1
|
Zhao J, Wu S, Wang D, Edwards H, Thibodeau J, Kim S, Stemmer P, Wang G, Jin J, Savasan S, Taub JW, Ge Y. Panobinostat sensitizes AraC-resistant AML cells to the combination of azacitidine and venetoclax. Biochem Pharmacol 2024; 228:116065. [PMID: 38373594 DOI: 10.1016/j.bcp.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The majority of acute myeloid leukemia (AML) patients respond to intensive induction therapy, consisting of cytarabine (AraC) and an anthracycline, though more than half experience relapse. Relapsed/refractory (R/R) AML patients are difficult to treat, and their clinical outcomes remain dismal. Venetoclax (VEN) in combination with azacitidine (AZA) has provided a promising treatment option for R/R AML, though the overall survival (OS) could be improved (OS ranges from 4.3 to 9.1 months). Overexpression of c-Myc is associated with chemoresistance in AML. Histone deacetylase (HDAC) inhibitors have been shown to suppress c-Myc and enhance the antileukemic activity of VEN, as well as AZA, though combination of all three has not been fully explored. In this study, we investigated the HDAC inhibitor, panobinostat, in combination with VEN + AZA against AraC-resistant AML cells. Panobinostat treatment downregulated c-Myc and Bcl-xL and upregulated Bim, which enhanced the antileukemic activity of VEN + AZA against AraC-resistant AML cells. In addition, panobinostat alone and in combination with VEN + AZA suppressed oxidative phosphorylation and/or glycolysis in AraC-resistant AML cells. These findings support further development of panobinostat in combination with VEN + AZA for the treatment of AraC-resistant AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Panobinostat/pharmacology
- Panobinostat/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Azacitidine/pharmacology
- Azacitidine/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Cytarabine/pharmacology
- Cytarabine/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Cell Line, Tumor
- Drug Synergism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/administration & dosage
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/administration & dosage
Collapse
Affiliation(s)
- Jianlei Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130012, PR China
| | - Deying Wang
- The Tumor Center of the First Hospital of Jilin University, Changchun 130021, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jenna Thibodeau
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paul Stemmer
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Jingji Jin
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Süreyya Savasan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48202, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48202, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Yan X, Ma L, Chen X, Ren J, Zhai Y, Wu T, Song Y, Li X, Guo Y. Ferroptosis promotes valproate-induced liver steatosis in vitro and in vivo. Food Chem Toxicol 2024; 192:114926. [PMID: 39147356 DOI: 10.1016/j.fct.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Valproic acid (VPA), a common antiepileptic drug, can cause liver steatosis after long-term therapy. However, an impact of ferroptosis on VPA-induced liver steatosis has not been investigated. In the study, treatment with VPA promoted ferroptosis in the livers of mice by elevating ferrous iron (Fe2+) levels derived from the increased absorption by transferrin receptor 1 (TFR1) and the decreased storage by ferritin (FTH1 and FTL), disrupting the redox balance via reduced levels of solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), and glutathione peroxidase 4 (GPX4), and augmenting acyl-CoA synthetase long-chain family member 4 (ACSL4) -mediated lipid peroxide generation, accompanied by enhanced liver steatosis. All the changes were significantly reversed by co-treatment with an iron-chelating agent, deferoxamine mesylate (DFO) and a ferroptosis inhibitor, ferrostatin-1 (Fer-1). Similarly, the increases in Fe2+, TFR1, and ACSL4 levels, as well as the decreases in GSH, GPX4, and ferroportin (FPN) levels, were detected in VPA-treated HepG2 cells. These changes were also attenuated after co-treatment with Fer-1. It demonstrates that ferroptosis promotes VPA-induced liver steatosis through iron overload, inhibition of the GSH-GPX4 axis, and upregulation of ACSL4. It offers a potential therapy targeting ferroptosis for patients with liver steatosis following VPA treatment.
Collapse
Affiliation(s)
- Xinrui Yan
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Linfeng Ma
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, 264199, China; Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264099, China
| | - Xue Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jing Ren
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Yu Zhai
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Ting Wu
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Yu Song
- Yazhou Bay Innovation Institute, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xiaojiao Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yingjie Guo
- School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Wu S, Liu F, Gai Y, Carter J, Edwards H, Hüttemann M, Wang G, Li C, Taub JW, Wang Y, Ge Y. Combining the novel FLT3 and MERTK dual inhibitor MRX-2843 with venetoclax results in promising antileukemic activity against FLT3-ITD AML. Leuk Res 2024; 144:107547. [PMID: 38968731 DOI: 10.1016/j.leukres.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately one third of acute myeloid leukemia (AML) patients. FLT3-Internal tandem duplication (FLT3-ITD) mutations are the most common FLT3 mutations and are associated with a poor prognosis. Gilteritinib is a FLT3 inhibitor that is US FDA approved for treating adult patients with relapsed/refractory AML and a FLT3 mutation. While gilteritinib monotherapy has improved patient outcome, few patients achieve durable responses. Combining gilteritinib with venetoclax (VEN) appears to make further improvements, though early results suggest that patients with prior exposure to VEN fair much worse than those without prior exposure. MRX-2843 is a promising inhibitor of FLT3 and MERTK. We recently demonstrated that MRX-2843 is equally potent as gilteritinib in FLT3-ITD AML cell lines in vitro and primary patient samples ex vivo. In this study, we investigated the combination of VEN and MRX-2843 against FLT3-ITD AML cells. We found that VEN synergistically enhances cell death induced by MRX-2843 in FLT3-mutated AML cell lines and primary patient samples. Importantly, we found that VEN synergistically enhances cell death induced by MRX-2843 in FLT3-ITD AML cells with acquired resistance to cytarabine (AraC) or VEN+AraC. VEN and MRX-2843 significantly reduce colony-forming capacity of FLT3-ITD primary AML cells. Mechanistic studies show that MRX-2843 decreases Mcl-1 and c-Myc protein levels via transcriptional regulation and combined MRX-2843 and VEN significantly decreases oxidative phosphorylation in FLT3-ITD AML cells. Our findings highlight a promising combination therapy against FLT3-ITD AML, supporting further in vitro and in vivo testing.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, PR China
| | - Fangbing Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Yuqing Gai
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Chunhuai Li
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, PR China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, PR China.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
4
|
Su Y, Carter JL, Li X, Fukuda Y, Gray A, Lynch J, Edwards H, Ma J, Schreiner P, Polin L, Kushner J, Dzinic SH, Buck SA, Pruett-Miller SM, Hege-Hurrish K, Robinson C, Qiao X, Liu S, Wu S, Wang G, Li J, Allen JE, Prabhu VV, Schimmer AD, Joshi D, Kalhor-Monfared S, Watson IDG, Marcellus R, Isaac MB, Al-awar R, Taub JW, Lin H, Schuetz JD, Ge Y. The Imipridone ONC213 Targets α-Ketoglutarate Dehydrogenase to Induce Mitochondrial Stress and Suppress Oxidative Phosphorylation in Acute Myeloid Leukemia. Cancer Res 2024; 84:1084-1100. [PMID: 38266099 PMCID: PMC11380567 DOI: 10.1158/0008-5472.can-23-2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.
Collapse
Affiliation(s)
- Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Jenna L. Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Ashley Gray
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38105
| | - John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Patrick Schreiner
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Sijana H. Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Steven A. Buck
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, 48201
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Katie Hege-Hurrish
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Camenzind Robinson
- St. Jude Children’s Research Hospital Shared Imaging Resource, Memphis, TN, 38105
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | | | | | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Dhananjay Joshi
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Shiva Kalhor-Monfared
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Iain D. G. Watson
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Methvin B. Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Rima Al-awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jeffrey W. Taub
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, 48201
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, 130012, P.R. China
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201
| |
Collapse
|
5
|
Hurrish KH, Su Y, Patel S, Ramage CL, Zhao J, Temby BR, Carter JL, Edwards H, Buck SA, Wiley SE, Hüttemann M, Polin L, Kushner J, Dzinic SH, White K, Bao X, Li J, Yang J, Boerner J, Hou Z, Al-Atrash G, Konoplev SN, Busquets J, Tiziani S, Matherly LH, Taub JW, Konopleva M, Ge Y, Baran N. Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis in vitro. Biochem Pharmacol 2024; 220:115981. [PMID: 38081370 PMCID: PMC11149698 DOI: 10.1016/j.bcp.2023.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 enhanced VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, a purine biosynthesis inhibitor, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired AraC resistance showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. In vivo studies revealed significantly prolonged survival upon combination therapy of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia compared to the vehicle control. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.
Collapse
Affiliation(s)
- Katie H Hurrish
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shraddha Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cassandra L Ramage
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Brianna R Temby
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven A Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej N Konoplev
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Jonathan Busquets
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Larry H Matherly
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Natalia Baran
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA.
| |
Collapse
|
6
|
Carter JL, Su Y, Qiao X, Zhao J, Wang G, Howard M, Edwards H, Bao X, Li J, Hüttemann M, Yang J, Taub JW, Ge Y. Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms. Biochem Pharmacol 2023; 216:115759. [PMID: 37604291 DOI: 10.1016/j.bcp.2023.115759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The combination of venetoclax (VEN) and azacitidine (AZA) has become the standard of care for acute myeloid leukemia (AML) patients who are ≥ 75 years or unfit for intensive chemotherapy. Though initially promising, resistance to the combination therapy is an issue and VEN + AZA-relapsed/refractory patients have dismal outcomes. To better understand the mechanisms of resistance, we developed VEN + AZA-resistant AML cell lines, MV4-11/VEN + AZA-R and ML-2/VEN + AZA-R, which show > 300-fold persistent resistance compared to the parental lines. We demonstrate that these cells have unique metabolic profiles, including significantly increased levels of cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP), changes in fatty acid and amino acid metabolism and increased utilization and reliance on glycolysis. Furthermore, fatty acid transporter CD36 is increased in the resistant cells compared to the parental cells. Inhibition of glycolysis with 2-Deoxy-D-glucose re-sensitized the resistant cells to VEN + AZA. In addition, the VEN + AZA-R cells have increased levels of the antiapoptotic protein Mcl-1 and decreased levels of the pro-apoptotic protein Bax. Overexpression of Mcl-1 or knockdown of Bax result in resistance to VEN + AZA. Our results provide insight into the molecular mechanisms contributing to VEN + AZA resistance and assist in the development of novel therapeutics to overcome this resistance in AML patients.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Mackenzie Howard
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jing Li
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Hu C, Xu H, Li Z, Liu D, Zhang S, Fang F, Wang L. Juglone promotes antitumor activity against prostate cancer via suppressing glycolysis and oxidative phosphorylation. Phytother Res 2023; 37:515-526. [PMID: 36281060 DOI: 10.1002/ptr.7631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 11/10/2022]
Abstract
The treatments currently used for prostate cancer (PC) do not meet clinical needs, and thus, new therapies with greater effectiveness are urgently required. Metabolic reprogramming of tumor cells is emerging as an exciting field for cancer therapy. Although the Warburg effect is a common feature of glucose metabolism in many cancers, PC cells have a unique metabolic phenotype. Non-neoplastic prostate cells show reduced oxidative phosphorylation (OXPHOS) because large, accumulated zinc inhibits citrate oxidation. During transformation, there are low levels of zinc in PC cells, and the tricarboxylic acid (TCA) cycle is reactivated. However, metastatic PC exhibits the Warburg effect. Due to metabolic differences in prostate tissue, targeting metabolic alterations in PC cells is an attractive therapeutic strategy. In this study, we investigated the effect of juglone on energy metabolism in PC cells. We found that juglone inhibited cell proliferation and induced apoptosis. Mechanistically, we demonstrated that juglone suppressed OXPHOS and glycolysis due to its inhibition of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) activity. Furthermore, downregulation of PFK and PK, but not HK contributed to the inhibition of these enzyme activities. The current study indicates that further development of juglone for PC treatment would be beneficial.
