1
|
Gonzalez-Martinez D, Roth L, Mumford TR, Guan J, Le A, Doebele RC, Huang B, Tulpule A, Niewiadomska-Bugaj M, Bivona TG, Bugaj LJ. Oncogenic EML4-ALK assemblies suppress growth factor perception and modulate drug tolerance. Nat Commun 2024; 15:9473. [PMID: 39488530 PMCID: PMC11531495 DOI: 10.1038/s41467-024-53451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
Drug resistance remains a challenge for targeted therapy of cancers driven by EML4-ALK and related fusion oncogenes. EML4-ALK forms cytoplasmic protein condensates, which result from networks of interactions between oncogene and adapter protein multimers. While these assemblies are associated with oncogenic signaling, their role in drug response is unclear. Here, we use optogenetics and live-cell imaging to find that EML4-ALK assemblies suppress transmembrane receptor tyrosine kinase (RTK) signaling by sequestering RTK adapter proteins including GRB2 and SOS1. Furthermore, ALK inhibition, while suppressing oncogenic signaling, simultaneously releases the sequestered adapters and thereby resensitizes RTK signaling. Resensitized RTKs promote rapid and pulsatile ERK reactivation that originates from paracrine ligands shed by dying cells. Reactivated ERK signaling promotes cell survival, which can be counteracted by combination therapies that block paracrine signaling. Our results identify a regulatory role for RTK fusion assemblies and uncover a mechanism of tolerance to targeted therapies.
Collapse
Affiliation(s)
| | - Lee Roth
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juan Guan
- Department of Physics, Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Anh Le
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robert C Doebele
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, USA
| | - Asmin Tulpule
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA, 94143, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Hu Q, Remsing Rix LL, Desai B, Miroshnychenko D, Li X, Welsh EA, Fang B, Wright GM, Chaudhary N, Kroeger JL, Doebele RC, Koomen JM, Haura EB, Marusyk A, Rix U. Cancer-associated fibroblasts confer ALK inhibitor resistance in EML4-ALK -driven lung cancer via concurrent integrin and MET signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609975. [PMID: 39253447 PMCID: PMC11383036 DOI: 10.1101/2024.08.27.609975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are associated with tumor progression and modulate drug sensitivity of cancer cells. However, the underlying mechanisms are often incompletely understood and crosstalk between tumor cells and CAFs involves soluble secreted as well as adhesion proteins. Interrogating a panel of non-small cell lung cancer (NSCLC) cell lines driven by EML4-ALK fusions, we observed substantial CAF-mediated drug resistance to clinical ALK tyrosine kinase inhibitors (TKIs). Array-based cytokine profiling of fibroblast-derived conditioned- media identified HGF-MET signaling as a major contributor to CAF-mediated paracrine resistance that can be overcome by MET TKIs. However, 'Cell Type specific labeling using Amino acid Precursors' (CTAP)-based expression and phosphoproteomics in direct coculture also highlighted a critical role for the fibronectin-integrin pathway. Flow cytometry analysis confirmed activation of integrin β1 (ITGB1) in lung cancer cells by CAF coculture. Treatment with pharmacological inhibitors, cancer cell-specific silencing or CRISPR-Cas9-mediated knockout of ITGB1 overcame adhesion protein-mediated resistance. Concurrent targeting of MET and integrin signaling effectively abrogated CAF-mediated resistance of EML4-ALK -driven NSCLC cells to ALK TKIs in vitro . Consistently, combination of the ALK TKI alectinib with the MET TKI capmatinib and/or the integrin inhibitor cilengitide was significantly more efficacious than single agent treatment in suppressing tumor growth using an in vivo EML4-ALK -dependent allograft mouse model of NSCLC. In summary, these findings emphasize the complexity of resistance-associated crosstalk between CAFs and cancer cells, which can involve multiple concurrent signaling pathways, and illustrate how comprehensive elucidation of paracrine and juxtacrine resistance mechanisms can inform on more effective therapeutic approaches.
Collapse
|
3
|
Desai B, Miti T, Prabhakaran S, Miroshnychenko D, Henry M, Marusyk V, Gatenbee C, Bui M, Scott J, Altrock PM, Haura E, Anderson ARA, Basanta D, Marusyk A. Peristromal niches protect lung cancers from targeted therapies through a combined effect of multiple molecular mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590626. [PMID: 38712093 PMCID: PMC11071426 DOI: 10.1101/2024.04.24.590626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Targeted therapies directed against oncogenic signaling addictions, such as inhibitors of ALK in ALK+ NSCLC often induce strong and durable clinical responses. However, they are not curative in metastatic cancers, as some tumor cells persist through therapy, eventually developing resistance. Therapy sensitivity can reflect not only cell-intrinsic mechanisms but also inputs from stromal microenvironment. Yet, the contribution of tumor stroma to therapeutic responses in vivo remains poorly defined. To address this gap of knowledge, we assessed the contribution of stroma-mediated resistance to therapeutic responses to the frontline ALK inhibitor alectinib in xenograft models of ALK+ NSCLC. We found that stroma-proximal tumor cells are partially protected against cytostatic effects of alectinib. This effect is observed not only in remission, but also during relapse, indicating the strong contribution of stroma-mediated resistance to both persistence and resistance. This therapy-protective effect of the stromal niche reflects a combined action of multiple mechanisms, including growth factors and extracellular matrix components. Consequently, despite improving alectinib responses, suppression of any individual resistance mechanism was insufficient to fully overcome the protective effect of stroma. Focusing on shared collateral sensitivity of persisters offered a superior therapeutic benefit, especially when using an antibody-drug conjugate with bystander effect to limit therapeutic escape. These findings indicate that stroma-mediated resistance might be the major contributor to both residual and progressing disease and highlight the limitation of focusing on suppressing a single resistance mechanism at a time.
