1
|
Nozaki Y. The Network of Inflammatory Mechanisms in Lupus Nephritis. Front Med (Lausanne) 2020; 7:591724. [PMID: 33240910 PMCID: PMC7677583 DOI: 10.3389/fmed.2020.591724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Several signaling pathways are involved in the progression of kidney disease in humans and in animal models, and kidney disease is usually due to the sustained activation of these pathways. Some of the best understood pathways are specific proinflammatory cytokine and protein kinase pathways (e.g., protein kinase C and mitogen-activated kinase pathways, which cause cell proliferation and fibrosis and are associated with angiotensin II) and transforming growth factor-beta (TGF-β) signaling pathways (e.g., the TGF-β signaling pathway, which leads to increased fibrosis and kidney scarring. It is thus necessary to continue to advance our knowledge of the pathogenesis and molecular biology of kidney disease and to develop new treatments. This review provides an update of important findings about kidney diseases (including diabetic nephropathy, lupus nephritis, and vasculitis, i.e., vasculitis with antineutrophilic cytoplasmic antibodies). New disease targets, potential pathological pathways, and promising therapeutic approaches from basic science to clinical practice are presented, and the blocking of JAK/STAT and TIM-1/TIM-4 signaling pathways as potential novel therapeutic agents in lupus nephritis is discussed.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
2
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Abstract
We herein report a 76-year-old Japanese man with myelofibrosis who developed cryptococcal meningitis. After treatment for 5 months with ruxolitinib, the patient presented with fever and disturbance of consciousness. Marked nuchal stiffness was noted. The magnetic resonance imaging results of the brain were normal. Lumbar puncture showed an opening cerebrospinal fluid (CSF) pressure of 110 mm H2O, pleocytosis (85 mononuclear cells and 222 polymorphonuclear cells/μL), decreased CSF/serum glucose ratio (43%), and elevated protein (194 mg/dL). Blood and CSF cultures grew no bacteria or fungi. However, cryptococcal antigen was detected in the blood and CSF samples. We discontinued ruxolitinib and started administration of amphotericin B. His condition improved gradually 1 week after initiation of treatment. There have been only a few reports on cryptococcal meningitis associated with ruxolitinib. Physicians should consider the possibility of cryptococcal meningitis in patients receiving ruxolitinib.
Collapse
|
4
|
Fuentes-Mattei E, Bayraktar R, Manshouri T, Silva AM, Ivan C, Gulei D, Fabris L, Soares do Amaral N, Mur P, Perez C, Torres-Claudio E, Dragomir MP, Badillo-Perez A, Knutsen E, Narayanan P, Golfman L, Shimizu M, Zhang X, Zhao W, Ho WT, Estecio MR, Bartholomeusz G, Tomuleasa C, Berindan-Neagoe I, Zweidler-McKay PA, Estrov Z, Zhao ZJ, Verstovsek S, Calin GA, Redis RS. miR-543 regulates the epigenetic landscape of myelofibrosis by targeting TET1 and TET2. JCI Insight 2020; 5:121781. [PMID: 31941838 PMCID: PMC7030823 DOI: 10.1172/jci.insight.121781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by cytopenia and extramedullary hematopoiesis, resulting in splenomegaly. Multiple pathological mechanisms (e.g., circulating cytokines and genetic alterations, such as JAKV617F mutation) have been implicated in the etiology of MF, but the molecular mechanism causing resistance to JAK2V617F inhibitor therapy remains unknown. Among MF patients who were treated with the JAK inhibitor ruxolitinib, we compared noncoding RNA profiles of ruxolitinib therapy responders versus nonresponders and found miR-543 was significantly upregulated in nonresponders. We validated these findings by reverse transcription-quantitative PCR. in this same cohort, in 2 additional independent MF patient cohorts from the United States and Romania, and in a JAK2V617F mouse model of MF. Both in vitro and in vivo models were used to determine the underlying molecular mechanism of miR-543 in MF. Here, we demonstrate that miR-543 targets the dioxygenases ten-eleven translocation 1 (TET1) and 2 (TET2) in patients and in vitro, causing increased levels of global 5-methylcytosine, while decreasing the acetylation of histone 3, STAT3, and tumor protein p53. Mechanistically, we found that activation of STAT3 by JAKs epigenetically controls miR-543 expression via binding the promoter region of miR-543. Furthermore, miR-543 upregulation promotes the expression of genes related to drug metabolism, including CYP3A4, which is involved in ruxolitinib metabolism. Our findings suggest miR-543 as a potentially novel biomarker for the prognosis of MF patients with a high risk of treatment resistance and as a potentially new target for the development of new treatment options.
