1
|
Han S, Yi YW, Kim H, Lee MY, Choi H, Seong YS, Ha IJ, Lee SG. Structure-activity relationship analysis of mono-methylated quercetins by comprehensive MS/MS analysis and anti-proliferative efficacy in human colorectal cancer cells. Biomed Pharmacother 2025; 184:117930. [PMID: 39978032 DOI: 10.1016/j.biopha.2025.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025] Open
Abstract
Flavonoids and their derivatives are known for their diverse biological activities. This study aims to elucidate the structure-activity relationships (SARs) of flavonoids, including fisetin, luteolin, quercetin, and mono-methylated quercetins (MQs), with a focus on their potential as therapeutic agents for colorectal cancer (CRC). Using electrospray ionization tandem mass spectrometry (ESI-QTOF MS/MS) and retro Diels-Alder (rDA) analysis, we developed a novel analytical method to differentiate between MQs, despite their identical molecular weights, by analyzing their unique fragmentation patterns. Comparing the structures and activities of the tested flavonoids highlights the importance of the methylation and hydroxylation status at the carbon 3, 5, 7, 3', and 4' positions of quercetin for enhancing antiproliferative activity in human CRC cells. Specifically, 3-O-methylquercetin and 4'-O-methylquercetin were found to induce cell cycle arrest and apoptosis in CRC cells through mechanisms involving oxidative stress, mitochondrial dysfunction, and inactivation of the SRC/JAK2/STAT3 pathway, while exhibiting no cytotoxicity to normal human colon cells. These results suggest that MQs are promising therapeutic flavonoids for CRC treatment. This study underscores the importance of specific structural modifications in flavonoids to improve their anticancer efficacy, providing valuable insights for the development of targeted therapies for CRC.
Collapse
Affiliation(s)
- Sanghee Han
- Department of Biomedical Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Hail Kim
- Department of Biomedical Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Young Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Republic of Korea
| | - Hyunjin Choi
- Department of Biomedical Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Republic of Korea.
| | - Seok-Geun Lee
- Department of Biomedical Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea; Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Berkley K, Zalejski J, Sharma A. Targeting STAT3 for Cancer Therapy: Focusing on Y705, S727, or Dual Inhibition? Cancers (Basel) 2025; 17:755. [PMID: 40075607 PMCID: PMC11898704 DOI: 10.3390/cancers17050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor that is strongly implicated in various cancers. In its canonical signaling pathway, Janus kinases (JAKs) phosphorylate STAT3 at the Y705 residue in response to cytokines or growth factors, with pY705 serving as a key marker of STAT3 oncogenic activity. Elevated pY705 levels correlate with poor prognosis, and numerous small-molecule inhibitors have been developed to block this phosphorylation site. More recently, phosphorylation at the S727 residue (pS727) has emerged as a critical contributor to STAT3-mediated oncogenesis, particularly due to its role in mitochondrial translocation. Evidence suggests that pS727 may even surpass pY705 in driving oncogenic activity. These findings prompt an important question: Which residue should be prioritized for effective STAT3 inhibition in cancer therapy? METHODS This review compiles and critically analyzes the current literature on STAT3 inhibitors targeting pY705 and/or pS727, evaluating their therapeutic efficacy in vitro, in vivo, and in clinical trials. We assess the unique effects of targeting each residue on downstream signaling, toxicity, and clinical outcomes. RESULTS Our analysis indicates that inhibitors targeting both pY705 and pS727 achieve the greatest therapeutic effectiveness. However, pS727 targeting is associated with higher toxicity risks. CONCLUSIONS Comprehensive evaluation of STAT3 inhibitors underscores the importance of targeting pY705 for maximum therapeutic benefit. The analysis also shows that co-targeting pS727 may increase overall efficacy. However, pS727 inhibition should be approached with lower affinity to minimize toxicity and enhance the clinical feasibility of dual-targeting strategies.
Collapse
Affiliation(s)
| | | | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; (K.B.); (J.Z.)
| |
Collapse
|
3
|
Cortés-Ballinas L, López-Pérez TV, Rocha-zavaleta L. STAT3 and the STAT3‑regulated inhibitor of apoptosis protein survivin as potential therapeutic targets in colorectal cancer (Review). Biomed Rep 2024; 21:175. [PMID: 39355529 PMCID: PMC11443488 DOI: 10.3892/br.2024.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 10/03/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading types of cancer worldwide. CRC development has been associated with the constitutive activation of signal transducer and activator of transcription 3 (STAT3). STAT3 is a master regulator of inflammation during cancer-associated colitis, and becomes upregulated in CRC. In CRC, STAT3 is activated by IL-6, among other pro-inflammatory cytokines, inducing the expression of target genes that stimulate proliferation, angiogenesis and the inhibition of apoptosis. One of the main STAT3-regulated inhibitors of apoptosis is survivin, which is a bifunctional protein that regulates apoptosis and participates in cell mitosis. Survivin expression is normally limited to foetal tissue; however, survivin is also upregulated in tumours. In silico and experimental analyses have shown that the STAT3 interactome is relevant during CRC progression, and the constitutive STAT3-survivin axis participates in development of the tumour microenvironment and response to therapy. The presence of a STAT3-survivin axis has been documented in CRC cohorts, and the expression of these molecules is associated with poor prognosis and a higher mortality rate in patients with CRC. Thus, STAT3, survivin, and the upstream activators IL-6 and IL-6 receptor, are considered therapeutic targets for CRC. Efforts to develop drugs targeting the STAT3-survivin axis include the evaluation of phytochemical compounds, small molecules and monoclonal antibodies. In the present review, the expression, function and participation of the STAT3-survivin axis in the progression of CRC were investigated. In addition, an update on the pre-clinical and clinical trials evaluating potential treatments targeting the STAT3-survivin axis is presented.
Collapse
Affiliation(s)
- Liliana Cortés-Ballinas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Tania V. López-Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico
| | - Leticia Rocha-zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Jiang W, Liu P, Zhao Z, Fan D, He X, Jiang Y, Yang T. Design, synthesis, and biological evaluation of novel (E)-2-cyano-3-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]furan-2-yl) derivatives as potent STAT3-targeting anticolorectal cancer agents. Bioorg Chem 2024; 153:107955. [PMID: 39577151 DOI: 10.1016/j.bioorg.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Dysregulation of signal transducer and activator of transcription 3 (STAT3) is implicated in the pathogenesis of various cancers, underscoring its potential as a cancer therapeutic target. In this work, we designed and synthesized a novel series of (E)-2-cyano-3-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]furan-2-yl) derivatives and evaluated their anti-proliferative effects on tumour cells. Among these derivatives, NW16 exhibited remarkable antiproliferative activity against HCT116 cells, with an IC50 value of 0.28 μM, and exhibited dose- and time-dependent inhibition of the JAK/STAT3 signalling pathway. In addition, NW16 induced reactive oxygen species (ROS) production, which subsequently suppressed the ROS-dependent PI3K/AKT pathway and enhanced its antitumour efficacy. In vivo studies confirmed significant tumour-suppressive effects upon oral administration of NW16 along with favourable tolerability in a colorectal cancer xenograft model. These results indicate that NW16 could be a promising candidate for developing targeted therapy for colorectal cancer because of its multifaceted mechanism.
Collapse
Affiliation(s)
- Weiqing Jiang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhangxun Zhao
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Fan
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlian He
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Tuo Z, Zhang H, He K, Jiang Z, Jiang C, Chen X, Yuan H. Pan-cancer analysis of STAT3 indicates its potential prognostic value and correlation with immune cell infiltration in prostate cancer. Discov Oncol 2024; 15:654. [PMID: 39541053 PMCID: PMC11564492 DOI: 10.1007/s12672-024-01527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Targeting the STAT3 signaling pathway is a promising therapeutic approach for cancer patients. However, the association between STAT3 expression, the tumor immune microenvironment, and genetic variation remains unclear across human cancers, especially prostate cancer. METHODS We used R software and other tools to analyze pan-cancer and mutation data from publicly available databases statistically. A comprehensive investigation was performed to assess the genetic heterogeneity and clinical relevance of STAT3 in various malignancies, with a specific focus on its role in the immune landscape and prognostic significance in prostate cancer. The findings were validated through immunohistochemistry (IHC) and multiplex immunofluorescence (mIF). RESULTS STAT3 expression is abnormal in the majority of cancer tissues, which is strongly correlated with these patients' prognosis. Eight measures of tumor heterogeneity and six measures of tumor stemness of multiple tumor types showed a strong correlation with STAT3 expression. Furthermore, in individuals with prostate cancer, STAT3 expression indicated the degree of immune cell infiltration and the advancement of the disease. IHC analysis revealed that STAT3 was down-regulated in prostate tumor tissues, while mIF analysis demonstrated that STAT3 signaling (p-STAT3) was extensively active in tumor tissues and positive lymph node tissues. CONCLUSION STAT3 may serve as a valuable prognostic biomarker and therapeutic target across various cancers, with particular relevance to prostate cancer.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hesong Zhang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Wuhu, Wuhu, People's Republic of China
| | - Ke He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China.
| |
Collapse
|
6
|
Fan C, Lou S, Shen C, Liao J, Ni H, Chen S, Zhu Z, Hu X, Xie W, Zhao H, Cui S. Natural Product-Inspired Discovery of Naphthoquinone-Furo-Piperidine Derivatives as Novel STAT3 Inhibitors for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2024; 67:15291-15310. [PMID: 39226127 DOI: 10.1021/acs.jmedchem.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and STAT3 has emerged as an effective drug target for TNBC treatment. Herein, we employed a scaffold-hopping strategy of natural products to develop a series of naphthoquinone-furopiperidine derivatives as novel STAT3 inhibitors. The in vitro assay showed that compound 10g possessed higher antiproliferative activity than Cryptotanshinone and Napabucasin against TNBC cell lines, along with lower toxicity and potent antitumor activity in a TNBC xenograft model. Mechanistically, 10g could inhibit the phosphorylation of STAT3 and the binding affinity was determined by the SPR assay (KD = 8.30 μM). Molecule docking studies suggested a plausible binding mode between 10g and the SH2 domain, in which the piperidine fragment and the terminal hydroxy group of 10g played an important role in demonstrating the success of this evolution strategy. These findings provide a natural product-inspired novel STAT3 inhibitor for TNBC treatment.
