1
|
Bibas M, Sarosiek S, Castillo JJ. Waldenström Macroglobulinemia - A State-of-the-Art Review: Part 1: Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Risk Stratification, and Clinical Problems. Mediterr J Hematol Infect Dis 2024; 16:e2024061. [PMID: 38984103 PMCID: PMC11232678 DOI: 10.4084/mjhid.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Waldenström macroglobulinemia (WM) is an infrequent variant of lymphoma, classified as a B-cell malignancy identified by the presence of IgM paraprotein, infiltration of clonal, small lymphoplasmacytic B cells in the bone marrow, and the MYD88 L265P mutation, which is observed in over 90% of cases. The direct invasion of the malignant cells into tissues like lymph nodes and spleen, along with the immune response related to IgM, can also lead to various health complications, such as cytopenias, hyperviscosity, peripheral neuropathy, amyloidosis, and Bing-Neel syndrome. Chemoimmunotherapy has historically been considered the preferred treatment for WM, wherein the combination of rituximab and nucleoside analogs, alkylating drugs, or proteasome inhibitors has exhibited notable efficacy in inhibiting tumor growth. Recent studies have provided evidence that Bruton Tyrosine Kinase inhibitors (BTKI), either used independently or in conjunction with other drugs, have been shown to be effective and safe in the treatment of WM. The disease is considered to be non-curable, with a median life expectancy of 10 to 12 years.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCSS Rome Italy
| | - Shayna Sarosiek
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jorge J Castillo
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Azab F, Azab AK, Maiso P, Calimeri T, Flores L, Liu Y, Quang P, Roccaro AM, Sacco A, Ngo HT, Zhang Y, Morgan BL, Carrasco RD, Ghobrial IM. Editor's Note: Eph-B2/Ephrin-B2 Interaction Plays a Major Role in the Adhesion and Proliferation of Waldenstrom's Macroglobulinemia. Clin Cancer Res 2024; 30:920. [PMID: 38362727 DOI: 10.1158/1078-0432.ccr-24-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
|
3
|
Mekala S, Dugam P, Das A. Ephrin-Eph receptor tyrosine kinases for potential therapeutics against hepatic pathologies. J Cell Commun Signal 2023; 17:549-561. [PMID: 37103689 PMCID: PMC10409970 DOI: 10.1007/s12079-023-00750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Hepatic fibrosis is the common pathological change that occurs due to increased synthesis and accumulation of extracellular matrix components. Chronic insult from hepatotoxicants leads to liver cirrhosis, which if not reversed timely using appropriate therapeutics, liver transplantation remains the only effective therapy. Often the disease further progresses into hepatic carcinoma. Although there is an increased advancement in understanding the pathological phenotypes of the disease, additional knowledge of the novel molecular signaling mechanisms involved in the disease progression would enable the development of efficacious therapeutics. Ephrin-Eph molecules belong to the largest family of receptor tyrosine kinases (RTKs) which are identified to play a crucial role in cellular migratory functions, during morphological and developmental stages. Additionally, they contribute to the growth of a multicellular organism as well as in pathological conditions like cancer, and diabetes. A wide spectrum of mechanistic studies has been performed on ephrin-Eph RTKs in various hepatic tissues under both normal and diseased conditions revealing their diverse roles in hepatic pathology. This systematic review summarizes the liver-specific ephrin-Eph RTK signaling mechanisms and recognizes them as druggable targets for mitigating hepatic pathology.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201 002, India
| | - Prachi Dugam
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201 002, India.
| |
Collapse
|
4
|
Boutilier AJ, Huang L, Elsawa SF. Waldenström Macroglobulinemia: Mechanisms of Disease Progression and Current Therapies. Int J Mol Sci 2022; 23:11145. [PMID: 36232447 PMCID: PMC9569492 DOI: 10.3390/ijms231911145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Waldenström macroglobulinemia is an indolent, B-cell lymphoma without a known cure. The bone marrow microenvironment and cytokines both play key roles in Waldenström macroglobulinemia (WM) tumor progression. Only one FDA-approved drug exists for the treatment of WM, Ibrutinib, but treatment plans involve a variety of drugs and inhibitors. This review explores avenues of tumor progression and targeted drug therapy that have been investigated in WM and related B-cell lymphomas.