Collapse
Affiliation(s)
| | | | - Taghi Manshouri
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Andreia M. Silva
- Department of Experimental Therapeutics and
- Instituto de Investigação e Inovação em Saúde (i3S)
- Instituto de Engenharia Biomédica (INEB), and
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Cristina Ivan
- Department of Experimental Therapeutics and
- Center for RNA Interference and Non-coding RNAs, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Diana Gulei
- Department of Experimental Therapeutics and
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
- Department of Functional Genomics, The Oncology Institute, Cluj-Napoca, Romania
| | | | - Nayra Soares do Amaral
- Department of Experimental Therapeutics and
- Molecular Morphology Laboratory, Department of Investigative Pathology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Perez
- Department of Experimental Therapeutics and
- Mayagüez Campus, University of Puerto Rico, Mayagüez, Puerto Rico, USA
| | - Elizabeth Torres-Claudio
- Department of Experimental Therapeutics and
- University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics and
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
- Department of Surgery, Fundeni Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | - Leonard Golfman
- Department of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | | - Xinna Zhang
- Center for RNA Interference and Non-coding RNAs, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Wanke Zhao
- Department of Pathology, Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Wanting Tina Ho
- Department of Pathology, Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Marcos Roberto Estecio
- Department of Epigenetics and Molecular Carcinogenesis and
- Center for Cancer Epigenetics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | | - Ciprian Tomuleasa
- Department of Hematology, The Oncology Institute Ion Chiricuta, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
- Department of Functional Genomics, The Oncology Institute, Cluj-Napoca, Romania
| | | | - Zeev Estrov
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Zhizhuang J. Zhao
- Department of Pathology, Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Srdan Verstovsek
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - George A. Calin
- Department of Experimental Therapeutics and
- Center for RNA Interference and Non-coding RNAs, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | |
Collapse
|
5
|
Hassankrishnamurthy S, Mody MD, Kota VK. A Case of Chronic Myelogenous Leukemia Occurring in a Patient Treated for Essential Thrombocythemia. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:10-14. [PMID: 30602717 PMCID: PMC6325661 DOI: 10.12659/ajcr.911854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Patient: Female, 49 Final Diagnosis: Essential thrombocythemia with CML Symptoms: Decreased appetite • fatigue • weight loss Medication: — Clinical Procedure: — Specialty: Hematology
Collapse
Affiliation(s)
| | - Mayur D Mody
- Department of Internal Medicine, Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Vamsi K Kota
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Hayashi H, Kaneko R, Demizu S, Akasaka D, Tayama M, Harada T, Irie H, Ogino Y, Fujino N, Sasaki E. TAS05567, a Novel Potent and Selective Spleen Tyrosine Kinase Inhibitor, Abrogates Immunoglobulin-Mediated Autoimmune and Allergic Reactions in Rodent Models. J Pharmacol Exp Ther 2018; 366:84-95. [DOI: 10.1124/jpet.118.248153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
|
7
|
Song MK, Chung JS, Lim SN, Lee GW, Lee SM, Lee NK, Choi JC, Oh SY. Usefulness of spleen volume measured by computed tomography for predicting clinical outcome in primary myelofibrosis. Int J Hematol 2016; 104:476-84. [PMID: 27349913 DOI: 10.1007/s12185-016-2050-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/28/2022]
Abstract
Although splenomegaly is major characteristic of primary myelofibrosis (PMF), splenomegaly has been devalued due to a less reliable method based on physical examination (PEx). We evaluated whether spleen volume (SV) on CT would accurately predict clinical outcomes in PMF. A total of 188 patients were enrolled. SV was quantitated by the automatic volume software. In ROC curve, the SV predicted prognosis more accurately than spleen length by PEx (p < 0.001). The ideal cut-off value was 378.1 cm(3) for SV, which was divided into high- and low-volume status. Patients with low SV status had superior leukemia-free survival and overall survival compared to high SV status (p < 0.001, p < 0.001) In the Cox analysis, old age ≥65 years (p = 0.004, p = 0.001), low Hemoglobin <10.0 g/dL (p = 0.023, p = 0.021), high WBC counts ≥25 × 10(9)/L (p = 0.003, p = 0.006), peripheral blasts ≥1 % (p = 0.029, p = 0.020), unfavorable cytogenetic abnormalities (p = 0.025, p = 0.028), and high SV status (p = 0.004, p = 0.003) were independently associated with survivals. SV measured by CT was important for predicting survival in patients with PMF.
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, WoniDae-Ro 682 road, 21 Changwon, 51497, Republic of Korea.
| | - Joo-Seop Chung
- Department of Hematology-Oncology, Pusan National University Hospital, Busan, Korea
| | - Sung-Nam Lim
- Department of Hematology, Haeundae Paik Hospital, Busan, Korea
| | - Gyeong-Won Lee
- Department of Hematology, Gyeong-Sang National University Hospital, School of Medicine, Gyeong-Sang National University, Jinju, Korea
| | - Sang-Min Lee
- Department of Hematology, Busan Paik Hospital, Busan, Korea
| | - Nam-Kyung Lee
- Department of Radiology, Pusan National University Hospital, Busan, Korea
| | - Jae-Cheol Choi
- Department of Laboratory Medicine, Hanyang University Hanmaeum Changwon Hospital, Changwon, Korea
| | - So-Yeon Oh
- Department of Hematology-Oncology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
8
|
Pencik J, Pham HTT, Schmoellerl J, Javaheri T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F, Kenner L. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine 2016; 87:26-36. [PMID: 27349799 DOI: 10.1016/j.cyto.2016.06.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
In the past decades, studies of the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling have uncovered highly conserved programs linking cytokine signaling to the regulation of essential cellular mechanisms such as proliferation, invasion, survival, inflammation and immunity. Inhibitors of the JAK/STAT pathway are used for treatment of autoimmune diseases, such as rheumatoid arthritis or psoriasis. Aberrant JAK/STAT signaling has been identified to contribute to cancer progression and metastatic development. Targeting of JAK/STAT pathway is currently one of the most promising therapeutic strategies in prostate cancer (PCa), hematopoietic malignancies and sarcomas. Notably, newly identified regulators of JAK/STAT signaling, the non-coding RNAs transcripts and their role as important targets and potential clinical biomarkers are highlighted in this review. In addition to the established role of the JAK/STAT signaling pathway in traditional cytokine signaling the non-coding RNAs add yet another layer of hidden regulation and function. Understanding the crosstalk of non-coding RNA with JAK/STAT signaling in cancer is of critical importance and may result in better patient stratification not only in terms of prognosis but also in the context of therapy.