Collapse
Affiliation(s)
- Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, People's Republic of China
| | - Haiyue Xu
- Clinical Laboratory Department, Changchun Obstetrics and Gynecology Hospital, Changchun city, Jilin, People's Republic of China
| | - Zehao Li
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, People's Republic of China
| | - Dandan Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, People's Republic of China
| | - Siqi Zhang
- College of medical technology, Beihua university, Jilin City, Jilin, People's Republic of China
| | - Fang Fang
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, People's Republic of China
| | - Liguo Wang
- Department of Urology Surgery, Affiliated Hospital of Jilin Medical University, Jilin City, Jilin, People's Republic of China
| |
Collapse
|
8
|
Wu S, Edwards H, Wang D, Liu S, Qiao X, Carter J, Wang Y, Taub JW, Wang G, Ge Y. Inhibition of Mcl-1 Synergistically Enhances the Antileukemic Activity of Gilteritinib and MRX-2843 in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia. Cells 2022; 11:2752. [PMID: 36078163 PMCID: PMC9455003 DOI: 10.3390/cells11172752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (FLT3-ITD) mutations occur in about 25% of all acute myeloid leukemia (AML) patients and confer a poor prognosis. FLT3 inhibitors have been developed to treat patients with FLT3-mutated AML and have shown promise, though the acquisition of resistance occurs, highlighting the need for combination therapies to prolong the response to FLT3 inhibitors. In this study, we investigated the selective Mcl-1 inhibitor AZD5991 in combination with the FLT3 inhibitors gilteritinib and MRX-2843. The combinations synergistically induce apoptosis in AML cell lines and primary patient samples. The FLT3 inhibitors downregulate c-Myc transcripts through the suppression of the MEK/ERK and JAK2/STAT5 pathways, resulting in the decrease in c-Myc protein. This suppression of c-Myc plays an important role in the antileukemic activity of AZD5991. Interestingly, the suppression of c-Myc enhances AZD5991-inudced cytochrome c release and the subsequent induction of apoptosis. AZD5991 enhances the antileukemic activity of the FLT3 inhibitors gilteritinib and MRX-2843 against FLT3-mutated AML in vitro, warranting further development.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130021, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Deying Wang
- The Tumor Center of the First Hospital of Jilin University, Changchun 130021, China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jeffrey W. Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Liu S, Qiao X, Wu S, Gai Y, Su Y, Edwards H, Wang Y, Lin H, Taub JW, Wang G, Ge Y. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis 2022; 27:913-928. [PMID: 35943677 DOI: 10.1007/s10495-022-01756-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a low 5-year overall survival rate of 29.5%. Thus, more effective therapies are in need to prolong survival of AML patients. Mcl-1 is overexpressed in AML and is associated with poor prognosis, representing a promising therapeutic target. The oncoprotein c-Myc is also overexpressed in AML and is a significant prognostic factor. In addition, Mcl-1 is required for c-Myc induced AML, indicating that c-Myc-driven AML harbors a Mcl-1 dependency and co-targeting of Mcl-1 and c-Myc represents a promising strategy to eradicate AML. In this study, we investigated the role of c-Myc in the antileukemic activity of Mcl-1 selective inhibitor AZD5991 and the antileukemic activity of co-targeting of Mcl-1 and c-Myc in preclinical models of AML. We found that c-Myc protein levels negatively correlated with AZD5991 EC50s in AML cell lines and primary patient samples. AZD5991 combined with inhibition of c-Myc synergistically induced apoptosis in AML cell lines and primary patient samples, and cooperatively targeted leukemia progenitor cells. AML cells with acquired resistance to AZD5991 were resensitized to AZD5991 when c-Myc was inhibited. The combination also showed promising and synergistic antileukemic activity in vitro against AML cell lines with acquired resistance to the main chemotherapeutic drug AraC and primary AML cells derived from a patient at relapse post chemotherapy. The oncoprotein c-Myc represents a potential biomarker of AZD5991 sensitivity and inhibition of c-Myc synergistically enhances the antileukemic activity of AZD5991 against AML.
Collapse
Affiliation(s)
- Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China.,Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yuqinq Gai
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.,Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA. .,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
10
|
Liu F, Zhao Q, Su Y, Lv J, Gai Y, Liu S, Lin H, Wang Y, Wang G. Cotargeting of Bcl-2 and Mcl-1 shows promising antileukemic activity against AML cells including those with acquired cytarabine resistance. Exp Hematol 2021; 105:39-49. [PMID: 34767916 DOI: 10.1016/j.exphem.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Acute myeloid leukemia (AML) remains a clinical challenge. Venetoclax is an effective Bcl-2 selective inhibitor approved by the U.S. Food and Drug Administration (FDA) for treatment of AML in patients who are 75 years and older or who have comorbidities. However, resistance to venetoclax limits its clinical efficacy. Mcl-1 has been identified as one determinant of resistance to venetoclax treatment. In this study, we investigate the Mcl-1 inhibitor S63845 in combination with venetoclax in AML cells. We found that S63845 synergizes with venetoclax in AML cell lines and primary patient samples. Bak/Bax double knockdown and treatment with the pan-caspase inhibitor Z-VAD-FMK revealed that the combination induces intrinsic apoptosis in AML cells. Inhibition of Mcl-1 using another Mcl-1 selective inhibitor, AZD5991, also synergistically enhanced apoptosis induced by venetoclax in a caspase-dependent manner. Importantly, S63845 in combination with venetoclax can effectively combat AML cells with acquired resistance to the standard chemotherapy drug cytarabine. In light of these facts, the combined inhibition of Mcl-1 and Bcl-2 shows promise against AML cells, including relapse/refractory AML.
Collapse
Affiliation(s)
- Fangbing Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Qiushi Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jing Lv
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuqing Gai
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology and Oncology, First Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, First Hospital of Jilin University, Changchun, China.
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China;.
| |
Collapse
|
11
|
Jahani M, Khanahmad H, Nikpour P. Evaluation of the Effects of Valproic Acid Treatment on Cell Survival and Epithelial-Mesenchymal Transition-Related Features of Human Gastric Cancer Cells. J Gastrointest Cancer 2021; 52:676-681. [PMID: 32621111 DOI: 10.1007/s12029-019-00332-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Metastasis is the most important feature of gastric cancer accounting for more than 90% of tumor-related mortality. As one of the main modulators of epithelial-mesenchymal transition (EMT), histone deacetylase inhibitors (HDACI) are considered rational candidates for cancer therapy. Valproic acid (VPA) is a HDACI with reported controversial effects on the EMT. The main aim of the current study was to evaluate the effects of VPA treatment on cell survival and EMT-related features of human gastric cancer cells (AGS). METHODS Methyl-thiazoltetrazolium (MTT) assay was utilized to assess the effect of VPA on the proliferation rate of cells. Apoptotic cell death was detected with Annexin V/PI staining. Migratory ability of cells following VPA treatment was assessed using a Boyden chamber test. The expression of EMT markers in AGS cells was analyzed using quantitative real-time RT-PCR. RESULTS Treatment with VPA significantly inhibited AGS cell proliferation compared with control. An increased rate of early and late apoptotic cells was observed following VPA exposure. It was demonstrated that VPA significantly diminished the cell migratory ability in AGS gastric cancer cells. Furthermore, treatment with VPA significantly decreased the expression of E-cadherin but increased the Vimentin expression. CONCLUSIONS Our results showed that VPA induces apoptosis and inhibits the cell proliferation and the migratory ability of AGS gastric cancer cells and may prove useful in the development of therapeutic agents for human gastric cancer. However, these preliminary findings call for further investigations to clarify the precise molecular mechanisms by which VPA modulates the EMT process in a cell type-specific manner.
Collapse
Affiliation(s)
- Mehrnaz Jahani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran. .,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan, Iran.
| |
Collapse
|
12
|
Qiao X, Ma J, Knight T, Su Y, Edwards H, Polin L, Li J, Kushner J, Dzinic SH, White K, Wang J, Lin H, Wang Y, Wang L, Wang G, Taub JW, Ge Y. The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML. Blood Cancer J 2021; 11:111. [PMID: 34099621 PMCID: PMC8184771 DOI: 10.1038/s41408-021-00502-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
About 25% of patients with acute myeloid leukemia (AML) harbor FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations and their prognosis remains poor. Gilteritinib is a FLT3 inhibitor approved by the US FDA for use in adult FLT3-mutated relapsed or refractory AML patients. Monotherapy, while efficacious, shows short-lived responses, highlighting the need for combination therapies. Here we show that gilteritinib and CUDC-907, a dual inhibitor of PI3K and histone deacetylases, synergistically induce apoptosis in FLT3-ITD AML cell lines and primary patient samples and have striking in vivo efficacy. Upregulation of FLT3 and activation of ERK are mechanisms of resistance to gilteritinib, while activation of JAK2/STAT5 is a mechanism of resistance to CUDC-907. Gilteritinib and CUDC-907 reciprocally overcome these mechanisms of resistance. In addition, the combined treatment results in cooperative downregulation of cellular metabolites and persisting antileukemic effects. CUDC-907 plus gilteritinib shows synergistic antileukemic activity against FLT3-ITD AML in vitro and in vivo, demonstrating strong translational therapeutic potential.