Collapse
Affiliation(s)
- Ava J. Boutilier
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
5
|
Halting the FGF/FGFR axis leads to antitumor activity in Waldenström macroglobulinemia by silencing MYD88. Blood 2021; 137:2495-2508. [PMID: 33197938 DOI: 10.1182/blood.2020008414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/30/2020] [Indexed: 01/12/2023] Open
Abstract
The human fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) axis deregulation is largely involved in supporting the pathogenesis of hematologic malignancies, including Waldenström macroglobulinemia (WM). WM is still an incurable disease, and patients succumb because of disease progression. Therefore, novel therapeutics designed to specifically target deregulated signaling pathways in WM are required. We aimed to investigate the role of FGF/FGFR system blockade in WM by using a pan-FGF trap molecule (NSC12). Wide-transcriptome profiling confirmed inhibition of FGFR signaling in NSC12-treated WM cells; unveiling a significant inhibition of MYD88 was also confirmed at the protein level. Importantly, the NSC12-dependent silencing of MYD88 was functionally active, as it led to inhibition of MYD88-driven pathways, such as BTK and SYK, as well as the MYD88-downstream target HCK. Of note, both canonical and noncanonical NF-κB cascades were downregulated in WM cells upon NSC12 treatment. Functional sequelae exerted by NSC12 in WM cells were studied, demonstrating significant inhibition of WM cell growth, induction of WM cell apoptosis, halting MAPK, JAK/STAT3, and PI3K-Akt pathways. Importantly, NSC12 exerted an anti-WM effect even in the presence of bone marrow microenvironment, both in vitro and in vivo. Our studies provide the evidence for using NSC12 as a specific FGF/FGFR system inhibitor, thus representing a novel therapeutic strategy in WM.
Collapse
|
6
|
Broggini T, Piffko A, Hoffmann CJ, Ghori A, Harms C, Adams RH, Vajkoczy P, Czabanka M. Ephrin-B2-EphB4 communication mediates tumor-endothelial cell interactions during hematogenous spread to spinal bone in a melanoma metastasis model. Oncogene 2020; 39:7063-7075. [PMID: 32989254 DOI: 10.1038/s41388-020-01473-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
Metastases account for the majority of cancer deaths. Bone represents one of the most common sites of distant metastases, and spinal bone metastasis is the most common source of neurological morbidity in cancer patients. During metastatic seeding of cancer cells, endothelial-tumor cell interactions govern extravasation to the bone and potentially represent one of the first points of action for antimetastatic treatment. The ephrin-B2-EphB4 pathway controls cellular interactions by inducing repulsive or adhesive properties, depending on forward or reverse signaling. Here, we report that in an in vivo metastatic melanoma model, ephrin-B2-mediated activation of EphB4 induces tumor cell repulsion from bone endothelium, translating in reduced spinal bone metastatic loci and improved neurological function. Selective ephrin-B2 depletion in endothelial cells or EphB4 inhibition increases bone metastasis and shortens the time window to hind-limb locomotion deficit from spinal cord compression. EphB4 overexpression in melanoma cells ameliorates the metastatic phenotype and improves neurological outcome. Timely harvesting of bone tissue after tumor cell injection and intravital bone microscopy revealed less tumor cells attached to ephrin-B2-positive endothelial cells. These results suggest that ephrin-B2-EphB4 communication influences bone metastasis formation by altering melanoma cell repulsion/adhesion to bone endothelial cells, and represents a molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andras Piffko
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.
| |
Collapse
|
7
|
Eph/ephrin Signaling and Biology of Mesenchymal Stromal/Stem Cells. J Clin Med 2020; 9:jcm9020310. [PMID: 31979096 PMCID: PMC7074403 DOI: 10.3390/jcm9020310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have emerged as important therapeutic agents, owing to their easy isolation and culture, and their remarkable immunomodulatory and anti-inflammatory properties. However, MSCs constitute a heterogeneous cell population which does not express specific cell markers and has important problems for in vivo homing, and factors regulating their survival, proliferation, and differentiation are largely unknown. Accordingly, in the present article, we review the current evidence on the relationships between Eph kinase receptors, their ephrin ligands, and MSCs. These molecules are involved in the adult homeostasis of numerous tissues, and we and other authors have demonstrated their expression in human and murine MSCs derived from both bone marrow and adipose tissue, as well as their involvement in the MSC biology. We extend these studies providing new results on the effects of Eph/ephrins in the differentiation and immunomodulatory properties of MSCs.
