1
|
Zhou C, Wang X, Quan X, Cheng J, Li Z, Maienfisch P. Silicon-Containing Complex II Acaricides─Design, Synthesis, and Pharmacological Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11063-11074. [PMID: 35575634 DOI: 10.1021/acs.jafc.2c00804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioisosteric replacement has been proven to be a powerful strategy in life science research. In this review, general aspects of carbon-silicon bioisosteric substitution and its applications in pharmaceutical and crop protection research are described. Carbon and their silicon analogues possess similar intrinsic properties. Replacing carbon with silicon in pharmaceuticals and pesticides has shown to result in positive effects on efficacy and selectivity, physicochemical properties, and bioavailability and also to eliminate or improve human or environmental safety properties as well as to provide novelty and new intellectual property in many cases. Furthermore, the application of carbon-silicon substitution in the search for new complex II acaricides is highlighted. This research led to the discovery of sila-cyflumetofen 23a and other silicon-containing analogues of cyflumetofen that match or exceed the acaricidal activity of cyflumetofen. The molecular design strategy, synthetic aspects, biological activity, computational modeling work, and structure-activity relationships will be discussed.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiaocao Quan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol MCB, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
2
|
Dong X, Yuan X, Song Z, Wang Q. The development of an Amber-compatible organosilane force field for drug-like small molecules. Phys Chem Chem Phys 2021; 23:12582-12591. [PMID: 34037028 DOI: 10.1039/d1cp01169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As members of the group IVA elements, silicon and carbon have long been thought of as isosteres of each other in drug design. However, the lack of silicon parameters in current main stream force fields hinders the computational study of this important element in drug discovery. Thus, in this study, we attempted to supplement the parameters of organosilanes in the General Amber Force Field (GAFF2). The parameters have been designed following the principles of GAFF2 to make it compatible with the Amber force field family. The accuracy of the parameters was discussed by comparing the pair interaction energy, the liquid properties, and the structures and alchemical binding free energy differences for a set of protein-ligand complexes.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| | - Xinghang Yuan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
3
|
Dhupal M, Chowdhury D. Phytochemical-Based Nanomedicine for Advanced Cancer Theranostics: Perspectives on Clinical Trials to Clinical Use. Int J Nanomedicine 2020; 15:9125-9157. [PMID: 33244231 PMCID: PMC7683832 DOI: 10.2147/ijn.s259628] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022] Open
Abstract
In the current chapter, a new strategic compilation of phytochemicals with potent antitumor properties has been addressed, most importantly focusing on cell cycle arrest and apoptotic signaling mechanism. A promising approach in tumor prevention is to eliminate cancer cells preferably via cell cycle arrest and programmed cell death with lesser harm to neighboring normal cells. Cancer cells have a survival advantage to escape apoptosis and relentlessly divide to proliferate, gearing up the cell cycle process. Recently, the use of phytochemical-derived conjugated chemotherapeutic agents has increased dramatically owing to its biocompatibility, low cytotoxicity, low resistance, and dynamic physiochemical properties discriminating normal cells in the treatment of various cancer types. For decades, biomedical investigations have targeted cell cycle and apoptotic cell death mechanism as an effective cancer-killing tool for systemically assessing the potential biological interactions of functional phytocompounds compared to its synthetic counterparts during their complete life cycles from entry, biodistribution, cellular/molecular interactions to excretion. Newly emerging nanotechnology application in anticancer drug formulations has revolutionized cancer therapy. Tissue-specific phyto-nanomedicine plays a vital role in advanced cancer diagnostics using liposome, micelle, and nanoparticles as a precise and effective delivery vehicle. This chapter specifically focuses on the therapeutic phytomolecules approved by the Food and Drug Administration (FDA, USA) along with phyto-chemopreventives currently on clinical trials (Phase-I/II/III/IV). Besides, detailed coverage is given to the FDA-approved nanotechnology-based formulations only in the areas of cancer theranostics via cell cycle arrest and apoptotic pathways including present challenges and future perspectives.
