whereas NF-κB inhibition reinstates sensitivity of RCC cells to sunitinib both in vitro and in vivo. Taken together, our findings indicate that ER stress response may contribute to sunitinib resistance in RCC patients.
Collapse
Affiliation(s)
- Peter Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | - Sei Naito
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Miki Haifler
- Division of Urologic Oncology, Department of Surgery, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alexander Kutikov
- Division of Urologic Oncology, Department of Surgery, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yanis Boumber
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Robert G Uzzo
- Division of Urologic Oncology, Department of Surgery, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Vladimir M Kolenko
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
17
|
The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review. Int J Mol Sci 2017; 19:ijms19010107. [PMID: 29301217 PMCID: PMC5796057 DOI: 10.3390/ijms19010107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022] Open
Abstract
Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC.
Collapse
|
18
|
Pichler R, Heidegger I. Novel concepts of antiangiogenic therapies in metastatic renal cell cancer. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2017; 10:206-212. [PMID: 29250198 PMCID: PMC5725523 DOI: 10.1007/s12254-017-0344-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
The era of antiangiogenic drugs targeting the vascular endothelial growth factor (VEGF) signaling pathway has become a mainstay in the treatment of metastatic renal cell carcinoma (mRCC), showing primary responses in 65–70% of patients. Nevertheless, most of those patients progress to angiogenesis inhibitors over time due to different modes of resistance (adaptive and intrinsic). Both in vitro and in vivo analyses provided evidence that PD-L1 upregulation in hypoxia conditions is dependent on hypoxia-inducible factor (HIF)-2alpha and is associated with an overexpression of VEGF. Thus, additional blockade of PD-L1 along with inhibition of angiogenesis pathways seems to represent a novel and innovative treatment concept in mRCC. In this short review, we provide an overview on ongoing phase III trials combining antiangiogenic therapies with checkpoint inhibitors in the first-line setting. Moreover, we critically analyze the impact of recently approved therapeutic antiangiogenic agents and checkpoint inhibitors after progression to first-generation tyrosine kinase inhibitors and their mode of action. In addition, response and resistance hypotheses and biomarkers to antiangiogenic therapy in clinical practice are critically discussed.
Collapse
Affiliation(s)
- Renate Pichler
- Department of Urology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Murphy KA, James BR, Wilber A, Griffith TS. A Syngeneic Mouse Model of Metastatic Renal Cell Carcinoma for Quantitative and Longitudinal Assessment of Preclinical Therapies. J Vis Exp 2017. [PMID: 28448047 DOI: 10.3791/55080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Renal cell carcinoma (RCC) affects > 60,000 people in the United States annually, and ~ 30% of RCC patients have multiple metastases at the time of diagnosis. Metastatic RCC (mRCC) is incurable, with a median survival time of only 18 months. Immune-based interventions (e.g., interferon (IFN) and interleukin (IL)-2) induce durable responses in a fraction of mRCC patients, and multikinase inhibitors (e.g., sunitinib or sorafenib) or anti-VEGF receptor monoclonal antibodies (mAb) are largely palliative, as complete remissions are rare. Such shortcomings in current therapies for mRCC patients provide the rationale for the development of novel treatment protocols. A key component in the preclinical testing of new therapies for mRCC is a suitable animal model. Beneficial features that recapitulate the human condition include a primary renal tumor, renal tumor metastases, and an intact immune system to investigate any therapy-driven immune effector responses and the formation of tumor-induced immunosuppressive factors. This report describes an orthotopic mRCC mouse model that has all of these features. We describe an intrarenal implantation technique using the mouse renal adenocarcinoma cell line Renca, followed by the assessment of tumor growth in the kidney (primary site) and lungs (metastatic site).
Collapse
Affiliation(s)
- Katherine A Murphy
- Department of Urology, University of Minnesota; Masonic Cancer Center, University of Minnesota
| | - Britnie R James
- Department of Urology, University of Minnesota; Masonic Cancer Center, University of Minnesota; Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine; Simmons Cancer Institute
| | - Thomas S Griffith
- Department of Urology, University of Minnesota; Masonic Cancer Center, University of Minnesota; Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota;
| |
Collapse
|
20
|
Naito S, Makhov P, Astsaturov I, Golovine K, Tulin A, Kutikov A, Uzzo RG, Kolenko VM. LDL cholesterol counteracts the antitumour effect of tyrosine kinase inhibitors against renal cell carcinoma. Br J Cancer 2017; 116:1203-1207. [PMID: 28350788 PMCID: PMC5418451 DOI: 10.1038/bjc.2017.77] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Treatment with tyrosine kinase inhibitors (TKIs) significantly improves survival of patients with renal cell carcinoma (RCC). However, about one-quarter of the RCC patients are primarily refractory to treatment with TKIs. Methods: We examined viability of RCC and endothelial cells treated with low-density lipoprotein (LDL) and/or TKIs. Next, we validated the potential role of PI3K/AKT signalling in LDL-mediated TKI resistance. Finally, we examined the effect of a high-fat/high-cholesterol diet on the response of RCC xenograft tumours to sunitinib. Results: The addition of LDL cholesterol increases activation of PI3K/AKT signalling and compromises the antitumour efficacy of TKIs against RCC and endothelial cells. Furthermore, RCC xenograft tumours resist TKIs in mice fed a high-fat/high-cholesterol diet. Conclusions: The ability of renal tumours to maintain their cholesterol homoeostasis may be a critical component of TKI resistance in RCC patients.