Collapse
|
4
|
Rosell R, Pedraz-Valdunciel C, Jain A, Shivamallu C, Aguilar A. Deterministic reprogramming and signaling activation following targeted therapy in non-small cell lung cancer driven by mutations or oncogenic fusions. Expert Opin Investig Drugs 2024; 33:171-182. [PMID: 38372666 DOI: 10.1080/13543784.2024.2320710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.
Collapse
Affiliation(s)
- Rafael Rosell
- Cancer Biology & Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Dandikere, Karnataka, India
| | - Andrés Aguilar
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Kondo N, Utsumi T, Shimizu Y, Takemoto A, Oh-hara T, Uchibori K, Subat-Motoshi S, Ninomiya H, Takeuchi K, Nishio M, Miyazaki Y, Katayama R. MIG6 loss confers resistance to ALK/ROS1 inhibitors in NSCLC through EGFR activation by low-dose EGF. JCI Insight 2023; 8:e173688. [PMID: 37917191 PMCID: PMC10807714 DOI: 10.1172/jci.insight.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Although tyrosine kinase inhibitor (TKI) therapy shows marked clinical efficacy in patients with anaplastic lymphoma kinase-positive (ALK+) and ROS proto-oncogene 1-positive (ROS1+) non-small cell lung cancer (NSCLC), most of these patients eventually relapse with acquired resistance. Therefore, genome-wide CRISPR/Cas9 knockout screening was performed using an ALK+ NSCLC cell line established from pleural effusion without ALK-TKI treatment. After 9 days of ALK-TKI therapy, sequencing analysis was performed, which identified several tumor suppressor genes, such as NF2 or MED12, and multiple candidate genes. Among them, this study focused on ERRFI1, which is known as MIG6 and negatively regulates EGFR signaling. Interestingly, MIG6 loss induced resistance to ALK-TKIs by treatment with quite a low dose of EGF, which is equivalent to plasma concentration, through the upregulation of MAPK and PI3K/AKT/mTOR pathways. Combination therapy with ALK-TKIs and anti-EGFR antibodies could overcome the acquired resistance in both in vivo and in vitro models. In addition, this verified that MIG6 loss induces resistance to ROS1-TKIs in ROS1+ cell lines. This study found a potentially novel factor that plays a role in ALK and ROS1-TKI resistance by activating the EGFR pathway with low-dose ligands.
Collapse
Affiliation(s)
- Nobuyuki Kondo
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Utsumi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Shimizu
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tomoko Oh-hara
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital
| | - Sophia Subat-Motoshi
- Department of Pathology, the Cancer Institute Hospital, and
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | | | - Kengo Takeuchi
- Department of Pathology, the Cancer Institute Hospital, and
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Ando C, Ichihara E, Nishi T, Morita A, Hara N, Takada K, Nakasuka T, Watanabe H, Kano H, Nishii K, Makimoto G, Kondo T, Ninomiya K, Fujii M, Kubo T, Ohashi K, Matsuoka K, Hotta K, Tabata M, Maeda Y, Kiura K. Efficacy of gilteritinib in comparison with alectinib for the treatment of ALK-rearranged non-small cell lung cancer. Cancer Sci 2023; 114:4343-4354. [PMID: 37715310 PMCID: PMC10637052 DOI: 10.1111/cas.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
Gilteritinib is a multitarget tyrosine kinase inhibitor (TKI), approved for the treatment of FLT3-mutant acute myeloid leukemia, with a broad range of activity against several tyrosine kinases including anaplastic lymphoma kinase (ALK). This study investigated the efficacy of gilteritinib against ALK-rearranged non-small cell lung cancers (NSCLC). To this end, we assessed the effects of gilteritinib on cell proliferation, apoptosis, and acquired resistance responses in several ALK-rearranged NSCLC cell lines and mouse xenograft tumor models and compared its efficacy to alectinib, a standard ALK inhibitor. Gilteritinib was significantly more potent than alectinib, as it inhibited cell proliferation at a lower dose, with complete attenuation of growth observed in several ALK-rearranged NSCLC cell lines and no development of drug tolerance. Immunoblotting showed that gilteritinib strongly suppressed phosphorylated ALK and its downstream effectors, as well as mesenchymal-epithelial transition factor (MET) signaling. By comparison, MET signaling was enhanced in alectinib-treated cells. Furthermore, gilteritinib was found to more effectively abolish growth of ALK-rearranged NSCLC xenograft tumors, many of which completely receded. Interleukin-15 (IL-15) mRNA levels were elevated in gilteritinib-treated cells, together with a concomitant increase in the infiltration of tumors by natural killer (NK) cells, as assessed by immunohistochemistry. This suggests that IL-15 production along with NK cell infiltration may constitute components of the gilteritinib-mediated antitumor responses in ALK-rearranged NSCLCs. In conclusion, gilteritinib demonstrated significantly improved antitumor efficacy compared with alectinib against ALK-rearranged NSCLC cells, which can warrant its candidacy for use in anticancer regimens, after further examination in clinical trial settings.