Collapse
Affiliation(s)
- Madhusmita Dhupal
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju26426, Republic of Korea
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati781035, India
| |
Collapse
|
4
|
Design, synthesis and acaricidal activities of Cyflumetofen analogues based on carbon-silicon isosteric replacement. Bioorg Med Chem 2020; 28:115509. [DOI: 10.1016/j.bmc.2020.115509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
|
5
|
Wang F, Cao M, Fan M, Wu H, Huang W, Zhang Y, Hu Z, Jin X. AMPK‐mTOR‐ULK1 axis activation‐dependent autophagy promotes hydroxycamptothecin‐induced apoptosis in human bladder cancer cells. J Cell Physiol 2019; 235:4302-4315. [PMID: 31621074 DOI: 10.1002/jcp.29307] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Feifan Wang
- Department of Urology, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Min Cao
- Department of Urology, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Mengjing Fan
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University Hangzhou Zhejiang China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Wei Huang
- Department of Urology, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
| |
Collapse
|
6
|
Liu X, Adane E, Tang F, Leggas M. Pharmacokinetic modeling of the blood-stable camptothecin analog AR-67 in two different formulations. Biopharm Drug Dispos 2019; 40:265-275. [PMID: 31292985 DOI: 10.1002/bdd.2199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/17/2019] [Accepted: 07/05/2019] [Indexed: 11/06/2022]
Abstract
AR-67 is a lipophilic camptothecin analog currently under clinical investigation using a Cremophor EL based formulation. However, as potential toxicity limitations exist in the clinical use of Cremophor, an alternative cyclodextrin (SBE-β-CD) based formulation has been proposed. Pharmacokinetic (PK) studies were conducted in mice and the SBE-β-CD based formulation was compared with the Cremophor EL formulation. PK studies were conducted following intravenous or oral administration of AR-67 in either Cremophor or SBE-β-CD formulation in mice. Noncompartmental analysis was used to determine the plasma and tissue drug distribution. A non-linear mixed effects (population) PK model was developed to fit both the oral and intravenous data and to estimate key PK parameters. The effect of formulation was explored as a covariate in the PK model. AR-67 in the SBE-β-CD formulation had similar plasma PK and biodistribution to that in the Cremophor EL formulation. The proposed two-compartment model described the plasma PK of AR-67 in both formulations adequately. AR-67 in the SBE-β-CD formulation exhibited dose linearity following both oral and intravenous administration. Our studies indicate that SBE-β-CD is a viable alternative to Cremophor EL as a pharmaceutical excipient for formulating AR-67.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Eyob Adane
- Department of Pharmacy Practice, College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Fei Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 323 Bio Pharm Complex, 789 South Limestone St, Lexington, KY, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 323 Bio Pharm Complex, 789 South Limestone St, Lexington, KY, USA
| |
Collapse
|
7
|
Multi-targeted anti-leukemic drug design with the incorporation of silicon into Nelarabine: How silicon increases bioactivity. Eur J Pharm Sci 2019; 134:266-273. [PMID: 31028821 DOI: 10.1016/j.ejps.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022]
Abstract
Acute Lymphoblastic Leukemia (ALL) represents 30% of all childhood cancers and children younger than 5 years old have the highest risk for developing ALL. Existing ALL drugs do not respond in approximately 20% of treatment. Therefore, drug development studies against ALL must be continued with either developing existing drugs or discovering new ones. In this study, we evaluated the U.S Food and Drug Administration (FDA) approved ALL drugs according to their physicochemical and pharmaceutical properties, and Nelarabine was found to have the highest bioactivity score. Using the key strategy of bioisosterism commonly accepted by medicinal chemists, we investigated in silico ADME properties, drug-likeness, and biological activity of new designed twenty-four compounds including Nelarabine. The results were evaluated in terms of two classifications: broad spectrum biological activity and filtering of five different drug likeness criteria of the literature including Lipinski's rule of five. We interestingly observed that silicon incorporated compounds exhibited better performance on both criteria by targeting broader spectrum of drug receptors including G-protein coupled receptor (GPCR), ion channel modulator, kinase inhibitor, protease and enzyme inhibitor and by satisfying all of five different drug-likeness criteria reported in the literature. Design compound C19 appeared as a potential drug candidate for further pharmacological research.