Collapse
Affiliation(s)
- Sei Naito
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Peter Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Igor Astsaturov
- Department of Hematology/Oncology, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Konstantin Golovine
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexei Tulin
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexander Kutikov
- Division of Urologic Oncology, Department of Surgery, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Robert G Uzzo
- Division of Urologic Oncology, Department of Surgery, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vladimir M Kolenko
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
21
|
Liu W, Chen H, Wong N, Haynes W, Baker CM, Wang X. Pseudohypoxia induced by miR-126 deactivation promotes migration and therapeutic resistance in renal cell carcinoma. Cancer Lett 2017; 394:65-75. [PMID: 28257806 DOI: 10.1016/j.canlet.2017.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
Pseudohypoxia plays a central role in the progression and therapeutic resistance of clear cell renal cell carcinoma (ccRCC); however, the underlying mechanisms are poorly understood. MicroRNA miR-126 has decreased expression in metastatic or relapsed ccRCC as compared to primary tumors, but the mechanisms by which miR-126 is implicated in RCC remain unknown. Through RNA-seq profiling to evaluate the impact of overexpression or CRISPR knockout of miR-126, we have identified SERPINE1 as a miR-126-5p target regulating cell motility, and SLC7A5 as a miR-126-3p target regulating the mTOR/HIF pathway. Specifically, miR-126 inhibits HIFα protein expression independent of von Hippel-Lindau tumor suppressor (VHL). On the other hand, deactivation of miR-126 induces a pseudohypoxia state due to increased HIFα expression, which further enhances therapeutic resistance and cell motility mediated by SLC7A5 and SERPINE1, respectively. Finally, the clinical relevance of miR-126 modulated gene regulation in ccRCC has been confirmed with profiling data from The Cancer Genome Atlas.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- CRISPR-Cas Systems
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Cell Movement/drug effects
- Cell Movement/radiation effects
- Cisplatin/pharmacology
- Computational Biology
- Databases, Genetic
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HEK293 Cells
- HeLa Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Large Neutral Amino Acid-Transporter 1/genetics
- Large Neutral Amino Acid-Transporter 1/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness
- Plasminogen Activator Inhibitor 1/genetics
- Plasminogen Activator Inhibitor 1/metabolism
- RNA Interference
- Radiation Tolerance
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Transfection
- Tumor Hypoxia
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
Collapse
Affiliation(s)
- Weijun Liu
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hanxiang Chen
- Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan Wong
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wesley Haynes
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Callie M Baker
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
22
|
Di Lorenzo G, De Placido S, Pagliuca M, Ferro M, Lucarelli G, Rossetti S, Bosso D, Puglia L, Pignataro P, Ascione I, De Cobelli O, Caraglia M, Aieta M, Terracciano D, Facchini G, Buonerba C, Sonpavde G. The evolving role of monoclonal antibodies in the treatment of patients with advanced renal cell carcinoma: a systematic review. Expert Opin Biol Ther 2016; 16:1387-1401. [PMID: 27463642 DOI: 10.1080/14712598.2016.1216964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION While the majority of the vascular endothelial growth factor (VEGF) and mammalian target of rapamycin (mTOR) inhibitors currently used for the therapy of metastatic renal cell carcinoma (mRCC) are small molecule agents inhibiting multiple targets, monoclonal antibodies are inhibitors of specific targets, which may decrease off-target effects while preserving on-target activity. A few monoclonal antibodies have already been approved for mRCC (bevacizumab, nivolumab), while many others may play an important role in the therapeutic scenario of mRCC. AREAS COVERED This review describes emerging monoclonal antibodies for treating RCC. Currently, bevacizumab, a VEGF monoclonal antibody, is approved in combination with interferon for the therapy of metastatic RCC, while nivolumab, a Programmed Death (PD)-1 inhibitor, is approved following prior VEGF inhibitor treatment. Other PD-1 and PD-ligand (L)-1 inhibitors are undergoing clinical development. EXPERT OPINION Combinations of inhibitors of the PD1/PD-L1 axis with VEGF inhibitors or cytotoxic T-lymphocyte antigen (CTLA)-4 inhibitors have shown promising efficacy in mRCC. The development of biomarkers predictive for benefit and rational tolerable combinations are both important pillars of research to improve outcomes in RCC.
Collapse
Affiliation(s)
- Giuseppe Di Lorenzo
- a Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Sabino De Placido
- a Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Martina Pagliuca
- a Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Matteo Ferro
- b Department of Urology , European Institute of Oncology (IEO) , Milan , Italy
| | - Giuseppe Lucarelli
- c Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Sabrina Rossetti
- d Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS , Naples , Italy
| | - Davide Bosso
- a Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Livio Puglia
- a Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Piero Pignataro
- e Dipartimento di Medicina Molecolare e Biotecnologie Mediche , University Federico II of Naples , Naples , Italy
| | - Ilaria Ascione
- a Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Ottavio De Cobelli
- b Department of Urology , European Institute of Oncology (IEO) , Milan , Italy
| | - Michele Caraglia
- f Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Michele Aieta
- g Department of Onco-Hematology, Division of Medical Oncology , Centro di Riferimento Oncologico della Basilicata, IRCCS , Rionero in Vulture (PZ) , Italy
| | - Daniela Terracciano
- h Department of Translational Medical Sciences , University 'Federico II' , Naples , Italy
| | - Gaetano Facchini
- d Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS , Naples , Italy
| | - Carlo Buonerba
- a Department of Clinical Medicine and Surgery , University Federico II of Naples , Naples , Italy
| | - Guru Sonpavde
- i University of Alabama at Birmingham (UAB) Comprehensive Cancer Center , Birmingham , AL , USA
| |
Collapse
|
23
|
Casanovas O, Salazar R, Tabernero J. Multi-target angiokinase inhibitors to fight resistance. Cell Cycle 2016; 13:2649-50. [PMID: 25486347 DOI: 10.4161/15384101.2014.954216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Oriol Casanovas
- a Tumor Angiogenesis Group ; Catalan Institute of Oncology (ICO)-Bellvitge Biomedical Research Institute ; Barcelona , Spain
| | | | | |
Collapse
|
24
|
Chen YC, Chien LH, Huang BM, Chia YC, Chiu HF. Aqueous Extracts ofToona sinensisLeaves Inhibit Renal Carcinoma Cell Growth and Migration Through JAK2/stat3, Akt, MEK/ERK, and mTOR/HIF-2α Pathways. Nutr Cancer 2016; 68:654-66. [DOI: 10.1080/01635581.2016.1158292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Incorvaia L, Bronte G, Bazan V, Badalamenti G, Rizzo S, Pantuso G, Natoli C, Russo A. Beyond evidence-based data: scientific rationale and tumor behavior to drive sequential and personalized therapeutic strategies for the treatment of metastatic renal cell carcinoma. Oncotarget 2016; 7:21259-71. [PMID: 26872372 PMCID: PMC5008283 DOI: 10.18632/oncotarget.7267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The recent advances in identification of the molecular mechanisms related to tumorigenesis and angiogenesis, along with the understanding of molecular alterations involved in renal cell carcinoma (RCC) pathogenesis, has allowed the development of several new drugs which have revolutionized the treatment of metastatic renal cell carcinoma (mRCC).This process has resulted in clinically significant improvements in median overall survival and an increasing number of patients undergoes two or even three lines of therapy. Therefore, it is necessary a long-term perspective of the treatment: planning a sequential and personalized therapeutic strategy to improve clinical outcome, the potential to achieve long-term response, and to preserve quality of life (QOL), minimizing treatment-related toxicity and transforming mRCC into a chronically treatable condition.Because of the challenges still encountered to draw an optimal therapeutic sequence, the main focus of this article will be to propose the optimal sequencing of existing, approved, oral targeted agents for the treatment of mRCC using evidence-based data along with the knowledge available on the tumor behavior and mechanisms of resistance to anti-angiogenic treatment to provide complementary information and to help the clinicians to maximize the effectiveness of targeted agents in the treatment of mRCC.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Sergio Rizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Gianni Pantuso
- Department of Surgical, Oncological and Oral Sciences, Section of Surgical Oncology, University of Palermo, Palermo, Italy
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences, University “G. D'Annunzio”, Chieti, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Buonerba C, Di Lorenzo G, Sonpavde G. Combination therapy for metastatic renal cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:100. [PMID: 27047959 DOI: 10.21037/atm.2016.01.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current therapy for metastatic clear cell renal cell carcinoma (RCC) consists of the serial administration of single agents. Combinations of VEGF and mTOR inhibitors have been disappointing in previous randomized trials. However, the combination of lenvatinib, a multitargeted agent that inhibits VEGF as well as FGF receptors, and everolimus demonstrated promising results in a randomized phase II trial. Moreover, the emergence of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors has spawned the investigation of combinations of these agents with VEGF inhibitors and cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitors. These ongoing phase III trials in conjunction with the development of predictive biomarkers and agents inhibiting novel therapeutic targets may provide much needed advances in this still largely incurable disease.