Collapse
|
8
|
Han W, Allam SA, Elsawa SF. GLI2-Mediated Inflammation in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:55-65. [PMID: 32588323 DOI: 10.1007/978-3-030-44518-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of cancer and has been shown to contribute to resistance to therapy. Inflammation is one of the hallmarks of cancer implicated in disease phenotype. Therefore, understanding the mechanisms that regulate inflammation in cancer and consequently how inflammatory mediators promote cancer progression is important for our understanding of cancer cell biology. The transcription factor GLI2 was initially identified as a member of the Hedgehog (HH) signaling pathway. During the last decade, studies have shown a novel mechanism of GLI2 regulation independent of HH signaling, where GLI2 consequently modulated several cytokine genes in the TME. These studies highlight a novel role for GLI2 as an inflammatory mediatory independent of HH stimulation. This chapter will discuss canonical and noncanonical pathways of GLI2 regulation and some of the downstream cytokine target genes regulated by GLI2.
Collapse
Affiliation(s)
- Weiguo Han
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Shereen A Allam
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sherine F Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
9
|
Cao H, Li W, Zhou Y, Tan R, Yang Y, Zhou Y, Guo Q, Zhao L. Oroxylin a Inhibits the Protection of Bone Marrow Microenvironment on CML Cells Through CXCL12/CXCR4/P-gp Signaling Pathway. Front Oncol 2019; 9:188. [PMID: 31024831 PMCID: PMC6463784 DOI: 10.3389/fonc.2019.00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Imatinib (IM) resistance could have significant impact on the survival time of the CML-patients treated with IM. Previous studies have shown that the protective effects of the bone marrow stroma cells (BMSCs) on CML cells are achieved by the secretion of CXCL12. The aim of this study was to investigate whether Oroxylin A could reverse the protective effect of BMSCs on CML cells and illuminate the underlying mechanisms. The results showed that CXCL12 could enhance the resistance potential of K562 and KU812 cells to IM by increasing the expression of CXCR4, thus promoting the translocation of β-catenin into nucleus and subsequently increasing the expression of P-gp in K562 and KU812 cells. What's more, IM resistance could also be partially reversed by CXCR4 siRNA transfection. Moreover, the reverse effect of IM resistance by Oroxylin A was demonstrated by the inhibition of β-catenin/P-gp pathway via the decrease of CXCR4 in vitro. The in vivo study also showed that Oroxylin A could decrease the expression of P-gp and β-catenin in mice bone marrow with low toxicity, which could be consistent with the mechanisms verified in vitro studies. In conclusion, all these results showed that Oroxylin A improved the sensitivity of K562 and KU812 cells to IM in BM microenvironment by decreasing the expression of CXCR4 and then inhibiting β-catenin/P-gp pathway.
Collapse
Affiliation(s)
- Hanbo Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wenjun Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yizhou Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - You Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Jalali S, Ansell SM. The Bone Marrow Microenvironment in Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2018; 32:777-786. [DOI: 10.1016/j.hoc.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Alfaro D, Zapata AG. Eph/Ephrin-mediated stimulation of human bone marrow mesenchymal stromal cells correlates with changes in cell adherence and increased cell death. Stem Cell Res Ther 2018; 9:172. [PMID: 29941036 PMCID: PMC6019728 DOI: 10.1186/s13287-018-0912-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stromal cells (MSC) are components of connective tissues and, in vitro, cell entities characterized by cell adhesion and immunophenotyping, although specific markers for their identification are lacking. Currently, MSC derived from either human bone marrow (BM-MSC) or adipose tissue (Ad-MSC) are considered the main sources of MSC for cell therapy. Eph receptors and their ligands, Ephrins, are molecules involved in cell adhesion and migration in several tissues and organs. In the current study, we analyze the pattern of Eph/Ephrin expression in MSC and evaluate the effects of blockade and stimulation of these receptor/ligand pairs on their biology. Methods Eph/Ephrin expression was analyzed in both BM-MSC and Ad-MSC by qRT-PCR. Then, we supplied BM-MSC cultures with either blocking or activating compounds to evaluate their effects on MSC proliferation, survival, and cell cycle by FACS. Changes in cytoskeleton and integrin α5β1 expression were studied in stimulated BM-MSC by immunofluorescence microscopy and FACS, respectively. Results Higher numbers of Eph/Ephrin transcripts occurred in BM-MSC than in Ad-MSC. In addition, the blocking of Eph/Ephrin signaling correlated with decreased numbers of BM-MSC due to increased proportions of apoptotic cells in the cultures but without variations in the cycling cells. Unexpectedly, activation of Eph/Ephrin signaling by clustered Eph/Ephrin fusion proteins also resulted in increased proportions of apoptotic MSC. In this case, MSC underwent important morphological changes, associated with altered cytoskeleton and integrin α5β1 expression, which did not occur under the blocking conditions. Conclusions Taken together, these results suggest that Eph/Ephrin activation affects cell survival through alterations in cell attachment to culture plates, affecting the biology of BM-MSC. Electronic supplementary material The online version of this article (10.1186/s13287-018-0912-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Novais, 12, CP 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Novais, 12, CP 28040, Madrid, Spain.