Collapse
|
8
|
Tang F, Tsakalozou E, Arnold SM, Ng CM, Leggas M. Population pharmacokinetic analysis of AR-67, a lactone stable camptothecin analogue, in cancer patients with solid tumors. Invest New Drugs 2019; 37:1218-1230. [PMID: 30820810 DOI: 10.1007/s10637-019-00744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 01/11/2023]
Abstract
Background AR-67 is a novel camptothecin analogue at early stages of drug development. The phase 1 clinical trial in cancer patients with solid tumors was completed and a population pharmacokinetic model (POP PK) was developed to facilitate further development of this investigational agent. Methods Pharmacokinetic data collected in the phase 1 clinical trial were utilized for the development of a population POP PK by implementing the non-linear mixed effects approach. Patient characteristics at study entry were evaluated as covariates in the model. Subjects (N = 26) were treated at nine dosage levels (1.2-12.4 mg/m2/day) on a daily × 5 schedule. Hematological toxicity data were modeled against exposure metrics. Results A two-compartment POP PK model best described the disposition of AR-67 by fitting a total of 328 PK observations from 25 subjects. Following covariate model selection, age remained as a significant covariate on central volume. The final model provided a good fit for the concentration versus time data and PK parameters were estimated with good precision. Clearance, inter-compartmental clearance, central volume and peripheral volume were estimated to be 32.2 L/h, 28.6 L/h, 6.83 L and 25.0 L, respectively. Finally, exposure-pharmacodynamic analysis using Emax models showed that plasma drug concentration versus time profiles are better predictors of AR-67-related hematologic toxicity were better predictors of leukopenia and thrombocytopenia, as compared to total dose. Conclusions A POP PK model was developed to characterize AR-67 pharmacokinetics and identified age as a significant covariate. Exposure PK metrics Cmax and AUC were shown to predict hematological toxicity. Further efforts to identify clinically relevant determinants of AR-67 disposition and effects in a larger patient population are warranted.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA
| | - Eleftheria Tsakalozou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA
| | - Susanne M Arnold
- Department of Internal Medicine, Division of Medical Oncology, Markey Cancer Center, University of Kentucky, 800 Rose St., Lexington, KY 40536, Lexington, KY, 40536, USA.,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA
| | - Chee M Ng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA.,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA. .,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Lazareva NF, Baryshok VP, Lazarev IM. Silicon-containing analogs of camptothecin as anticancer agents. Arch Pharm (Weinheim) 2017; 351. [PMID: 29239010 DOI: 10.1002/ardp.201700297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
The plant pentacyclic alkaloid camptothecin and its structural analogs were extensively studied. These compounds are interesting due to the antitumor activity associated with their ability to inhibit topoisomerase I in tumor cells. During the last decades of the 20th century, a large number of the silicon-containing camptothecins (silatecans) were synthesized. 7-tert-Butyldimethylsilyl-10-hydroxy-camptothecin (DB-67 or AR-67) has enhanced lipophilicity and demonstrates a antitumor activity superior to its carbon analog. To date, certain silatecans are under clinical trials and their ultimate role in cancer therapy appears promising. In this review, we present chemical methodologies for the synthesis of silicon-containing camptothecins, their chemical properties, biological activity, and results of clinical trials.
Collapse
Affiliation(s)
- Nataliya F Lazareva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Viktor P Baryshok
- Irkutsk National Research Technical University, Irkutsk, Russian Federation
| | - Igor M Lazarev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
10
|
Ramesh R, Reddy DS. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. J Med Chem 2017; 61:3779-3798. [DOI: 10.1021/acs.jmedchem.7b00718] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Remya Ramesh
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| |
Collapse
|
11
|
Musiol R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin Drug Discov 2017; 12:583-597. [DOI: 10.1080/17460441.2017.1319357] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Zhang Y, Ding J, Sun D, Sun H, Zhuang X, Chang F, Wang J, Chen X. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:262-268. [PMID: 25686948 DOI: 10.1016/j.msec.2015.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/12/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
In the past few decades, the in situ sustained drug delivery platforms present fascinating potential in sentinel chemotherapy of various solid tumors. In this work, doxorubicin (DOX), a model antitumor drug, was loaded into the thermogel of poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide). The moderate mechanical property of DOX-loaded hydrogel was confirmed by rheological test. In vitro degradation revealed the good biodegradability of thermogel. The DOX-loaded hydrogel exhibited the sustained release profiles up to 30days without and even with elastase. The improved in vivo tumor inhibition and reduced side-effects were observed in the DOX-incorporated hydrogel group compared with those in free DOX group. The excellent in vivo results were further confirmed by the histopathological evaluation or terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. The thermogel with great prospect may be used as an ideal controlled drug delivery platform for the designated and long-term antitumor chemotherapy.