Collapse
Affiliation(s)
- Chengcheng Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenjun Shen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jialing Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Ni
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Bajpai P, Agarwal S, Afaq F, Al Diffalha S, Chandrashekar DS, Kim HG, Shelton A, Miller CR, Singh SK, Singh R, Varambally S, Nagaraju GP, Manne A, Paluri R, Khushman M, Manne U. Combination of dual JAK/HDAC inhibitor with regorafenib synergistically reduces tumor growth, metastasis, and regorafenib-induced toxicity in colorectal cancer. J Exp Clin Cancer Res 2024; 43:192. [PMID: 38992681 PMCID: PMC11238352 DOI: 10.1186/s13046-024-03106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Treatment with regorafenib, a multiple-kinase inhibitor, to manage metastatic colorectal cancers (mCRCs) shows a modest improvement in overall survival but is associated with severe toxicities. Thus, to reduce regorafenib-induced toxicity, we used regorafenib at low concentration along with a dual JAK/HDAC small-molecule inhibitor (JAK/HDACi) to leverage the advantages of both JAK and HDAC inhibition to enhance antitumor activity. The therapeutic efficacy and safety of the combination treatment was evaluated with CRC models. METHODS The cytotoxicity of JAK/HDACi, regorafenib, and their combination were tested with normal colonic and CRC cells exhibiting various genetic backgrounds. Kinomic, ATAC-seq, RNA-seq, cell cycle, and apoptosis analyses were performed to evaluate the cellular functions/molecular alterations affected by the combination. Efficacy of the combination was assessed using patient-derived xenograft (PDX) and experimental metastasis models of CRC. To evaluate the interplay between tumor, its microenvironment, and modulation of immune response, MC38 syngeneic mice were utilized. RESULTS The combination therapy decreased cell viability; phosphorylation of JAKs, STAT3, EGFR, and other key kinases; and inhibited deacetylation of histone H3K9, H4K8, and alpha tubulin proteins. It induced cell cycle arrest at G0-G1 phase and apoptosis of CRC cells. Whole transcriptomic analysis showed that combination treatment modulated molecules involved in apoptosis, extracellular matrix-receptor interaction, and focal adhesion pathways. It synergistically reduces PDX tumor growth and experimental metastasis, and, in a syngeneic mouse model, the treatment enhances the antitumor immune response as evidenced by higher infiltration of CD45 and cytotoxic cells. Pharmacokinetic studies showed that combination increased the bioavailability of regorafenib. CONCLUSIONS The combination treatment was more effective than with regorafenib or JAK/HDACi alone, and had minimal toxicity. A clinical trial to evaluate this combination for treatment of mCRCs is warranted.
Collapse
Affiliation(s)
- Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abigail Shelton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Ryan Miller
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Singh
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ashish Manne
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ravi Paluri
- Department of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Moh'd Khushman
- Department of Medicine, Washington University in St. Louis/Siteman Cancer Center, St. Louis, MO, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Ma Y, Chen Y, Zhan L, Dong Q, Wang Y, Li X, He L, Zhang J. CEBPB-mediated upregulation of SERPINA1 promotes colorectal cancer progression by enhancing STAT3 signaling. Cell Death Discov 2024; 10:219. [PMID: 38710698 DOI: 10.1038/s41420-024-01990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Colorectal cancer (CRC) is a highly malignant carcinoma associated with poor prognosis, and metastasis is one of the most common causes of death in CRC. Serpin Family A Member 1 (SERPINA1) is a serine protease inhibitor from the Serpin family. Till now, the function and mechanism of SERPINA1 in CRC progression have not been fully illustrated. We established highly metastatic colorectal cancer cells named as RKO-H and Caco2-H by mice liver metastasis model. By integrative bioinformatic approaches, we analyzed the prognostic value and clinical significance of SERPINA1 in CRC, and predicted potential transcription factors. Colony formation, EDU, MTS, Transwell and wound healing assay were performed to evaluate the biological functions of SERPINA1 in CRC in vitro. Experiments in vivo were conducted to explore the effects of SERPINA1 on liver metastasis of CRC. ChIP and luciferase reporter gene assays were performed to identify the transcriptional regulatory mechanism of SERPINA1 by CEBPB. Our results show that SERPINA1 is highly expressed in CRC and correlated with poor clinical outcomes. SERPINA1 promotes the proliferation, migration by activating STAT3 pathway. Mechanistically, CEBPB binds SERPINA1 gene promoter sequence and promotes the transcription of SERPINA1. SERPINA1 drives CEBPB-induced tumor cell growth and migration via augmenting STAT3 signaling. Our results suggest that SERPINA1 is a potential prognostic marker and may serve as a novel treatment target for CRC.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning Province, China
| | - Ying Chen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Zhan
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning Province, China
| | - Qian Dong
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning Province, China
| | - Yuanhe Wang
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning Province, China
| | - Xiaoyan Li
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning Province, China
- Department of Pathology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Lian He
- Department of Pathology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Jingdong Zhang
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Dmello RS, Palmieri M, Thilakasiri PS, Doughty L, Nero TL, Poh AR, To SQ, Lee EF, Douglas Fairlie W, Mielke L, Parker MW, Poon IKH, Batlle E, Ernst M, Chand AL. Combination of bazedoxifene with chemotherapy and SMAC-mimetics for the treatment of colorectal cancer. Cell Death Dis 2024; 15:255. [PMID: 38600086 PMCID: PMC11006905 DOI: 10.1038/s41419-024-06631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Excessive STAT3 signalling via gp130, the shared receptor subunit for IL-6 and IL-11, contributes to disease progression and poor survival outcomes in patients with colorectal cancer. Here, we provide evidence that bazedoxifene inhibits tumour growth via direct interaction with the gp130 receptor to suppress IL-6 and IL-11-mediated STAT3 signalling. Additionally, bazedoxifene combined with chemotherapy synergistically reduced cell proliferation and induced apoptosis in patient-derived colon cancer organoids. We elucidated that the primary mechanism of anti-tumour activity conferred by bazedoxifene treatment occurs via pro-apoptotic responses in tumour cells. Co-treatment with bazedoxifene and the SMAC-mimetics, LCL161 or Birinapant, that target the IAP family of proteins, demonstrated increased apoptosis and reduced proliferation in colorectal cancer cells. Our findings provide evidence that bazedoxifene treatment could be combined with SMAC-mimetics and chemotherapy to enhance tumour cell apoptosis in colorectal cancer, where gp130 receptor signalling promotes tumour growth and progression.
Collapse
Affiliation(s)
- Rhynelle S Dmello
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Michelle Palmieri
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, 3010, Australia
| | - Pathum S Thilakasiri
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Larissa Doughty
- Department of Biochemistry and Pharmacology, and ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tracy L Nero
- Department of Biochemistry and Pharmacology, and ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Sarah Q To
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Lisa Mielke
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, and ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
10
|
Mohamed Allam D, Kasem H, Hegazy A, Mahmoud SF. Role of CTLA4 and pSTAT3 Immunostaining in Prognosis and Treatment of the Colorectal Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:89-102. [PMID: 38864078 PMCID: PMC11164302 DOI: 10.30699/ijp.2024.2009619.3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/07/2023] [Indexed: 06/13/2024]
Abstract
Background & Objective Colorectal carcinoma (CRC) is the third leading cause of cancer-caused death worldwide and constitutes about 6.48% of all malignancies in Egypt. Studying the molecular profile of CRC is essential for developing targeted therapies. STAT3 and CTLA4 expression are considered as molecular abnormalities involved in the CRC progression and chemo-resistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate pSTAT3 and CTLA4 expression levels and their possible roles as prognostic and predictive biomarkers in CRC using immunohistochemistry (IHC). Methods This retrospective study included 113 CRC patients. Tissue microarrays were constructed, followed by pSTAT3 and CTLA4 antibodies immunostaining. Their expression was assessed and compared with the clinicopathological parameters and survival data. Results Both pSTAT3 and CTLA4 overexpression were significantly associated with poor prognostic parameters, such as the presence of distant metastasis (P=0.02 & 0.03), high grade (P<0.001 & 0.03), high mitotic count (P<0.001 & 0.03), high tumor budding group (P=0.008 & 0.04), infiltrating tumor border (P<0.001 & 0.007) respectively, and advanced pathological stage with pSTAT3 (P=0.02). A significant association was found between overexpression of both markers and short overall survival. Correlations between the H-score of pSTAT3 and CTLA4 in CRC showed a significant positive correlation (P<0.001). Conclusion STAT3 and CTLA4 positivity may be linked to the development and progression of the CRC, and they may provide potential prognostic indicators and therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Dina Mohamed Allam
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Hend Kasem
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Amira Hegazy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Egypt
| | - Shereen F Mahmoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
11
|
Yu J, Yang H, Zhang L, Ran S, Shi Q, Peng P, Liu Q, Song L. Effect and potential mechanism of oncometabolite succinate promotes distant metastasis of colorectal cancer by activating STAT3. BMC Gastroenterol 2024; 24:106. [PMID: 38486162 PMCID: PMC10938789 DOI: 10.1186/s12876-024-03195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
To investigate the effect of Oncometabolite succinate on colorectal cancer migration and invasion and to initially explore the underlying mechanism.Succinate acid detection kit detected the succinate content in tissues. The growth of colorectal cancer cells was measured by cck-8 assay, wound-healing migration assay and transwell migration and invasion assays, and then explored the level of epithelial-mesenchymal transition (EMT) and STAT3/ p-STAT3 expression by western blot analysis and quantitative real-time PCR for mRNA expression. We found that succinate levels were significantly higher in carcinoma tissues than paracancerous tissues. After succinate treatment, the colorectal cancer cell lines SW480 and HCT116 had enhanced migration and invasion, the expression of biomarkers of EMT was promoted, and significantly increased phosphorylation of STAT3. In vivo experiments also showed that succinate can increase p-STAT3 expression, promote the EMT process, and promote the distant metastasis of colorectal cancer in mice.Succinate promotes EMT through the activation of the transcription factor STAT3, thus promoting the migration and invasion of colorectal cancer.