Collapse
Affiliation(s)
- Carlo Buonerba
- 1 University Federico II, Naples, Italy, 2 Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Giuseppe Di Lorenzo
- 1 University Federico II, Naples, Italy, 2 Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Guru Sonpavde
- 1 University Federico II, Naples, Italy, 2 Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
27
|
Fischer S, Gillessen S, Rothermundt C. Sequence of treatment in locally advanced and metastatic renal cell carcinoma. Transl Androl Urol 2016; 4:310-25. [PMID: 26816832 PMCID: PMC4708238 DOI: 10.3978/j.issn.2223-4683.2015.04.07] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The spectrum of drugs that have shown activity in advanced or metastatic renal cell carcinoma (RCC) has led to a debate on the optimal sequence of treatments. There is agreement on recommending targeted agents as the standard of care in this disease. Uncertainty, however, remains on the best first-line drug choice. Physicians and patients may select sunitinib, bevacizumab in combination with interferon-alpha (IFN-α), pazopanib, or-in poor risk patients-temsirolimus. There are also a variety of therapies with proven efficacy on hand in the second-line setting: sorafenib, pazopanib, axitinib, and everolimus. While most randomized RCC trials assessed progression free survival (PFS) as primary endpoint, some agents were shown to improve median overall survival (OS), and given in sequence they have extended the life expectancy of RCC patients from 13 months in the cytokine era to over 30 months. Despite the progress made, there are sobering aspects to the oncologic success story in RCC, as the new treatments do not obtain an objective response or disease stabilization (SD) in all patients. There are also as yet no predictors to select patients who might benefit and those who are primary resistant to specific drugs, and ultimately almost all patients will experience disease progression. Bearing inevitable treatment failure in mind, availability of further drugs and switching therapy while the patient is in a condition to continue pharmacotherapy is essential. Of note, depending on the setting, only 33-59% of patients receive second-line treatment. In this review we present data on first-, second-, and third-line treatment in RCC, and discuss the difficulties in their interpretation in the context of treatment sequence. We summarize biological aspects and discuss mechanisms of resistance to anti-angiogenic therapy and their implications for treatment selection.
Collapse
Affiliation(s)
- Stefanie Fischer
- Division of Oncology/Haematology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Silke Gillessen
- Division of Oncology/Haematology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Christian Rothermundt
- Division of Oncology/Haematology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| |
Collapse
|
28
|
Atkins MB, Gravis G, Drosik K, Demkow T, Tomczak P, Wong SS, Michaelson MD, Choueiri TK, Wu B, Navale L, Warner D, Ravaud A. Trebananib (AMG 386) in Combination With Sunitinib in Patients With Metastatic Renal Cell Cancer: An Open-Label, Multicenter, Phase II Study. J Clin Oncol 2015; 33:3431-8. [PMID: 26304872 DOI: 10.1200/jco.2014.60.6012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Trebananib, an investigational recombinant peptide-Fc fusion protein, neutralizes the receptor-ligand interaction between Tie2 and angiopoietin-1/2. This phase II study was conducted to evaluate trebananib plus sunitinib, a vascular endothelial growth factor receptor inhibitor, in patients with metastatic clear cell renal cell carcinoma. PATIENTS AND METHODS Adults with metastatic renal cell carcinoma were enrolled sequentially onto two cohorts that received sunitinib 50 mg once per day for 4 weeks on and 2 weeks off and intravenous trebananib once per week at a dose of 10 mg/kg in cohort A or 15 mg/kg in cohort B. The primary end points were incidences of adverse events (AEs) and dose interruptions of sunitinib during the first 12 weeks of treatment. Secondary end points included objective response rate and progression-free survival. RESULTS Eighty-five patients were enrolled: 43 in cohort A, and 42 in cohort B. During the first 12 weeks of treatment, 58% and 57% of patients in cohorts A and B, respectively, had sunitinib dose interruptions (dose decrease, withholding, or withdrawal). The most frequent AEs were diarrhea (cohort A, 74%; cohort B, 67%), mucosal inflammation (cohort A, 49%; cohort B, 60%), and hypertension (cohort A, 52%; cohort B, 45%). AEs of grade 3 or greater occurred in 58% of patients in cohort A and in 69% of patients in cohort B. The objective response rate was 58% and 63% in cohorts A and B, respectively. The median progression-free survival time was 13.9 months (95% CI, 10.4 to 19.2) and 16.3 months (95% CI, 13.1 to 21.4) in cohorts A and B, respectively. The median overall survival time was 36 months (95% CI, 25.2 to not estimable) in cohort A and was not estimable (median follow-up, 25 months) in cohort B. CONCLUSION Trebananib plus sunitinib seemed to increase toxicity at the tested doses. Efficacy results suggest a potential benefit for the addition of trebananib to sunitinib.
Collapse
Affiliation(s)
- Michael B Atkins
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA.