Collapse
Affiliation(s)
- Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tristan Knight
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jian Wang
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Liping Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
13
|
Bruserud Ø, Tsykunova G, Hernandez-Valladares M, Reikvam H, Tvedt THA. Therapeutic Use of Valproic Acid and All-Trans Retinoic Acid in Acute Myeloid Leukemia-Literature Review and Discussion of Possible Use in Relapse after Allogeneic Stem Cell Transplantation. Pharmaceuticals (Basel) 2021; 14:ph14050423. [PMID: 34063204 PMCID: PMC8147490 DOI: 10.3390/ph14050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
- Correspondence:
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway;
| | - Hakon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | | |
Collapse
|
14
|
Li X, Su Y, Hege K, Madlambayan G, Edwards H, Knight T, Polin L, Kushner J, Dzinic SH, White K, Yang J, Miller R, Wang G, Zhao L, Wang Y, Lin H, Taub JW, Ge Y. The HDAC and PI3K dual inhibitor CUDC-907 synergistically enhances the antileukemic activity of venetoclax in preclinical models of acute myeloid leukemia. Haematologica 2021; 106:1262-1277. [PMID: 32165486 PMCID: PMC8094102 DOI: 10.3324/haematol.2019.233445] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Venetoclax is a promising agent in the treatment of acute myeloid leukemia, though its antileukemic activity is limited to combination therapies. Mcl-1 downregulation, Bim upregulation, and DNA damage have been identified as potential ways to enhance venetoclax activity. In this study, we combine venetoclax with the dual PI3K and histone deacetylase inhibitor CUDC-907, which can downregulate Mcl-1, upregulate Bim, and induce DNA damage, as well as downregulate c-Myc. We establish that CUDC-907 and venetoclax synergistically induce apoptosis in acute myeloid leukemia cell lines and primary acute myeloid leukemia patient samples ex vivo. CUDC-907 downregulates CHK1, Wee1, RRM1, and c-Myc, which were found to play a role in venetoclax-induced apoptosis. Interestingly, we found that venetoclax treatment enhances CUDC-907-induced DNA damage potentially through inhibition of DNA repair. In vivo results show that CUDC-907 enhances venetoclax efficacy in an acute myeloid leukemia cell line derived xenograft mouse model, supporting the development of CUDC-907 in combination with venetoclax for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Xinyu Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yongwei Su
- School of Life Sciences, Jilin University, Changchun, China
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gerard Madlambayan
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Holly Edwards
- Wayne State University, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Tristan Knight
- Dept of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, USA
| | - Lisa Polin
- Wayne State University, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Wayne State University, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Regan Miller
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Guan Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yue Wang
- Dept. of Pediatric Hematology and Oncology, First Hospital of Jilin University, Changchun, China
| | - Hai Lin
- Dept. of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jeffrey W Taub
- Dept of Pediatrics, Children Hospital of Michigan, Wayne State University, Detroit, MI, USA
| | - Yubin Ge
- Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
Guan Z, Chen L, Zhou Y, Luo Y, Cui Y, Liu R, Shou B. The synergistic antitumour effect of multi-components from Pulsatilla chinensis saponins in NCI-H460 lung cancer cell line through induction of apoptosis. PHARMACEUTICAL BIOLOGY 2020; 58:427-437. [PMID: 32476531 PMCID: PMC7337008 DOI: 10.1080/13880209.2020.1761404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 05/23/2023]
Abstract
Context: Pulsatilla chinensis (Bunge) Regel (Ranunculaceae) possess antitumour effects; however, its antitumour potential has not been extensively investigated.Objective: To investigate the synergetic effect of multi-components from P. chinensis induced cell apoptosis and explore the mechanism.Materials and methods: The cytotoxicity was measured against NCI-H460, SMMC-7721, HCT-116 and U251 cell lines treated with eight monomers from P. chinensis. The synergetic effect of a combination of Pulsatilla saponin D (PSD), Raddeanoside R13 (R13), and Pulsatilla saponin A (PSA) was assessed using CalcuSyn3.0. Annexin V-FITC/PI and DAPI staining analyzed apoptosis of NCI-H460 cells treated with PSD, R13 and PSA alone or in combination. Proteins differential expression was analyzed using proteomic, DAVID Bioinformatics Resources, R software environment and KEGG database, and verified by western blotting.Results: PSD, R13, and PSA displayed greater antitumor activity with IC50 values of 5.6, 5.1 and 10.5 µM against NCI-H460 cells compared with other monomers. The combination of PSD, R13, and PSA had a synergistic effect at CI = 0.27 and induced 17.53% cells apoptotic detected by flow cytometric. Bioinformatic analysis showed an overview of the differentially expressed proteins and some signalling pathways. Moreover, some candidate proteins (LDHA, PI3K, NOL3 and cleaved-caspase-3) were validated by western blotting.Discussion and Conclusion: These results show PSD, R13, and PSA are good candidates as natural products for use in the treatment of lung cancer. Potential signalling pathways and protein targets need to be further validated. The application of the drug combination approach also provides a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Ziyi Guan
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Lanying Chen
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yihan Zhou
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yingying Luo
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yaru Cui
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Ronghua Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Binyao Shou
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Ma L, Wang Y, Chen X, Zhao L, Guo Y. Involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vivo and in vitro. Toxicology 2020; 445:152585. [PMID: 33007364 DOI: 10.1016/j.tox.2020.152585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Valproic acid (VPA) is a widely prescribed antiepileptic drug, which may cause steatosis in the liver. Oxidative stress is associated with the progression of VPA-induced hepatic steatosis. However, the potential mechanisms are not fully understood. In this study, we demonstrated the involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vitro and in vivo. First, VPA treatment (500 mg/kg in mice, 5 mM in LO2 cells) induced hepatic steatosis and enhanced reactive oxidative stress (ROS) level, and ROS scavenger, N-acetyl-L-cysteine (NAC, 200 mg/kg in mice, 1 mM in LO2 cells) reversed the changes. Next, we observed the enhanced expression and enzymatic activity of cytochrome P450 2E1 (CYP2E1) in VPA-treated mice and LO2 cells. Importantly, VPA-induced ROS accumulation and hepatic steatosis were attenuated when CYP2E1 was inhibited using CYP2E1 inhibitor, diallyl sulfide (DAS, 100 mg/kg in mice, 1 mM in LO2 cells) or in CYP2E1-knockdown cell line, suggesting that CYP2E1 plays a potential role in ROS production following hepatic steatosis. Furthermore, gene expression analysis showed that the mRNA levels of cluster of differentiation 36 (CD36), a fatty acid translocase protein and distinct diacylglycerol acyltransferase 2 (DGAT2) were significantly upregulated in mice and LO2 cells after VPA treatment, while the change was alleviated by NAC and DAS. Meanwhile, time course experiments demonstrated that the increase of CYP2E1 level occurred earlier than that of ROS, CD36 and DGAT2, and ROS generation preceded the onset of hepatic steatosis. Taken together, VPA treatment enhances the expression and enzymatic activity of CYP2E1, which promotes ROS production and then causes CD36 and DGAT2 overproduction and hepatic steatosis in mice and LO2 cells, which provides a novel insight into VPA-induced hepatic steatosis.
Collapse
Affiliation(s)
- Linfeng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Yani Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xue Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Liu F, Kalpage HA, Wang D, Edwards H, Hüttemann M, Ma J, Su Y, Carter J, Li X, Polin L, Kushner J, Dzinic SH, White K, Wang G, Taub JW, Ge Y. Cotargeting of Mitochondrial Complex I and Bcl-2 Shows Antileukemic Activity against Acute Myeloid Leukemia Cells Reliant on Oxidative Phosphorylation. Cancers (Basel) 2020; 12:cancers12092400. [PMID: 32847115 PMCID: PMC7564145 DOI: 10.3390/cancers12092400] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Targeting oxidative phosphorylation (OXPHOS) is a promising strategy to improve treatment outcomes of acute myeloid leukemia (AML) patients. IACS-010759 is a mitochondrial complex I inhibitor that has demonstrated preclinical antileukemic activity and is being tested in Phase I clinical trials. However, complex I deficiency has been reported to inhibit apoptotic cell death through prevention of cytochrome c release. Thus, combining IACS-010759 with a BH3 mimetic may overcome this mechanism of resistance leading to synergistic antileukemic activity against AML. In this study, we show that IACS-010759 and venetoclax synergistically induce apoptosis in OXPHOS-reliant AML cell lines and primary patient samples and cooperatively target leukemia progenitor cells. In a relatively OXPHOS-reliant AML cell line derived xenograft mouse model, IACS-010759 treatment significantly prolonged survival, which was further enhanced by treatment with IACS-010759 in combination with venetoclax. Consistent with our hypothesis, IACS-010759 treatment indeed retained cytochrome c in mitochondria, which was completely abolished by venetoclax, resulting in Bak/Bax- and caspase-dependent apoptosis. Our preclinical data provide a rationale for further development of the combination of IACS-010759 and venetoclax for the treatment of patients with AML.
Collapse
Affiliation(s)
- Fangbing Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun 130012, China; (F.L.); (J.M.); (Y.S.); (X.L.)
| | - Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.A.K.); (M.H.)
| | - Deying Wang
- The Tumor Center of the First Hospital of Jilin University, Changchun 130021, China;
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.E.); (L.P.); (J.K.); (S.H.D.); (K.W.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.A.K.); (M.H.)
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun 130012, China; (F.L.); (J.M.); (Y.S.); (X.L.)
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun 130012, China; (F.L.); (J.M.); (Y.S.); (X.L.)
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.E.); (L.P.); (J.K.); (S.H.D.); (K.W.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun 130012, China; (F.L.); (J.M.); (Y.S.); (X.L.)
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.E.); (L.P.); (J.K.); (S.H.D.); (K.W.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.E.); (L.P.); (J.K.); (S.H.D.); (K.W.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sijana H. Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.E.); (L.P.); (J.K.); (S.H.D.); (K.W.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.E.); (L.P.); (J.K.); (S.H.D.); (K.W.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun 130012, China; (F.L.); (J.M.); (Y.S.); (X.L.)
- Correspondence: (G.W.); (Y.G.)
| | - Jeffrey W. Taub
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.E.); (L.P.); (J.K.); (S.H.D.); (K.W.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Correspondence: (G.W.); (Y.G.)
| |
Collapse
|
18
|
Luedtke DA, Su Y, Ma J, Li X, Buck SA, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Lin H, Taub JW, Ge Y. Inhibition of CDK9 by voruciclib synergistically enhances cell death induced by the Bcl-2 selective inhibitor venetoclax in preclinical models of acute myeloid leukemia. Signal Transduct Target Ther 2020; 5:17. [PMID: 32296028 PMCID: PMC7042303 DOI: 10.1038/s41392-020-0112-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Venetoclax, an FDA-approved Bcl-2 selective inhibitor for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia (AML), is tolerated well in elderly patients with AML and has good overall response rates; however, resistance remains a concern. In this study, we show that targeting CDK9 with voruciclib in combination with venetoclax results in synergistic antileukemic activity against AML cell lines and primary patient samples. CDK9 inhibition enhances venetoclax activity through downregulation of Mcl-1 and c-Myc. However, downregulation of Mcl-1 is transient, which necessitates an intermittent treatment schedule to allow for repeated downregulation of Mcl-1. Accordingly, an every other day schedule of the CDK9 inhibitor is effective in vitro and in vivo in enhancing the efficacy of venetoclax. Our preclinical data provide a rationale for an intermittent drug administration schedule for the clinical evaluation of the combination treatment for AML.
Collapse
Affiliation(s)
- Daniel A Luedtke
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yongwei Su
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Jun Ma
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Xinyu Li
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Steven A Buck
- Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI, USA, 48201.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, 130021, Changchun, China
| | - Jeffrey W Taub
- Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI, USA, 48201.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
19
|
Aalaei S, Mohammadzadeh M, Pazhang Y. Synergistic induction of apoptosis in a cell model of human leukemia K562 by nitroglycerine and valproic acid. EXCLI JOURNAL 2019; 18:619-630. [PMID: 31611745 PMCID: PMC6785758 DOI: 10.17179/excli2019-1581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (NG), a nitric oxide donor, and valproic acid (VPA), an inhibitor of histone deacetylases, have impressive effects on numerous cancer cell lines. This study intended to evaluate synergistic effects of NG and VPA on cell viability and apoptosis in K562 cells. K562 cells were cultured in RPMI-1640 supplemented with 10 % heat-inactivated FBS. They were treated with different doses of NG, VPA and cisplatin for 24, 48, and 72 h, and MTT assay was performed to analyze cell viability. Also, Peripheral blood mononuclear cells (PBMC) were cultured in RPMI-1640 media and incubated with NG (200 μM), VAP (100 μM), NG+VPA (150 μM) and cisplatin (8 μM) to evaluate cytotoxicity. IC50 of the drugs, when they were applied separately and in combination, were calculated using the COMPUSYN software. DNA electrophoresis, TUNEL assay, and Hoechst staining were performed to investigate apoptosis induction. RT-PCR was used for the evaluation of apoptotic genes expression. The results of the MTT assay showed that cell viability decreased at all applied doses of NG and VPA. It was noticed that the cytotoxic effects of these drugs were dose- and time-dependent. Based on the COMPUSYN output, the combination of the drugs (VPA and NG) in a certain ratio concentration synergistically decreased cell viability. Cisplatin significantly decreased cell viability of PBMCs and K562 cells. Also, the combination drug had cytotoxic effect and significantly reduced viability of K562 cells compared with PBMCs and control cells. In the target cells treated with this combination, Bax and caspase-3 expression increased but Bcl-2 expression decreased. These results suggest that NG, VPA, and their combination decreased cell viability and induced apoptosis via the intrinsic apoptotic pathway. This study suggests that this combination therapy can be considered for further evaluation as an effective chemotherapeutic strategy for patients with chronic myeloid leukemia.