Collapse
Affiliation(s)
- Jiangnan Yu
- Department of Gastroenterology, Gui Zhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, China
| | - Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lin Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Suye Ran
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qing Shi
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Pailan Peng
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
12
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Jurkiewicz M, Szczepaniak A, Zielińska M. Long non-coding RNAs - SNHG6 emerge as potential marker in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189056. [PMID: 38104909 DOI: 10.1016/j.bbcan.2023.189056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Colorectal cancer (CRC) ranks among the leading cancers in terms of incidence and mortality in the Western world. Currently, there are no sufficient diagnostic markers that would enable an early diagnosis and efficient therapy. Unfortunately, a significant number of new CRC cases is detected in late stages, with distant metastases, therefore, new therapeutic approaches, which would alleviate the prognosis for advanced stages of CRC, are highly in demand. SNHG6 belongs to the group of long non-coding RNAs, which are a larger entity of RNAs consisting of >200 nucleotides. SNHG6 is expressed mainly in the cell cytoplasm, where it acts as a regulator of numerous processes: modulation of crucial protein hubs; sponging miRNAs and upregulating the expression of their target mRNAs; and interacting with various cellular pathways including TGF-β/Smad and Wnt/β-catenin. SNHG6 is an oncogene, substantially overexpressed in CRC tissues and cancerous cell lines as compared to healthy samples. Its overexpression is associated with higher grade, lymphovascular invasion and tumor size. Taking into consideration the role of SNHG6 in the colorectal tumorigenesis, invasion and metastasis, we summarized its role in CRC and conclude that it could serve as a potential biomarker in CRC diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Michalina Jurkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adrian Szczepaniak
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
14
|
Hsieh YC, Dai YC, Cheng KT, Yang WT, Ramani MV, Subbaraju GV, Chen YJ, Chang CC. Blockade of the SRC/STAT3/BCL-2 Signaling Axis Sustains the Cytotoxicity in Human Colorectal Cancer Cell Lines Induced by Dehydroxyhispolon Methyl Ether. Biomedicines 2023; 11:2530. [PMID: 37760971 PMCID: PMC10526010 DOI: 10.3390/biomedicines11092530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent human cancer globally. 5-Fluorouracil (5-FU)-based systemic chemotherapy is the primary strategy for advanced CRC treatment, yet is limited by poor response rate. Deregulated activation of signal transducer and activator of transcription 3 (STAT3) is fundamental to driving CRC malignant transformation and a poor prognostic marker for CRC, underscoring STAT3 as a promising CRC drug target. Dehydroxyhispolon methyl ether (DHME) is an analog of Hispolon, an anticancer polyphenol abundant in the medicinal mushroom Phellinus linteus. Previously, we have established DHME's cytotoxic effect on human CRC cell lines by eliciting apoptosis through the blockade of WNT/β-catenin signaling, a preeminent CRC oncogenic pathway. Herein, we unraveled that compared with 5-FU, DHME is a more potent killer of CRC cells while being much less toxic to normal colon epithelial cells. DHME suppressed both constitutive and interleukin 6 (IL-6)-induced STAT3 activation represented by tyrosine 705 phosphorylation of STAT3 (p-STAT3 (Y705)); notably, DHME-induced CRC apoptosis and clonogenicity limitation were abrogated by ectopic expression of STAT3-C, a dominant-active STAT3 mutant. Additionally, we proved that BCL-2 downregulation caused by DHME-mediated STAT3 blockage is responsible for DHME-induced CRC cell apoptosis. Lastly, DHME inhibited SRC activation, and v-src overexpression restored p-STAT3 (Y705) levels along with lowering the levels of apoptosis in DHME-treated CRC cells. We conclude DHME provokes CRC cell apoptosis by blocking the SRC/STAT3/BCL-2 axis besides thwarting WNT/β-catenin signaling. The notion that DHME targets two fundamental CRC signaling pathways underpins the potential of DHME as a CRC chemotherapy agent.
Collapse
Affiliation(s)
- Ya-Chu Hsieh
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Yuan-Chang Dai
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan;
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kur-Ta Cheng
- Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei 110301, Taiwan;
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Modukuri V. Ramani
- Department of Organic Chemistry, Andhra University, Visakhapatnam 530003, India; (M.V.R.); (G.V.S.)
| | | | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
- Graduate Institute of Biomedical Sciences, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404333, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
15
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
16
|
Posey TA, Jacob J, Parkhurst A, Subramanian S, Francisco LE, Liang Z, Carmon KS. Loss of LGR5 through Therapy-induced Downregulation or Gene Ablation Is Associated with Resistance and Enhanced MET-STAT3 Signaling in Colorectal Cancer Cells. Mol Cancer Ther 2023; 22:667-678. [PMID: 36921315 PMCID: PMC10164100 DOI: 10.1158/1535-7163.mct-22-0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/19/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Leucine-rich repeat-containing, G protein-coupled receptor 5 (LGR5) is highly expressed in colorectal cancer and cancer stem cells (CSCs) that play important roles in tumor initiation, progression, and metastasis. Loss of LGR5 has been shown to enhance therapy resistance. However, the molecular mechanisms that mediate this resistance remain elusive. In this study, we demonstrate conversion of LGR5+ colorectal cancer cells to an LGR5- state in response to chemotherapy, LGR5- targeted antibody-drug conjugates (ADCs), or LGR5 gene ablation led to activation of STAT3. Further investigation revealed increased STAT3 activation occurred as a result of increased mesenchymal epithelial transition (MET) factor receptor activity. LGR5 overexpression decreased MET-STAT3 activity and sensitized colorectal cancer cells to therapy. STAT3 inhibition suppressed MET phosphorylation, while constitutively active STAT3 reduced LGR5 levels and increased MET activity, suggesting a potential feedback mechanism. Combination treatment of MET-STAT3 inhibitors with irinotecan or antibody-drug conjugates (ADCs) substantiated synergistic effects in colorectal cancer cells and tumor organoids. In colorectal cancer xenografts, STAT3 inhibition combined with irinotecan enhanced tumor growth suppression and prolonged survival. These findings suggest a mechanism by which drug-resistant LGR5- colorectal cancer cells acquire a survival advantage through activation of MET-STAT3 and provide rationale for new treatment strategies to target colorectal cancer.
Collapse
Affiliation(s)
- Tressie A. Posey
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Joan Jacob
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Ashlyn Parkhurst
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Shraddha Subramanian
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Liezl E. Francisco
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Zhengdong Liang
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Kendra S. Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
17
|
Shah MA, Yoshino T, Tebbutt NC, Grothey A, Tabernero J, Xu RH, Cervantes A, Oh SC, Yamaguchi K, Fakih M, Falcone A, Wu C, Chiu VK, Tomasek J, Bendell J, Fontaine M, Hitron M, Xu B, Taieb J, Van Cutsem E. Napabucasin Plus FOLFIRI in Patients With Previously Treated Metastatic Colorectal Cancer: Results From the Open-Label, Randomized Phase III CanStem303C Study. Clin Colorectal Cancer 2023; 22:100-110. [PMID: 36503738 DOI: 10.1016/j.clcc.2022.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Napabucasin is an investigational, orally administered reactive oxygen species generator bioactivated by intracellular antioxidant NAD(P)H:quinone oxidoreductase 1 that has been evaluated in various solid tumors, including metastatic colorectal cancer (mCRC). Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) is hypothesized to predict response in napabucasin-treated patients with mCRC. PATIENT AND METHODS In the multi-center, open-label, phase III CanStem303C (NCT02753127) study, adults with histologically confirmed mCRC that progressed on first-line fluoropyrimidine plus oxaliplatin ± bevacizumab were randomized to twice-daily napabucasin plus FOLFIRI (napabucasin) or FOLFIRI alone (control). The primary endpoint was overall survival (OS) in the general study population and in patients with pSTAT3-positive tumors (biomarker-positive). RESULTS In the general study population (napabucasin, n = 624; control, n = 629), median OS was 14.3 months for napabucasin and 13.8 months for control (hazard ratio [HR], 0.976, one-sided P = .74). Overall, 44% of patients were biomarker-positive (napabucasin, n = 275; control, n = 272). In the biomarker-positive population, median OS was 13.2 months for napabucasin and 12.1 months for control (HR, 0.969; one-sided P > .99). In the control arm, median OS was shorter for biomarker-positive versus biomarker negative patients (12.1 vs. 18.5 months; HR, 1.518; nominal 2-sided P = .0002). The most common treatment-emergent adverse events (TEAEs) were diarrhea (napabucasin, 84.6%; control, 53.9%), nausea (60.5%, 50.5%), vomiting (41.2%, 29.3%), and abdominal pain (41.0%, 25.2%). Grade ≥3 TEAEs occurred in 73.8% of napabucasin-treated and 66.7% of control-treated patients, most commonly diarrhea (21.2%, 7.0%), neutrophil count decreased (13.7%, 19.2%), and neutropenia (13.3%, 15.2%). Safety was similar in biomarker-positive patients. CONCLUSION In patients with previously treated mCRC, adding napabucasin to FOLFIRI did not improve OS. Results from the control arm indicate that pSTAT3 is an adverse prognostic factor in mCRC.