| |
Collapse
|
12
|
Zheng LC, Wang XQ, Lu K, Deng XL, Zhang CW, Luo H, Xu XD, Chen XM, Yan L, Wang YQ, Shi SL. Ephrin-B2/Fc promotes proliferation and migration, and suppresses apoptosis in human umbilical vein endothelial cells. Oncotarget 2018; 8:41348-41363. [PMID: 28489586 PMCID: PMC5522204 DOI: 10.18632/oncotarget.17298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 01/12/2023] Open
Abstract
Tumor growth and metastasis are angiogenesis dependent. Angiogenic growth involves endothelial cell proliferation, migration, and invasion. Ephrin-B2 is a ligand for Eph receptor tyrosine kinases and is an important mediator in vascular endothelial growth factor-mediated angiogenesis. However, research offer controversial information regarding effects of ephrin-B2 on vascular endothelial cells. In this paper, proteome analyses showed that ephrin-B2/Fc significantly activates multiple signaling pathways related to cell proliferation, survival, and migration and suppresses apoptosis and cell death. Cytological experiments further confirm that ephrin-B2/Fc stimulates endothelial cell proliferation, triggers dose-dependent migration, and suppresses cell apoptosis. Results demonstrate that soluble dose-dependent ephrinB2 can promote proliferation and migration and inhibit apoptosis of human umbilical vein endothelial cells. These results also suggest that ephrinB2 prevents ischemic disease and can potentially be a new therapeutic target for treating angiogenesis-related diseases and tumors.
Collapse
Affiliation(s)
- Li-Chun Zheng
- Medical College of Xiamen University, Jinshan Community Health Service Center, Xiamen Traditional Chinese Medical Hospital, Xiamen 361000, P.R. China.,Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xiao-Qing Wang
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Kun Lu
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Xiao-Ling Deng
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Cheng-Wei Zhang
- Department of Cardiology, Affiliated Dongnan Hospital of Xiamen University, Zhangzhou 363000, P.R. China
| | - Hong Luo
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xu-Dong Xu
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xiao-Man Chen
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Lu Yan
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen 361102, P.R. China
| | - Yi-Qing Wang
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Song-Lin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
13
|
Han W, Jackson DA, Matissek SJ, Misurelli JA, Neil MS, Sklavanitis B, Amarsaikhan N, Elsawa SF. Novel Molecular Mechanism of Regulation of CD40 Ligand by the Transcription Factor GLI2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:4481-4489. [PMID: 28461568 PMCID: PMC5473292 DOI: 10.4049/jimmunol.1601490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022]
Abstract
The interaction between tumor cells and their surrounding microenvironment is essential for the growth and persistence of cancer cells. This interaction is mediated, in part, by cytokines. Although the role of cytokines in normal and malignant cell biology is well established, many of the molecular mechanisms regulating their expression remain elusive. In this article, we provide evidence of a novel pathway controlling the transcriptional activation of CD40L in bone marrow-derived stromal cells. Using a PCR-based screening of cytokines known to play a role in the biology of bone marrow malignancies, we identified CD40L as a novel GLI2 target gene in stromal cells. CD40L plays an important role in malignant B cell biology, and we found increased Erk phosphorylation and cell growth in malignant B cells cocultured with CD40L-expressing stromal cells. Further analysis indicated that GLI2 overexpression induced increased CD40L expression, and, conversely, GLI2 knockdown reduced CD40L expression. Using luciferase and chromatin immunoprecipitation assays, we demonstrate that GLI2 directly binds and regulates the activity of the CD40L promoter. We found that the CCR3-PI3K-AKT signaling modulates the GLI2-CD40L axis, and GLI2 is required for CCR3-PI3K-AKT-mediated regulation of the CD40L promoter. Finally, coculture of malignant B cells with cells stably expressing human CD40L results in increased Erk phosphorylation and increased malignant B cell growth, indicating that CD40L in the tumor microenvironment promotes malignant B cell activation. Therefore, our studies identify a novel molecular mechanism of regulation of CD40L by the transcription factor GLI2 in the tumor microenvironment downstream of CCR3 signaling.