Collapse
Affiliation(s)
- Shahin Aalaei
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | | | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
20
|
Ma J, Zhao S, Qiao X, Knight T, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Wang G, Zhao L, Lin H, Wang Y, Taub JW, Ge Y. Inhibition of Bcl-2 Synergistically Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia. Clin Cancer Res 2019; 25:6815-6826. [PMID: 31320594 DOI: 10.1158/1078-0432.ccr-19-0832] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the efficacy of the combination of the FLT3 inhibitors midostaurin or gilteritinib with the Bcl-2 inhibitor venetoclax in FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) and the underlying molecular mechanism. EXPERIMENTAL DESIGN Using both FLT3-ITD cell lines and primary patient samples, Annexin V-FITC/propidium iodide staining and flow cytometry analysis were used to quantify cell death induced by midostaurin or gilteritinib, alone or in combination with venetoclax. Western blot analysis was performed to assess changes in protein expression levels of members of the JAK/STAT, MAPK/ERK, and PI3K/AKT pathways, and members of the Bcl-2 family of proteins. The MV4-11-derived xenograft mouse model was used to assess in vivo efficacy of the combination of gilteritinib and venetoclax. Lentiviral overexpression of Mcl-1 was used to confirm its role in cell death induced by midostaurin or gilteritinib with venetoclax. Changes of Mcl-1 transcript levels were assessed by RT-PCR. RESULTS The combination of midostaurin or gilteritinib with venetoclax potently and synergistically induces apoptosis in FLT3-ITD AML cell lines and primary patient samples. The FLT3 inhibitors induced downregulation of Mcl-1, enhancing venetoclax activity. Phosphorylated-ERK expression is induced by venetoclax but abolished by the combination of venetoclax with midostaurin or gilteritinib. Simultaneous downregulation of Mcl-1 by midostaurin or gilteritinib and inhibition of Bcl-2 by venetoclax results in "free" Bim, leading to synergistic induction of apoptosis. In vivo results show that gilteritinib in combination with venetoclax has therapeutic potential. CONCLUSIONS Inhibition of Bcl-2 via venetoclax synergistically enhances the efficacy of midostaurin and gilteritinib in FLT3-mutated AML.See related commentary by Perl, p. 6567.
Collapse
Affiliation(s)
- Jun Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Shoujing Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tristan Knight
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, P.R.China
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jeffrey W Taub
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Yubin Ge
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. .,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
21
|
Venetoclax Synergistically Enhances the Anti-leukemic Activity of Vosaroxin Against Acute Myeloid Leukemia Cells Ex Vivo. Target Oncol 2019; 14:351-364. [DOI: 10.1007/s11523-019-00638-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Li X, Su Y, Madlambayan G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Ma J, Knight T, Wang G, Wang Y, Yang J, Taub JW, Lin H, Ge Y. Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Haematologica 2019; 104:2225-2240. [PMID: 30819918 PMCID: PMC6821619 DOI: 10.3324/haematol.2018.201343] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Induction therapy for patients with acute myeloid leukemia (AML) has remained largely unchanged for over 40 years, while overall survival rates remain unacceptably low, highlighting the need for new therapies. The PI3K/Akt pathway is constitutively active in the majority of patients with AML. Given that histone deacetylase inhibitors have been shown to synergize with PI3K inhibitors in preclinical AML models, we investigated the novel dual-acting PI3K and histone deacetylase inhibitor CUDC-907 in AML cells both in vitro and in vivo. We demonstrated that CUDC-907 induces apoptosis in AML cell lines and primary AML samples and shows in vivo efficacy in an AML cell line-derived xenograft mouse model. CUDC-907-induced apoptosis was partially dependent on Mcl-1, Bim, and c-Myc. CUDC-907 induced DNA damage in AML cells while sparing normal hematopoietic cells. Downregulation of CHK1, Wee1, and RRM1, and induction of DNA damage also contributed to CUDC-907-induced apoptosis of AML cells. In addition, CUDC-907 treatment decreased leukemia progenitor cells in primary AML samples ex vivo, while also sparing normal hematopoietic progenitor cells. These findings support the clinical development of CUDC-907 for the treatment of AML.
Collapse
Affiliation(s)
- Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Gerard Madlambayan
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Tristan Knight
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
23
|
Luedtke DA, Su Y, Liu S, Edwards H, Wang Y, Lin H, Taub JW, Ge Y. Inhibition of XPO1 enhances cell death induced by ABT-199 in acute myeloid leukaemia via Mcl-1. J Cell Mol Med 2018; 22:6099-6111. [PMID: 30596398 PMCID: PMC6237582 DOI: 10.1111/jcmm.13886] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023] Open
Abstract
The antiapoptotic Bcl-2 family proteins play critical roles in resistance to chemotherapy in acute myeloid leukaemia (AML). The Bcl-2-selective inhibitor ABT-199 (Venetoclax) shows promising antileukaemic activity against AML, though Mcl-1 limits its antileukaemic activity. XPO1 is a nuclear exporter overexpressed in AML cells and its inhibition decreases Mcl-1 levels in cancer cells. Thus, we hypothesized that the XPO1-selective inhibitor KPT-330 (Selinexor) can synergize with ABT-199 to induce apoptosis in AML cells through down-regulation of Mcl-1. The combination of KPT-330 and ABT-199 was found to synergistically induce apoptosis in AML cell lines and primary patient samples and cooperatively inhibit colony formation capacity of primary AML cells. KPT-330 treatment decreased Mcl-1 protein after apoptosis initiation. However, binding of Bim to Mcl-1 induced by ABT-199 was abrogated by KPT-330 at the same time as apoptosis initiation. KPT-330 treatment increased binding of Bcl-2 to Bim but was overcome by ABT-199 treatment, demonstrating that KPT-330 and ABT-199 reciprocally overcome apoptosis resistance. Mcl-1 knockdown and overexpression confirmed its critical role in the antileukaemic activity of the combination. In summary, KPT-330 treatment, alone and in combination with ABT-199, modulates Mcl-1, which plays an important role in the antileukaemic activity of the combination.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/drug effects
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hydrazines/administration & dosage
- Karyopherins/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Sulfonamides/administration & dosage
- Triazoles/administration & dosage
- Exportin 1 Protein
Collapse
Affiliation(s)
- Daniel A. Luedtke
- Cancer Biology Graduate ProgramWayne State University School of MedicineDetroitMIUSA
| | - Yongwei Su
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Shuang Liu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
| | - Holly Edwards
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Yue Wang
- Department of Pediatric Hematology and OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hai Lin
- Department of Hematology and OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jeffrey W. Taub
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
- Division of Pediatric Hematology and OncologyChildren's Hospital of MichiganDetroitMIUSA
| | - Yubin Ge
- Cancer Biology Graduate ProgramWayne State University School of MedicineDetroitMIUSA
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
24
|
Zhou J, Liu M, Chen Y, Xu S, Guo Y, Zhao L. Cucurbitacin B suppresses proliferation of pancreatic cancer cells by ceRNA: Effect of miR-146b-5p and lncRNA-AFAP1-AS1. J Cell Physiol 2018; 234:4655-4667. [PMID: 30206930 DOI: 10.1002/jcp.27264] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product that displays antitumor activity against a wide variety of cancers. In this study, we explored the antipancreatic cancer activity of CuB via the inhibition of expression of the cancer-related long noncoding RNA, actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1). CuB arrested pancreatic cancer (PC) cells in the G2/M cell cycle phase by suppressing the expression of AFAP1-AS1. Insights into the mechanisms of competing endogenous RNAs (ceRNAs) gained from bioinformatics analysis and luciferase activity assays showed that the epidermal growth factor receptor (EGFR) and AFAP1-AS1 directly compete for miR-146b-5p binding. CuB-induced high miR-146b-5p expression and inhibited the expression of AFAP1-AS1. In summary, reducing the expression of endogenous AFAP1-AS1 effectively increased the available concentration of miR-146b-5p in PC, whereas miR-146b-5p overexpression prevented the expression of endogenous AFAP1-AS1. In particular, we hypothesized that AFAP1-AS1 might act as a ceRNA, effectively becoming a sponge for miR-146b-5p, thereby activating the expression of the EGFR. Thus, CuB suppresses the proliferation, in vitro and in vivo, of PC cells through the ceRNA effect of AFAP1-AS1 on miR-146b-5p.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yanan Chen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shansen Xu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingjie Guo
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Maganti HB, Jrade H, Cafariello C, Manias Rothberg JL, Porter CJ, Yockell-Lelièvre J, Battaion HL, Khan ST, Howard JP, Li Y, Grzybowski AT, Sabri E, Ruthenburg AJ, Dilworth FJ, Perkins TJ, Sabloff M, Ito CY, Stanford WL. Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy. Cancer Discov 2018; 8:1376-1389. [PMID: 30115703 DOI: 10.1158/2159-8290.cd-17-0841] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/21/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Deep sequencing has revealed that epigenetic modifiers are the most mutated genes in acute myeloid leukemia (AML). Thus, elucidating epigenetic dysregulation in AML is crucial to understand disease mechanisms. Here, we demonstrate that metal response element binding transcription factor 2/polycomblike 2 (MTF2/PCL2) plays a fundamental role in the polycomb repressive complex 2 (PRC2) and that its loss elicits an altered epigenetic state underlying refractory AML. Unbiased systems analyses identified the loss of MTF2-PRC2 repression of MDM2 as central to, and therefore a biomarker for, refractory AML. Thus, immature MTF2-deficient CD34+CD38- cells overexpress MDM2, thereby inhibiting p53 that leads to chemoresistance due to defects in cell-cycle regulation and apoptosis. Targeting this dysregulated signaling pathway by MTF2 overexpression or MDM2 inhibitors sensitized refractory patient leukemic cells to induction chemotherapeutics and prevented relapse in AML patient-derived xenograft mice. Therefore, we have uncovered a direct epigenetic mechanism by which MTF2 functions as a tumor suppressor required for AML chemotherapeutic sensitivity and identified a potential therapeutic strategy to treat refractory AML.Significance: MTF2 deficiency predicts refractory AML at diagnosis. MTF2 represses MDM2 in hematopoietic cells and its loss in AML results in chemoresistance. Inhibiting p53 degradation by overexpressing MTF2 in vitro or by using MDM2 inhibitors in vivo sensitizes MTF2-deficient refractory AML cells to a standard induction-chemotherapy regimen. Cancer Discov; 8(11); 1376-89. ©2018 AACR. See related commentary by Duy and Melnick, p. 1348 This article is highlighted in the In This Issue feature, p. 1333.