Collapse
Affiliation(s)
- Jan Pencik
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ha Thi Thanh Pham
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Johannes Schmoellerl
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Michaela Schlederer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
9
|
Hasselbalch HC. Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Rev Hematol 2014; 7:203-16. [PMID: 24524202 DOI: 10.1586/17474086.2013.876356] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is suggested to contribute to the Philadelphia-chromosome-negative myeloproliferative neoplasm (MPN) disease initiation and progression, as well as the development of premature atherosclerosis and may drive the development of other cancers in MPNs, both nonhematologic and hematologic. The MPN population has a substantial comorbidity burden, including cerebral, cardiovascular, pulmonary, abdominal, renal, metabolic, skeletal, autoimmune, and chronic inflammatory diseases. This review describes the comorbidities associated with MPNs and the potential impact of early intervention with anti-inflammatory and/or immunomodulatory agents such as JAK-inhibitors, statins, and IFN-α to inhibit cancer progression and reduce MPN-associated comorbidity impact. Early intervention may yield a subset of patients who achieve minimal residual disease, thereby likely reducing the comorbidity burden and improving the cost-effective socioeconomic profile.
Collapse
Affiliation(s)
- Hans C Hasselbalch
- Department of Hematology, Roskilde Hospital University of Copenhagen, Køgevej 7-13, 4000 Roskilde, Denmark
| |
Collapse
|
10
|
Harrison C, Mesa R, Ross D, Mead A, Keohane C, Gotlib J, Verstovsek S. Practical management of patients with myelofibrosis receiving ruxolitinib. Expert Rev Hematol 2013; 6:511-23. [PMID: 24083419 PMCID: PMC8201600 DOI: 10.1586/17474086.2013.827413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myelofibrosis (MF) is characterized by bone marrow fibrosis, progressive anemia and extramedullary hematopoiesis, primarily manifested as splenomegaly. Patients also experience debilitating constitutional symptoms, including sequelae of splenomegaly, night sweats and fatigue. Ruxolitinib (INC424, INCB18424, Jakafi, Jakavi), a JAK1 and JAK2 inhibitor, was approved in November 2011 by the US FDA for the treatment of intermediate- or high-risk MF, and more recently in Europe and Canada for the treatment of MF-related splenomegaly or symptoms. These approvals were based on data from two randomized Phase III studies: COMFORT-I randomized against placebo, and COMFORT-II randomized against best available therapy. In these studies, ruxolitinib rapidly improved multiple disease manifestations of MF, reducing splenomegaly and improving quality of life of patients and potentially prolonging survival. However, as with other chemotherapies, ruxolitinib therapy is associated with some adverse events, such as anemia and thrombocytopenia. The aims of this article are to provide a brief overview of ruxolitinib therapy, to discuss some common adverse events associated with ruxolitinib therapy and to provide clinical management recommendations to maximize patients' benefit from ruxolitinib.
Collapse
Affiliation(s)
| | | | - David Ross
- SA Pathology, Flinders Medical Centre, Adelaide, Australia
| | | | | | | | - Srdan Verstovsek
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Vannucchi AM, Pieri L, Guglielmelli P. JAK2 Allele Burden in the Myeloproliferative Neoplasms: Effects on Phenotype, Prognosis and Change with Treatment. Ther Adv Hematol 2013; 2:21-32. [PMID: 23556073 DOI: 10.1177/2040620710394474] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The field of Philadelphia-chromosome-negative chronic myeloproliferative neoplasms (MPNs) has recently witnessed tremendous advances in the basic knowledge of disease pathophysiology that followed the identification of mutations in JAK2 and MPL. These discoveries led to a revision of the criteria employed for diagnosis by the World Health Organization. The prognostic role of the JAK2V617F mutation and of its allelic burden has been the objective of intensive research using a variety of cellular and animal models as well as in large series of patients. While a definitive position cannot yet been taken on all of the issues, there is a consensus that the presence of higher V617F allele burden, that is on the basis of a stronger activation of intracellular signalling pathways, is associated with the clinical phenotype of polycythemia vera and with defined haematological and clinical markers indicative of a more aggressive phenotype. On the other hand, a low allele burden in myelofibrosis is associated with reduced survival. Finally, a significant reduction of JAK2 V617F allele burden has been demonstrated in patients treated with interferon, while the effects of novel JAK1 and JAK2 inhibitors have not yet been fully ascertained.