Collapse
Affiliation(s)
- Chihiro Ando
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Eiki Ichihara
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Tatsuya Nishi
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Ayako Morita
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Naofumi Hara
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kenji Takada
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hiromi Watanabe
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hirohisa Kano
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Go Makimoto
- Center for Clinical OncologyOkayama University HospitalOkayamaJapan
| | - Takumi Kondo
- Department of Hematology and OncologyOkayama University HospitalOkayamaJapan
| | - Kiichiro Ninomiya
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Masanori Fujii
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Toshio Kubo
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Ken‐ichi Matsuoka
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Katsuyuki Hotta
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| | - Masahiro Tabata
- Center for Clinical OncologyOkayama University HospitalOkayamaJapan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| |
Collapse
|
7
|
Katayama Y, Yamada T, Tanimura K, Tokuda S, Morimoto K, Hirai S, Matsui Y, Nakamura R, Ishida M, Kawachi H, Yoneda K, Hosoya K, Tsuji T, Ozasa H, Yoshimura A, Iwasaku M, Kim YH, Horinaka M, Sakai T, Utsumi T, Shiotsu S, Takeda T, Katayama R, Takayama K. Adaptive resistance to lorlatinib via EGFR signaling in ALK-rearranged lung cancer. NPJ Precis Oncol 2023; 7:12. [PMID: 36702855 PMCID: PMC9879975 DOI: 10.1038/s41698-023-00350-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)-tyrosine kinase inhibitors rarely elicit complete responses in patients with advanced ALK-rearranged non-small cell lung cancer (NSCLC), as a small population of tumor cells survives due to adaptive resistance. Therefore, we focused on the mechanisms underlying adaptive resistance to lorlatinib and therapeutic strategies required to overcome them. We found that epidermal growth factor receptor (EGFR) signaling was involved in the adaptive resistance to lorlatinib in ALK-rearranged NSCLC, activation of which was induced by heparin-binding EGF-like growth factor production via c-Jun activation. EGFR inhibition halted ALK-rearranged lung cancer cell proliferation by enhancing ALK inhibition-induced apoptosis via suppression of Bcl-xL. Xenograft models showed that the combination of EGFR inhibitor and lorlatinib considerably suppressed tumor regrowth following cessation of these treatments. This study provides new insights regarding tumor evolution due to EGFR signaling after lorlatinib treatment and the development of combined therapeutic strategies for ALK-rearranged lung cancer.
Collapse
Affiliation(s)
- Yuki Katayama
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Tanimura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Soichi Hirai
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Nakamura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ishida
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazue Yoneda
- grid.271052.30000 0004 0374 5913Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazutaka Hosoya
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Tsuji
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Yoshimura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Young Hak Kim
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mano Horinaka
- grid.272458.e0000 0001 0667 4960Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- grid.272458.e0000 0001 0667 4960Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Utsumi
- grid.410807.a0000 0001 0037 4131Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan ,grid.177174.30000 0001 2242 4849Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinsuke Shiotsu
- grid.415604.20000 0004 1763 8262Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takayuki Takeda
- grid.415627.30000 0004 0595 5607Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Ryohei Katayama
- grid.410807.a0000 0001 0037 4131Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichi Takayama
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Alternative Treatment Options to ALK Inhibitor Monotherapy for EML4-ALK-Driven Lung Cancer. Cancers (Basel) 2022; 14:cancers14143452. [PMID: 35884511 PMCID: PMC9325236 DOI: 10.3390/cancers14143452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
EML4-ALK is an oncogenic fusion protein that accounts for approximately 5% of NSCLC cases. Targeted inhibitors of ALK are the standard of care treatment, often leading to a good initial response. Sadly, some patients do not respond well, and most will develop resistance over time, emphasizing the need for alternative treatments. This review discusses recent advances in our understanding of the mechanisms behind EML4-ALK-driven NSCLC progression and the opportunities they present for alternative treatment options to ALK inhibitor monotherapy. Targeting ALK-dependent signalling pathways can overcome resistance that has developed due to mutations in the ALK catalytic domain, as well as through activation of bypass mechanisms that utilise the same pathways. We also consider evidence for polytherapy approaches that combine targeted inhibition of these pathways with ALK inhibitors. Lastly, we review combination approaches that use targeted inhibitors of ALK together with chemotherapy, radiotherapy or immunotherapy. Throughout this article, we highlight the importance of alternative breakpoints in the EML4 gene that result in the generation of distinct EML4-ALK variants with different biological and pathological properties and consider monotherapy and polytherapy approaches that may be selective to particular variants.