Collapse
Affiliation(s)
- Harinad B Maganti
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hani Jrade
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher Cafariello
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Janet L Manias Rothberg
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Julien Yockell-Lelièvre
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Hannah L Battaion
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Safwat T Khan
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joel P Howard
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yuefeng Li
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Elham Sabri
- Clinical Epidemiology Methods Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - F Jeffrey Dilworth
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Theodore J Perkins
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mitchell Sabloff
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Caryn Y Ito
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - William L Stanford
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Ning C, Liang M, Liu S, Wang G, Edwards H, Xia Y, Polin L, Dyson G, Taub JW, Mohammad RM, Azmi AS, Zhao L, Ge Y. Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor VS-5584 in preclinical models of pancreatic cancer. Oncotarget 2018; 8:44295-44311. [PMID: 28574828 PMCID: PMC5546481 DOI: 10.18632/oncotarget.17869] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/01/2017] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease in urgent need of newer therapeutic modalities. Majority of patients with PDAC have mutations in KRAS, which unfortunately remains an ineffectual target. Our strategy here is to target KRAS downstream effectors PI3K and mTOR. In this study, we investigated the antitumor efficacy of the novel PI3K and mTOR dual inhibitor VS-5584 in PDAC. Our data shows that PI3K/mTOR dual inhibition causes ERK activation in all tested PDAC cell lines. Although the MEK inhibitor GSK1120212 could abrogate VS-5584-induced ERK activation, it did not substantially enhance cell death in all the cell lines tested. However, combination with ERK inhibitor SCH772984 not only mitigated VS-5584-induced ERK activation but also enhanced VS-5584-induced cell death. In a xenograft model of PDAC, we observed 28% and 44% tumor inhibition for individual treatment with VS-5584 and SCH772984, respectively, while the combined treatment showed superior tumor inhibition (80%) compared to vehicle control treatment. Our findings support the clinical development of VS-5584 and ERK inhibitor combination for PDAC treatment.
Collapse
Affiliation(s)
- Changwen Ning
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Min Liang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yang Xia
- Department of Pathology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, P.R. China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
27
|
Zhao J, Xie C, Edwards H, Wang G, Taub JW, Ge Y. Histone deacetylases 1 and 2 cooperate in regulating BRCA1, CHK1, and RAD51 expression in acute myeloid leukemia cells. Oncotarget 2018; 8:6319-6329. [PMID: 28030834 PMCID: PMC5351634 DOI: 10.18632/oncotarget.14062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemotherapy and a high relapse rate highlight the importance of finding new therapeutic options for the treatment of acute myeloid leukemia (AML). Histone deacetylase (HDAC) inhibitors (HDACIs) are a promising class of drugs for the treatment of AML. HDACIs have limited single-agent clinical activities, but when combined with conventional or investigational drugs they have demonstrated favorable outcomes. Previous studies have shown that decreasing expression of important DNA damage repair proteins enhances standard chemotherapy drugs. In our recent studies, the pan-HDACI panobinostat has been shown to enhance conventional chemotherapy drugs cytarabine and daunorubicin in AML cells by decreasing the expression of BRCA1, CHK1, and RAD51. In this study, we utilized class- and isoform-specific HDACIs and shRNA knockdown of individual HDACs to determine which HDACs are responsible for decreased expression of BRCA1, CHK1, and RAD51 following pan-HDACI treatment in AML cells. We found that inhibition of both HDAC1 and HDAC2 was necessary to decrease the expression of BRCA1, CHK1, and RAD51, enhance cytarabine- or daunorubicin-induced DNA damage and apoptosis, and abrogate cytarabine- or daunorubicin-induced cell cycle checkpoint activation in AML cells. These findings may aid in the development of rationally designed drug combinations for the treatment of AML.
Collapse
Affiliation(s)
- Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine and Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine and Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Yubin Ge
- National Engineering Laboratory for AIDS Vaccine and Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
28
|
Kowolik CM, Lin M, Xie J, Overman LE, Horne DA. NT1721, a novel epidithiodiketopiperazine, exhibits potent in vitro and in vivo efficacy against acute myeloid leukemia. Oncotarget 2018; 7:86186-86197. [PMID: 27863389 PMCID: PMC5349906 DOI: 10.18632/oncotarget.13364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by heterogeneous genetic and epigenetic changes in hematopoietic progenitors that lead to abnormal self-renewal and proliferation. Despite high initial remission rates, prognosis remains poor for most AML patients, especially for those harboring internal tandem duplication (ITD) mutations in the fms-related tyrosine kinase-3 (FLT3). Here, we report that a novel epidithiodiketopiperazine, NT1721, potently decreased the cell viability of FLT3-ITD+ AML cell lines, displaying IC50 values in the low nanomolar range, while leaving normal CD34+ bone marrow cells largely unaffected. The IC50 values for NT1721 were significantly lower than those for clinically used AML drugs (i.e. cytarabine, sorafenib) in all tested AML cell lines regardless of their FLT3 mutation status. Moreover, combinations of NT1721 with sorafenib or cytarabine showed better antileukemic effects than the single agents in vitro. Combining cytarabine with NT1721 also attenuated the cytarabine-induced FLT3 ligand surge that has been linked to resistance to tyrosine kinase inhibitors. Mechanistically, NT1721 depleted DNA methyltransferase 1 (DNMT1) protein levels, leading to the re-expression of silenced tumor suppressor genes and apoptosis induction. NT1721 concomitantly decreased the expression of EZH2 and BMI1, two genes that are associated with the maintenance of leukemic stem/progenitor cells. In a systemic FLT3-ITD+ AML mouse model, treatment with NT1721 reduced tumor burdens by > 95% compared to the control and significantly increased survival times. Taken together, our results suggest that NT1721 may represent a promising novel agent for the treatment of AML.
Collapse
Affiliation(s)
- Claudia M Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - David A Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
29
|
Aslan O, Cremona M, Morgan C, Cheung LW, Mills GB, Hennessy BT. Preclinical evaluation and reverse phase protein Array-based profiling of PI3K and MEK inhibitors in endometrial carcinoma in vitro. BMC Cancer 2018; 18:168. [PMID: 29426295 PMCID: PMC5807759 DOI: 10.1186/s12885-018-4035-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/23/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The phosphoinositide-3-kinase (PI3K) pathway is the most commonly activated pathway in cancers due to mutations at multiple nodes and loss of PTEN. Furthermore, in endometrial cancer (EC), PI3K and RAS/RAF/MEK/MAPK (RAS/MAPK herein) pathway mutations frequently co-exist. We examined the role of PI3K and RAS/MAPK pathway mutations in determining responsiveness to therapies targeted to these pathways in vitro in EC. METHODS 13 EC cell lines were profiled for their PI3K pathway and KRAS mutational and PTEN protein status and treated with one MEK- and two PI3K- targeted inhibitors alone and in combination. Expression and phosphorylation of 66 proteins were evaluated by Reverse-Phase-Protein-Array (RPPA) in 6 EC cell lines to identify signalling changes in these pathways in response to therapy. RESULTS PTEN protein loss and the absence of any tested pathway mutations are dominant negative predictors of sensitivity to MEK inhibition. KRAS-mutated cells were most sensitive to MEK inhibition, but significantly more resistant to PI3K inhibition than KRAS-wild-type cell lines. Combinations of PI3K and MEK inhibitors showed synergy or additivity in all but two cell lines tested. Treatment of KRAS-mutated cells with PI3K inhibitors and treatment of PTEN-low cells with a MEK inhibitor were most likely to induce activation of MEK/MAPK and AKT, respectively, likely indicative of feedback-loop regulation. CONCLUSIONS MEK inhibition may be a promising treatment modality, not just for ECs with mutated KRAS, but also for those with retained PTEN. Up-regulation of MEK/MAPK signalling by PI3K inhibition, and up-regulation of AKT activation by MEK inhibition may serve as potential biomarkers of likely responsiveness to each inhibitor.
Collapse
Affiliation(s)
- Ozlem Aslan
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Mattia Cremona
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Clare Morgan
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Lydia W. Cheung
- Department of Systems Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Gordon B. Mills
- Department of Systems Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Bryan T. Hennessy
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
30
|
Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, Taub JW, Lin H, Ge Y. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget 2017; 7:34785-99. [PMID: 27166183 PMCID: PMC5085189 DOI: 10.18632/oncotarget.9185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
Resistance to standard chemotherapy agents remains a major obstacle for improving treatment outcomes for acute myeloid leukemia (AML). The Bcl-2-selective inhibitor ABT-199 has demonstrated encouraging preclinical results, drug resistance remains a concern. Mcl-1 has been demonstrated to contribute to ABT-199 resistance, thus combining with therapies that target Mcl-1 could overcome such resistance. In this study, we utilized a CHK1 inhibitor, LY2603618, to decrease Mcl-1 and enhance ABT-199 efficacy. We found that LY2603618 treatment resulted in abolishment of the G2/M cell cycle checkpoint and increased DNA damage, which was partially dependent on CDK activity. LY2603618 treatment resulted in decrease of Mcl-1, which coincided with the initiation of apoptosis. Overexpression of Mcl-1 in AML cells significantly attenuated apoptosis induced by LY2603618, confirming the critical role of Mcl-1 in apoptosis induced by the agent. Simultaneous treatment with LY2603618 and ABT-199 resulted in synergistic induction of apoptosis in both AML cell lines and primary patient samples. Our findings provide new insights into overcoming a mechanism of intrinsic ABT-199 resistance in AML cells and support the clinical development of combined ABT-199 and CHK1 inhibition.
Collapse
Affiliation(s)
- Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
31
|
Su Y, Li X, Ma J, Zhao J, Liu S, Wang G, Edwards H, Taub JW, Lin H, Ge Y. Targeting PI3K, mTOR, ERK, and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo. Biochem Pharmacol 2017; 148:13-26. [PMID: 29208365 DOI: 10.1016/j.bcp.2017.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia (AML) remains challenging to treat and needs more effective treatments. The PI3K/mTOR pathway is involved in cell survival and has been shown to be constitutively active in 50-80% of AML patients. However, targeting the PI3K/mTOR pathway results in activation of the ERK pathway, which also plays an important role in cell survival. In addition, AML cells often overexpress antiapoptotic Bcl-2 family proteins (e.g., Bcl-2), preventing cell death. Thus, our strategy here is to target the PI3K, mTOR (by VS-5584, a PI3K and mTOR dual inhibitor), ERK (by SCH772984, an ERK-selective inhibitor), and Bcl-2 (by ABT-199, a Bcl-2-selective inhibitor) signaling network to kill AML cells. In this study, we show that while inhibition of PI3K, mTOR, and ERK showed superior induction of cell death compared to inhibition of PI3K and mTOR, the levels of cell death were modest in some AML cell lines and primary patient samples tested. Although simultaneous inhibition of PI3K, mTOR, and ERK caused downregulation of Mcl-1 and upregulation of Bim, immunoprecipitation of Bcl-2 revealed increased binding of Bim to Bcl-2, which was abolished by the addition of ABT-199, suggesting that Bim was bound to Bcl-2 which prevented cell death. Treatment with combined VS-5584, SCH772984, and ABT-199 showed significant increase in cell death in AML cell lines and primary patient samples and significant reduction in AML colony formation in primary patient samples, while there was no significant effect on colony formation of normal human CD34+ hematopoietic progenitor cells. Taken together, our findings show that inhibition of PI3K, mTOR, and ERK synergistically induces cell death in AML cells, and addition of ABT-199 enhances cell death further. Thus, our data support targeting the PI3K, mTOR, ERK, and Bcl-2 signaling network for the treatment of AML.