Collapse
Affiliation(s)
- Manish A Shah
- Weill Cornell Medicine, New York, NY; New York-Presbyterian Hospital, New York, NY.
| | | | - Niall C Tebbutt
- Department of Medical Oncology, Austin Health, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Axel Grothey
- West Cancer Center and Research Institute, Germantown, TN
| | - Josep Tabernero
- Vall d'Hebron Hospital, Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic- UCC, Barcelona, Spain
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Andres Cervantes
- Incliva Biomedical Research Institute, Valencia, Spain; University of Valencia, Valencia, Spain
| | - Sang Cheul Oh
- Korea University College of Medicine, Seoul, South Korea
| | - Kensei Yamaguchi
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Alfredo Falcone
- University of Pisa, Pisa, Italy; Department of Translational Research, University of Pisa, Pisa, Italy
| | - Christina Wu
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Vi K Chiu
- The Angeles Clinic & Research Institute, a Cedars-Sinai affiliate, Los Angeles, CA
| | - Jiri Tomasek
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Johanna Bendell
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN
| | | | | | - Bo Xu
- Sumitomo Dainippon Pharma Oncology, Inc., Cambridge, MA
| | - Julien Taieb
- Hôpital Europeen Georges Pompidou, APHP, Paris, France; Université de Paris, Paris, France; CARPEM Cancer Institute, Paris, France
| | - Eric Van Cutsem
- University Hospitals Gasthuisberg, Leuven & KULeuven, Leuven, Belgium
| |
Collapse
|
18
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
19
|
Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F, Chen ZS. Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat 2022; 65:100884. [DOI: 10.1016/j.drup.2022.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
|
20
|
Han S, Kim H, Lee MY, Lee J, Ahn KS, Ha IJ, Lee SG. Anti-Cancer Effects of a New Herbal Medicine PSY by Inhibiting the STAT3 Signaling Pathway in Colorectal Cancer Cells and Its Phytochemical Analysis. Int J Mol Sci 2022; 23:ijms232314826. [PMID: 36499154 PMCID: PMC9740770 DOI: 10.3390/ijms232314826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Colorectal cancer (CRC) is an inflammation-associated common cancer worldwide. Paejang-san and Mori Cortex Radicis have been traditionally used for treating intestinal inflammatory diseases in Korea and China. In the present study, we developed a new herbal formula as an alternative to CRC treatments, which is composed of two main components of Paejangsan (Patriniae Radix (Paejang in Korean) and Coix Seed (Yiyiin in Korean)), and Mori Cortex Radicis (Sangbekpi in Korean) based on the addition and subtraction theory in traditional medicine, hence the name PSY, and explored the potential therapeutic effects of the new formula PSY in human CRC cells by analyzing viability, cell cycle and apoptosis. We found that PSY ethanol extract (EtOH-Ex), but not water extract, significantly suppressed the viability of human CRC cells, and synergistically decreased the cell proliferation compared to each treatment of Patriniae Radix and Coix Seed extract (PY) or Mori Cortex Radicis extract (S), suggesting the combination of PY and S in a 10-to-3 ratio for the formula PSY. PSY EtOH-Ex in the combination ratio reduced cell viability but induced cell cycle arrest at the G2/M and sub-G1 phases as well as apoptosis in CRC cells. In addition, the experimental results of Western blotting, immunofluorescence staining and reporter assays showed that PSY also inhibited STAT3 by reducing its phosphorylation and nuclear localization, which resulted in lowering STAT3-mediated transcriptional activation. In addition, PSY regulated upstream signaling molecules of STAT3 by inactivating JAK2 and Src and increasing SHP1. Moreover, the chemical profiles of PSY from UPLC-ESI-QTOF MS/MS analysis revealed 38 phytochemicals, including seven organic acids, eight iridoids, two lignans, twelve prenylflavonoids, eight fatty acids, and one carbohydrate. Furthermore, 21 potentially bioactive compounds were highly enriched in the PSY EtOH-Ex compared to the water extract. Together, these results indicate that PSY suppresses the proliferation of CRC cells by inhibiting the STAT3 signaling pathway, suggesting PSY as a potential therapeutic agent for treating CRC and 21 EtOH-Ex-enriched phytochemicals as anti-cancer drug candidates which may act by inhibiting STAT3.
Collapse
Affiliation(s)
- Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Young Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Republic of Korea
| | - Junhee Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Republic of Korea
| | - Kwang Seok Ahn
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Republic of Korea
- Correspondence: (I.J.H.); (S.-G.L.); Tel.: +82-958-9493 (I.J.H.); +82-2-961-2355 (S.-G.L.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (I.J.H.); (S.-G.L.); Tel.: +82-958-9493 (I.J.H.); +82-2-961-2355 (S.-G.L.)
| |
Collapse
|
21
|
He P, Bian A, Miao Y, Jin W, Chen H, He J, Li L, Sun Y, Ye J, Yi Z, Zhou W, Chen Y. Discovery of a Highly Potent and Orally Bioavailable STAT3 Dual Phosphorylation Inhibitor for Pancreatic Cancer Treatment. J Med Chem 2022; 65:15487-15511. [DOI: 10.1021/acs.jmedchem.2c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Aiwu Bian
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| | - Ying Miao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wangrui Jin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| | - Jia He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liting Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiangnan Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenbo Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Feng ML, Wu C, Zhang HJ, Zhou H, Jiao TW, Liu MY, Sun MJ. Overexpression of ELL-associated factor 2 suppresses invasion, migration, and angiogenesis in colorectal cancer. World J Gastrointest Oncol 2022; 14:1949-1967. [PMID: 36310706 PMCID: PMC9611430 DOI: 10.4251/wjgo.v14.i10.1949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The androgen responsive gene, ELL-associated factor 2 (EAF2), expressed in benign prostate tissues, has been shown to play an important role in tumor suppression in a variety of malignant tumors. In addition, some scholars found that EAF2 frameshift mutations are associated with intratumor heterogeneity in colorectal cancer (CRC) and inactivation of EAF2 in microsatellite instability-high CRC. However, the molecular mechanism by which EAF2 is involved in CRC invasion and metastasis remains unclear.
AIM To determine the clinical value of expression of EAF2 protein in CRC, and to study the effects of EAF2 on the invasion, migration, and angiogenesis of CRC cells in vitro.
METHODS In this study, we collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein in patients with advanced CRC. Subsequently, we investigated the effect of EAF2 on the invasion, migration, and angiogenesis of CRC cells in vitro using plasmid transfection.
RESULTS EAF2 protein was lowly expressed in cancer tissues of patients with advanced CRC. Kaplan-Meier survival analysis showed that the survival rate of the high EAF2 level group was higher than that of the low EAF2 level group.
CONCLUSION Our results demonstrated that EAF2, as a tumor suppressor, may inhibit the invasion, metastasis, and angiogenesis of CRC cells by regulating the signal transducer and activator of transcription 3/transforming growth factor-β1 crosstalk pathway, and play a cancer suppressive and protective role in the occurrence and development of CRC. Our findings are of great significance to provide a new idea and theoretical basis for the targeted diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Ming-Liang Feng
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Can Wu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui-Jing Zhang
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Huan Zhou
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Tai-Wei Jiao
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Meng-Yuan Liu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming-Jun Sun
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
23
|
Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K, Matsuda T. Central Roles of STAT3-Mediated Signals in Onset and Development of Cancers: Tumorigenesis and Immunosurveillance. Cells 2022; 11:cells11162618. [PMID: 36010693 PMCID: PMC9406645 DOI: 10.3390/cells11162618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.
Collapse
Affiliation(s)
- Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Correspondence: (S.H.); (T.M.)
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: (S.H.); (T.M.)
| |
Collapse
|
24
|
Study on the Mechanism of Action of STAT3 in the Drug Resistance of Gastric Cancer Cells. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1426343. [PMID: 35992548 PMCID: PMC9356858 DOI: 10.1155/2022/1426343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
Gastric cancer is the most common digestive tract malignancy in China and has a poor prognosis, with a 5-year overall survival rate of only 35.1%. Because its early symptoms are not obvious and early diagnosis is complicated, there is an urgent need to find biological targets for diagnosis and treatment. This research detected the expression of STAT3 in gastric cancer tissues and adjacent tissues by Western blot and immunohistochemical experiments and conducted corresponding basic experiments to explore the role of STAT3 in inhibiting the proliferation of cisplatin-resistant gastric cancer cells and promoting their apoptosis, including the construction of cisplatin-resistant gastric cancer cell line, the knock-out STAT3 in drug-resistant gastric cancer cells by CRISPR-Cas9, and the comparison of the proliferation and apoptosis of drug-resistant cells and drug-resistant cells STAT3(-). The mechanism provides a possible intervention target for clinically improving the prognosis of patients with cisplatin-resistant gastric cancer.
Collapse
|
25
|
Targeting STAT3 Signaling in COL1+ Fibroblasts Controls Colitis-Associated Cancer in Mice. Cancers (Basel) 2022; 14:cancers14061472. [PMID: 35326623 PMCID: PMC8946800 DOI: 10.3390/cancers14061472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is a common disease and has limited treatment options. The importance of cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) in CRC has been increasingly recognized. However, the role of CAF subsets in CRC is hardly understood and opposing functions of type I (COL1+) vs. type VI (COL6+) collagen-expressing subsets were reported before with respect to NFκB-related signaling. Here, we have focused on COL1+ fibroblasts, which represent a frequent CAF population in CRC and studied their role upon STAT3 activation in vivo. Using a dual strategy with a conditional gain-of-function and a conditional loss-of-function approach in an in vivo model of colitis-associated cancer, tumor development was evaluated by different readouts, including advanced imaging methodologies, e.g., light sheet microscopy and CT-scan. Our data demonstrate that the inhibition of STAT3 activation in COL1+ fibroblasts reduces tumor burden, whereas the constitutive activation of STAT3 promotes the development of inflammation-driven CRC. In addition, our work characterizes the co-expression and distribution of type I and type VI collagen by CAFs in inflammation-associated colorectal cancer using reporter mice. This work indicates a critical contribution of STAT3 signaling in COL1+ CAFs, suggesting that the blockade of STAT3 activation in type I collagen-expressing fibroblasts could serve as promising therapeutic targets in colitis-associated CRC. In combination with previous work by others and us, our current findings highlight the context-dependent roles of COL1+ CAFs and COL6+ CAFs that might be variable according to the specific pathway activated.
Collapse
|
26
|
Karati D, Mahadik KR, Trivedi P, Kumar D. The Emerging Role of Janus Kinase Inhibitors in the Treatment of Cancer. Curr Cancer Drug Targets 2022; 22:221-233. [PMID: 35232350 DOI: 10.2174/1568009622666220301105214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a leading cause of death worldwide. The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signalling pathway is activated abnormally, which promotes carcinogenesis. Several cytokines are important cancer drivers. These proteins bind to receptors and use the Janus kinase (JAK) and STAT pathways to communicate their responses. Cancer risks are linked to genetic differences in the JAK-STAT system. JAK inhibitors have shown to reduce STAT initiation, tissue propagation, and cell existence in preclinical investigations in solid tumour cell line models. JAK inhibitors, notably ruxolitinib, a, JAK1 or 2 blockers, make cell lines and mouse models more susceptible to radiotherapy, biological response modifier therapy, and oncolytic viral treatment. Numerous JAK antagonists have been or are now being evaluated in cancerous patients as monotherapy or by combining with other drugs in clinical studies. In preclinical investigations, certain JAK inhibitors showed promise anticancer effects; however, clinical trials explicitly evaluating their effectiveness against the JAK/STAT system in solid tumours have yet to be completed. JAK inhibition is a promising strategy to target the JAK/STAT system in solid tumours, and it deserves to be tested further in clinical studies. The function of directing Janus kinases (JAKs), an upstream accelerator of STATs, as a technique for lowering STAT activity in various malignant circumstances is summarized in this article, which will help scientists to generate more specific drug molecules in future.