Collapse
|
9
|
Salifu EY, Rashid IA, Soliman MES. Impact of compound mutations I1171N + F1174I and I1171N + L1198H on the structure of ALK in NSCLC pathogenesis: atomistic insights. J Biomol Struct Dyn 2022:1-9. [PMID: 35514136 DOI: 10.1080/07391102.2022.2072390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anaplastic lymphoma kinase (ALK) fusion genes are found in 3%-5% of non-small cell lung cancers (NSCLCs). NSCLC is the most common type of lung cancer, accounting for 84% of all lung cancer diagnoses. Available treatment options for ALK-positive NSCLCs involve the use of ALK tyrosine kinase inhibitors (ALK-TKIs) which have shown to be effective with a high response rate. Nonetheless, the emergence of multiple compound mutations such as I1171N + F1174I or I1171N + L1198H has been reported to cause resistance to all approved ALK-TKIs. However, the underlying molecular mechanisms surrounding the impact of these compound mutants remain poorly understood. Hence, we performed molecular dynamics simulations to characterize the structural effects and functional implications of these compound mutations. Findings revealed a destabilizing effect on ALK by mutants as compared to the wild-type ALK structure. Also, further insights revealed a lower root-mean-squared fluctuation, radius of gyration, and solvent-accessible surface area values of I1171N + F1174I and I1171N + L1198H ALK compound mutations suggesting that the mutants have a more compact structure and a smaller surface area than the wild-type protein. The mutants also distorted the activation loop residues (Tyr1278, Tyr1282, and Tyr1283) in the ALK structure, which further identify them as possible disruptors of phosphorylation. In contrast to wild conformation, the mutant conformations exhibited a reduced node degree in their residue interaction networks. Collectively, our findings provide deeper insights into the deleterious effects of I1171N + F1174I and I1171N + L1198H ALK compound mutations, which may contribute to NSCLC pathogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elliasu Y Salifu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Issahaku A Rashid
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Peng L, Zhu L, Sun Y, Stebbing J, Selvaggi G, Zhang Y, Yu Z. Targeting ALK Rearrangements in NSCLC: Current State of the Art. Front Oncol 2022; 12:863461. [PMID: 35463328 PMCID: PMC9020874 DOI: 10.3389/fonc.2022.863461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations in non-small cell lung cancer (NSCLC) can be effectively treated with a variety of ALK-targeted drugs. After the approval of the first-generation ALK inhibitor crizotinib which achieved better results in prolonging the progression-free survival (PFS) compared with chemotherapy, a number of next-generation ALK inhibitors have been developed including ceritinib, alectinib, brigatinib, and ensartinib. Recently, a potent, third-generation ALK inhibitor, lorlatinib, has been approved by the Food and Drug Administration (FDA) for the first-line treatment of ALK-positive (ALK+) NSCLC. These drugs have manageable toxicity profiles. Responses to ALK inhibitors are however often not durable, and acquired resistance can occur as on-target or off-target alterations. Studies are underway to explore the mechanisms of resistance and optimal treatment options beyond progression. Efforts have also been undertaken to develop further generations of ALK inhibitors. This review will summarize the current situation of targeting the ALK signaling pathway.
Collapse
Affiliation(s)
- Ling Peng
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Yilan Sun
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
11
|
STAT3 inhibition suppresses adaptive survival of ALK-rearranged lung cancer cells through transcriptional modulation of apoptosis. NPJ Precis Oncol 2022; 6:11. [PMID: 35228642 PMCID: PMC8885877 DOI: 10.1038/s41698-022-00254-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
Patients with advanced anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer who are prescribed ALK-tyrosine kinase inhibitors (ALK-TKIs) rarely have complete responses, with residual tumors relapsing as heterogeneous resistant phenotypes. Herein, we investigated new therapeutic strategies to reduce and eliminate residual tumors in the early treatment phase. Functional genomic screening using small guide RNA libraries showed that treatment-induced adaptive survival of ALK-rearranged lung cancer cells was predominantly dependent on STAT3 activity upon ALK inhibition. STAT3 inhibition effectively suppressed the adaptive survival of ALK-rearranged lung cancer cells by enhancing ALK inhibition-induced apoptosis. The combined effects were characterized by treatment-induced STAT3 dependence and transcriptional regulation of anti-apoptotic factor BCL-XL. In xenograft study, the combination of YHO-1701 (STAT3 inhibitor) and alectinib significantly suppressed tumor regrowth after treatment cessation with near tumor remission compared with alectinib alone. Hence, this study provides new insights into combined therapeutic strategies for patients with ALK-rearranged lung cancer.
Collapse
|
12
|
Belluomini L, Dodi A, Caldart A, Kadrija D, Sposito M, Casali M, Sartori G, Ferrara MG, Avancini A, Bria E, Menis J, Milella M, Pilotto S. A narrative review on tumor microenvironment in oligometastatic and oligoprogressive non-small cell lung cancer: a lot remains to be done. Transl Lung Cancer Res 2021; 10:3369-3384. [PMID: 34430373 PMCID: PMC8350097 DOI: 10.21037/tlcr-20-1134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Objective In this review, we aim to collect and discuss available data about the role and composition of tumor microenvironment (TME) in oligometastatic (OMD) and oligoprogressive (OPD) non-small cell lung cancer (NSCLC). Furthermore, we aim to summarize the ongoing clinical trials evaluating as exploratory objective the TME composition, through tissue and/or blood samples, in order to clarify whether TME and its components could explain, at least partially, the oligometastatic/oligoprogressive process and could unravel the existence of predictive and/or prognostic factors for local ablative therapy (LAT). Background OMD/OPD NSCLC represent a heterogeneous group of diseases. Several data have shown that TME plays an important role in tumor progression and therefore in treatment response. The crucial role of several types of cells and molecules such as immune cells, cytokines, integrins, protease and adhesion molecules, tumor-associated macrophages (TAMs) and mesenchymal stem cells (MSCs) has been widely established. Due to the peculiar activation of specific pathways and expression of adhesion molecules, metastatic cells seem to show a tropism for specific anatomic sites (the so-called “seed and soil” hypothesis). Based on this theory, metastases appear as a biologically driven process rather than a random release of cancer cells. Although the role and the function of TME at the time of progression in patients with NSCLC treated with tyrosine-kinase inhibitors and immune checkpoint inhibitors (ICIs) have been investigated, limited data about the role and the biological meaning of TME are available in the specific OMD/OPD setting. Methods Through a comprehensive PubMed and ClinicalTrials.gov search, we identified available and ongoing studies exploring the role of TME in oligometastatic/oligoprogressive NSCLC. Conclusions Deepening the knowledge on TME composition and function in OMD/OPD may provide innovative implications in terms of both prognosis and prediction of outcome in particular from local treatments, paving the way for future investigations of personalized approaches in both advanced and early disease settings.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alessandra Dodi
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alberto Caldart
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Dzenete Kadrija
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Casali
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giulia Sartori
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alice Avancini
- Biomedical, Clinical and Experimental Sciences, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
13
|
Liu T, Merguerian MD, Rowe SP, Pratilas CA, Chen AR, Ladle BH. Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006064. [PMID: 34210658 PMCID: PMC8327881 DOI: 10.1101/mcs.a006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Treatment of high-risk neuroblastoma typically incorporates multiagent chemotherapy, surgery, radiation therapy, autologous stem cell transplantation, immunotherapy, and differentiation therapy. The discovery of activating mutations in ALK receptor tyrosine kinase (ALK) in ∼8% of neuroblastomas opens the possibility of further improving outcomes for this subset of patients with the addition of ALK inhibitors. ALK inhibitors have shown efficacy in tumors such as non-small-cell lung cancer and anaplastic large cell lymphoma in which wild-type ALK overexpression is driven by translocation events. In contrast, ALK mutations driving neuroblastomas are missense mutations in the tyrosine kinase domain yielding constitutive activation and differing sensitivity to available ALK inhibitors. We describe a case of a patient with relapsed, refractory, metastatic ALK F1174L-mutated neuroblastoma who showed no response to the first-generation ALK inhibitor crizotinib but had a subsequent complete response to the ALK/ROS1 inhibitor lorlatinib. The patient's disease relapsed after 13 mo of treatment. Sequencing of cell-free DNA at the time of relapse pointed toward a potential mechanism of acquired lorlatinib resistance: amplification of CDK4 and FGFR1 and a NRAS Q61K mutation. We review the literature regarding differing sensitivity of ALK mutations found in neuroblastoma to current FDA-approved ALK inhibitors and known pathways of acquired resistance. Our report adds to the literature of important correlations between neuroblastoma ALK mutation status and clinical responsiveness to ALK inhibitors. It also highlights the importance of understanding acquired mechanisms of resistance.