Collapse
Affiliation(s)
- Weiguo Han
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115
| | - David A Jackson
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115
| | - Stephan J Matissek
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115
| | - Jason A Misurelli
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115
| | - Matthew S Neil
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115
| | - Brandon Sklavanitis
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115
| | | | - Sherine F Elsawa
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115
| |
Collapse
|
14
|
Jalali S, Ansell SM. Bone marrow microenvironment in Waldenstrom's Macroglobulinemia. Best Pract Res Clin Haematol 2016; 29:148-155. [DOI: 10.1016/j.beha.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/23/2016] [Indexed: 12/31/2022]
|
15
|
de la Puente P, Muz B, Gilson RC, Azab F, Luderer M, King J, Achilefu S, Vij R, Azab AK. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials 2015; 73:70-84. [PMID: 26402156 PMCID: PMC4917006 DOI: 10.1016/j.biomaterials.2015.09.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE Multiple myeloma (MM) is the second most prevalent hematological malignancy and it remains incurable despite the introduction of several novel drugs. The discrepancy between preclinical and clinical outcomes can be attributed to the failure of classic two-dimensional (2D) culture models to accurately recapitulate the complex biology of MM and drug responses observed in patients. EXPERIMENTAL DESIGN We developed 3D tissue engineered bone marrow (3DTEBM) cultures derived from the BM supernatant of MM patients to incorporate different BM components including MM cells, stromal cells, and endothelial cells. Distribution and growth were analyzed by confocal imaging, and cell proliferation of cell lines and primary MM cells was tested by flow cytometry. Oxygen and drug gradients were evaluated by immunohistochemistry and flow cytometry, and drug resistance was studied by flow cytometry. RESULTS 3DTEBM cultures allowed proliferation of MM cells, recapitulated their interaction with the microenvironment, recreated 3D aspects observed in the bone marrow niche (such as oxygen and drug gradients), and induced drug resistance in MM cells more than 2D or commercial 3D tissue culture systems. CONCLUSIONS 3DTEBM cultures not only provide a better model for investigating the pathophysiology of MM, but also serve as a tool for drug development and screening in MM. In the future, we will use the 3DTEBM cultures for developing personalized therapeutic strategies for individual MM patients.
Collapse
Affiliation(s)
- Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca C Gilson
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Micah Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin King
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ravi Vij
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
de la Puente P, Weisberg E, Muz B, Nonami A, Luderer M, Stone RM, Melo JV, Griffin JD, Azab AK. Identification of ILK as a novel therapeutic target for acute and chronic myeloid leukemia. Leuk Res 2015; 39:S0145-2126(15)30377-5. [PMID: 26413753 PMCID: PMC5016250 DOI: 10.1016/j.leukres.2015.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/12/2015] [Accepted: 09/06/2015] [Indexed: 11/16/2022]
Abstract
Current treatment options as well as clinical efficacy are limited for chronic myelogenous leukemia (CML), Ph+ acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML). In response to the pressing need for more efficacious treatment approaches and strategies to override drug resistance in advanced stage CML, Ph+ ALL, and AML, we investigated the effects of inhibition of ILK as a potentially novel and effective approach to treatment of these challenging malignancies. Using the small molecule ILK inhibitor, Cpd22, and ILK knockdown, we investigated the importance of ILK in the growth and viability of leukemia. Our results suggest that the ILK inhibition may be an effective treatment for CML, Ph+ ALL, and AML as a single therapy, with ILK expression levels positively correlating with the efficacy of ILK inhibition. The identification of ILK as a novel target for leukemia therapy warrants further investigation as a therapeutic approach that could be of potential clinical benefit in both acute and chronic myeloid leukemias.