Collapse
Affiliation(s)
- Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, PR China.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
32
|
Zhou J, Lu X, Tan TZ, Chng WJ. X-linked inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia cell response to TRAIL and chemotherapy through potentiated induction of proapoptotic machinery. Mol Oncol 2017; 12:33-47. [PMID: 29063676 PMCID: PMC5748481 DOI: 10.1002/1878-0261.12146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with an increasing incidence and relatively low 5‐year survival rate. Unfortunately, the underlying mechanism of leukemogenesis is poorly known, and there has been little progress in the treatment for AML. Studies have shown that X‐linked inhibitor of apoptosis (XIAP), one of the inhibitors of apoptosis proteins (IAPs), is highly expressed and contributes to chemoresistance in AML. Hence, a novel drug, RO6867520 (RO‐BIR2), developed by Roche targeting the BIR2 domain in XIAP to reactivate blocked apoptosis, is a promising therapy for AML. The monotherapy of RO‐BIR2 had minimal effect on most of the AML cell lines tested except U‐937. In contrast to AML cell lines, in general, RO‐BIR2 alone has been shown to inhibit the proliferation of primary AML patient samples effectively and induced apoptosis in a dose‐dependent manner. A combination of RO‐BIR2 with TNF‐related apoptosis‐inducing ligand (TRAIL) led to highly synergistic effect on AML cell lines and AML patient samples. This combination therapy is capable of inducing apoptosis, thereby leading to an increase in specific apoptotic cell population, along with the activation of caspase 3/7. A number of apoptotic‐related proteins such as XIAP, cleavage of caspase 3, cleavage of caspase 7, and cleaved PARP were changed upon combination therapy. Combination of RO‐BIR2 with Ara‐C had similar effect as the TRAIL combination. Ara‐C combination also led to synergistic effect on AML cell lines and AML patient samples with low combination indexes (CIs). We conclude that the combination of RO‐BIR2 with either TRAIL or Ara‐C represents a potent therapeutic strategy for AML and is warranted for further clinical trials to validate the synergistic benefits in patients with AML, especially for the elderly who are abstaining from intensive chemotherapy.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiao Lu
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore.,Translational Centre for Development and Research, National University Health System, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, NUHS, Singapore, Singapore
| |
Collapse
|
33
|
Zhou J, Zhao T, Ma L, Liang M, Guo YJ, Zhao LM. Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget 2017; 8:103167-103181. [PMID: 29262554 PMCID: PMC5732720 DOI: 10.18632/oncotarget.21704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product and displays antitumor activity across a wide array of cancers. In this study, we explored the anti-pancreatic cancer activity of CuB alone and in combination with SCH772984, an ERK inhibitor, in vitro and in vivo. CuB inhibited proliferation of pancreatic cancer cells by arresting them in the G2/M cell cycle phase. This was associated with inhibition of EGFR expression and activity and downstream signaling, including PI3K/Akt/mTOR and STAT3. Interestingly, ERK activity was markedly enhanced by activating AMPK signaling after 12 h of CuB treatment. SCH772984 potentiates the cytotoxic effect of CuB on pancreatic cancer cells through complementary inhibition of EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling, followed by an increase in the pro-apoptotic protein Bim and a decrease in the anti-apoptotic proteins Mcl-1, Bcl-2, Bcl-xl and survivin. Furthermore, combined therapy with CuB and SCH772984 resulted in highly significant growth inhibition of pancreatic cancer xenografts. These results may provide a basis for further development of combining CuB and ERK inhibitors to treat pancreatic cancer.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiangang Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Linfeng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Min Liang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ying-Jie Guo
- School of Life Sciences, Jilin University, Changchun, China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Chen L, Guo P, Zhang Y, Li X, Jia P, Tong J, Li J. Autophagy is an important event for low-dose cytarabine treatment in acute myeloid leukemia cells. Leuk Res 2017. [PMID: 28651104 DOI: 10.1016/j.leukres.2017.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytarabine (Ara-c) has been an important agent in acute myeloid leukemia (AML) treatment for more than 40 years. While, the mechanisms underlying low dose cytarabine (LD Ara-c) is poorly understood. In this study, we investigated the therapeutic effect of LD Ara-C in vitro. U937 and HEL cell lines were treated with increasing dose of Ara-C and showed growth inhibition rates in a time and dose-dependent manner. Treatment with LD Ara-C (50nM) induced a time-dependent increase in expression of microtubule-associated protein light chain 3 (LC3) and beclin1, but degradation of sequestosome1 (p62) in both U937 and HEL cells. Characteristic of autophagosomes appeared after 24h treatment. Meanwhile, deregulation of Akt-mTOR pathway was also detected. When cultured in presence of autophagy inhibitors, autophagy and differentiation was reversed, and cell growth inhibition was also attenuated. Similar phenomenon could also be seen when beclin1 expression was down-regulated. Taken together, we concluded that LD Ara-C can induce autophagy in AML cells and appeared to play an important role in differentiation and death. Down-regulation of Akt-mTOR pathway is involved in these processes. We suggest that cytarabine-induced autophagy is not a pro-survival mechanism, but accounts for its antineoplastic effects.
Collapse
Affiliation(s)
- Liyun Chen
- Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China; Department of Hematology, No.1 Hospital Affiliated to Suzhou University, No. 188 Shi Zi Street, Suzhou 215006, China
| | - Pei Guo
- Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China; Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China
| | - Yunxiang Zhang
- Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China; Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China
| | - Xiaoyang Li
- Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China; Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China
| | - Peimin Jia
- State Key Laboratory of Medical Genomics, Faculty of Medical Laboratory Science, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China
| | - Jianhua Tong
- State Key Laboratory of Medical Genomics, Faculty of Medical Laboratory Science, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China
| | - Junmin Li
- Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China; Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China.
| |
Collapse
|
35
|
Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Signal Transduct Target Ther 2017; 2:17012. [PMID: 29263915 PMCID: PMC5661618 DOI: 10.1038/sigtrans.2017.12] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a serious disease. The 5-year survival rates remain frustratingly low (65% for children and 26% for adults). Resistance to frontline chemotherapy (usually cytarabine) often develops; therefore a new treatment modality is needed. Bcl-2 family proteins play an important role in balancing cell survival and apoptosis. The antiapoptotic Bcl-2 family proteins have been found to be dysregulated in AML. ABT-199, a BH3 mimetic, was developed to target antiapoptotic protein Bcl-2. Although ABT-199 has demonstrated promising results, resistance occurs. Previous studies in AML show that ABT-199 alone decreases the association of proapoptotic protein Bim with Bcl-2, but this is compensated by increased association of Bim with prosurvival protein Mcl-1, stabilizing Mcl-1, resulting in resistance to ABT-199. In this study, we investigated the antileukemic activity of the Mcl-1-selective inhibitor A-1210477 in combination with ABT-199 in AML cells. We found that A-1210477 synergistically induced apoptosis with ABT-199 in AML cell lines and primary patient samples. The synergistic induction of apoptosis was decreased upon Bak, Bax and Bim knockdown. While A-1210477 treatment alone also increased Mcl-1 protein levels, combination with ABT-199 reduced binding of Bim to Mcl-1. Our results demonstrate that sequestration of Bim by Mcl-1, a mechanism of ABT-199 resistance, can be abrogated by combined treatment with the Mcl-1 inhibitor A-1201477.
Collapse
|
36
|
Ma J, Li X, Su Y, Zhao J, Luedtke DA, Epshteyn V, Edwards H, Wang G, Wang Z, Chu R, Taub JW, Lin H, Wang Y, Ge Y. Mechanisms responsible for the synergistic antileukemic interactions between ATR inhibition and cytarabine in acute myeloid leukemia cells. Sci Rep 2017; 7:41950. [PMID: 28176818 PMCID: PMC5296912 DOI: 10.1038/srep41950] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) continues to be a challenging disease to treat, thus new treatment strategies are needed. In this study, we investigated the antileukemic effects of ATR inhibition alone or combined with cytarabine in AML cells. Treatment with the ATR-selective inhibitor AZ20 caused proliferation inhibition in AML cell lines and primary patient samples. It partially abolished the G2 cell cycle checkpoint and caused DNA replication stress and damage, accompanied by CDK1-independent apoptosis and downregulation of RRM1 and RRM2. AZ20 synergistically enhanced cytarabine-induced proliferation inhibition and apoptosis, abolished cytarabine-induced S and G2/M cell cycle arrest, and cooperated with cytarabine in inducing DNA replication stress and damage in AML cell lines. These key findings were confirmed with another ATR-selective inhibitor AZD6738. Therefore, the cooperative induction of DNA replication stress and damage by ATR inhibition and cytarabine, and the ability of ATR inhibition to abrogate the G2 cell cycle checkpoint both contributed to the synergistic induction of apoptosis and proliferation inhibition in AML cell lines. Synergistic antileukemic interactions between AZ20 and cytarabine were confirmed in primary AML patient samples. Our findings provide insight into the mechanism of action underlying the synergistic antileukemic activity of ATR inhibition in combination with cytarabine in AML.
Collapse
Affiliation(s)
- Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniel A Luedtke
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Epshteyn
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Zhihong Wang
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Roland Chu
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P. R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P. R. China
| | - Yubin Ge
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
37
|
Qi W, Zhang W, Edwards H, Chu R, Madlambayan GJ, Taub JW, Wang Z, Wang Y, Li C, Lin H, Ge Y. Synergistic anti-leukemic interactions between panobinostat and MK-1775 in acute myeloid leukemia ex vivo. Cancer Biol Ther 2016; 16:1784-93. [PMID: 26529495 DOI: 10.1080/15384047.2015.1095406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
MK-1775 is the first-in-class selective Wee1 inhibitor which has been demonstrated to synergize with CHK1 inhibitors in various malignancies. In this study, we report that the pan-histone deacetylase inhibitor (HDACI) panobinostat synergizes with MK-1775 in acute myeloid leukemia (AML), a malignancy which remains a clinical challenge and requires more effective therapies. Using both AML cell line models and primary patient samples, we demonstrated that panobinostat and MK-1775 synergistically induced proliferation arrest and cell death. We also demonstrated that panobinostat had equal anti-leukemic activities against primary AML blasts derived from patients either at initial diagnosis or at relapse. Interestingly, treatment with panobinostat alone or in combination with MK-1775 resulted in decreased Wee1 protein levels as well as downregulation of the CHK1 pathway. shRNA knockdown of CHK1 significantly sensitized AML cells to MK-1775 treatment, while knockdown of Wee1 significantly enhanced both MK-1775- and panobinostat-induced cell death. Our results demonstrate that panobinostat synergizes with MK-1775 in AML cells, at least in part through downregulation of CHK1 and/or Wee1, providing compelling evidence for the clinical development of the combination treatment in AML.