Collapse
Affiliation(s)
- Alessandro M Vannucchi
- Department of Medical and Surgical Care, Section of Hematology, University of Florence and Istituto Toscano Tumori, Florence, Italy
| | | | | |
Collapse
|
12
|
Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev 2013; 24:133-45. [DOI: 10.1016/j.cytogfr.2013.01.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/21/2022]
|
13
|
Komrokji R, Verstovsek S. Assessing efficacy in myelofibrosis treatment: a focus on JAK inhibition. Expert Rev Hematol 2012; 5:631-41. [PMID: 23216593 DOI: 10.1586/ehm.12.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myelofibrosis (MF) is characterized by splenomegaly, anemia and a debilitating symptom burden (e.g., fatigue, night sweats, pruritus, bone and muscle pain, undesired weight loss). Moreover, these symptoms impair activities of daily living and quality of life. Until recently, there have been no approved therapies for MF, and management of MF has been predominantly palliative. Dysregulated JAK-STAT signaling is associated with the pathologic MF disease state. A novel class of therapies, the JAK inhibitors, offers the potential to abrogate this pathologic signaling pathway. In clinical trials of patients with intermediate- and high-risk MF, JAK inhibitors have demonstrated efficacy in reducing splenomegaly and MF-associated symptoms. Evidence from ruxolitinib trials also suggests that JAK inhibitors may improve survival outcomes.
Collapse
Affiliation(s)
- Rami Komrokji
- H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | |
Collapse
|
14
|
Komrokji RS, Verstovsek S, Padron E, List AF. Advances in the management of myelofibrosis. Cancer Control 2012; 19:4-15. [PMID: 23042420 DOI: 10.1177/107327481201904s04] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Myelofibrosis (MF) is a rare and serious hematologic malignancy classified as a Philadelphia chromosome-negative myeloproliferative neoplasm (MPN). The disease is more common in males and in older individuals. Of the MPNs, MF presents with the most severe morbidity and greatest mortality. Although the cause of MF is unknown, it is thought to occur from acquired mutations that target the hematopoietic stem cell. METHODS We reviewed the current literature pertaining to the pathophysiology, clinical presentation, diagnosis, risk stratification, and treatment of MF. The strengths and limitations of present treatment options as well as the emerging clinical experience with Janus kinase 2 (JAK2) inhibitors are explored. RESULTS Diagnosis is often one of exclusion and is facilitated using the World Health Organization or International Working Group for Myelofibrosis Research and Treatment criteria, depending on whether primary or secondary MF is suspected. Treatment is complicated by a lack of disease familiarity of general practitioners and the advanced age of presenting patients. Although allogeneic stem cell transplant offers a potential cure, most treatments for this condition are limited to symptomatic management, with little to no effect on survival. Appropriate patient assessment and risk stratification are essential for predicting outcomes and allowing treating physicians to tailor therapy accordingly. CONCLUSIONS Significant advances have been made in understanding the pathophysiology of MF, leading to novel therapeutic approaches. The discovery of the JAK2 mutation and the development of JAK2 inhibitors provide clinicians with a new effective treatment option. Ruxolitinib is the first JAK1/2 inhibitor approved by the Food and Drug Administration (FDA) for the treatment of patients with intermediate- or high-risk MF. In clinical studies, ruxolitinib produced a significantly greater reduction in spleen size and improved quality of life compared with placebo or best available therapy. Several future therapies, including combination therapies with ruxolitinib, are currently under investigation.
Collapse
Affiliation(s)
- Rami S Komrokji
- Department of Malignant Hematology at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33617, USA.
| | | | | | | |
Collapse
|
15
|
Splenomegaly in myelofibrosis--new options for therapy and the therapeutic potential of Janus kinase 2 inhibitors. J Hematol Oncol 2012; 5:43. [PMID: 22852872 PMCID: PMC3464878 DOI: 10.1186/1756-8722-5-43] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 12/19/2022] Open
Abstract
Splenomegaly is a common sign of primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (post-PV MF), and post-essential thrombocythemia myelofibrosis (post-ET MF) that is associated with bothersome symptoms, which have a significant negative impact on patients’ quality of life. It may also be present in patients with advanced polycythemia vera (PV) or essential thrombocythemia (ET). Until recently, none of the therapies used to treat MF were particularly effective in reducing splenomegaly. The discovery of an activating Janus kinase 2 (JAK2) activating mutation (JAK2V617F) that is present in almost all patients with PV and in about 50-60 % of patients with ET and PMF led to the initiation of several trials investigating the clinical effectiveness of various JAK2 (or JAK1/JAK2) inhibitors for the treatment of patients with ET, PV, and MF. Some of these trials have documented significant clinical benefit of JAK inhibitors, particularly in terms of regression of splenomegaly. In November 2011, the US Food and Drug Administration approved the use of the JAK1- and JAK2-selective inhibitor ruxolitinib for the treatment of patients with intermediate or high-risk myelofibrosis, including PMF, post-PV MF, and post-ET MF. This review discusses current therapeutic options for splenomegaly associated with primary or secondary MF and the treatment potential of the JAK inhibitors in this setting.