Collapse
Affiliation(s)
- Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Atsushi Nonami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Micah Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Roccaro AM, Mishima Y, Sacco A, Moschetta M, Tai YT, Shi J, Zhang Y, Reagan MR, Huynh D, Kawano Y, Sahin I, Chiarini M, Manier S, Cea M, Aljawai Y, Glavey S, Morgan E, Pan C, Michor F, Cardarelli P, Kuhne M, Ghobrial IM. CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Rep 2015; 12:622-35. [PMID: 26190113 DOI: 10.1016/j.celrep.2015.06.059] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 12/29/2022] Open
Abstract
Extra-medullary disease (EMD) in multiple myeloma (MM) is associated with poor prognosis and resistance to chemotherapy. However, molecular alterations that lead to EMD have not been well defined. We developed bone marrow (BM)- and EMD-prone MM syngeneic cell lines; identified that epithelial-to-mesenchymal transition (EMT) transcriptional patterns were significantly enriched in both clones compared to parental cells, together with higher levels of CXCR4 protein; and demonstrated that CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotypic conversion for invasion, leading to higher bone metastasis and EMD dissemination in vivo. In contrast, CXCR4 silencing led to inhibited tumor growth and reduced survival. Ulocuplumab, a monoclonal anti-CXCR4 antibody, inhibited MM cell dissemination, supported by suppression of the CXCR4-driven EMT-like phenotype. These results suggest that targeting CXCR4 may act as a regulator of EMD through EMT-like transcriptional modulation, thus representing a potential therapeutic strategy to prevent MM disease progression.
Collapse
Affiliation(s)
- Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiantao Shi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Yong Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Maine Medical Center Research Institute (MMCRI), Scarborough, ME 04074, USA
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ilyas Sahin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Marco Chiarini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Spedali Civili di Brescia, Centro per la Ricerca Onco-ematologica AIL (CREA), 25123 Brescia, Italy
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michele Cea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yosra Aljawai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Siobhan Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth Morgan
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02215, USA
| | - Chin Pan
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | | | | | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Alfaro D, García-Ceca J, Farias-de-Oliveira DA, Terra-Granado E, Montero-Herradón S, Cotta-de-Almeida V, Savino W, Zapata A. EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus. J Leukoc Biol 2015; 98:883-96. [DOI: 10.1189/jlb.1hi1114-568r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
|
19
|
Novel treatment options for Waldenström macroglobulinemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 13 Suppl 2:S310-6. [PMID: 24290218 DOI: 10.1016/j.clml.2013.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 12/17/2022]
Abstract
Waldenström macroglobulinemia (WM), first described by Jan Waldenström in 1944, is a lymphoplasmacytic lymphoma characterized by the presence of an immunoglobulin M monoclonal gammopathy in the blood and monoclonal small lymphocytes and lymphoplasmacytoid cells in the bone marrow. WM is a rare and indolent disease but remains incurable. In this review we discuss the pathogenesis of WM and focus on novel treatment options that target pathways deregulated in this disease. Recent studies have helped us identify specific genetic mutations that are commonly seen in WM and might prove to be important therapeutic targets in the future. We discuss the role of epigenetics and the changes in the bone marrow microenvironment that are important in the pathogenesis of WM. The commonly used drugs are discussed with a focus on novel agents that are currently being used as single agents or in combination to treat WM. We finally focus on some agents that have shown preclinical efficacy and might be available in the near future.