Collapse
Affiliation(s)
- Wenxiu Qi
- a National Engineering Laboratory for AIDS Vaccine; Key Laboratory for Molecular Enzymology and Engineering; the Ministry of Education; School of Life Sciences; Jilin University ; Changchun , China
| | - Wenbo Zhang
- a National Engineering Laboratory for AIDS Vaccine; Key Laboratory for Molecular Enzymology and Engineering; the Ministry of Education; School of Life Sciences; Jilin University ; Changchun , China
| | - Holly Edwards
- b Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA.,c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA
| | - Roland Chu
- d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | | | - Jeffrey W Taub
- c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA.,d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | - Zhihong Wang
- d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | - Yue Wang
- f Department of Pediatric Hematology and Oncology; The First Hospital of Jilin University ; Cangchun , China
| | - Chunhuai Li
- f Department of Pediatric Hematology and Oncology; The First Hospital of Jilin University ; Cangchun , China
| | - Hai Lin
- g Department of Hematology and Oncology; The First Hospital of Jilin University ; Changchun , China
| | - Yubin Ge
- b Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA.,c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA
| |
Collapse
|
38
|
Schwartz J, Niu X, Walton E, Hurley L, Lin H, Edwards H, Taub JW, Wang Z, Ge Y. Synergistic anti-leukemic interactions between ABT-199 and panobinostat in acute myeloid leukemia ex vivo. Am J Transl Res 2016; 8:3893-3902. [PMID: 27725868 PMCID: PMC5040686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Cure rates for acute myeloid leukemia (AML) remain suboptimal; thus new treatment strategies are needed for this deadly disease. Poor clinical outcomes have been associated with overexpression of the anti-apoptotic Bcl-2 family proteins Bcl-2, Bcl-xL, and Mcl-1, which have garnered great interest as therapeutic targets. While the Bcl-2-selective inhibitor ABT-199 has demonstrated promising preclinical anti-leukemic activities, intrinsic drug resistance remains a problem. In our most recent study, we identified Mcl-1 sequestration of Bim as a mechanism of intrinsic resistance to ABT-199 in AML cells, thus upregulating Bim could overcome such resistance. Histone deacetylase (HDAC) inhibitors (HDACI) are a class of agents that have been confirmed to upregulate Bim. This prompted our hypothesis that combining an HDACI with ABT-199 would overcome intrinsic resistance to ABT-199 and result in synergistic anti-leukemic activity against AML. In this study, we investigated the anti-leukemic activity of panobinostat, a pan-HDACI, in combination with ABT-199 in AML cell lines and primary patient samples. We found that the combined drug treatment resulted in synergistic induction of cell death in both AML cell lines and primary patient samples. Panobinostat treatment resulted in upregulation of Bim, which remained elevated in the presence of ABT-199. In addition, shRNA knockdown of Bim in AML cell lines significantly attenuated apoptosis induced by combined panobinostat and ABT-199. Our results provide compelling evidence that Bim plays a key role in the combined anti-leukemic activity of panobinostat and ABT-199 against AML, and support clinical evaluation of combined panobinostat and ABT-199 in the treatment of AML.
Collapse
Affiliation(s)
- Jonathan Schwartz
- Division of Pediatric Hematology/Oncology, Children’s Hospital of MichiganDetroit, MI, USA
| | - Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, School of Life Sciences, Jilin UniversityChangchun, China
| | - Eric Walton
- MD/PhD Program, School of Medicine, Wayne State UniversityDetroit, MI, USA
| | - Laura Hurley
- Cancer Biology Graduate Program, School of Medicine, Wayne State UniversityDetroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin UniversityChangchun, China
| | - Holly Edwards
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State UniversityDetroit, MI, USA
- Department of Oncology, School of Medicine, Wayne State UniversityDetroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children’s Hospital of MichiganDetroit, MI, USA
- Department of Pediatrics, School of Medicine, Wayne State UniversityDetroit, MI, USA
| | - Zhihong Wang
- Division of Pediatric Hematology/Oncology, Children’s Hospital of MichiganDetroit, MI, USA
- Department of Pediatrics, School of Medicine, Wayne State UniversityDetroit, MI, USA
| | - Yubin Ge
- Department of Pediatrics, School of Medicine, Wayne State UniversityDetroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State UniversityDetroit, MI, USA
- Department of Oncology, School of Medicine, Wayne State UniversityDetroit, MI, USA
| |
Collapse
|
39
|
Zhang YY, Zhang ZH, Zhao RJ, Li H, Wang TR, Yan LN, Gu CH, Zhao L, Hao CL. [Valproic acid activates autophagy in multiple myeloma cell lines RPMI8226 and U266]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:478-83. [PMID: 27431072 PMCID: PMC7348343 DOI: 10.3760/cma.j.issn.0253-2727.2016.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
目的 探讨丙戊酸钠对多发性骨髓瘤(MM)细胞株RPMI8226和U266细胞自噬的影响。 方法 丙戊酸钠处理RPMI8226和U266细胞,吖啶橙染色后采用荧光显微镜观察细胞自噬形态学变化,MTT法检测细胞增殖抑制的变化,流式细胞术检测细胞凋亡,实时定量PCR(RT-PCR)和Western Blot法检测细胞自噬相关因子LC3、Beclin1的变化。 结果 荧光显微镜观察到RPMI8226及U266细胞存在基础水平的自噬现象,丙戊酸钠作用后能够诱导细胞自噬增多;MTT法检测结果显示丙戊酸钠对细胞增殖抑制具有时间及浓度依赖性,作用24 h后半数抑制浓度分别为(12.03±0.23)mmol/L和(10.16±0.37) mmol/L。8 mmol/L丙戊酸钠作用24 h后,RPMI8226、U266细胞LC3 mRNA表达水平(22.45±0.07、0.06±0.02)、Beclin1 mRNA表达水平(283.09±17.3、1.53±0.01)与空白对照组(1.00± 0.00、1.00±0.00)比较,差异均有统计学意义(P值均<0.05)。随着丙戊酸钠浓度增加和作用时间延长,LC3、Beclin1蛋白表达水平逐渐增加,LC3Ⅰ向LC3Ⅱ的转化率逐渐升高。 结论 RPMI8226和U266细胞中存在基础水平的自噬现象,丙戊酸钠对MM细胞的自噬有激活作用,这可能是丙戊酸钠治疗MM的机制之一。
Collapse
Affiliation(s)
- Y Y Zhang
- Department of Hematology, Chengde Medical University Affiliated Hospital, Chengde 067000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cruickshank MN, Ford J, Cheung LC, Heng J, Singh S, Wells J, Failes TW, Arndt GM, Smithers N, Prinjha RK, Anderson D, Carter KW, Gout AM, Lassmann T, O'Reilly J, Cole CH, Kotecha RS, Kees UR. Systematic chemical and molecular profiling of MLL-rearranged infant acute lymphoblastic leukemia reveals efficacy of romidepsin. Leukemia 2016; 31:40-50. [PMID: 27443263 PMCID: PMC5220136 DOI: 10.1038/leu.2016.165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/05/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022]
Abstract
To address the poor prognosis of mixed lineage leukemia (MLL)-rearranged infant acute lymphoblastic leukemia (iALL), we generated a panel of cell lines from primary patient samples and investigated cytotoxic responses to contemporary and novel Food and Drug Administration-approved chemotherapeutics. To characterize representation of primary disease within cell lines, molecular features were compared using RNA-sequencing and cytogenetics. High-throughput screening revealed variable efficacy of currently used drugs, however identified consistent efficacy of three novel drug classes: proteasome inhibitors, histone deacetylase inhibitors and cyclin-dependent kinase inhibitors. Gene expression of drug targets was highly reproducible comparing iALL cell lines to matched primary specimens. Histone deacetylase inhibitors, including romidepsin (ROM), enhanced the activity of a key component of iALL therapy, cytarabine (ARAC) in vitro and combined administration of ROM and ARAC to xenografted mice further reduced leukemia burden. Molecular studies showed that ROM reduces expression of cytidine deaminase, an enzyme involved in ARAC deactivation, and enhances the DNA damage-response to ARAC. In conclusion, we present a valuable resource for drug discovery, including the first systematic analysis of transcriptome reproducibility in vitro, and have identified ROM as a promising therapeutic for MLL-rearranged iALL.
Collapse
Affiliation(s)
- M N Cruickshank
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - J Ford
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - L C Cheung
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - J Heng
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - S Singh
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - J Wells
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - T W Failes
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - G M Arndt
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - N Smithers
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - R K Prinjha
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - D Anderson
- Centre for Biostatistics, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - K W Carter
- McCusker Charitable Foundation Bioinformatics Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - A M Gout
- McCusker Charitable Foundation Bioinformatics Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - T Lassmann
- McCusker Charitable Foundation Bioinformatics Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - J O'Reilly
- Department of Haematology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - C H Cole
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia.,Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - R S Kotecha
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia.,Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - U R Kees
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
41
|
Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G, Caldwell JT, Xiang S, Zhang X, Chu R, Wang ZJ, Lin H, Taub JW, Ge Y. Binding of Released Bim to Mcl-1 is a Mechanism of Intrinsic Resistance to ABT-199 which can be Overcome by Combination with Daunorubicin or Cytarabine in AML Cells. Clin Cancer Res 2016; 22:4440-51. [PMID: 27103402 DOI: 10.1158/1078-0432.ccr-15-3057] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the molecular mechanism underlying intrinsic resistance to ABT-199. EXPERIMENTAL DESIGN Western blots and real-time RT-PCR were used to determine levels of Mcl-1 after ABT-199 treatment alone or in combination with cytarabine or daunorubicin. Immunoprecipitation of Bim and Mcl-1 were used to determine the effect of ABT-199 treatment on their interactions with Bcl-2 family members. Lentiviral short hairpin RNA knockdown of Bim and CRISPR knockdown of Mcl-1 were used to confirm their role in resistance to ABT-199. JC-1 assays and flow cytometry were used to determine drug-induced apoptosis. RESULTS Immunoprecipitation of Bim from ABT-199-treated cell lines and a primary patient sample demonstrated decreased association with Bcl-2, but increased association with Mcl-1 without corresponding change in mitochondrial outer membrane potential. ABT-199 treatment resulted in increased levels of Mcl-1 protein, unchanged or decreased Mcl-1 transcript levels, and increased Mcl-1 protein half-life, suggesting that the association with Bim plays a role in stabilizing Mcl-1 protein. Combining conventional chemotherapeutic agent cytarabine or daunorubicin with ABT-199 resulted in increased DNA damage along with decreased Mcl-1 protein levels, compared with ABT-199 alone, and synergistic induction of cell death in both AML cell lines and primary patient samples obtained from AML patients at diagnosis. CONCLUSIONS Our results demonstrate that sequestration of Bim by Mcl-1 is a mechanism of intrinsic ABT-199 resistance and supports the clinical development of ABT-199 in combination with cytarabine or daunorubicin for the treatment of AML. Clin Cancer Res; 22(17); 4440-51. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China. Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, Michigan. Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Shengyan Xiang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, Tampa, Florida
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, Tampa, Florida. Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Roland Chu
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Zhihong J Wang
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China.
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
42
|
Qiao Z, He M, He MU, Li W, Wang X, Wang Y, Kuai Q, Li C, Ren S, Yu Q. Synergistic antitumor activity of gemcitabine combined with triptolide in pancreatic cancer cells. Oncol Lett 2016; 11:3527-3533. [PMID: 27123146 DOI: 10.3892/ol.2016.4379] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/17/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is a fatal human malignancy associated with an exceptionally poor prognosis. Novel therapeutic strategies are urgently required to treat this disease. In addition to immunosuppressive activity, triptolide possesses strong antitumor activity and synergistically enhances the antitumor activities of conventional chemotherapeutic drugs in preclinical models of pancreatic cancer. The present study investigated the antitumor effects of triptolide in pancreatic cancer cells, either in combination with gemcitabine, or alone. The pancreatic cancer BxPC-3 and PANC-1 cell lines were treated with triptolide, which resulted in time- and dose-dependent growth arrest. When incorporated into a sequential schedule, triptolide synergistically increased gemcitabine-induced cell growth inhibition and apoptosis, in addition to the cooperative regulation of B-cell lymphoma 2 family proteins and loss of mitochondrial membrane potential. Furthermore, triptolide enhanced gemcitabine-induced S phase arrest and DNA double-strand breaks, possibly through checkpoint kinase 1 suppression. The results of the present study suggest that triptolide has therapeutic potential for the treatment of pancreatic cancer, particularly when administered in combination with gemcitabine.