Collapse
Affiliation(s)
- Yanbo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Diankui Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
13
|
Design and synthesis of novel soluble 2,5-diketopiperazine derivatives as potential anticancer agents. Eur J Med Chem 2014; 83:236-44. [DOI: 10.1016/j.ejmech.2014.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/05/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022]
|
14
|
Tsakalozou E, Adane ED, Liang Y, Arnold SM, Leggas M. Protracted dosing of the lipophilic camptothecin analogue AR-67 in non-small cell lung cancer xenografts and humans. Cancer Chemother Pharmacol 2014; 74:45-54. [DOI: 10.1007/s00280-014-2472-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
|
15
|
Tsakalozou E, Adane ED, Kuo KL, Daily A, Moscow JA, Leggas M. The effect of breast cancer resistance protein, multidrug resistant protein 1, and organic anion-transporting polypeptide 1B3 on the antitumor efficacy of the lipophilic camptothecin 7-t-butyldimethylsilyl-10-hydroxycamptothecin (AR-67) in vitro. Drug Metab Dispos 2013; 41:1404-13. [PMID: 23620484 DOI: 10.1124/dmd.112.050021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin) is a lipophilic camptothecin analog, currently under early stage clinical trials. Transporters are known to have an impact on the disposition of camptothecins and on the response to chemotherapeutics in general due to their expression in tumor tissues. Therefore, we investigated the interplay between the breast cancer resistance protein (BCRP), multidrug resistant protein 1 (MDR1), and organic anion-transporting polypeptide (OATP) 1B1/1B3 transporters and AR-67 and their impact on the toxicity profile of AR-67. Using cell lines expressing the aforementioned transporters, we showed that the lipophilic AR-67 lactone form is a substrate for efflux transporters BCRP and MDR1. Additionally, OATP1B1 and OATP1B3 facilitated the uptake of AR-67 carboxylate in SLCO1B1- and SLCO1B3-transfected cell systems compared with the mock-transfected ones. Notably, both BCRP and MDR1 conferred resistance to AR-67 lactone. Prompted by recent studies showing increased OATP1B3 expression in certain cancer types, we investigated the effect of OATP1B3 expression on cell viability after exposure to AR-67 carboxylate. OATP1B3-expressing cells had increased carboxylate uptake as compared with mock-transfected cells but were not sensitized because the intracellular amount of lactone was 50-fold higher than that of carboxylate and comparable between OATP1B3-expressing and OATP1B3-nonexpressing cells. In conclusion, BCRP- and MDR1-mediated efflux of AR-67 lactone confers resistance to AR-67, but OATP1B3-mediated uptake of the AR-67 carboxylate does not sensitize OATP1B3-expressing tumor cells.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
16
|
Modi S, Xiang TX, Anderson BD. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. J Control Release 2012; 162:330-9. [DOI: 10.1016/j.jconrel.2012.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/11/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
17
|
|
18
|
Adane ED, Liu Z, Xiang TX, Anderson BD, Leggas M. Pharmacokinetic modeling to assess factors affecting the oral bioavailability of the lactone and carboxylate forms of the lipophilic camptothecin analogue AR-67 in rats. Pharm Res 2011; 29:1722-36. [PMID: 22068278 DOI: 10.1007/s11095-011-0617-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/25/2011] [Indexed: 11/27/2022]
Abstract
PURPOSE Camptothecin analogues are anticancer drugs effective when dosed in protracted schedules. Such treatment is best suited for oral formulations. AR-67 is a novel lipophilic analogue with potent efficacy in preclinical models. Here we assessed factors that may influence its oral bioavailability in rats. METHODS Plasma pharmacokinetic (PK) studies were conducted following administration of AR-67 lactone or carboxylate doses alone or after pre-dosing with inhibitors of the efflux transporters P-gp and Bcrp. A population PK model that simultaneously fitted to oral and intravenous data was used to estimate the bioavailability (F) and clearance of AR-67. RESULTS An inverse Gaussian function was used as the oral input into the model and provided the best fits. Covariate analysis showed that the bioavailability of the lactone, but not its clearance, was dose dependent. Consistent with this observation, the bioavailability of AR-67 increased when animals were pretreated orally with GF120918 or Zosuquidar. CONCLUSION Absorption of AR-67 is likely affected by solubility of its lactone form and interaction with efflux pumps in the gut. AR-67 appears to be absorbed as the lactone form, most likely due to gastric pH favoring its formation and predominance. F increased at higher doses suggesting saturation of efflux mechanisms.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- Acridines/administration & dosage