| | - Gwenaelle Gravis
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Kazimierz Drosik
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Tomasz Demkow
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Piotr Tomczak
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Shirley S Wong
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - M Dror Michaelson
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Toni K Choueiri
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Benjamin Wu
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Lynn Navale
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Douglas Warner
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| | - Alain Ravaud
- Michael B. Atkins, Georgetown University, Washington, DC; Gwenaelle Gravis, Institut Paoli Calmettes, Marseille; Alain Ravaud, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint André, Bordeaux, France; Kazimierz Drosik, Regional Cancer Center, Opole; Tomasz Demkow, Maria Skłodowska-Curie Memorial Cancer Center, Warsaw; Piotr Tomczak, University of Medical Sciences, Poznan, Poland; Shirley S. Wong, Western Hospital, Footscray, Victoria, Australia; M. Dror Michaelson, Massachusetts General Hospital; Toni K. Choueiri, Dana-Farber Cancer Institute, Boston, MA; and Benjamin Wu, Lynn Navale, and Douglas Warner, Amgen, Thousand Oaks, CA
| |
Collapse
|
29
|
|
30
|
Golovine K, Makhov P, Naito S, Raiyani H, Tomaszewski J, Mehrazin R, Tulin A, Kutikov A, Uzzo RG, Kolenko VM. Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma. Cancer Biol Ther 2015; 16:743-9. [PMID: 25801713 PMCID: PMC4623021 DOI: 10.1080/15384047.2015.1026511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/01/2015] [Indexed: 12/29/2022] Open
Abstract
The c-Met protein, a transmembrane receptor tyrosine kinase, is the product of a proto-oncogene. Its only known ligand, hepatocyte growth factor (HGF), regulates cell growth, motility, migration, invasion, proliferation, and angiogenesis. The aberrant expression of c-Met is often associated with poor prognosis in multiple cancers, including renal cell carcinoma (RCC). Silencing or inactivation of c-Met leads to decreased viability of cancer cells, thereby making ablation of c-Met signaling an attractive concept for developing novel strategies for the treatment of renal tumors. Naturally-occurring products or substances are the most consistent source of drug development. As such, we investigated the functional impact of piperlongumine (PL), a naturally occurring alkaloid present in the Long pepper (Piper longum) on c-Met expression in RCC cells and demonstrated that PL and its analogs rapidly reduce c-Met protein and RNA levels in RCC cells via ROS-dependent mechanism. PL-mediated c-Met depletion coincided with the inhibition of downstream c-Met signaling; namely Erk/MAPK, STAT3, NF-κB and Akt/mTOR. As such, PL and PL analogs hold promise as potential therapeutic agents for the treatment of metastatic RCC and the prevention of postoperative RCC recurrence.
Collapse
Key Words
- Erk, Extracellular signal-regulated kinase
- FAK, Focal adhesion kinase
- HGF, Hepatocyte growth factor
- MAPK, Mitogen-activated protein kinase
- NF-kB, Nuclear factor kappaB
- PL, Piperlongumine
- PL-Di, PL-Dimer
- PL-FPh, PL-fluorophenyl
- RCC, Renal cell carcinoma
- RECIST, Response evaluation criteria in solid tumors
- RNA, Ribonucleic acid
- ROS
- ROS, Reactive oxygen species
- STAT, Signal transducer and activator of transcription
- TKIs, Tyrosine kinase inhibitors
- VEGFR, Vascular endothelial growth factor receptor
- c-Met
- cancer
- mTOR, Mammalian target of rapamycin
- piperlongumine
- renal
Collapse
Affiliation(s)
| | - Peter Makhov
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Sei Naito
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Henish Raiyani
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Jeffrey Tomaszewski
- Division of Urologic Oncology; Department of Surgery; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Reza Mehrazin
- Division of Urologic Oncology; Department of Surgery; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Alexei Tulin
- Cancer Epigenetics Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Alexander Kutikov
- Division of Urologic Oncology; Department of Surgery; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Robert G Uzzo
- Division of Urologic Oncology; Department of Surgery; Fox Chase Cancer Center; Philadelphia, PA, USA
| | | |
Collapse
|
31
|
Li T, Wang G. Computer-aided targeting of the PI3K/Akt/mTOR pathway: toxicity reduction and therapeutic opportunities. Int J Mol Sci 2014; 15:18856-91. [PMID: 25334061 PMCID: PMC4227251 DOI: 10.3390/ijms151018856] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/21/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022] Open
Abstract
The PI3K/Akt/mTOR pathway plays an essential role in a wide range of biological functions, including metabolism, macromolecular synthesis, cell growth, proliferation and survival. Its versatility, however, makes it a conspicuous target of many pathogens; and the consequential deregulations of this pathway often lead to complications, such as tumorigenesis, type 2 diabetes and cardiovascular diseases. Molecular targeted therapy, aimed at modulating the deregulated pathway, holds great promise for controlling these diseases, though side effects may be inevitable, given the ubiquity of the pathway in cell functions. Here, we review a variety of factors found to modulate the PI3K/Akt/mTOR pathway, including gene mutations, certain metabolites, inflammatory factors, chemical toxicants, drugs found to rectify the pathway, as well as viruses that hijack the pathway for their own synthetic purposes. Furthermore, this evidence of PI3K/Akt/mTOR pathway alteration and related pathogenesis has inspired the exploration of computer-aided targeting of this pathway to optimize therapeutic strategies. Herein, we discuss several possible options, using computer-aided targeting, to reduce the toxicity of molecularly-targeted therapy, including mathematical modeling, to reveal system-level control mechanisms and to confer a low-dosage combination therapy, the potential of PP2A as a therapeutic target, the formulation of parameters to identify patients who would most benefit from specific targeted therapies and molecular dynamics simulations and docking studies to discover drugs that are isoform specific or mutation selective so as to avoid undesired broad inhibitions. We hope this review will stimulate novel ideas for pharmaceutical discovery and deepen our understanding of curability and toxicity by targeting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Tan Li
- Department of Biology, South University of Science and Technology of China, 1088 Xueyuan Rd., Shenzhen 518055, China.
| | - Guanyu Wang
- Department of Biology, South University of Science and Technology of China, 1088 Xueyuan Rd., Shenzhen 518055, China.