Collapse
|
20
|
Azab AK, Sahin I, Moschetta M, Mishima Y, Burwick N, Zimmermann J, Romagnoli B, Patel K, Chevalier E, Roccaro AM, Ghobria IM. CXCR7-dependent angiogenic mononuclear cell trafficking regulates tumor progression in multiple myeloma. Blood 2014; 124:1905-14. [PMID: 25079359 PMCID: PMC4168345 DOI: 10.1182/blood-2014-02-558742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022] Open
Abstract
The CXCR4/stromal cell-derived factor-1 (SDF-1) axis is essential for cell trafficking and has been shown to regulate tumor progression and metastasis in many tumors including multiple myeloma (MM). A second chemokine receptor for SDF-1, CXCR7 was discovered recently and found on activated endothelial cells. We examined the role of CXCR7 in angiogenic mononuclear cells (AMCs) trafficking in MM. Our data demonstrate that AMCs are circulating in patients with MM and in vivo studies show that they specifically home to areas of MM tumor growth. CXCR7 expression is important for regulating trafficking and homing of AMCs into areas of MM tumor growth and neoangiogenesis. We demonstrate that the CXCR7 inhibitor, POL6926, abrogated trafficking of AMCs to areas of MM tumor progression leading to a significant inhibition of tumor progression. These effects were through regulation of endothelial cells and not through a direct tumor effect, indicating that targeting a bone marrow microenvironmental cell can lead to a delay in MM tumor progression. In conclusion, our studies demonstrate that CXCR7 may play an important role in the regulation of tumor progression in MM through an indirect effect on the recruitment of AMCs to areas of MM tumor growth in the bone marrow niche.
Collapse
|
21
|
Muz B, de la Puente P, Azab F, Ghobrial IM, Azab AK. Hypoxia promotes dissemination and colonization in new bone marrow niches in Waldenström macroglobulinemia. Mol Cancer Res 2014; 13:263-72. [PMID: 25232031 DOI: 10.1158/1541-7786.mcr-14-0150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Waldenström macroglobulinemia, a rare and indolent type of non-Hodgkin lymphoma, is characterized by widespread lymphoplasmacytic B cells in the bone marrow. Previous studies have shown that hypoxic conditions play a key role in the dissemination of other hematologic malignancies. In this study, the effect of hypoxia was tested on the progression and spread of Waldenström macroglobulinemia. Interestingly, tumor progression correlated with hypoxia levels in Waldenström macroglobulinemia cells and other cells in the bone marrow and correlated with the number of circulating tumor cells in vivo. Mechanistic studies demonstrated that hypoxia decreased cell progression and cell cycle, did not induce apoptosis, and reduced the adhesion between Waldenström macroglobulinemia cells and bone marrow stroma, through downregulation of E-cadherin expression, thus explaining increased egress of Waldenström macroglobulinemia cells to the circulation. Moreover, hypoxia increased the extravasation and homing of Waldenström macroglobulinemia cells to new bone marrow niches in vivo, by increased CXCR4/SDF-1-mediated chemotaxis and maintaining the VLA4-mediated adhesion. Re-oxygenation of hypoxic Waldenström macroglobulinemia cells enhanced the rate of proliferation and cell cycle progression and restored intercellular adhesion between Waldenström macroglobulinemia cells and bone marrow stroma. This study suggests that targeting hypoxic response is a novel strategy to prevent dissemination of Waldenström macroglobulinemia. IMPLICATIONS This study provides a better understanding of the biology of dissemination of Waldenström macroglobulinemia and opens new windows for investigation of new therapeutic targets in Waldenström macroglobulinemia based on tumor hypoxia mechanisms.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
22
|
C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood 2014; 123:4120-31. [DOI: 10.1182/blood-2014-03-564583] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Key Points
C1013G/CXCR4 acts as an activating mutation in WM leading to enhanced tumor growth, and as an inducer of drug resistance. BMS936564/MDX1338, a novel anti-CXCR4 moAb, successfully targets WM cells, either C1013G/CXCR4 mutated or wild-type.
Collapse
|
23
|
Azab F, Vali S, Abraham J, Potter N, Muz B, de la Puente P, Fiala M, Paasch J, Sultana Z, Tyagi A, Abbasi T, Vij R, Azab AK. PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. Br J Haematol 2014; 165:89-101. [DOI: 10.1111/bjh.12734] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Feda Azab
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | | | - Joseph Abraham
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
- Saint Louis College of Pharmacy; St. Louis MO USA
| | - Nicholas Potter
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
- Saint Louis College of Pharmacy; St. Louis MO USA
| | - Barbara Muz
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | - Pilar de la Puente
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | - Mark Fiala
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Jacob Paasch
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Zeba Sultana
- Cellworks Research India Pvt. Ltd.; Bangalore India
| | - Anuj Tyagi
- Cellworks Research India Pvt. Ltd.; Bangalore India
| | | | - Ravi Vij
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| |
Collapse
|
24
|
Agarwal A, Ghobrial IM. The bone marrow microenvironment in Waldenström macroglobulinemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13:218-21. [PMID: 23490994 DOI: 10.1016/j.clml.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Waldenström macroglobulinemia (WM) is a lymphoplasmacytic lymphoma characterized by widespread involvement of the bone marrow (BM). The BM microenvironment serves as not only a site for disease involvement, but it also appears that the interaction of WM cells with the BM is essential for the pathogenesis of WM. The BM microenvironment consists of the cellular and noncellular compartments. The BM has been shown to regulate cell proliferation, cell cycle, and drug resistance as well as cell dissemination and cell trafficking of WM cells. A better understanding of the role of the BM microenvironment in the pathogenesis of WM can help guide better therapeutic strategies that can target the tumor clone and also regulate the BM microenvironment.