Collapse
|
16
|
Abstract
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.
Collapse
|
17
|
Abstract
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.
Collapse
Affiliation(s)
- Thomas A Wynn
- Immunopathogenesis Section, Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
18
|
Hosseinzadeh Z, Bhavsar SK, Sopjani M, Alesutan I, Saxena A, Dërmaku-Sopjani M, Lang F. Regulation of the glutamate transporters by JAK2. Cell Physiol Biochem 2011; 28:693-702. [PMID: 22178881 DOI: 10.1159/000335763] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 01/13/2023] Open
Abstract
The Janus-activated kinase-2 JAK2 is involved in the signaling of leptin and erythropoietin receptors and mediates neuroprotective effects of the hormones. In theory, JAK2 could be effective through modulation of the glutamate transporters, carriers accounting for the clearance of glutamate released during neurotransmission. The present study thus elucidated the effect of JAK2 on the glutamate transporters EAAT1, EAAT2, EAAT3 and EAAT4. To this end, cRNA encoding the carriers was injected into Xenopus oocytes with or without cRNA encoding JAK2 and glutamate transport was estimated from glutamate induced current (I(glu)). I(glu) was observed in Xenopus oocytes expressing EAAT1 or EAAT2 or EAAT3 or EAAT4, but not in water injected oocytes. Coexpression of JAK2 resulted in an increase of I(glu) by 83% (EAAT1), 67% (EAAT2), 42% (EAAT3) and 126% (EAAT4). As shown for EAAT4 expressing Xenopus oocytes, the effect of JAK2 was mimicked by gain of function mutation (V617F)JAK2 but not by the inactive mutant (K882E)JAK2. Incubation with JAK2 inhibitor AG490 (40 μM) resulted in a gradual decrease of I(glu) by 53%, 79% and 92% within 3, 6 and 24 hours. Confocal microscopy and chemiluminescence analysis revealed that JAK2 coexpression increased EAAT4 protein abundance in the cell membrane. Disruption of transcription did not appreciably modify the up-regulation of I(glu) in EAAT4 expressing oocytes. The decay of I(glu) following inhibition of carrier insertion with brefeldin A was similar in oocytes expressing EAAT4 + JAK2 and oocytes expressing EAAT4 alone, indicating that JAK2 did not appreciably affect carrier retrieval from the membrane. In conclusion, JAK2 is a novel powerful regulator of glutamate transporters and thus participates in the protection against excitotoxicity.
Collapse
Affiliation(s)
- Zohreh Hosseinzadeh
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Jatiani SS, Baker SJ, Silverman LR, Reddy EP. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 2011; 1:979-93. [PMID: 21442038 DOI: 10.1177/1947601910397187] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoiesis is the cumulative result of intricately regulated signaling pathways that are mediated by cytokines and their receptors. Studies conducted over the past 10 to 15 years have revealed that hematopoietic cytokine receptor signaling is largely mediated by a family of tyrosine kinases termed Janus kinases (JAKs) and their downstream transcription factors, termed STATs (signal transducers and activators of transcription). Aberrations in these pathways, such as those caused by the recently identified JAK2(V617F) mutation and translocations of the JAK2 gene, are underlying causes of leukemias and other myeloproliferative disorders. This review discusses the role of JAK/STAT signaling in normal hematopoiesis as well as genetic abnormalities associated with myeloproliferative and myelodisplastic syndromes. This review also summarizes the status of several small molecule JAK2 inhibitors that are currently at various stages of clinical development. Several of these compounds appear to improve the quality of life of patients with myeloproliferative disorders by palliation of disease-related symptoms. However, to date, these agents do not seem to significantly affect bone marrow fibrosis, alter marrow histopathology, reverse cytopenias, reduce red cell transfusion requirements, or significantly reduce allele burden. These results suggest the possibility that additional mutational events might be associated with the development of these neoplasms, and indicate the need for combination therapies as the nature and significance of these additional molecular events is better understood.
Collapse
Affiliation(s)
- Shashidhar S Jatiani
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
20
|
Mitchell D, Cole KP, Pollock PM, Coppert DM, Burkholder TP, Clayton JR. Development and a Practical Synthesis of the JAK2 Inhibitor LY2784544. Org Process Res Dev 2011. [DOI: 10.1021/op200229j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Mitchell
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Kevin P. Cole
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Patrick M. Pollock
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David M. Coppert
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Timothy P. Burkholder
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Joshua R. Clayton
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
21
|
Abstract
Megakaryopoiesis is the process by which bone marrow progenitor cells develop into mature megakaryocytes (MKs), which in turn produce platelets required for normal haemostasis. Over the past decade, molecular mechanisms that contribute to MK development and differentiation have begun to be elucidated. In this review, we provide an overview of megakaryopoiesis and summarise the latest developments in this field. Specially, we focus on polyploidisation, a unique form of the cell cycle that allows MKs to increase their DNA content, and the genes that regulate this process. In addition, because MKs have an important role in the pathogenesis of acute megakaryocytic leukaemia and a subset of myeloproliferative neoplasms, including essential thrombocythemia and primary myelofibrosis, we discuss the biology and genetics of these disorders. We anticipate that an increased understanding of normal MK differentiation will provide new insights into novel therapeutic approaches that will directly benefit patients.