| |
Collapse
|
32
|
Rao P, Monzon F, Jonasch E, Matin SF, Tamboli P. Clear cell papillary renal cell carcinoma in patients with von Hippel-Lindau syndrome--clinicopathological features and comparative genomic analysis of 3 cases. Hum Pathol 2014; 45:1966-72. [PMID: 25081542 DOI: 10.1016/j.humpath.2014.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/17/2022]
Abstract
Clear cell papillary renal cell carcinoma (CCPRCC) is a renal neoplasm that has recently received widespread recognition in the literature. There have been several reports of this tumor arising in a sporadic setting and in patients with end-stage renal disease; however, there is limited information available about the clinical, pathologic, and genetic characteristics of this tumor in the setting of von Hippel-Lindau (VHL) disease. We herein report a series of 3 patients who developed CCPRCC in this unique clinical setting. The histology and immunohistochemical profile for all 3 cases was similar to that which has been previously reported for CCPRCC. All tumors were diffusely and strongly positive for cytokeratin 7, negative for α-methyl-CoA-racemase, and showed at least focal staining for CD10. Comparative genomic analysis was performed on tumors from all 3 patients. One tumor demonstrated monosomy 3, and the other 2 tumors showed normal chromosomal content. All 3 patients were alive without evidence of disease progression 5, 3, and 3 years after surgery. CCPRCC represents a distinct tumor type that may occur in the setting of VHL disease and should be considered in the differential diagnosis of extensively cystic renal tumors arising in this clinical setting. Molecular analysis in our series of cases suggests that CCPRCC does indeed represent a unique histologic subtype and must be distinguished from clear cell renal cell carcinoma due to different biological potentials. Ancillary studies for accurate classification are recommended due to significant morphologic overlap with clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Priya Rao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Federico Monzon
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Jonasch
- Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030,USA
| | - Surena F Matin
- Urologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pheroze Tamboli
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Gutenberg A, Nischwitz MD, Gunawan B, Enders C, Jung K, Bergmann M, Feiden W, Egensperger R, Keyvani K, Stolke D, Sure U, Schroeder HWS, Warzok R, Schober R, Meixensberger J, Paulus W, Wassmann H, Stummer W, Blumcke I, Buchfelder M, van Landeghem FKH, Vajkoczy P, Günther M, Bedke J, Giese A, Rohde V, Brück W, Füzesi L, Sander B. Predictive chromosomal clusters of synchronous and metachronous brain metastases in clear cell renal cell carcinoma. Cancer Genet 2014; 207:206-13. [PMID: 25027636 DOI: 10.1016/j.cancergen.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/01/2014] [Accepted: 05/10/2014] [Indexed: 01/21/2023]
Abstract
Synchronous (early) and metachronous (late) brain metastasis (BM) events of sporadic clear cell renal cell carcinoma (ccRCC) (n = 148) were retrospectively analyzed using comparative genomic hybridization (CGH). Using oncogenetic tree models and cluster analyses, chromosomal imbalances related to recurrence-free survival until BM (RFS-BM) were analyzed. Losses at 9p and 9q appeared to be hallmarks of metachronous BM events, whereas an absence of detectable chromosomal changes at 3p was often associated with synchronous BM events. Correspondingly, k-means clustering showed that cluster 1 cases generally exhibited low copy number chromosomal changes that did not involve 3p. Cluster 2 cases had a high occurrence of -9p/-9q (94-98%) deletions, whereas cluster 3 cases had a higher frequency of copy number changes, including loss at chromosome 14 (80%). The higher number of synchronous cases in cluster 1 was also associated with a significantly shorter RFS-BM compared with clusters 2 and 3 (P = 0.02). Conversely, a significantly longer RFS-BM was observed for cluster 2 versus clusters 1 and 3 (P = 0.02). Taken together, these data suggest that metachronous BM events of ccRCC are characterized by loss of chromosome 9, whereas synchronous BM events may form independently of detectable genetic changes at chromosomes 9 and 3p.
Collapse
Affiliation(s)
- Angelika Gutenberg
- Department of Neurosurgery, Georg August University, Göttingen, Germany; Department of Neurosurgery, Johannes Gutenberg University, Mainz, Germany.
| | - Martin D Nischwitz
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Bastian Gunawan
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Christina Enders
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Klaus Jung
- Department of Medical Statistics, Georg August University, Göttingen, Germany
| | - Markus Bergmann
- Department of Neuropathology, Klinikum Bremen-Mitte, Bremen, Germany
| | - Wolfgang Feiden
- Departments of Gastroenteropathology and Neuropathology, University of the Saarland, Homburg, Germany
| | - Rupert Egensperger
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Dietmar Stolke
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Henry W S Schroeder
- Department of Neurosurgery, Ernst Moritz Arndt University, Greifswald, Germany
| | - Rolf Warzok
- Department of Neuropathology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Ralf Schober
- Department of Neuropathology, University of Leipzig, Leipzig, Germany
| | | | - Werner Paulus
- Department of Neuropathology, Westphalian Wilhelm University, Münster, Germany
| | - Hansdetlef Wassmann
- Department of Neurosurgery, Westphalian Wilhelm University, Münster, Germany
| | - Wolfgang Stummer
- Department of Neurosurgery, Westphalian Wilhelm University, Münster, Germany
| | - Ingmar Blumcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Frank K H van Landeghem
- Department of Neuropathology, Charité University Medicine, Berlin, Germany; Department of Neuropathology, University of Alberta, Edmonton, Canada
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Marlis Günther
- Department of Pathology, Health Care Center Brandenburg, Brandenburg, Germany
| | - Jens Bedke
- Department of Urology, Eberhard Karls University, Tübingen, Germany
| | - Alf Giese
- Department of Neurosurgery, Johannes Gutenberg University, Mainz, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg August University, Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, Georg August University, Göttingen, Germany
| | - Laszlo Füzesi
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Bjoern Sander
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Chen YC, Chien LH, Huang BM, Chia YC. Toona sinensis (aqueous leaf extracts) induces apoptosis through the generation of ROS and activation of intrinsic apoptotic pathways in human renal carcinoma cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Calvo E, Grünwald V, Bellmunt J. Controversies in renal cell carcinoma: treatment choice after progression on vascular endothelial growth factor-targeted therapy. Eur J Cancer 2014; 50:1321-9. [PMID: 24594299 DOI: 10.1016/j.ejca.2014.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/24/2022]
Abstract
The mammalian target of rapamycin inhibitor (mTORI) everolimus and the tyrosine kinase inhibitor (TKI) axitinib are the only two post-first-line treatment options for metastatic renal cell carcinoma (mRCC) licensed at present. Extrapolation of robust phase III studies suggests that median progression-free survival (PFS) is similar between agents. This presents a dilemma for the physician planning treatment for their patients with mRCC: should they be treated with a TKI-mTORI or a TKI-TKI sequence? The lack of direct comparison between axitinib and everolimus leaves the clinician without clear guidance on the optimal choice in second-line therapy. In phase III studies, both post first-line everolimus and axitinib have been shown to delay disease progression; however, cumulative toxicity with sequential use of TKIs may result in more treatment interruptions or dose reductions or increased likelihood of adverse events. While everolimus exerts a tolerability advantage, axitinib is associated with higher response rate and a similar PFS benefit. Proven superiority cannot be used to guide treatment sequence selection in mRCC. Instead, therapeutic planning requires us to take a long-term view of our patient's treatment that includes quality of life and a balance between symptom control, adverse event management and avoidance of unnecessary drug interruptions or dose reductions. In the absence of curative therapies, sustaining a patient's quality of life is a major goal throughout the course of treatment and choosing a second-line agent that is able to adequately achieve this by limiting adverse events should be a priority.
Collapse
Affiliation(s)
- Emiliano Calvo
- Centro Integral Oncológico Clara Campal and START Madrid, Madrid, Spain.