Collapse
Affiliation(s)
- Amit Agarwal
- Division of Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
25
|
Abstract
Cancer cells rely on intercellular communication throughout the different stages of their transformation and progression into metastasis. They do so by co-opting different processes such as cell-cell junctions, growth factors, receptors, and vesicular release. Initially characterized in neuronal and vascular tissues, Ephs and Ephrins, the largest family of receptor tyrosine kinases, comprised of two classes (i.e., A and B types), is increasingly scrutinized by cancer researchers. These proteins possess the particular features of both the receptors and ligands being membrane-bound which, via mandatory direct cell-cell interactions, undergo a bidirectional signal transduction initiated from both the receptor and the ligand. Following cell-cell interactions, Ephs/Ephrins behave as guidance molecules which trigger both repulsive and attractive signals, so as to direct the movement of cells through their immediate microenvironment. They also direct processes which include sorting and positioning and cytoskeleton rearrangements, thus making them perfect candidates for the control of the metastatic process. In fact, the role of Ephs and Ephrins in cancer progression has been demonstrated for many of the family members and they, surprisingly, have both tumor promoter and suppressor functions in different cellular contexts. They are also able to coordinate between multiple processes including cell survival, proliferation, differentiation, adhesion, motility, and invasion. This review is an attempt to summarize the data available on these Ephs/Ephrins' biological functions which contribute to the onset of aggressive cancers. I will also provide an overview of the factors which could explain the functional differences demonstrated by Ephs and Ephrins at different stages of tumor progression and whose elucidation is warranted for any future therapeutic targeting of this signaling pathway in cancer metastasis.
Collapse
|
26
|
Weisberg E, Azab AK, Manley PW, Kung AL, Christie AL, Bronson R, Ghobrial IM, Griffin JD. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 2012; 26:985-90. [PMID: 22182920 PMCID: PMC4124489 DOI: 10.1038/leu.2011.360] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 01/26/2023]
Abstract
Drug resistance is a growing area of concern. It has been shown that a small, residual pool of leukemic CD34+ progenitor cells can survive in the marrow microenvironment of chronic myeloid leukemia (CML) patients after years of kinase inhibitor treatment. Bone marrow (BM) stroma has been implicated in the long-term survival of leukemic cells, and contributes to the expansion and proliferation of both transformed and normal hematopoietic cells. Mechanistically, we found that CML cells expressed CXCR4, and that plerixafor diminished BCR-ABL-positive cell migration and reduced adhesion of these cells to extra cellular-matrix components and to BM stromal cells in vitro. Moreover, plerixafor decreased the drug resistance of CML cells induced by co-culture with BM stromal cells in vitro. Using a functional mouse model of progressive and residual disease, we demonstrated the ability of the CXCR4 inhibitor, plerixafor, to mobilize leukemic cells in vivo, such that a plerixafor-nilotinib combination reduced the leukemia burden in mice significantly below the baseline level suppression exhibited by a moderate-to-high dose of nilotinib as single agent. These results support the idea of using CXCR4 inhibition in conjunction with targeted tyrosine kinase inhibition to override drug resistance in CML and suppress or eradicate residual disease.
Collapse
Affiliation(s)
- Ellen Weisberg
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Andrew L. Kung
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Children's Hospital, Boston, Massachusetts
| | - Amanda L. Christie
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Children's Hospital, Boston, Massachusetts
| | - Rod Bronson
- Rodent Histopathology Core, Department of Pathology, Harvard Medical School, Boston, MA
| | | | - James D. Griffin
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|