Collapse
|
22
|
EXEL-8232, a small-molecule JAK2 inhibitor, effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative neoplasm induced by MPLW515L. Leukemia 2011; 26:720-7. [DOI: 10.1038/leu.2011.261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Weinberg LR, Albom MS, Angeles TS, Breslin HJ, Gingrich DE, Huang Z, Lisko JG, Mason JL, Milkiewicz KL, Thieu TV, Underiner TL, Wells GJ, Wells-Knecht KJ, Dorsey BD. 2,7-Pyrrolo[2,1-f][1,2,4]triazines as JAK2 inhibitors: modification of target structure to minimize reactive metabolite formation. Bioorg Med Chem Lett 2011; 21:7325-30. [PMID: 22041060 DOI: 10.1016/j.bmcl.2011.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/07/2011] [Indexed: 11/19/2022]
Abstract
The JAK2/STAT pathway has important roles in hematopoiesis. With the discovery of the JAK2 V617F mutation and its presence in many patients with myeloproliferative neoplasms, research in the JAK2 inhibitor arena has dramatically increased. We report a novel series of potent JAK2 inhibitors containing a 2,7-pyrrolotriazine core. To minimize potential drug-induced toxicity, targets were analyzed for the ability to form a glutathione adduct. Glutathione adduct formation was decreased by modification of the aniline substituent at C2.
Collapse
Affiliation(s)
- Linda R Weinberg
- Worldwide Discovery Research, Cephalon, Inc. 145 Brandywine Parkway, West Chester, PA 19380-4245, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fiskus W, Verstovsek S, Manshouri T, Rao R, Balusu R, Venkannagari S, Rao NN, Ha K, Smith JE, Hembruff SL, Abhyankar S, McGuirk J, Bhalla KN. Heat shock protein 90 inhibitor is synergistic with JAK2 inhibitor and overcomes resistance to JAK2-TKI in human myeloproliferative neoplasm cells. Clin Cancer Res 2011; 17:7347-58. [PMID: 21976548 DOI: 10.1158/1078-0432.ccr-11-1541] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We determined the activity of hsp90 inhibitor, and/or Janus-activated kinase 2 (JAK2) tyrosine kinase inhibitor (TKI), against JAK2-V617F-expressing cultured mouse (Ba/F3-JAK2-V617F) and human (HEL92.1.7 and UKE-1) or primary human CD34(+) myeloproliferative neoplasm (MPN) cells. EXPERIMENTAL DESIGN Following exposure to the hsp90 inhibitor AUY922 and/or JAK2-TKI TG101209, the levels of JAK2-V617F, its downstream signaling proteins, as well as apoptosis were determined. RESULTS Treatment with AUY922 induced proteasomal degradation and depletion of JAK2-V617F as well as attenuated the signaling proteins downstream of JAK2-V617F, that is, phospho (p)-STAT5, p-AKT, and p-ERK1/2. AUY922 treatment also induced apoptosis of HEL92.1.7, UKE-1, and Ba/F3-hJAK2-V617F cells. Combined treatment with AUY922 and TG101209 caused greater depletion of the signaling proteins than either agent alone and synergistically induced apoptosis of HEL92.1.7 and UKE-1 cells. Cotreatment with AUY922 and TG101209 also induced significantly more apoptosis of human CD34(+) MPN than normal hematopoietic progenitor cells. As compared with the sensitive controls, JAK2-TKI-resistant HEL/TGR and UKE-1/TGR cells exhibited significantly higher IC(50) values for JAK2-TKI (P < 0.001), which was associated with higher expression of p-JAK2, p-STAT5, p-AKT, and Bcl-xL, but reduced levels of BIM. Unlike the sensitive controls, HEL/TGR and UKE/TGR cells were collaterally sensitive to the hsp90 inhibitors AUY922 and 17-AAG, accompanied by marked reduction in p-JAK2, p-STAT5, p-AKT, and Bcl-xL, with concomitant induction of BIM. CONCLUSIONS Findings presented here show that cotreatment with hsp90 inhibitor and JAK2-TKI exerts synergistic activity against cultured and primary MPN cells. In addition, treatment with hsp90 inhibitor may overcome resistance to JAK2-TKI in human MPN cells.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Kansas Cancer Center, Kansas City, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
BCR-ABL1--negative myeloproliferative neoplasms: a review of molecular biology, diagnosis, and treatment. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2011; 11 Suppl 1:S37-45. [PMID: 22035746 DOI: 10.1016/j.clml.2011.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
In 2008, the World Health Organization expanded the classification of myeloproliferative disorders based on increasing amounts of molecular and cytogenetic data. Myeloproliferative neoplasms (MPN) that do not contain the BCR-ABL1 mutation include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). JAK2V617F is the best characterized mutation in BCR-ABL1-negative neoplasms, with an estimated prevalence of more than 95% in PV, 50% in ET, and 50% in PMF. Current diagnostic strategies are increasingly reliant on molecular markers, and their prognostic value continues to be investigated. The use of aspirin, hydroxyurea, and phlebotomy for PV and ET, and the use of androgens, steroids, chemotherapy, and radiation therapy for PMF continues to be the mainstay of therapy. The only potentially curative therapy is allogeneic hematopoietic stem cell transplantation, but treatment-related mortality remains high. There have been promising results from clinical trials that involve the JAK tyrosine kinase inhibitors TG101384 and INCB018424, but their role in future therapy is yet to be established. Despite the optimism, it is increasingly apparent that pathogenicity in BCR-ABL1-negative MPN is more complex than for chronic myeloid leukemia, and a pathognomonic mutation may not be forthcoming.