| | - Viktor Grünwald
- Clinic for Hematology, Hemostasis, Oncology and Stemcell Transplantation, Medical School Hannover, Germany
| | | |
Collapse
|
36
|
Wang L, Williamson SR, Wang M, Davidson DD, Zhang S, Baldridge LA, Du X, Cheng L. Molecular subtyping of metastatic renal cell carcinoma: implications for targeted therapy. Mol Cancer 2014; 13:39. [PMID: 24568263 PMCID: PMC3945615 DOI: 10.1186/1476-4598-13-39] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is known for its ability to metastasize synchronously or metachronously to various anatomic sites. Distinguishing histologic subtypes of metastatic RCC has become increasingly important, as prognosis and therapy can differ dramatically between subtypes. We propose a combination of immunohistochemistry (IHC) and molecular cytogenetics for subtyping metastatic RCC in light of these potential therapeutic implications. RESULTS Specimens from 103 cases of metastatic RCC were retrieved, including 32 cases originally diagnosed as metastatic clear cell renal cell carcinoma (CCRCC), 8 as metastatic papillary renal cell carcinoma (PRCC), and 63 metastatic RCC without a specific subtype. Immunohistochemistry was performed with antibodies against cytokeratin 7 (CK7) and alpha-methylacyl-CoA racemase (AMACR). Dual color interphase fluorescence in situ hybridization was utilized to assess for deletion of chromosome 3p and trisomy of chromosomes 7 and 17 in all tumors. Chromosome 3p deletion was detected in 41% of all metastatic RCC specimens, and trisomy of chromosomes 7 and/or 17 was detected in 16%. Of metastatic CCRCC, chromosome 3p deletion was detected in 63%. Of metastatic PRCC, 75% showed trisomy of chromosomes 7 and/or 17. Of the tumors not previously classified, 6% were positive for CK7, and 64% were positive for AMACR; 35% showed chromosome 3p deletion, and 16% showed trisomy of chromosomes 7 and/or 17. Combined analysis of immunohistochemistry and cytogenetics enabled reclassification of 52% of these metastatic tumors not previously classified. CONCLUSION Our findings support the utility of immunohistochemistry and cytogenetics for subtyping metastatic RCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | | |
Collapse
|
37
|
Felici A, Bria E, Tortora G, Cognetti F, Milella M. Sequential therapy in metastatic clear cell renal carcinoma: TKI–TKI vs TKI–mTOR. Expert Rev Anticancer Ther 2014; 12:1545-57. [DOI: 10.1586/era.12.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Hypoxia-Directed Drug Strategies to Target the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:111-45. [DOI: 10.1007/978-1-4614-5915-6_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Autologous CIK cell immunotherapy in patients with renal cell carcinoma after radical nephrectomy. Clin Dev Immunol 2013; 2013:195691. [PMID: 24382970 PMCID: PMC3872096 DOI: 10.1155/2013/195691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022]
Abstract
Objective. To evaluate the efficacy of autologous cytokine-induced killer (CIK) cells in patients with renal cell carcinoma (RCC). Methods. 20 patients diagnosed with TNM stage I or II RCC were randomly divided into two groups, a CIK cell treatment group and a control group. The endpoint was progression-free survival (PFS) evaluated by Kaplan-Meier analyses. Results. CD3+, CD3+/CD8+, CD3+/CD4+, and CD3+/CD56+ levels increased after CIK cell culture (P < 0.01). The median PFS in CIK cell treatment group was significantly longer than that in control group (PFS, 32.2 months versus 21.6 months; log-rank, P = 0.032), all patients were alive during the course of followup, and there are no statistically significant differences between two groups in OS (log-rank, P = 0.214). Grade III or greater adverse events were not observed. Conclusions. CIK cells treatment could prolong survival in patients with RCC after radical nephrectomy and showed acceptable curative effect with potential enhancement of cellular immune function. This trial is registered with Clinicaltrials.gov NCT01799083.
Collapse
|
40
|
Aslam S, Eisen T. Vascular endothelial growth factor receptor tyrosine kinase inhibitors in metastatic renal cell cancer: latest results and clinical implications. Ther Adv Med Oncol 2013; 5:324-33. [PMID: 24179487 PMCID: PMC3799295 DOI: 10.1177/1758834013507966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metastatic renal cell cancer (mRCC) accounts for 25-30% of patients with renal cell cancer at presentation. In addition to this, a significant proportion of patients with localized disease at presentation will develop metastatic disease. With the introduction of tyrosine kinase inhibitors (TKIs), the treatment of mRCC has been radically altered. Several newer generation vascular endothelial growth factor receptor TKIs have been tested in the clinical setting over recent years, resulting in the availability of more drugs. We review the latest results from clinical trials and the implications these have on the management of patients with mRCC.
Collapse
|
41
|
Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways. Cell Death Dis 2013; 4:e865. [PMID: 24136229 PMCID: PMC3920935 DOI: 10.1038/cddis.2013.395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/23/2022]
Abstract
The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel–Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type.
Collapse
|
42
|
Peterson DE, Srivastava R, Lalla RV. Oral mucosal injury in oncology patients: perspectives on maturation of a field. Oral Dis 2013; 21:133-41. [PMID: 24131518 DOI: 10.1111/odi.12167] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
Abstract
In the past decade, there have been important strategic advances relative to pathobiological modeling as well as clinical management for oral mucositis caused by cancer therapies. Prior to the 1990s, research in this field was conducted by a relatively small number of basic and clinical investigators. Increasing interest among researchers and clinicians over the past twenty years has produced a synergistic outcome characterized by a number of key dynamics, including novel discovery models for pathobiology, increased experience in designing and conducting clinical trials, and creation of international collaborations among cancer care professionals who in turn have modeled clinical care paradigms based on state-of-the-science evidence. This maturation of the science and its clinical translation has positioned investigators and oncology providers to further accelerate both the foundational research and the clinical modeling for patient management in the years ahead. The stage is now set to further capitalize upon optimizing the interactions across this interface, with the goal of strategically enhancing management of patients with cancer at risk for this toxicity while reducing the cost of cancer care.
Collapse
Affiliation(s)
- D E Peterson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA; Program in Head & Neck Cancer and Oral Oncology, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
43
|
Dornbusch J, Zacharis A, Meinhardt M, Erdmann K, Wolff I, Froehner M, Wirth MP, Zastrow S, Fuessel S. Analyses of potential predictive markers and survival data for a response to sunitinib in patients with metastatic renal cell carcinoma. PLoS One 2013; 8:e76386. [PMID: 24086736 PMCID: PMC3785463 DOI: 10.1371/journal.pone.0076386] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/30/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Patients with metastatic clear cell renal cell carcinoma (ccRCC) are frequently treated with tyrosine kinase inhibitors (TKI) such as sunitinib. It inhibits angiogenic pathways by mainly targeting the receptors of VEGF and PDGF. In ccRCC, angiogenesis is characterized by the inactivation of the von Hippel-Lindau gene (VHL) which in turn leads to the induction of HIF1α target genes such as CA9 and VEGF. Furthermore, the angiogenic phenotype of ccRCC is also reflected by endothelial markers (CD31, CD34) or other tumor-promoting factors like Ki67 or survivin. METHODS Tissue microarrays from primary tumor specimens of 42 patients with metastatic ccRCC under sunitinib therapy were immunohistochemically stained for selected markers related to angiogenesis. The prognostic and predictive potential of theses markers was assessed on the basis of the objective response rate which was evaluated according to the RECIST criteria after 3, 6, 9 months and after last report (12-54 months) of sunitinib treatment. Additionally, VHL copy number and mutation analyses were performed on DNA from cryo-preserved tumor tissues of 20 ccRCC patients. RESULTS Immunostaining of HIF-1α, CA9, Ki67, CD31, pVEGFR1, VEGFR1 and -2, pPDGFRα and -β was significantly associated with the sunitinib response after 6 and 9 months as well as last report under therapy. Furthermore, HIF-1α, CA9, CD34, VEGFR1 and -3 and PDGRFα showed significant associations with progression-free survival (PFS) and overall survival (OS). In multivariate Cox proportional hazards regression analyses high CA9 membrane staining and a response after 9 months were independent prognostic factors for longer OS. Frequently observed copy number loss and mutation of VHL gene lead to altered expression of VHL, HIF-1α, CA9, and VEGF. CONCLUSIONS Immunoexpression of HIF-1α, CA9, Ki67, CD31, pVEGFR1, VEGFR1 and -2, pPDGFRα and -β in the primary tumors of metastatic ccRCC patients might support the prediction of a good response to sunitinib treatment.