Collapse
Affiliation(s)
- Dipanjan Karati
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be Unoiversity), Erandwane, Pune- 411038, Maharashtra, India
| | - Kakasaheb Ramoo Mahadik
- Centre of Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth, Pune 411038, India
| | - Piyush Trivedi
- Centre of Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth, Pune 411038, India
| | - Dileep Kumar
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be Unoiversity), Erandwane, Pune- 411038, Maharashtra, India
| |
Collapse
|
27
|
El-Tanani M, Al Khatib AO, Aladwan SM, Abuelhana A, McCarron PA, Tambuwala MM. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions. Cell Signal 2022; 92:110275. [PMID: 35122990 DOI: 10.1016/j.cellsig.2022.110275] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
The Signal Transducer and Activator of Transcription 3 (STAT3) protein is encoded on chromosome 17q21. The SH2 and the DNA binding domains are critical structural components of the protein, together with tyrosine and serine residues that initiate phosphorylation. STAT3 interacts with DNA directly and functions in cells as both a signal transducer and a transcription factor. Its cytoplasmic activation results in dimerisation and nuclear translocation, where it is involved in the transcription of a large number of target genes. STAT3 is hyperactive in cancer cells as a result of upstream STAT3 mutations or enhanced cytokine production in the tumour environment. The STAT3 signalling pathway promotes many hallmarks of carcinogenesis and metastasis, including enhanced cell proliferation and survival, as well as migration and invasion into the extracellular matrix. Recent investigations into novel STAT3-based therapies describe a range of innovative approaches, such as the use of novel oligonucleotide drugs. These limit STAT3 binding to its target genes by attaching to SH2 and DNA-binding domains. Yet, despite these significant steps in understanding the underpinning mechanisms, there are currently no therapeutic agents that addresses STAT3 signalling in a clinically relevant manner.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, United Kingdom; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.
| | - Arwa Omar Al Khatib
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, United Kingdom
| | - Safwan Mahmoud Aladwan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, United Kingdom
| | - Ahmed Abuelhana
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, United Kingdom..
| |
Collapse
|
28
|
Mohammadi M, Mirzaei H, Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2021; 73:102501. [PMID: 34906686 DOI: 10.1016/j.anaerobe.2021.102501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in both males and females in the Unites States. Colonoscopy is considered a safe method for screening this disorder; however, it can be challenging for patients. As research on microbiota, especially anaerobic microbiota, has expanded substantially, new links have been determined between anaerobic bacteria and CRC progression. These associations can be useful in screening CRC in the near future. This review discusses current research investigating the presence of anaerobic bacteria, including Bacteroides fragilis, Peptostreptococcus anaerobius, Clostridium septicum, Porphyromonas gingivalis, Fusobacterium nucleatum, and Parvimonas micra in CRC and presents an overview about their mechanisms of action. We also discuss the current anaerobic probiotics used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
29
|
Lin H, Ho A, Huang H, Yang B, Shih B, Lin H, Yeh C, Hsu C, Cheng C. STAT3‐mediated gene expression in colorectal cancer cells‐derived cancer stem‐like tumorspheres. ADVANCES IN DIGESTIVE MEDICINE 2021. [DOI: 10.1002/aid2.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hua‐Ching Lin
- Division of Colorectal Surgery Chen Hsin General Hospital Taipei Taiwan
- Department of Healthcare Information and Management Ming Chuan University Taoyuan Taiwan
| | - Ai‐Sheng Ho
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Hung Huang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bi‐Ling Yang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bin‐Bin Shih
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Chi Lin
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun Yeh
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chung‐Te Hsu
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun‐Chia Cheng
- Radiation Biology Research Center Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
| |
Collapse
|
30
|
Chen MJ, Zhou JY, Chen YJ, Wang XQ, Yan HC, Gao CQ. The in ovo injection of methionine improves intestinal cell proliferation and differentiation in chick embryos by activating the JAK2/STAT3 signaling pathway. ACTA ACUST UNITED AC 2021; 7:1031-1038. [PMID: 34738033 PMCID: PMC8536505 DOI: 10.1016/j.aninu.2021.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
The intestinal health of chick embryos is vital for their life-long growth, and exogenous nutrition intervention may provide sufficient nutrition for embryonic development. In the present study, we investigated the effect of in ovo injection of L-methionine (L-Met) on the intestinal structure and barrier function of chick embryos. There were 4 groups of treatments: the control (CON) group injected with phosphate-buffered saline (PBS) and the other 3 groups injected with 5, 10, and 20 mg L-Met/egg, respectively. The injection was performed on embryonic day 9 (E9), and intestinal samples were collected on the day of hatching for analysis. The results showed that, compared with the CON group, the groups administered an in ovo injection of L-Met increased relative weights of the duodenum, jejunum, and ileum (P < 0.05). Hematoxylin and eosin (H&E) staining showed that the groups injected with 5, 10, and 20 mg L-Met significantly increased villus height and crypt depth (P < 0.05). Moreover, in ovo injection of 10 mg L-Met also increased the transepithelial electrical resistance (TEER) of the jejunum (P < 0.05). Injection with 10 and 20 mg L-Met increased the expression of the tight junction proteins (ZO-1 and claudin-1) and the fluorescence signal intensity of Ki67 and villin proteins (P < 0.05). Further, the protein expression of phospho-Janus kinase 2 (p-JAK2) and phospho-signal transducer and activator of transcription 3 (p-STAT3) was significantly increased by 10 or 20 mg L-Met injection (P < 0.05). In conclusion, the injection of L-Met, especially at a dose of 10 mg, showed beneficial effects on the intestinal integrity of chick embryos due to the activation of the JAK2/STAT3 signaling pathway. Our results may provide new insights for regulating the intestinal development of embryonic chicks and the rapid growth of chicks after hatching.
Collapse
|
31
|
Sun L, Yan Y, Lv H, Li J, Wang Z, Wang K, Wang L, Li Y, Jiang H, Zhang Y. Rapamycin targets STAT3 and impacts c-Myc to suppress tumor growth. Cell Chem Biol 2021; 29:373-385.e6. [PMID: 34706270 DOI: 10.1016/j.chembiol.2021.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022]
Abstract
Rapamycin is widely recognized as an inhibitor of mTOR, and has been approved for clinical use as an immunosuppressant. Its potencies in anti-cancer, anti-aging, and neurodegenerative diseases are emergingly established. The exploration of other targets of rapamycin will further elucidate its underlying mechanisms of action. In this study, we use a chemical proteomics strategy that has identified STAT3, a transcription factor considered to be undruggable, as a direct functional protein target of rapamycin. Together with other multi-dimensional proteomics data, we show that rapamycin treatment in cell culture significantly inhibits c-Myc-regulated gene expression. Furthermore, we show that rapamycin suppresses tumor growth along with a decreased expression of STAT3 and c-Myc in an in vivo xenograft mouse model for hepatocellular carcinoma. Our data suggest that rapamycin acts directly on STAT3 to decrease its transcription activity, providing important information for the pharmacological and pharmaceutical development of STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Heng Lv
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wang
- ShanghaiTech University, Shanghai 201210, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
32
|
Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, Rashidian A, Hamblin MR, Chamanara M, Naghsh N, Mirzaei H. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother 2021; 142:112024. [PMID: 34399200 PMCID: PMC8458260 DOI: 10.1016/j.biopha.2021.112024] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Silymarin contains a group of closely-related flavonolignan compounds including silibinin, and is extracted from Silybum marianum species, also called milk thistle. Silymarin has been shown to protect the liver in both experimental models and clinical studies. The chemopreventive activity of silymarin has shown some efficacy against cancer both in vitro and in vivo. Silymarin can modulate apoptosis in vitro and survival in vivo, by interfering with the expression of cell cycle regulators and apoptosis-associated proteins. In addition to its anti-metastatic activity, silymarin has also been reported to exhibit anti-inflammatory activity. The chemoprotective effects of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various cancer types, especially in gastrointestinal cancers. This review examines the recent studies and summarizes the mechanistic pathways and down-stream targets of silymarin in the therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran; Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Navid Naghsh
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 Signaling Pathway in Colorectal Cancer. Biomedicines 2021; 9:biomedicines9081016. [PMID: 34440220 PMCID: PMC8392110 DOI: 10.3390/biomedicines9081016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor that has been firmly associated with colorectal cancer (CRC) initiation and development. STAT3 mediates key inflammatory mechanisms in colitis-associated cancer, becomes excessively activated in CRC, and enhances cancer cell proliferation, tumor growth, angiogenesis, invasion, and migration. STAT3 hyperactivation in malignant cells, surrounding immune cells and cancer-associated fibroblasts, mediates inhibition of the innate and adaptive immunity of the tumor microenvironment, and, therefore, tumor evasion from the immune system. These features highlight STAT3 as a promising therapeutic target; however, the mechanisms underlying these features have not been fully elucidated yet and STAT3 inhibitors have not reached the clinic in everyday practice. In the present article, we review the STAT3 signaling network in CRC and highlight the current notion for the design of STAT3-focused treatment approaches. We also discuss recent breakthroughs in combination immunotherapy regimens containing STAT3 inhibitors, therefore providing a new perception for the clinical application of STAT3 in CRC.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
- Correspondence: ; Tel.: +30-210-746-2508; Fax: +30-210-746-2703
| |
Collapse
|
34
|
Stromal induction of BRD4 phosphorylation Results in Chromatin Remodeling and BET inhibitor Resistance in Colorectal Cancer. Nat Commun 2021; 12:4441. [PMID: 34290255 PMCID: PMC8295257 DOI: 10.1038/s41467-021-24687-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
BRD4, a Bromodomain and Extraterminal (BET) protein family member, is a promising anti-cancer drug target. However, resistance to BET inhibitors targeting BRD4 is common in solid tumors. Here, we show that cancer-associated fibroblast (CAF)-activated stromal signaling, interleukin-6/8-JAK2, induces BRD4 phosphorylation at tyrosine 97/98 in colorectal cancer, resulting in BRD4 stabilization due to interaction with the deubiquitinase UCHL3. BRD4 phosphorylation at tyrosine 97/98 also displays increased binding to chromatin but reduced binding to BET inhibitors, resulting in resistance to BET inhibitors. We further show that BRD4 phosphorylation promotes interaction with STAT3 to induce chromatin remodeling through concurrent binding to enhancers and super-enhancers, supporting a tumor-promoting transcriptional program. Inhibition of IL6/IL8-JAK2 signaling abolishes BRD4 phosphorylation and sensitizes BET inhibitors in vitro and in vivo. Our study reveals a stromal mechanism for BRD4 activation and BET inhibitor resistance, which provides a rationale for developing strategies to treat CRC more effectively. BRD4 has a pro-tumorigenic role but non-cell-autonomous mechanisms of BRD4 activation need to be elucidated. Here the authors unravel a mechanism by which CAFs activate BRD4 and induce resistance to BET inhibitors in cancer cells through IL6/IL8 signaling.