Collapse
Affiliation(s)
- Tingting Liu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Matthew D Merguerian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA
| | - Christine A Pratilas
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Allen R Chen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Brian H Ladle
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| |
Collapse
|
14
|
Quinn CH, Beierle AM, Williams AP, Marayati R, Bownes LV, Markert HR, Aye JM, Stewart JE, Mroczek-Musulman E, Crossman DK, Yoon KJ, Beierle EA. Downregulation of PDGFRß Signaling Overcomes Crizotinib Resistance in a TYRO3 and ALK Mutated Neuroendocrine-Like Tumor. Transl Oncol 2021; 14:101099. [PMID: 33887553 PMCID: PMC8086143 DOI: 10.1016/j.tranon.2021.101099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/03/2021] [Indexed: 01/04/2023] Open
Abstract
Patient-derived xenografts provide significant advantages over long-term passage cell lines when investigating efficacy of treatments for solid tumors. Our laboratory encountered a high-grade, metastatic, neuroendocrine-like tumor from a pediatric patient that presented with a unique genetic profile. In particular, mutations in TYRO3 and ALK were identified. We established a human patient-derived xenoline (PDX) of this tumor for use in the current study. We investigated the effect of crizotinib, a chemotherapeutic known to effectively target both TYRO3 and ALK mutations. Crizotinib effectively decreased viability, proliferation, growth, and the metastatic properties of the PDX tumor through downregulation of STAT3 signaling, but expression of PDGFRß was increased. Sunitinib is a small molecule inhibitor of PDGFRß and was studied in this PDX independently and in combination with crizotinib. Sunitinib alone decreased viability, proliferation, and growth in vitro and decreased tumor growth in vivo. In combination, sunitinib was able to overcome potential crizotinib-induced resistance through downregulation of ERK 1/2 activity and PDGFRß receptor expression; consequently, tumor growth was significantly decreased both in vitro and in vivo. Through the use of the PDX, it was possible to identify crizotinib as a less effective therapeutic for this tumor and suggest that targeting PDGFRß would be more effective. These findings may translate to other solid tumors that present with the same genetic mutations.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | | | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States.
| |
Collapse
|
15
|
Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nat Commun 2021; 12:1261. [PMID: 33627640 PMCID: PMC7904790 DOI: 10.1038/s41467-021-21396-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
ALK gene rearrangement was observed in 3%-5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI-resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.
Collapse
|
16
|
Current Knowledge about Mechanisms of Drug Resistance against ALK Inhibitors in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13040699. [PMID: 33572278 PMCID: PMC7915291 DOI: 10.3390/cancers13040699] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer is a devastating disease, with non-small cell lung cancer (NSCLC) being the most common subtype. With the development of novel targeted therapeutics, survival times have continuously improved over the past two decades. In a subset of NSCLC, gene rearrangements of the anaplastic lymphoma kinase (ALK), or gene fusions involving ALK, can be determined. ALK-inhibitors are increasingly used as a standard of care in patients with ALK gene abnormalities, and can also be administered as first-line treatment in advanced-stage NSCLC. However, over the disease course, cancers tend to develop resistance mechanisms, warranting the switch from first- to second- or third-generation ALK inhibitors. With this literature review, we aim to give a concise overview about these resistance mechanisms, and what kind of sequential treatment may be feasible if therapy failure upon an ALK inhibitor occurs. Abstract Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer subtypes. Two to seven percent of NSCLC patients harbor gene rearrangements of the anaplastic lymphoma kinase (ALK) gene or, alternatively, harbor chromosomal fusions of ALK with echinoderm microtubule-associated protein-like 4 (EML4). The availability of tyrosine kinase inhibitors targeting ALK (ALK-TKIs) has significantly improved the progression-free and overall survival of NSCLC patients carrying the respective genetic aberrations. Yet, increasing evidence shows that primary or secondary resistance to ALK-inhibitors during the course of treatment represents a relevant clinical problem. This necessitates a switch to second- or third-generation ALK-TKIs and a close observation of NSCLC patients on ALK-TKIs during the course of treatment by repetitive molecular testing. With this review of the literature, we aim at providing an overview of current knowledge about resistance mechanisms to ALK-TKIs in NSCLC.