Collapse
Affiliation(s)
- Juana Dornbusch
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | | | - Matthias Meinhardt
- Institute of Pathology, Dresden University of Technology, Dresden, Germany
| | - Kati Erdmann
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Ingmar Wolff
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Michael Froehner
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Manfred P. Wirth
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Stefan Zastrow
- Department of Urology, Dresden University of Technology, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
44
|
Are Tyrosine Kinase Inhibitors Still Active in Patients With Metastatic Renal Cell Carcinoma Previously Treated With a Tyrosine Kinase Inhibitor and Everolimus? Experience of 36 Patients Treated in France in the RECORD-1 Trial. Clin Genitourin Cancer 2013; 11:128-33. [DOI: 10.1016/j.clgc.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 12/01/2012] [Accepted: 12/08/2012] [Indexed: 11/18/2022]
|
45
|
Sleijfer S, Bogaerts J, Siu LL. Designing Transformative Clinical Trials in the Cancer Genome Era. J Clin Oncol 2013; 31:1834-41. [DOI: 10.1200/jco.2012.45.3639] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incorporation of molecular profiling into routine clinical practice has already been adopted in some tumor types, such as human epidermal growth factor receptor 2 (HER2) testing in breast cancer and KRAS genotyping in colorectal cancer, providing a guide to treatment selection that is not afforded by histopathologic diagnosis alone. It is inevitable that over time, with rapid advances in scientific knowledge, bioinformatics, and technology to identify oncogenic drivers, molecular profiling will complement histopathologic data to influence management decisions. Emerging technologies such as multiplexed somatic mutation genotyping and massive parallel genomic sequencing have become increasingly feasible at point-of-care locations to classify cancers into molecular subsets. Because these molecular subsets may differ substantially between each other in terms of sensitivity or resistance to systemic agents, there is consensus that clinical trials should be more stratified for or be performed only in such molecularly defined subsets. This approach, however, poses challenges for clinical trial designs because smaller numbers of patients would be eligible for such trials, while the number of novel anticancer drugs warranting further clinical exploration is rapidly increasing. This article provides an overview of the emerging methodologic challenges in the cancer genome era and offers some potential solutions for transforming clinical trial designs so they can identify new active anticancer regimens in molecularly defined subgroups as efficiently as possible.
Collapse
Affiliation(s)
- Stefan Sleijfer
- Stefan Sleijfer, Daniel den Hoed Cancer Center, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Rotterdam, the Netherlands; Jan Bogaerts, European Organisation for Research and Treatment of Cancer, Brussels, Belgium; and Lillian L. Siu, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jan Bogaerts
- Stefan Sleijfer, Daniel den Hoed Cancer Center, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Rotterdam, the Netherlands; Jan Bogaerts, European Organisation for Research and Treatment of Cancer, Brussels, Belgium; and Lillian L. Siu, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lillian L. Siu
- Stefan Sleijfer, Daniel den Hoed Cancer Center, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Rotterdam, the Netherlands; Jan Bogaerts, European Organisation for Research and Treatment of Cancer, Brussels, Belgium; and Lillian L. Siu, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Figlin RA, Kaufmann I, Brechbiel J. Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer 2013; 133:788-96. [PMID: 23319457 DOI: 10.1002/ijc.28023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022]
Abstract
With the advent of molecularly targeted agents, treatment of metastatic renal cell carcinoma (mRCC) has improved significantly. Agents targeting the vascular endothelial growth factor receptor (VEGFR) and the mammalian target of rapamycin complex 1 (mTORC1) are more effective and less toxic than previous standards of care involving cytotoxic and cytokine therapies. Unfortunately, many patients relapse following treatment with VEGFR and mTORC1 inhibitors as a result of acquired resistance mechanisms, which are thought to lead to the reestablishment of tumor vasculature. Specifically, the loss of negative feedback loops caused by inhibition of mTORC1 leads to upregulation of downstream effectors of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway and subsequent activation of hypoxia-inducible factor, an activator of angiogenesis. De novo resistance involving activated PI3K signaling has also been observed. These observations have led to the development of novel agents targeting PI3K, mTORC1/2 and PI3K/mTORC1/2, which have demonstrated antitumor activity in preclinical models of RCC. Several agents--BKM120, BEZ235 and GDC-0980--are being investigated in clinical trials in patients with metastatic/advanced RCC, and similar agents are being tested in patients with solid tumors. The future success of mRCC treatment will likely involve a combination of agents targeting the multiple pathways involved in angiogenesis, including VEGFR, PI3K and mTORC1/2.
Collapse
Affiliation(s)
- Robert A Figlin
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
47
|
Oudard S, Elaidi RT. Sequential therapy with targeted agents in patients with advanced renal cell carcinoma: Optimizing patient benefit. Cancer Treat Rev 2012; 38:981-7. [DOI: 10.1016/j.ctrv.2011.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 02/01/2023]
|
48
|
Lodola F, Laforenza U, Bonetti E, Lim D, Dragoni S, Bottino C, Ong HL, Guerra G, Ganini C, Massa M, Manzoni M, Ambudkar IS, Genazzani AA, Rosti V, Pedrazzoli P, Tanzi F, Moccia F, Porta C. Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One 2012; 7:e42541. [PMID: 23049731 PMCID: PMC3458053 DOI: 10.1371/journal.pone.0042541] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/09/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain tumor vascularisation and promote the metastatic switch. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca(2+) entry (SOCE), which is activated by a depletion of the intracellular Ca(2+) pool, regulates the growth of human EPCs, where is mediated by the interaction between the endoplasmic reticulum Ca(2+)-sensor, Stim1, and the plasmalemmal Ca(2+) channel, Orai1. As oncogenesis may be associated to the capability of tumor cells to grow independently on Ca(2+) influx, it is important to assess whether SOCE regulates EPC-dependent angiogenesis also in tumor patients. METHODOLOGY/PRINCIPAL FINDINGS The present study employed Ca(2+) imaging, recombinant sub-membranal and mitochondrial aequorin, real-time polymerase chain reaction, gene silencing techniques and western blot analysis to investigate the expression and the role of SOCE in EPCs isolated from peripheral blood of patients affected by renal cellular carcinoma (RCC; RCC-EPCs) as compared to control EPCs (N-EPCs). SOCE, activated by either pharmacological (i.e. cyclopiazonic acid) or physiological (i.e. ATP) stimulation, was significantly higher in RCC-EPCs and was selectively sensitive to BTP-2, and to the trivalent cations, La(3+) and Gd(3+). Furthermore, 2-APB enhanced thapsigargin-evoked SOCE at low concentrations, whereas higher doses caused SOCE inhibition. Conversely, the anti-angiogenic drug, carboxyamidotriazole (CAI), blocked both SOCE and the intracellular Ca(2+) release. SOCE was associated to the over-expression of Orai1, Stim1, and transient receptor potential channel 1 (TRPC1) at both mRNA and protein level The intracellular Ca(2+) buffer, BAPTA, BTP-2, and CAI inhibited RCC-EPC proliferation and tubulogenesis. The genetic suppression of Stim1, Orai1, and TRPC1 blocked CPA-evoked SOCE in RCC-EPCs. CONCLUSIONS SOCE is remodelled in EPCs from RCC patients and stands out as a novel molecular target to interfere with RCC vascularisation due to its ability to control proliferation and tubulogenesis.