Collapse
|
35
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Zheng ZY, Yang PL, Luo W, Yu SX, Xu HY, Huang Y, Li RY, Chen Y, Xu XE, Liao LD, Wang SH, Huang HC, Li EM, Xu LY. STAT3β Enhances Sensitivity to Concurrent Chemoradiotherapy by Inducing Cellular Necroptosis in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13040901. [PMID: 33670049 PMCID: PMC7926856 DOI: 10.3390/cancers13040901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/05/2023] Open
Abstract
Concurrent chemoradiotherapy (CCRT), especially platinum plus radiotherapy, is considered to be one of the most promising treatment modalities for patients with advanced esophageal cancer. STAT3β regulates specific target genes and inhibits the process of tumorigenesis and development. It is also a good prognostic marker and a potential marker for response to adjuvant chemoradiotherapy (ACRT). We aimed to investigate the relationship between STAT3β and CCRT. We examined the expression of STAT3α and STAT3β in pretreatment tumor biopsies of 105 ESCC patients who received CCRT by immunohistochemistry. The data showed that ESCC patients who demonstrate both high STAT3α expression and high STAT3β expression in the cytoplasm have a significantly better survival rate, and STAT3β expression is an independent protective factor (HR = 0.424, p = 0.003). Meanwhile, ESCC patients with high STAT3β expression demonstrated a complete response to CCRT in 65 patients who received platinum plus radiation therapy (p = 0.014). In ESCC cells, high STAT3β expression significantly inhibits the ability of colony formation and cell proliferation, suggesting that STAT3β enhances sensitivity to CCRT (platinum plus radiation therapy). Mechanistically, through RNA-seq analysis, we found that the TNF signaling pathway and necrotic cell death pathway were significantly upregulated in highly expressed STAT3β cells after CCRT treatment. Overall, our study highlights that STAT3β could potentially be used to predict the response to platinum plus radiation therapy, which may provide an important insight into the treatment of ESCC.
Collapse
Affiliation(s)
- Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Wei Luo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Shuai-Xia Yu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Hong-Yao Xu
- Departments of Radiation Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (H.-Y.X.); (H.-C.H.)
| | - Ying Huang
- Departments of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (Y.H.); (S.-H.W.)
| | - Rong-Yao Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Xiu-E Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Shao-Hong Wang
- Departments of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (Y.H.); (S.-H.W.)
| | - He-Cheng Huang
- Departments of Radiation Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (H.-Y.X.); (H.-C.H.)
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Correspondence: (E.-M.L.); (L.-Y.X.)
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
- Correspondence: (E.-M.L.); (L.-Y.X.)
| |
Collapse
|
37
|
NOTCH Activation via gp130/STAT3 Signaling Confers Resistance to Chemoradiotherapy. Cancers (Basel) 2021; 13:cancers13030455. [PMID: 33530306 PMCID: PMC7865718 DOI: 10.3390/cancers13030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Resistance to chemoradiotherapy represents a fundamental problem in modern oncology because it exposes patients to the potential negative side-effects of both radiation and chemotherapy without any clinical benefit. This study uncovers that the inflammatory signaling hub STAT3 conspires with the cell fate regulator NOTCH in rendering tumor cells refractory to chemoradiotherapy. The dichotomic signal alliance is based on a so-far unknown STAT3 target gene, RBPJ, providing the transcriptionally active partner of NOTCH intracellular domain. Unexpectedly, the latter is permanently produced by tonic proteolysis. Tumor mouse models and cancer patient cohorts demonstrate the usefulness of the STAT3/NOTCH axis as biomarker for patient stratification, and importantly, that STAT3 inhibition is a promising treatment option for re-sensitization of CRT-refractory tumors. Abstract Resistance of tumor cells to chemoradiotherapy represents a fundamental problem in clinical oncology. The underlying mechanisms are actively debated. Here we show that blocking inflammatory cytokine receptor signaling via STAT3 re-sensitized treatment-refractory cancer cells and abolished tumor growth in a xenograft mouse model when applied together with chemoradiotherapy. STAT3 executed treatment resistance by triggering the expression of RBPJ, the key transcriptional regulator of the NOTCH pathway. The mandatory RBPJ interaction partner, NOTCH intracellular domain, was provided by tumor cell-intrinsic expression of NOTCH ligands that caused tonic NOTCH proteolysis. In fact, NOTCH inhibition phenocopied the effect of blocking STAT3 signaling. Moreover, genetic profiling of rectal cancer patients revealed the importance of the STAT3/NOTCH axis as NOTCH expression correlated with clinical outcome. Our data uncovered an unprecedented signal alliance between inflammation and cellular development that orchestrated resistance to chemoradiotherapy. Clinically, our findings allow for biomarker-driven patient stratification and offer novel treatment options.
Collapse
|
38
|
Fu Y, Zhu F, Ma Z, Lv B, Wang X, Dai C, Ma X, Liu P, Lv H, Chen X, Chen Z, Shen L. Physalis alkekengi var. franchetii Extracts Exert Antitumor Effects on Non-Small Cell Lung Cancer and Multiple Myeloma by Inhibiting STAT3 Signaling. Onco Targets Ther 2021; 14:301-314. [PMID: 33469308 PMCID: PMC7811487 DOI: 10.2147/ott.s282334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/29/2020] [Indexed: 12/04/2022] Open
Abstract
Background Physalis alkekengi var. franchetii is an herb that possesses various ethnopharmacological applications. Herein, our current study focuses on the antitumor effect of a combination of physalins, which are regarded as the most representative secondary metabolites from calyces of Physalis alkekengi var. franchetii. Materials and Methods We mainly investigated the antitumor activity of the physalins extracted from Physalis alkekengi var. franchetii on both solid and hematologic cancers. The main cells used in this study were NCI-H1975 and U266 cells. The major assays used were the CCK-8 assay, Western blot analyses, immunofluorescence assay and Annexin V assay, and a xenograft mouse model was used. Results The results showed that physalins exhibited a strong antitumoural effect on both non-small cell lung cancer (NSCLC) and multiple myeloma (MM) cells by suppressing constitutive STAT3 activity and further inhibiting the downstream target gene expression induced by STAT3 signaling, which resulted in the enhanced apoptosis of tumor cells. Moreover, physalins significantly reduced tumor growth in xenograft models of lung cancer. Conclusion Collectively, these findings demonstrated that the physalins from Physalis alkekengi var. franchetii may potentially act as cancer preventive or chemotherapeutic agents for NSCLC and MM by inhibiting the STAT3 signaling pathway. The present study served as a promising guide to further explore the precise mechanism of Physalis alkekengi var. franchetii in cancer treatment.
Collapse
Affiliation(s)
- Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fanfan Zhu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Zhongjun Ma
- Institute of Marine Biology and Natural Products, Department of Ocean Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Bin Lv
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Chunyan Dai
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaoqiong Ma
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Pei Liu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Hang Lv
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Insititute of Cancer Research, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Li Shen
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medicine Science, Beijing, People's Republic of China
| |
Collapse
|
39
|
Zheng D, Zhu Y, Shen Y, Xiao S, Yang L, Xiang Y, Dai X, Hu W, Zhou B, Liu Z, Zhao H, Zhao C, Huang X, Wang L. Cynaropicrin Shows Antitumor Progression Potential in Colorectal Cancer Through Mediation of the LIFR/STATs Axis. Front Cell Dev Biol 2021; 8:605184. [PMID: 33505963 PMCID: PMC7829511 DOI: 10.3389/fcell.2020.605184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second deadliest malignant disease in the world and the leukemia inhibitory factor receptor/signal transducers and activators of transcriptions (LIFR/STATs) signaling axis plays an important role in the molecular biology of CRC. METHODS Cell function tests were performed to observe the inhibitory effect of cynaropicrin on human CRC cells (RKO, HCT116, and DLD-1). Expression levels of LIFR, P-STAT3, P-STAT4, and apoptotic proteins were detected by Western blotting. Immunoprecipitation confirmed the presence of LIFR/STAT3/STAT4 complex. Cell immunofluorescence assay was used to observe the subcellular localization of STAT3 and STAT4. In vivo efficacy of cynaropicrin was evaluated by a xenotransplantation model in nude mice. RESULTS Cynaropicrin significantly reduced the survival ability of human CRC cells and promoted apoptosis in a dose-dependent manner. Western blotting results suggested that the antitumor effects of cynaropicrin might be mediated by inhibition of the LIFR/STATs axis. Cynaropicrin reduced the formation of STAT3/STAT4 heterodimers and blocked their entry into the nucleus. Cynaropicrin also suppressed tumor growth in the xenograft model. CONCLUSION The results showed that cynaropicrin exerted a strong inhibitory effect on CRC in vitro and in vivo. Our study concluded that cynaropicrin has potential application prospects in the field of anti-CRC therapy.
Collapse
Affiliation(s)
- Dandan Zheng
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yu Zhu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yili Shen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Sisi Xiao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Youqun Xiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuanxuan Dai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wanle Hu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bin Zhou
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
41
|
Bremer FP, Czeczko NG, CollaÇo LM, Rutz LEAC, Gionedis G, Yamakawa CK. ARE CDX2, BETA-CATENIN AND WNT IMMUNOMARCHERS USEFUL FOR EVALUATING THE CHANCE OF DISEASE PROGRESSION OR EVOLUTION TO DEATH IN PATIENTS WITH COLORECTAL CANCER? ACTA ACUST UNITED AC 2020; 33:e1534. [PMID: 33331430 PMCID: PMC7747481 DOI: 10.1590/0102-672020200003e1534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 01/05/2023]
Abstract
Background:
Colorectal cancer (CRC) is one of the most common types of cancer in the
world. Over time, intestinal epithelial cells undergo mutations that may
lead to proliferative advantage and the emergence of cancer. Mutations in
the beta-catenin pathway are amongst those described in the development of
CRC.