Collapse
|
17
|
Tabbò F, Reale ML, Bironzo P, Scagliotti GV. Resistance to anaplastic lymphoma kinase inhibitors: knowing the enemy is half the battle won. Transl Lung Cancer Res 2021; 9:2545-2556. [PMID: 33489817 PMCID: PMC7815358 DOI: 10.21037/tlcr-20-372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anaplastic lymphoma kinase (ALK) translocations are responsible of neoplastic transformation in a limited subset of non-small cell lung cancer (NSCLC) patients. In recent years outcomes of these patients improved due to the development and clinical availability of specific and extremely active targeted therapies [i.e., next-generation Tyrosine Kinase Inhibitors (TKI)]: ALK+ patients are now reaching impressive results when treated with more potent inhibitors upfront with an average median progression-free survival (mPFS) around 35 months. However, under drug pressure, cancer cells develop resistance and patients eventually progress. Multiple mechanisms of intrinsic or acquired resistance have been extensively characterized. Less potent ALK inhibitors (ALKi)—like crizotinib—usually tend to induce a large spectrum of secondary intra-kinase mutations; however, these alterations may be observed also after sequential administration of multiple ALKi. Noteworthy, neoplastic cells may evade ALK targeting through a myriad of different mechanisms involving cell-stroma interaction, activation of parallel signaling pathways, intracellular downstream adaptation and histological reshaping, as relevant molecular events. Often these phenomena are restricted to a limited number of cases or even can be patient-specific, thus hindering the development of therapeutic strategies largely applicable. Consequently, the recognition of specific resistance mechanisms seldom translates in clinical opportunities. Management of ALK+ patients is drastically changed and deciphering the molecular biology underlying this disease during treatment is of paramount relevance. The bedrock of resistance to TKI is that, after the diagnosis, we face with a different disease that needs to be re-characterized through tissue or/and liquid biopsies. Understanding molecular pathways driving the resistant phenotype will give us the chance to know what we are dealing with and, rather than choose an empirical approach, will help us to properly define the best targeted treatment for these patients.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Maria Lucia Reale
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| |
Collapse
|
18
|
Wang S, Shi Y, Han X. [Advances in Drug Resistance Mechanisms and Prognostic Markers of Targeted Therapy in ALK-positive Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:1014-1022. [PMID: 33203201 PMCID: PMC7679215 DOI: 10.3779/j.issn.1009-3419.2020.101.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
棘皮动物微管相关类蛋白4-间变性淋巴瘤激酶(echinoderm microtubule-associated protein like 4-anaplastic lymphoma kinase, EML4-ALK)融合占非小细胞肺癌(non-small cell lung cancer, NSCLC)患者的3%-5%。随着对该驱动基因的深入研究,以Crizotinib为代表的ALK抑制剂逐渐被开发并应用于临床。然而,不同患者对ALK靶向治疗的反应存在差异,且多数ALK靶向治疗患者最终会不可避免地出现耐药,导致肿瘤进展。利用预后标志物监测患者疗效及时改变治疗方案,以及根据耐药机制选择个体化的后续治疗,可以有效地改善患者的预后。本文将对ALK抑制剂的耐药机制以及相关的预后标志物展开综述,探讨ALK靶向治疗疗效预测以及耐药患者后续治疗方案的选择。
Collapse
Affiliation(s)
- Shasha Wang
- Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,
Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,
Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
19
|
Feng H, Liu K, Shen X, Liang J, Wang C, Qiu W, Cheng X, Zhao R. Targeting tumor cell-derived CCL2 as a strategy to overcome Bevacizumab resistance in ETV5 + colorectal cancer. Cell Death Dis 2020; 11:916. [PMID: 33099574 PMCID: PMC7585575 DOI: 10.1038/s41419-020-03111-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
In our previous study, ETV5 mediated-angiogenesis was demonstrated to be dependent upon the PDGF-BB/PDGFR-β/Src/STAT3/VEGFA pathway in colorectal cancer (CRC). However, the ability of ETV5 to affect the efficacy of anti-angiogenic therapy in CRC requires further investigation. Gene set enrichment analysis (GSEA) and a series of experiments were performed to identify the critical candidate gene involved in Bevacizumab resistance. Furthermore, the ability of treatment targeting the candidate gene to enhance Bevacizumab sensitivity in vitro and in vivo was investigated. Our results revealed that ETV5 directly bound to the VEGFA promoter to promote translation of VEGFA. However, according to in vitro and in vivo experiments, ETV5 unexpectedly accelerated antiVEGF therapy (Bevacizumab) resistance. GSEA and additional assays confirmed that ETV5 could promote angiogenesis by inducing the secretion of another tumor angiogenesis factor (CCL2) in CRC cells to facilitate Bevacizumab resistance. Mechanistically, ETV5 upregulated CCL2 by activating STAT3 to facilitate binding with the CCL2 promoter. ETV5 induced-VEGFA translation and CCL2 secretion were mutually independent mechanisms, that induced angiogenesis by activating the PI3K/AKT and p38/MAPK signaling pathways in human umbilical vein endothelial cells (HUVECs). In CRC tissues, ETV5 protein levels were positively associated with CD31, CCL2, and VEGFA protein expression. CRC patients possessing high expression of ETV5/VEGFA or ETV5/CCL2 exhibited a poorer prognosis compared to that of other patients. Combined antiCCL2 and antiVEGFA (Bevacizumab) treatment could inhibit tumor angiogenesis and growth more effectively than single treatments in CRCs with high expression of ETV5 (ETV5+ CRCs). In conclusion, our results not only revealed ETV5 as a novel biomarker for anti-angiogenic therapy, but also indicated a potential combined therapy strategy that involved in targeting of both CCL2 and VEGFA in ETV5+ CRC.