- Acridines/pharmacology
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/blood
- Antineoplastic Agents, Phytogenic/chemistry
- Camptothecin/administration & dosage
- Camptothecin/analogs & derivatives
- Camptothecin/blood
- Carboxylic Acids/administration & dosage
- Carboxylic Acids/blood
- Carboxylic Acids/chemistry
- Female
- Lactones/administration & dosage
- Lactones/blood
- Lactones/chemistry
- Models, Biological
- Rats
- Rats, Sprague-Dawley
- Tetrahydroisoquinolines/administration & dosage
- Tetrahydroisoquinolines/pharmacology
- Topoisomerase I Inhibitors/administration & dosage
- Topoisomerase I Inhibitors/blood
- Topoisomerase I Inhibitors/chemistry
Collapse
Affiliation(s)
- Eyob D Adane
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
19
|
Tsakalozou E, Horn J, Leggas M. An HPLC assay for the lipophilic camptothecin analog AR-67 carboxylate and lactone in human whole blood. Biomed Chromatogr 2011; 24:1045-51. [PMID: 20853460 DOI: 10.1002/bmc.1404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin, DB-67) is a camptothecin analog currently in early stage clinical trials. The lactone moiety of camptothecins hydrolyzes readily in blood to yield the pharmacologically inactive carboxylate form. However the lactone form of third-generation lipophilic congeners, such as AR-67, is more stable, possibly due to partitioning into red cell membranes. This prompted us to develop a reverse-phase HPLC method with fluorescence detection (excitation 380 nm/emission 560 nm), which could quantitate the concentration of AR-67 lactone and carboxylate in whole blood. Samples were prepared by red cell lysis, protein precipitation with methanol and centrifugation to remove denatured materials. Recovery was estimated to be >85%. Analytes were eluted isocratically with 0.15 m ammonium acetate buffer containing 10 mm TBAP (pH 6.5) and acetonitrile (65:35, v/v) on a Nova-Pak C(18) column (4 µm; 3.9 × 150 mm). The assay was linear in the ranges 0.5-300 and 2.5-300 ng/mL for carboxylate and lactone, respectively. Accuracy and precision were acceptable. AR-67 forms were stable in whole blood and in methanolic supernatants. This assay has been successfully applied to measure AR-67 concentrations in whole blood of patients enrolled in a phase I study.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
20
|
Horn J, Milewska M, Arnold SM, Leggas M. Metabolic pathways of the camptothecin analog AR-67. Drug Metab Dispos 2010; 39:683-92. [PMID: 21189330 DOI: 10.1124/dmd.110.037390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
7-tert-Butyldimethylsilyl-10-hydroxycamptothecin (AR-67; also known as DB-67) is a novel lipophilic camptothecin analog in early-phase anticancer clinical trials. In support of these studies, we evaluated the metabolism of AR-67 in vitro and identified potential metabolites in patient samples. The lactone form of AR-67 was found to be preferentially metabolized over AR-67 carboxylate in human microsomes. Subsequently, the lactone form was tested as a substrate in a panel of CYP450 and UDP-glucuronosyltransferase (UGT) enzymes known to metabolize the majority of clinically approved molecules. AR-67 was metabolized by CYP3A5, CYP3A4, CYP1A1, and CYP1A2, in order of activity. Extrahepatic UGT1A8 and UGT1A7 possessed at least 6-fold higher metabolizing activity than UGT1A1 and other UGT enzymes tested. CYP1A1 and UGT1A7 displayed Michaelis-Menten kinetics, whereas CYP3A4, CYP3A5, and UGT1A8 displayed kinetics consistent with substrate inhibition. Chromatographic analysis of representative patient plasma and urine samples demonstrated the presence of AR-67 glucuronides and oxidized products in the urine but only in very minimal amounts. We conclude that limited in vivo metabolism of AR-67 by UGT1A1 may partly explain the absence of AR-67 glucuronides in plasma and hypothesize that UGT1A8- and CYP3A-mediated biotransformation within the gastrointestinal epithelium may provide protective mechanisms against AR-67 gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jamie Horn
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
21
|
Adane ED, Liu Z, Xiang TX, Anderson BD, Leggas M. Factors Affecting the In Vivo Lactone Stability and Systemic Clearance of the Lipophilic Camptothecin Analogue AR-67. Pharm Res 2010; 27:1416-25. [DOI: 10.1007/s11095-010-0137-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|