Aim:
To verify the existence of a relation between the presence of Wnt3,
beta-catenin and CDX2 in colorectal cancer samples and clinical outcomes
such as disease progression or death.
Method:
Wnt3a, beta-catenin and CDX2 immunohistochemistry was performed on CRC tissue
microarray samples (n=122), and analysis regarding the relation between
biomarker expression and disease progression or death was performed.
Results:
No significant difference was found between the presence or absence of CDX2,
beta-catenin or Wnt3a expression and clinical stage, tumor grade, disease
progression or death.
Conclusion:
CDX2, beta-catenin and Wnt3a are not useful to predict prognosis in patients
with CRC.
Collapse
Affiliation(s)
- Fabiola Pabst Bremer
- Mackenzie Evangelical Faculty of Paraná, Curitiba, PR, Brazil.,University Evangelical Mackenzie Hospital, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Marginean EC, Gotfrit J, Marginean H, Yokom DW, Bateman JJ, Daneshmand M, Sud S, Gown AM, Jonker D, Asmis T, Goodwin RA. Phosphorylated transducer and activator of transcription-3 (pSTAT3) immunohistochemical expression in paired primary and metastatic colorectal cancer. Transl Oncol 2020; 14:100996. [PMID: 33341488 PMCID: PMC7750168 DOI: 10.1016/j.tranon.2020.100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Signal Transducer and Activator of Transcription-3 (STAT3) mediates cellular functions. We assessed the IHC expression of phosphorylated STAT3 (pSTAT3) in paired primary tumors and liver metastases in patients with advanced stage colorectal cancer (CRC). METHODS We included patients with tissue blocks available from both the primary CRC and a surgically resected liver metastasis. The IHC pSTAT3 expression agreement was measured using Cohen's kappa statistic. RESULTS The study included 103 patients, 55% male, median age was 64. 43% tumors originated in rectum, and 63% of the primary tumors were synchronous. Expression of pSTAT3 was 76% in liver metastases and 71% in primary tumors. A difference in pSTAT3 staining between the primary tumor and liver metastases was noted in 64%. There was lost expression of pSTAT3 in the liver metastases in 28% and gained expression in 36% of cases compared to the primary. The kappa statistic comparing agreement between staining patterns of the primary tumors and liver metastases was a "less-than-chance", at -0.02. Median survival was 4.9 years, with no difference in survival outcomes by pSTAT3 expression in the primary tumor or liver metastases. DISCUSSION STAT3 is not a prognostic marker in the selective setting of metastatic CRC to liver, but it may remain a potential therapeutic target given most liver metastases expressed pSTAT3. Discordant pSTAT3 expression in between primary tumors and paired liver metastases suggests that use of this class of drug to treat liver predominant metastatic colorectal cancer in a biomarker-driven approach may require confirmatory liver tumor biopsy.
Collapse
Affiliation(s)
- Esmeralda C Marginean
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Joanna Gotfrit
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Horia Marginean
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Daniel W Yokom
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Justin J Bateman
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9; The Ottawa Hospital, Department of Pathology, 501 Smyth Road, Ottawa ON K1H 8L6 Canada.
| | - Manijeh Daneshmand
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Shelly Sud
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Allen M Gown
- PhenoPath Laboratories, 551 N. 34th Street Seattle 98103 USA.
| | - Derek Jonker
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Timothy Asmis
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Rachel A Goodwin
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| |
Collapse
|
43
|
Wang H, Wang DH, Yang X, Sun Y, Yang CS. Colitis-induced IL11 promotes colon carcinogenesis. Carcinogenesis 2020; 42:557-569. [PMID: 33196831 DOI: 10.1093/carcin/bgaa122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis increases the risk of colorectal cancer; however, the mechanism of the association between colitis and cancer remains largely unknown. To identify colitis-associated cancer promoting factors, we investigated gene expression changes caused by dextran sulfate sodium (DSS)-induced colitis in mice. By analyzing gene expression profiles, we found that IL11 was upregulated in DSS-induced colitis tissue and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP)/DSS-induced colon tumours in mice as well as in human colorectal cancer. By characterizing the activation/phosphorylation of STAT3 (pSTAT3), we found that pSTAT3 was induced transiently in colitis, but maintained at higher levels from hyper-proliferative dysplastic lesions to tumours. Using the IL11 receptor (IL11Rα1) knockout mice, we found that pSTAT3 in the newly regenerated crypt epithelial cells in colitis is abolished in IL11Rα1+/- and -/- mice, suggesting that colitis-induced IL11 activates STAT3 in colon crypt epithelial cells. Moreover, colitis-promoted colon carcinogenesis was significantly reduced in IL11Rα1+/- and -/- mice. To determine the roles of the IL11 in colitis, we found that the inhibition of IL11 signalling by recombinant IL11 antagonist mutein during colitis was sufficient to attenuate colitis-promoted carcinogenesis. Together, our results demonstrated that colitis-induced IL11 plays critical roles in creating cancer promoting microenvironment to facilitate the development of colon cancer from dormant premalignant cells.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David H Wang
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH, USA
| | - Xu Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuhai Sun
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
44
|
Wang Y, Fu J, Yang L, Liang Z. Long non‑coding RNA SNHG20 promotes colorectal cancer cell proliferation, migration and invasion via miR‑495/STAT3 axis. Mol Med Rep 2020; 23:31. [PMID: 33179110 PMCID: PMC7705999 DOI: 10.3892/mmr.2020.11669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the primary causes of cancer-associated mortality worldwide. However, the potential molecular mechanism of CRC progression remains unknown. Long non-coding RNA small nucleolar RNA host gene 20 (SNHG20) has been demonstrated to be involved in the development and progression of a variety of tumors, including CRC. However, the involvement of SNHG20 in CRC progression remains unclear. The aim of the present study was to investigate the functional role and molecular mechanism of SNHG20 in CRC progression. In the present study, SNHG20 expression was found to be significantly upregulated in CRC tissues and cell lines. Association analysis indicated that high SNHG20 expression was significantly association with greater tumor size (P=0.014), tumor invasion depth (P=0.019), positive lymph node status (P=0.022), distant metastasis (P=0.017) and advanced tumor node metastasis stage (P=0.038). Loss-of-function experiments indicated that SNHG20 knockdown could significantly suppress proliferation, migration and invasion in vitro. Notably, SNHG20 knockdown significantly inhibited tumor growth and lung metastasis in vivo. Bioinformatics analysis and luciferase reporter assays confirmed that microRNA (miR)-495 was a direct target of SNHG20. Rescue assays indicated that miR-495 inhibitor reversed the suppressive effects of SNHG20 knockdown on CRC progression. Moreover, STAT3 was identified as a downstream target of miR-495 in CRC. STAT3 overexpression partially rescued the inhibitory effects of SNHG20 knockdown on CRC progression. Taken together, the results revealed that SNHG20 facilitated CRC progression by regulating STAT3 expression and by sponging miR-495.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastroenterology Endoscopy, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jianying Fu
- Department of Gastroenterology Endoscopy, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Lili Yang
- Department of Gastroenterology Endoscopy, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Zhi Liang
- Department of Anorectal Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
45
|
Dimri S, Malhotra R, Shet T, Mokal S, Gupta S, De A. Noncanonical pS727 post translational modification dictates major STAT3 activation and downstream functions in breast cancer. Exp Cell Res 2020; 396:112313. [PMID: 33002501 DOI: 10.1016/j.yexcr.2020.112313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022]
Abstract
Activation of STAT3 via Y705-phosphorylation is well documented across multiple cancer types and thus forms the basis of canonical pathway to judge STAT3 activation. Recently, important roles of two other post translational modification (PTM) sites, i.e. S727-phosphorylation and K685-acetylation, leading to STAT3 activation are reported. However, their critical mode of function in controlling STAT3 dimerization and signaling, independent of canonical activation remains elusive. Therefore, to understand the functional relevance of each STAT3 PTMs in breast cancer (BC), cell models are developed by stable overexpression of PTM-site specific point mutants, i.e. Y705F, S727A or K685R, in a 3'UTR-STAT3 knockdown BC cell background. Results using this model system reveal novel findings showing that phosphorylation at S727 can lead to STAT3 activation independent of phosphoY705. We also demonstrate that loss of pS727 or K685ac significantly affects functional phenotypes such as cell survival and proliferation as well as downstream transcriptional activity (Twist 1, Socs3, c-Myc, Bcl-1 and Mcl-1) of STAT3. Thereafter, by utilizing a BRET biosensor for measuring STAT3 phosphorylation in live cells, a crucial role of pS727 in dictating STAT3 activation and homodimerization formation is uncovered. Further by performing retrospective IHC analysis of total and phospho-forms of STAT3 in a cohort of 76 triple negative breast cancer (TNBC) patient samples, a significant dominant expression of phosphoS727 over phosphoY705 PTM (p < 0.001) is found in STAT3 positive cases. We also focus on validating known STAT3 inhibitor molecules for their action against both pY705 and pS727 activation. This study for the first time demonstrates that an anti-helminth drug compound, Niclosamide, is capable of inactivating both phospho-PTM sites on STAT3 and exhibits excellent anticancer efficacy in preclinical TNBC tumour model.