Collapse
Affiliation(s)
- Haoran Feng
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China
| | - Xiaonan Shen
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Juyong Liang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| |
Collapse
|
20
|
Codony-Servat J, García-Roman S, Molina-Vila MÁ, Bertran-Alamillo J, Viteri S, d'Hondt E, Rosell R. Anti-epidermal growth factor vaccine antibodies increase the antitumor activity of kinase inhibitors in ALK and RET rearranged lung cancer cells. Transl Oncol 2020; 14:100887. [PMID: 33129112 PMCID: PMC7591385 DOI: 10.1016/j.tranon.2020.100887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Advanced NSCLC patients harboring EML4-ALK and CCDC6-RET rearrangements derive benefit from treatment with ALK and RET TKIs but not immune checkpoint inhibitors. New immunotherapeutic approaches, such as immunization against growth factors, can be of particular interest for combination treatment in these patients. Here, we investigated the effects of anti-EGF antibodies generated by vaccination (anti-EGF VacAbs), TKIs and combinations in EML4-ALK and CCDC6-RET NSCLC cell lines. We found that EGF and tumor growth factor alpha (TGFα) significantly decreased the antiproliferative activity of the RET inhibitor BLU-667 in CCDC6-RET cells and brigatinib, alectinib and crizotinib in EML4-ALK translocated cells. The addition of anti-EGF VacAbs reversed the effects of EGF and TGFα, potentiated the antitumor effects of the kinase inhibitors and delayed the appearance in vitro of resistant clones. Western blotting demonstrated that the combination of anti-EGF VacAbs with ALK or RET TKIs effectively suppressed EGFR downstream pathways in EML4-ALK translocated and CCDC6-RET cells, respectively. In conclusion, anti-EGF VacAbs significantly increased the antitumor activity of TKIs in ALK and RET-positive cell lines. Clinical trials of an EGF vaccine in combination with ALK and RET TKIs are warranted.
Collapse
Affiliation(s)
- Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Silvia García-Roman
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Miguel Ángel Molina-Vila
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain.
| | - Jordi Bertran-Alamillo
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Santiago Viteri
- Instituto Oncológico Dr. Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | | | - Rafael Rosell
- Instituto Oncológico Dr. Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain; Catalan Institute of Oncology, Badalona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
21
|
ALK Inhibitors-Induced M Phase Delay Contributes to the Suppression of Cell Proliferation. Cancers (Basel) 2020; 12:cancers12041054. [PMID: 32344689 PMCID: PMC7226408 DOI: 10.3390/cancers12041054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK), a receptor-type tyrosine kinase, is involved in the pathogenesis of several cancers. ALK has been targeted with small molecule inhibitors for the treatment of different cancers, but absolute success remains elusive. In the present study, the effects of ALK inhibitors on M phase progression were evaluated. Crizotinib, ceritinib, and TAE684 suppressed proliferation of neuroblastoma SH-SY5Y cells in a concentration-dependent manner. At approximate IC50 concentrations, these inhibitors caused misorientation of spindles, misalignment of chromosomes and reduction in autophosphorylation. Similarly, knockdown of ALK caused M phase delay, which was rescued by re-expression of ALK. Time-lapse imaging revealed that anaphase onset was delayed. The monopolar spindle 1 (MPS1) inhibitor, AZ3146, and MAD2 knockdown led to a release from inhibitor-induced M phase delay, suggesting that spindle assembly checkpoint may be activated in ALK-inhibited cells. H2228 human lung carcinoma cells that express EML4-ALK fusion showed M phase delay in the presence of TAE684 at about IC50 concentrations. These results suggest that ALK plays a role in M phase regulation and ALK inhibition may contribute to the suppression of cell proliferation in ALK-expressing cancer cells.
Collapse
|
22
|
Zhu C, Zhuang W, Chen L, Yang W, Ou WB. Frontiers of ctDNA, targeted therapies, and immunotherapy in non-small-cell lung cancer. Transl Lung Cancer Res 2020; 9:111-138. [PMID: 32206559 PMCID: PMC7082279 DOI: 10.21037/tlcr.2020.01.09] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
Non-small-cell lung cancer (NSCLC), a main subtype of lung cancer, is one of the most common causes of cancer death in men and women worldwide. Circulating tumor DNA (ctDNA), tyrosine kinase inhibitors (TKIs) and immunotherapy have revolutionized both our understanding of NSCLC, from its diagnosis to targeted NSCLC therapies, and its treatment. ctDNA quantification confers convenience and precision to clinical decision making. Furthermore, the implementation of TKI-based targeted therapy and immunotherapy has significantly improved NSCLC patient quality of life. This review provides an update on the methods of ctDNA detection and its impact on therapeutic strategies; therapies that target epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) using TKIs such as osimertinib and lorlatinib; the rise of various resistant mechanisms; and the control of programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4) by immune checkpoint inhibitors (ICIs) in immunotherapy; blood tumor mutational burden (bTMB) calculated by ctDNA assay as a novel biomarker for immunotherapy. However, NSCLC patients still face many challenges. Further studies and trials are needed to develop more effective drugs or therapies to treat NSCLC.