Collapse
Affiliation(s)
- Francesco Lodola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Umberto Laforenza
- Section of Human Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Elisa Bonetti
- Clinical Epidemiology Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedmont “Amedeo Avogadro”, Novara, Italy
| | - Silvia Dragoni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Cinzia Bottino
- Section of Human Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Germano Guerra
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Carlo Ganini
- Medical Oncology IRCCS Policlinico San Matteo, Pavia, Italy
| | - Margherita Massa
- Laboratory of Biotechnology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Indu S. Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, University of Eastern Piedmont “Amedeo Avogadro”, Novara, Italy
| | - Vittorio Rosti
- Clinical Epidemiology Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Franco Tanzi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Camillo Porta
- Medical Oncology IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
49
|
Jonasch E, Futreal A, Davis I, Bailey S, Kim WY, Brugarolas J, Giaccia A, Kurban G, Pause A, Frydman J, Zurita A, Rini BI, Sharma P, Atkins M, Walker C, Rathmell WK. State of the science: an update on renal cell carcinoma. Mol Cancer Res 2012; 10:859-80. [PMID: 22638109 PMCID: PMC3399969 DOI: 10.1158/1541-7786.mcr-12-0117] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Renal cell carcinomas (RCC) are emerging as a complex set of diseases that are having a major socioeconomic impact and showing a continued rise in incidence throughout the world. As the field of urologic oncology faces these trends, several major genomic and mechanistic discoveries are altering our core understanding of this multitude of cancers, including several new rare subtypes of renal cancers. In this review, these new findings are examined and placed in the context of the well-established association of clear cell RCC (ccRCC) with mutations in the von Hippel-Lindau (VHL) gene and resultant aberrant hypoxia inducible factor (HIF) signaling. The impact of novel ccRCC-associated genetic lesions on chromatin remodeling and epigenetic regulation is explored. The effects of VHL mutation on primary ciliary function, extracellular matrix homeostasis, and tumor metabolism are discussed. Studies of VHL proteostasis, with the goal of harnessing the proteostatic machinery to refunctionalize mutant VHL, are reviewed. Translational efforts using molecular tools to elucidate discriminating features of ccRCC tumors and develop improved prognostic and predictive algorithms are presented, and new therapeutics arising from the earliest molecular discoveries in ccRCC are summarized. By creating an integrated review of the key genomic and molecular biological disease characteristics of ccRCC and placing these data in the context of the evolving therapeutic landscape, we intend to facilitate interaction among basic, translational, and clinical researchers involved in the treatment of this devastating disease, and accelerate progress toward its ultimate eradication.
Collapse
Affiliation(s)
| | | | - Ian Davis
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Sean Bailey
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - William Y. Kim
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | | | | | | | | | | | | | - Brian I. Rini
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| | - Pam Sharma
- University of Texas-Houston Medical Center, Houston, TX
| | | | - Cheryl Walker
- University of Texas-Houston Medical Center, Houston, TX
| | | |
Collapse
|
50
|
Rini B, Szczylik C, Tannir NM, Koralewski P, Tomczak P, Deptala A, Dirix LY, Fishman M, Ramlau R, Ravaud A, Rogowski W, Kracht K, Sun YN, Bass MB, Puhlmann M, Escudier B. AMG 386 in combination with sorafenib in patients with metastatic clear cell carcinoma of the kidney: a randomized, double-blind, placebo-controlled, phase 2 study. Cancer 2012; 118:6152-61. [PMID: 22692704 DOI: 10.1002/cncr.27632] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/12/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND This study evaluated the tolerability and antitumor activity of AMG 386, a peptibody (a peptide Fc fusion) that neutralizes the interaction of angiopoietin-1 and angiopoietin-2 with Tie2 (tyrosine kinase with immunoglobulin-like and EGF-like domains 2), plus sorafenib in patients with clear cell metastatic renal cell carcinoma (mRCC) in a randomized controlled study. METHODS Previously untreated patients with mRCC were randomized 1:1:1 to receive sorafenib 400 mg orally twice daily plus intravenous AMG 386 at 10 mg/kg (arm A) or 3 mg/kg (arm B) or placebo (arm C) once weekly (qw). Patients in arm C could receive open-label AMG 386 at 10 mg/kg qw plus sorafenib following disease progression. The primary endpoint was progression-free survival (PFS). RESULTS A total of 152 patients were randomized. Median PFS was 9.0, 8.5, and 9.0 months in arms A, B, and C, respectively (hazard ratio for arms A and B vs arm C, 0.88; 95% confidence interval [CI], 0.60-1.30; P = .523). The objective response rate (95% CI) for arms A, B, and C, respectively, was 38% (25%-53%), 37% (24%-52%), and 25% (14%-40%). Among 30 patients in arm C who had disease progression and subsequently received open-label AMG 386 at 10 mg/kg qw, the objective response rate was 3% (95% CI, 0%-17%). Frequently occurring adverse events (AEs) included diarrhea (arms A/B/C, 70%/67%/56%), palmar-plantar erythrodysesthesia syndrome (52%/47%/54%), alopecia (50%/45%/50%), and hypertension (42%/49%/46%). Fifteen patients had grade 4 AEs (arms A/B/C, n = 3/7/5); 4 had fatal AEs (n = 2/1/1), with 1 (abdominal pain, arm B) considered possibly related to AMG 386. CONCLUSIONS In patients with mRCC, AMG 386 plus sorafenib was tolerable but did not significantly improve PFS compared with placebo plus sorafenib.
Collapse
Affiliation(s)
- Brian Rini
- The Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|