Collapse
Affiliation(s)
- Shalini Dimri
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Renu Malhotra
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
| | - Tanuja Shet
- Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Smruti Mokal
- Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Sudeep Gupta
- Tata Memorial Hospital, Mumbai, India; Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
46
|
Cheng WT, Kantilal HK, Davamani F. The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation. Malays J Med Sci 2020; 27:9-21. [PMID: 32863742 PMCID: PMC7444842 DOI: 10.21315/mjms2020.27.4.2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
The Bacteroides fragilis (B. fragilis) produce biofilm for colonisation in the intestinal tract can cause a series of inflammatory reactions due to B. fragilis toxin (BFT) which can lead to chronic intestinal inflammation and tissue injury and play a crucial role leading to colorectal cancer (CRC). The enterotoxigenic B. fragilis (ETBF) forms biofilm and produce toxin and play a role in CRC, whereas the non-toxigenic B. fragilis (NTBF) does not produce toxin. The ETBF triggers the expression of cyclooxygenase (COX)-2 that releases PGE2 for inducing inflammation and control cell proliferation. From chronic intestinal inflammation to cancer development, it involves signal transducers and activators of transcription (STAT)3 activation. STAT3 activates by the interaction between epithelial cells and BFT. Thus, regulatory T-cell (Tregs) will activates and reduce interleukin (IL)-2 amount. As the level of IL-2 drops, T-helper (Th17) cells are generated leading to increase in IL-17 levels. IL-17 is implicated in early intestinal inflammation and promotes cancer cell survival and proliferation and consequently triggers IL-6 production that activate STAT3 pathway. Additionally, BFT degrades E-cadherin, hence alteration of signalling pathways can upregulate spermine oxidase leading to cell morphology and promote carcinogenesis and irreversible DNA damage. Patient with familial adenomatous polyposis (FAP) disease displays a high level of tumour load in the colon. This disease is caused by germline mutation of the adenomatous polyposis coli (APC) gene that increases bacterial adherence to the mucosa layer. Mutated-APC gene genotype with ETBF increases the chances of CRC development. Therefore, the colonisation of the ETBF in the intestinal tract depicts tumour aetiology can result in risk of hostility and effect on human health.
Collapse
Affiliation(s)
- Wai Teng Cheng
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Haresh Kumar Kantilal
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, Thoma OM, Kramer V, Waldner MJ, Büttner C, Farin HF, Pešić M, Knieling F, Merkel S, Grüneboom A, Gunzer M, Grützmann R, Rose-John S, Koralov SB, Kollias G, Vieth M, Hartmann A, Greten FR, Neurath MF, Neufert C. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 2020; 69:1269-1282. [PMID: 31685519 DOI: 10.1136/gutjnl-2019-319200] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/22/2019] [Accepted: 10/08/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Cancer-associated fibroblasts (CAFs) influence the tumour microenvironment and tumour growth. However, the role of CAFs in colorectal cancer (CRC) development is incompletely understood. DESIGN We quantified phosphorylation of STAT3 (pSTAT3) expression in CAFs of human colon cancer tissue using a tissue microarray (TMA) of 375 patients, immunofluorescence staining and digital pathology. To investigate the functional role of CAFs in CRC, we took advantage of two murine models of colorectal neoplasia and advanced imaging technologies. In loss-of-function and gain-of-function experiments, using genetically modified mice with collagen type VI (COLVI)-specific signal transducer and activator of transcription 3 (STAT3) targeting, we evaluated STAT3 signalling in fibroblasts during colorectal tumour development. We performed a comparative gene expression profiling by whole genome RNA-sequencing of fibroblast subpopulations (COLVI+ vs COLVI-) on STAT3 activation (IL-6 vs IL-11). RESULTS The analysis of pSTAT3 expression in CAFs of human TMAs revealed a negative correlation of increased stromal pSTAT3 expression with the survival of colon cancer patients. In the loss-of-function and gain-of-function approach, we found a critical role of STAT3 activation in fibroblasts in driving colorectal tumourigenesis in vivo. With different imaging technologies, we detected an expansion of activated fibroblasts in colorectal neoplasias. Comparative gene expression profiling of fibroblast subpopulations on STAT3 activation revealed the regulation of transcriptional patterns associated with angiogenesis. Finally, the blockade of proangiogenic signalling significantly reduced colorectal tumour growth in mice with constitutive STAT3 activation in COLVI+ fibroblasts. CONCLUSION Altogether our work demonstrates a critical role of STAT3 activation in CAFs in CRC development.
Collapse
Affiliation(s)
- Christina Heichler
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kristina Scheibe
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anabel Schmied
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol I Geppert
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oana-Maria Thoma
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Viktoria Kramer
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilian J Waldner
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Henner F Farin
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marina Pešić
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Ferdinand Knieling
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen Kinder- und Jugendklinik, Erlangen, Germany
| | - Susanne Merkel
- Chirurgische Klinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anika Grüneboom
- Third Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Robert Grützmann
- Chirurgische Klinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - George Kollias
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Markus F Neurath
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clemens Neufert
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
48
|
Zhan G, Hu J, Xiao B, Wang X, Yang Z, Yang G, Lu L. Trillin prevents proliferation and induces apoptosis through inhibiting STAT3 nuclear translocation in hepatoma carcinoma cells. Med Oncol 2020; 37:44. [PMID: 32270306 DOI: 10.1007/s12032-020-01369-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023]
Abstract
Trillin is a constituent of total Trillium Tschonoskii Maxim (TTM), which is extracted from TTM and displayed anti-tumor effect in many tumor cell lines. However, the anti-tumor mechanism of trillin is still unclear. This study demonstrated that trillin could dramatically inhibit hepatoma carcinoma cell proliferation, induce apoptosis and decrease migration and invasion through suppressing phosphorylated STAT3 translocated to nucleus. Trillin could down-regulate Bcl-2 and Survivin, up-regulate cleaved PRAP, leading to dramatically apoptosis; trillin could also down-regulate MMP1, MMP2, MucI and VEGF, which displayed an inhibition effect on hepatocellular tumor cells invasion and development. The results of this study indicated the potential utility of trillin as a STAT3 inhibitor for the treatment of cancers.
Collapse
Affiliation(s)
- Guangjie Zhan
- Medical School of Hubei MinZu University, Enshi, 445000, Hubei, People's Republic of China
| | - Jun Hu
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Benjian Xiao
- Medical School of Hubei MinZu University, Enshi, 445000, Hubei, People's Republic of China
| | - Xianli Wang
- Science and Technology College of Hubei MinZu University, Enshi, 445000, Hubei, People's Republic of China
| | - Zixian Yang
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Guohua Yang
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| | - Lili Lu
- New Medicine Innovation and Development Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China.
| |
Collapse
|
49
|
Xu H, Wu B, Wang J, Cao H, Yang J, Hao K, Chen S, Ye S, Shen Z. Label-free detection of cancer related gene based on target recycling and palindrome-mediated strand displacement amplification. Talanta 2020; 215:120897. [PMID: 32312442 DOI: 10.1016/j.talanta.2020.120897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
STAT3 plays an important role in regulating gene expression and is closely related with cancer. Thus, the sensitive and specific detection of the STAT3 biomarker is of great importance for disease diagnosis and therapeutics. In this study, by combining the target recycling amplification (TRA) with strand displacement amplification (SDA), we have developed a label-free and highly sensitive method for the dual-amplified detection of STAT3. The assay system consists of polymerization primer and label-free hairpin probe (HP) containing palindromic fragment and nicking site. In the presence of STAT3, the stem of the HP is opened, followed by the primer binding to initiate TRA and SDA with the help of Klenow Fragment (KF) and nickase. After multiple replication, nicking, and strand displacement, STAT3 was released and initiated the next round of reactions, generating a large number of terminal palindrome-contained fragments. Subsequently, the intermolecular hybridization between palindromic fragments occurred and the bidirectional extension by polymerase takes place, forming the dsDNAs. The double-stranded DNA products can be quantified by measuring the fluorescence intensity of SYBR Green I. The proposed strategy shows the excellent specificity and high sensitivity with a detection limit as low as 50 pM. In addition, this designed protocol can be successfully applied to detect the STAT3 in human serum, indicating great potential for the practical application in early diagnosis and prognosis.
Collapse
Affiliation(s)
- Huo Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Cancer Metastasis Alert and Prevention Center, Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, And Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jue Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Cancer Metastasis Alert and Prevention Center, Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, And Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Hongwen Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaixuan Hao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Si Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sheng Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
50
|
Zhang ZH, Li MY, Wang Z, Zuo HX, Wang JY, Xing Y, Jin C, Xu G, Piao L, Piao H, Ma J, Jin X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153172. [PMID: 32004989 DOI: 10.1016/j.phymed.2020.153172] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aberrant activation of STAT3 is frequently encountered and promotes survival, cellular proliferation, migration, invasion and angiogenesis in tumor cell. Convallatoxin, triterpenoid ingredient, exhibits anticancer pharmacological properties. PURPOSE In this work, we investigated the anticancer potential of convallatoxin and explored whether convallatoxin mediates its effect through interference with the STAT3 activation in colorectal cancer cells. METHODS In vitro, the underlying mechanisms of convallatoxin at inhibiting STAT3 activation were investigated by homology modeling and molecular docking, luciferase reporter assay, MTT assay, RT-PCR, Western blotting and immunofluorescence assays. Changes in cellular proliferation, apoptosis, migration, invasion and angiogenesis were analyzed by EdU labeling assay, colony formation assay, flow cytometry assay, wound-healing assay, matrigel transwell invasion assay and tube formation assays. And in vivo, antitumor activity of convallatoxin was assessed in a murine xenograft model of HCT116 cells. RESULTS Convallatoxin decreased the viability of colorectal cancer lines. Moreover, convallatoxin reduced the P-STAT3 (T705) via the JAK1, JAK2, and Src pathways and inhibited serine-727 phosphorylation of STAT3 via the PI3K-AKT-mTOR-STAT3 pathways in colorectal cancer cells. Interestingly, we discovered the crosstalk between mTOR and JAK2 in mTOR/STAT3 and JAK/STAT3 pathways, which collaboratively regulated STAT3 activation and convallatoxin play a role in it. Convallatoxin also downregulated the expression of target genes involved cell survival (e.g., Survivin, Bcl-xl, Bcl-2), proliferation (e.g., Cyclin D1), metastasis (e.g., MMP-9), and angiogenesis (e.g., VEGF). Indeed, we found that convallatoxin inhibited tube formation, migration, and invasion of endothelial cells, and inhibited the proliferation. Finally, in vivo observations were confirmed by showing antitumor activity of convallatoxin in a murine xenograft model. CONCLUSION The result of the current study show that convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer cells and indicate that convallatoxin could be a valuable candidate for the development of colorectal cancer therapeutic.
Collapse
Affiliation(s)
- Zhi Hong Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhe Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Ying Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chenghua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guanghua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lianxun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hongxin Piao
- Yanbian University Affiliated Hospital/Liver Diseases Branch, China.
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|