Collapse
|
26
|
Wang T, Ioannidis S, Almeida L, Block MH, Davies AM, Lamb ML, Scott DA, Su M, Zhang HJ, Alimzhanov M, Bebernitz G, Bell K, Zinda M. In vitro and in vivo evaluation of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors. Bioorg Med Chem Lett 2011; 21:2958-61. [DOI: 10.1016/j.bmcl.2011.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
27
|
Verstovsek S. Janus-Activated Kinase 2 Inhibitors: A New Era of Targeted Therapies Providing Significant Clinical Benefit for Philadelphia Chromosome–Negative Myeloproliferative Neoplasms. J Clin Oncol 2011; 29:781-3. [DOI: 10.1200/jco.2010.33.4508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Rubert J, Qian Z, Andraos R, Guthy DA, Radimerski T. Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival. BMC Cancer 2011; 11:24. [PMID: 21247487 PMCID: PMC3037340 DOI: 10.1186/1471-2407-11-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/19/2011] [Indexed: 01/12/2023] Open
Abstract
Background The JAK2V617F mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1. Methods Pharmacological inhibition of JAK2/STAT5 signaling in JAK2V617F mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins. Results Treatment of JAK2V617F mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2V617F mutant cell viability and sensitized the cells to JAK2 inhibition. Conclusions We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2V617F cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential for the treatment of chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Joëlle Rubert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Harikrishnan LS, Kamau MG, Wan H, Inghrim JA, Zimmermann K, Sang X, Mastalerz HA, Johnson WL, Zhang G, Lombardo LJ, Poss MA, Trainor GL, Tokarski JS, Lorenzi MV, You D, Gottardis MM, Baldwin KF, Lippy J, Nirschl DS, Qiu R, Miller AV, Khan J, Sack JS, Purandare AV. Pyrrolo[1,2-f]triazines as JAK2 inhibitors: achieving potency and selectivity for JAK2 over JAK3. Bioorg Med Chem Lett 2011; 21:1425-8. [PMID: 21282055 DOI: 10.1016/j.bmcl.2011.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 12/31/2022]
Abstract
SAR studies of pyrrolo[1,2-f]triazines as JAK2 inhibitors is presented. Achieving JAK2 inhibition selectively over JAK3 is discussed.
Collapse
|
30
|
Machado-Neto JA, Traina F, Lazarini M, Campos PDM, Pagnano KBB, Lorand-Metze I, Costa FF, Saad STO. Screening for hotspot mutations in PI3K, JAK2, FLT3 and NPM1 in patients with myelodysplastic syndromes. Clinics (Sao Paulo) 2011; 66:793-9. [PMID: 21789382 PMCID: PMC3109377 DOI: 10.1590/s1807-59322011000500014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/11/2011] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Myelodysplastic syndromes encompass a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, refractory cytopenia and a tendency to progress toward acute myeloid leukemia. The accumulation of genetic alterations is closely associated with the progression of myelodysplastic syndromes toward acute myeloid leukemia. OBJECTIVE To investigate the presence of mutations in the points most frequent for mutations (hotspot mutations) in phosphatidylinositol-3-kinase (PI3K), Janus kinase 2 (JAK2), FMS-like tyrosine kinase 3 (FLT3) and nucleophosmin (NPM1), which are involved in leukemia and other cancers, in a population of Brazilian MDS patients. METHODS Fifty-one myelodysplastic syndromes patients were included in the study. According to French-American-British classification, the patients were distributed as follows: 31 with refractory anemia, 8 with refractory anemia with ringed sideroblasts, 7 with refractory anemia with excess blasts, 3 with refractory anemia with excess blasts in transformation and 2 with chronic myelomonocytic leukemia. Bone marrow samples were obtained and screened for the presence of hotspot mutations using analysis based on amplification with the polymerase chain reaction, sequencing, fragment size polymorphisms or restriction enzyme digestion. All patients were screened for mutations at the time of diagnosis, and 5 patients were also screened at the time of disease progression. RESULTS These results show that hotspot mutations in the PI3K, JAK2, FLT3 and NPM1 genes are not common in MDS patients; nevertheless, JAK2 mutations may be present in myelodysplasia during disease progression. CONCLUSIONS These results show that hotspot mutations in the PI3K, JAK2, FLT3 and NPM1 genes are not common in MDS patients; nevertheless, JAK2 mutations may be present in myelodysplasia during disease progression.