Collapse
Affiliation(s)
- Zhixin Qiao
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China; Medical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Min He
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - M U He
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China; College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, P.R. China
| | - Weijing Li
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Xuanlin Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Yanbing Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China; College of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Qiyuan Kuai
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Changlan Li
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China; College of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Suping Ren
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Qun Yu
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| |
Collapse
|
43
|
Targeting Suppressor of Variegation 3-9 Homologue 2 (SUV39H2) in Acute Lymphoblastic Leukemia (ALL). Transl Oncol 2015; 8:368-375. [PMID: 26500027 PMCID: PMC4631083 DOI: 10.1016/j.tranon.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 01/26/2023] Open
Abstract
Although recent progress in understanding the biology and optimizing the treatment of acute lymphoblastic leukemia (ALL) has improved cure rates of childhood ALL to nearly 90%, the cure rate in adult ALL remains less than 50%. The poor prognosis in adult ALL has in part been attributed to larger proportion of high-risk leukemia showing drug resistance. Thus, identifying novel therapeutic targets in ALL is needed for further improvements in treatment outcomes of adult ALL. Genetic aberration of chromatin-modifying molecules has been recently reported in subtypes of ALL, and targeting components of chromatin complexes has shown promising efficacy in preclinical studies. Suppressor of variegation 3-9 homologue 2 (SUV39H2), also known as KMT1B, is a SET-domain–containing histone methyltransferase that is upregulated in solid cancers, but its expression is hardly detectable in normal tissues. Here, we show that SUV39H2 is highly expressed in ALL cells but not in blood cells from healthy donors and also that SUV39H2 mRNA is expressed at significantly higher levels in bone marrow or blood cells from patients with ALL obtained at diagnosis compared with those obtained at remission (P = .007). In four ALL cell lines (Jurkat and CEM derived from T-ALL and RS4;11 and REH derived from B-ALL), SUV39H2 knockdown resulted in a significant decrease in cell viability (~ 77%, P < .001), likely through induction of apoptosis. On the other hand, SUV39H2 overexpression made cells more resistant to chemotherapy. We conclude that SUV39H2 is a promising therapeutic target and further investigation of this therapeutic approach in ALL is warranted.
Collapse
|
44
|
Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease. PLoS One 2015; 10:e0141610. [PMID: 26505994 PMCID: PMC4624233 DOI: 10.1371/journal.pone.0141610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023] Open
Abstract
Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics.
Collapse
|
45
|
Sperlazza J, Rahmani M, Beckta J, Aust M, Hawkins E, Wang SZ, Zu Zhu S, Podder S, Dumur C, Archer K, Grant S, Ginder GD. Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood 2015; 126:1462-72. [PMID: 26265695 PMCID: PMC4573869 DOI: 10.1182/blood-2015-03-631606] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATPase that alters the phasing of nucleosomes on DNA and has recently been implicated in DNA double-stranded break (DSB) repair. Here, we show that depletion of CHD4 in acute myeloid leukemia (AML) blasts induces a global relaxation of chromatin that renders cells more susceptible to DSB formation, while concurrently impeding their repair. Furthermore, CHD4 depletion renders AML blasts more sensitive both in vitro and in vivo to genotoxic agents used in clinical therapy: daunorubicin (DNR) and cytarabine (ara-C). Sensitization to DNR and ara-C is mediated in part by activation of the ataxia-telangiectasia mutated pathway, which is preliminarily activated by a Tip60-dependent mechanism in response to chromatin relaxation and further activated by genotoxic agent-induced DSBs. This sensitization preferentially affects AML cells, as CHD4 depletion in normal CD34(+) hematopoietic progenitors does not increase their susceptibility to DNR or ara-C. Unexpectedly, we found that CHD4 is necessary for maintaining the tumor-forming behavior of AML cells, as CHD4 depletion severely restricted the ability of AML cells to form xenografts in mice and colonies in soft agar. Taken together, these results provide evidence for CHD4 as a novel therapeutic target whose inhibition has the potential to enhance the effectiveness of genotoxic agents used in AML therapy.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Antimetabolites, Antineoplastic/therapeutic use
- Autoantigens/genetics
- Cell Line, Tumor
- Cytarabine/therapeutic use
- DNA Breaks, Double-Stranded/drug effects
- Daunorubicin/therapeutic use
- Female
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics
- Mice, Inbred NOD
- Mice, SCID
- RNA Interference
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Justin Sperlazza
- Cancer and Molecular Medicine PhD Program, Massey Cancer Center, and
| | | | - Jason Beckta
- Massey Cancer Center, and Department of Biochemistry and Molecular Biology
| | | | | | | | | | | | | | - Kellie Archer
- Massey Cancer Center, and Department of Biostatistics, and
| | - Steven Grant
- Massey Cancer Center, and Department of Internal Medicine, Department of Biochemistry and Molecular Biology
| | - Gordon D Ginder
- Massey Cancer Center, and Department of Internal Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
46
|
Hanmod SS, Wang G, Edwards H, Buck SA, Ge Y, Taub JW, Wang Z. Targeting histone deacetylases (HDACs) and Wee1 for treating high-risk neuroblastoma. Pediatr Blood Cancer 2015; 62:52-9. [PMID: 25308916 DOI: 10.1002/pbc.25232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite advances in treatment regimens, patients with high-risk neuroblastoma have long-term survival rates of < 40%. Wee1 inhibition in combination with CHK1 inhibition has shown promising results in neuroblastoma cells. In addition, it has been demonstrated that panobinostat can downregulate CHK1. Therefore, combination of panobinostat and MK-1775 may result in synergistic cytotoxicity against neuroblastoma cell lines. PROCEDURE In vitro cytotoxicities of panobinostat and MK-1775 at clinically achievable concentrations, either alone or in combination, were evaluated in SK-N-AS, SK-N-DZ, and SK-N-BE(2) high-risk neuroblastoma cell lines using MTT assays. The mechanism of antitumor interaction was investigated using propidium iodide (PI) staining and flow cytometry analysis to determine apoptosis, as well as Western blotting to assess expression of phosphorylated CDK1/2, CHK1, and H2AX. RESULTS Treatment of neuroblastoma cell lines with 500 nM MK-1775 caused growth arrest and apoptosis in SK-N-DZ and SK-N-AS, while it had minimal effect on the SK-N-BE(2) cell line. The combination of panobinostat and MK-1775 resulted in synergistic antitumor interactions in all three of the cell lines tested. MK-1775 treatment in SK-N-BE(2) cells induced increased levels of p-CHK1(S345) , which could be decreased by the addition of panobinostat. This was accompanied by increased DNA damage and apoptosis. CONCLUSIONS The combination of panobinostat and MK-1775 has synergistic antitumor activity against neuroblastoma cell lines and holds promise as a potential treatment strategy for the management of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Santosh S Hanmod
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang G, Niu X, Zhang W, Caldwell JT, Edwards H, Chen W, Taub JW, Zhao L, Ge Y. Synergistic antitumor interactions between MK-1775 and panobinostat in preclinical models of pancreatic cancer. Cancer Lett 2014; 356:656-68. [PMID: 25458954 DOI: 10.1016/j.canlet.2014.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/26/2014] [Accepted: 10/14/2014] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer remains a clinical challenge, thus new therapies are urgently needed. The selective Wee1 inhibitor MK-1775 has demonstrated promising results when combined with DNA damaging agents, and more recently with CHK1 inhibitors in various malignancies. We have previously demonstrated that treatment with the pan-histone deacetylase inhibitor panobinostat (LBH589) can cause down-regulation of CHK1. Accordingly, we investigated using panobinostat to down-regulate CHK1 in combination with MK-1775 to enhance cell death in preclinical pancreatic cancer models. We demonstrate that MK-1775 treatment results in increased H2AX phosphorylation, indicating increased DNA double-strand breaks, and activation of CHK1, which are both dependent on CDK activity. Combination of MK-1775 and panobinostat resulted in synergistic antitumor activity in six pancreatic cancer cell lines. Finally, our in vivo study using a pancreatic xenograft model reveals promising cooperative antitumor activity between MK-1775 and panobinostat. Our study provides compelling evidence that the combination of MK-1775 and panobinostat has antitumor activity in preclinical models of pancreatic cancer and supports the clinical development of panobinostat in combination with MK-1775 for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wenbo Zhang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA; Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Chen
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Lijing Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Yubin Ge
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
48
|
WANG GUAN, CHEN SHAOHUA, EDWARDS HOLLY, CUI XINMING, CUI LI, GE YUBIN. Combination of chloroquine and GX15-070 (obatoclax) results in synergistic cytotoxicity against pancreatic cancer cells. Oncol Rep 2014; 32:2789-94. [DOI: 10.3892/or.2014.3525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/18/2014] [Indexed: 11/06/2022] Open
|
49
|
Xie C, Edwards H, Caldwell JT, Wang G, Taub JW, Ge Y. Obatoclax potentiates the cytotoxic effect of cytarabine on acute myeloid leukemia cells by enhancing DNA damage. Mol Oncol 2014; 9:409-21. [PMID: 25308513 DOI: 10.1016/j.molonc.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022] Open
Abstract
Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies.
Collapse
Affiliation(s)
- Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA; Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China.
| |
Collapse
|
50
|
Caldwell JT, Edwards H, Buck SA, Ge Y, Taub JW. Targeting the wee1 kinase for treatment of pediatric Down syndrome acute myeloid leukemia. Pediatr Blood Cancer 2014; 61:1767-73. [PMID: 24962331 PMCID: PMC4199830 DOI: 10.1002/pbc.25081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Most Down syndrome children with acute myeloid leukemia (DS-AML) have an overall excellent prognosis, however, patients who suffer an induction failure or relapse, have an extremely poor prognosis. Hence, new therapies need to be developed for this subgroup of DS-AML patients. One new therapeutic approach is preventing cell cycle checkpoint activation by inhibiting the upstream kinase wee1 with the first-in-class inhibitor MK-1775 in combination with the standard genotoxic agent cytarabine (AraC). PROCEDURE Using the clinically relevant DS-AML cell lines CMK and CMY, as well as ex vivo primary DS-AML patient samples, the ability of MK-1775 to enhance the cytotoxicity of AraC was investigated with MTT assays. The mechanism by which MK-1775 enhanced AraC cytotoxicity was investigated in the cell lines using Western blots to probe CDK1 and H2AX phosphorylation and flow cytometry to determine apoptosis, cell cycle arrest, DNA damage, and aberrant mitotic entry. RESULTS MK-1775 alone had modest single-agent activity, however, MK-1775 was able to synergize with AraC in causing proliferation arrest in both cell lines and primary patient samples, and enhance AraC-induced apoptosis. MK-1775 was able to decrease inhibitory CDK1(Y15) phosphorylation at the relatively low concentration of 100 nM after only 4 hours. Furthermore, it was able to enhance DNA damage induced by AraC and partially abrogate cell cycle arrest. Importantly, the DNA damage enhancement appeared in early S-phase. CONCLUSIONS MK-1775 is able to enhance the cytotoxicity of AraC in DS-AML cells and presents a promising new treatment approach for DS-AML.
Collapse
Affiliation(s)
- J. Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, Michigan,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Steven A. Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan,Correspondence to: Yubin Ge, Department of Oncology, Wayne State University School of Medicine, 110 East Warren Ave., Detroit, MI 48201.
| | - Jeffrey W. Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan,Correspondence to: Jeffrey W. Taub, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201,
| |
Collapse
|