Collapse
|
31
|
Arellano-Rodrigo E, Alvarez-Larrán A. JAK inhibition in myelofibrosis. N Engl J Med 2010; 363:2464; author reply 2464-5; discussion 2465. [PMID: 21158663 DOI: 10.1056/nejmc1011635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F. Oncogene 2010; 30:990-1001. [PMID: 21042281 DOI: 10.1038/onc.2010.479] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The V617F activating mutation of janus kinase 2 (JAK2), a kinase essential for cytokine signalling, characterizes Polycythemia vera (PV), one of the myeloproliferative neoplasms (MPN). However, not all MPNs carry mutations of JAK2, and in JAK2-mutated patients, expression of JAK2V617F does not always result in clone expansion. In the present study, we provide evidence that inflammation-linked cytokines are required for the growth of JAK2V617F-mutated erythroid progenitors. In a first series of experiments, we searched for cytokines over-expressed in PV using cytokine antibody (Ab) arrays, and enzyme-linked immunosorbent assays for analyses of serum and bone marrow (BM) plasma, and quantitative reverse transcription-PCRs for analyses of cells purified from PV patients and controls. We found that PV patients over-expressed anti-inflammatory hepatocyte growth factor (HGF) and interleukin-11 (IL-11), BM mesenchymal stromal cells (BMMSCs) and erythroblasts being the main producers. In a second series of experiments, autocrine/paracrine cytokine stimulation of erythroblasts was blocked using neutralizing Abs specific for IL-11 or c-MET, the HGF receptor. The growth of JAK2V617F-mutated HEL cells and PV erythroblasts was inhibited, indicating that JAK2-mutated cells depend on HGF and IL-11 for their growth. Additional experiments showed that transient expression of JAK2V617F in BaF-3/erythropoietin receptor cells, and invalidation of JAK2V617F in HEL cells using anti-JAK2 small interfering RNA, did not affect HGF and IL-11 expression. Thus, anti-inflammatory HGF and IL-11 are upregulated in PV and their overproduction is not a consequence of JAK2V617F. As both cytokines contribute to the proliferation of PV erythroblasts, blocking the c-MET/HGF/IL-11 pathways could be of interest as an additional therapeutic option in PV.
Collapse
|
33
|
|
34
|
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010; 116:3268-77. [PMID: 20628145 DOI: 10.1182/blood-2010-05-282780] [Citation(s) in RCA: 962] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) and mediastinal large B-cell lymphoma (MLBCL) are lymphoid malignancies with certain shared clinical, histologic, and molecular features. Primary cHLs and MLBCLs include variable numbers of malignant cells within an inflammatory infiltrate, suggesting that these tumors escape immune surveillance. Herein, we integrate high-resolution copy number data with transcriptional profiles and identify the immunoregulatory genes, PD-L1 and PD-L2, as key targets at the 9p24.1 amplification peak in HL and MLBCL cell lines. We extend these findings to laser-capture microdissected primary Hodgkin Reed-Sternberg cells and primary MLBCLs and find that programmed cell death-1 (PD-1) ligand/9p24.1 amplification is restricted to nodular sclerosing HL, the cHL subtype most closely related to MLBCL. Using quantitative immunohistochemical methods, we document the association between 9p24.1 copy number and PD-1 ligand expression in primary tumors. In cHL and MLBCL, the extended 9p24.1 amplification region also included the Janus kinase 2 (JAK2) locus. Of note, JAK2 amplification increased protein expression and activity, specifically induced PD-1 ligand transcription and enhanced sensitivity to JAK2 inhibition. Therefore, 9p24.1 amplification is a disease-specific structural alteration that increases both the gene dosage of PD-1 ligands and their induction by JAK2, defining the PD-1 pathway and JAK2 as complementary rational therapeutic targets.
Collapse
|
35
|
Baffert F, Régnier CH, De Pover A, Pissot-Soldermann C, Tavares GA, Blasco F, Brueggen J, Chène P, Drueckes P, Erdmann D, Furet P, Gerspacher M, Lang M, Ledieu D, Nolan L, Ruetz S, Trappe J, Vangrevelinghe E, Wartmann M, Wyder L, Hofmann F, Radimerski T. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther 2010; 9:1945-55. [PMID: 20587663 DOI: 10.1158/1535-7163.mct-10-0053] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2(V617F) mutation is found in nearly all patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia and primary myelofibrosis. Thus, JAK2 represents a promising target for the treatment of myeloproliferative neoplasms and considerable efforts are ongoing to discover and develop inhibitors of the kinase. Here, we report potent inhibition of JAK2(V617F) and JAK2 wild-type enzymes by a novel substituted quinoxaline, NVP-BSK805, which acts in an ATP-competitive manner. Within the JAK family, NVP-BSK805 displays more than 20-fold selectivity towards JAK2 in vitro, as well as excellent selectivity in broader kinase profiling. The compound blunts constitutive STAT5 phosphorylation in JAK2(V617F)-bearing cells, with concomitant suppression of cell proliferation and induction of apoptosis. In vivo, NVP-BSK805 exhibited good oral bioavailability and a long half-life. The inhibitor was efficacious in suppressing leukemic cell spreading and splenomegaly in a Ba/F3 JAK2(V617F) cell-driven mouse mechanistic model. Furthermore, NVP-BSK805 potently suppressed recombinant human erythropoietin-induced polycythemia and extramedullary erythropoiesis in mice and rats.
Collapse
Affiliation(s)
- Fabienne Baffert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, 4057 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|