Collapse
Affiliation(s)
- Chennianci Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihao Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Limin Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenyu Yang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
23
|
Arai S, Takeuchi S, Fukuda K, Taniguchi H, Nishiyama A, Tanimoto A, Satouchi M, Yamashita K, Ohtsubo K, Nanjo S, Kumagai T, Katayama R, Nishio M, Zheng MM, Wu YL, Nishihara H, Yamamoto T, Nakada M, Yano S. Osimertinib Overcomes Alectinib Resistance Caused by Amphiregulin in a Leptomeningeal Carcinomatosis Model of ALK-Rearranged Lung Cancer. J Thorac Oncol 2020; 15:752-765. [PMID: 31972351 DOI: 10.1016/j.jtho.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Leptomeningeal carcinomatosis (LMC) occurs frequently in anaplastic lymphoma kinase (ALK)-rearranged NSCLC and develops acquired resistance to ALK tyrosine kinase inhibitors (ALK TKIs). This study aimed to clarify the resistance mechanism to alectinib, a second-generation ALK TKI, in LMC and test a novel therapeutic strategy. METHODS We induced alectinib resistance in an LMC mouse model with ALK-rearranged NSCLC cell line, A925LPE3, by continuous oral alectinib treatment, established A925L/AR cells. Resistance mechanisms were analyzed using several assays, including Western blot and receptor tyrosine kinase array. We also measured amphiregulin (AREG) concentrations in cerebrospinal fluid from patients with ALK-rearranged NSCLC with alectinib-refractory LMC by enzyme-linked immunosorbent assay. RESULTS A925L/AR cells were moderately resistant to various ALK TKIs, such as alectinib, crizotinib, ceritinib, and lorlatinib, compared with parental cells in vitro. A925L/AR cells acquired the resistance by EGFR activation resulting from AREG overexpression caused by decreased expression of microRNA-449a. EGFR TKIs and anti-EGFR antibody resensitized A925L/AR cells to alectinib in vitro. In the LMC model with A925L/AR cells, combined treatment with alectinib and EGFR TKIs, such as erlotinib and osimertinib, successfully controlled progression of LMC. Mass spectrometry imaging showed accumulation of the EGFR TKIs in the tumor lesions. Moreover, notably higher AREG levels were detected in cerebrospinal fluid of patients with alectinib-resistant ALK-rearranged NSCLC with LMC (n = 4), compared with patients with EGFR-mutated NSCLC with EGFR TKI-resistant LMC (n = 30), or patients without LMC (n = 24). CONCLUSIONS These findings indicate the potential of novel therapies targeting both ALK and EGFR for the treatment of ALK TKI-resistant LMC in ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Sachiko Arai
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Taniguchi
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Miyako Satouchi
- Department of Thoracic Oncology, Hyogo Cancer Center, Akashi, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Koshiro Ohtsubo
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Department of Medicine, Division of Hematology-Oncology, University of California San Francisco, San Francisco, California; Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Toru Kumagai
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation For Cancer Research, Tokyo, Japan
| | - Mei-Mei Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangzhou, People's Republic of China; Guangdong Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangzhou, People's Republic of China; Guangdong Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China; Guangdong Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Takushi Yamamoto
- Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, Kyoto, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
24
|
Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Nat Struct Mol Biol 2020; 27:92-104. [PMID: 31925410 DOI: 10.1038/s41594-019-0358-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Kinases are involved in disease development and modulation of their activity can be therapeutically beneficial. Drug-resistant mutant kinases are valuable tools in drug discovery efforts, but the prediction of mutants across the kinome is challenging. Here, we generate deep mutational scanning data to identify mutant mammalian kinases that drive resistance to clinically relevant inhibitors. We aggregate these data with subsaturation mutagenesis data and use it to develop, test and validate a framework to prospectively identify residues that mediate kinase activity and drug resistance across the kinome. We validate predicted resistance mutations in CDK4, CDK6, ERK2, EGFR and HER2. Capitalizing on a highly predictable residue, we generate resistance mutations in TBK1, CSNK2A1 and BRAF. Unexpectedly, we uncover a potentially generalizable activation site that mediates drug resistance and confirm its impact in BRAF, EGFR, HER2 and MEK1. We anticipate that the identification of these residues will enable the broad interrogation of the kinome and its inhibitors.
Collapse
|
25
|
Kwon JH, Kim KJ, Sung JH, Suh KJ, Lee JY, Kim JW, Kim SH, Lee JO, Kim JW, Kim YJ, Lee KW, Kim JH, Bang SM, Kim S, Yoon SS, Lee JS. Afatinib Overcomes Pemetrexed-Acquired Resistance in Non-Small Cell Lung Cancer Cells Harboring an EML4-ALK Rearrangement. Cells 2019; 8:cells8121538. [PMID: 31795298 PMCID: PMC6953071 DOI: 10.3390/cells8121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: The aim of this study is to elucidate the mechanisms of acquired resistance to pemetrexed in echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearranged non-small cell lung cancer. Methods: We analyzed the sensitivity to pemetrexed and the expression patterns of various proteins after pemetrexed treatment in the cell lines, A549, NCI-H460, NCI-H2228 harboring EML4-ALK variant 3, and NCI-H3122 harboring EML4-ALK variant 1. Pemetrexed-resistant cell lines were also generated through long-term exposure to pemetrexed. Results: The EML4-ALK variant 1 rearranged NCI-H3122 was found to be more sensitive than the other cell lines. Cell cycle analysis after pemetrexed treatment showed that the fraction of cells in the S phase increased in A549, NCI-H460, and NCI-H2228, whereas the fraction in the apoptotic sub-G1 phase increased in NCI-H3122. The pemetrexed-resistant NCI-H3122 cell line showed increased expression of EGFR and HER2 compared to the parent cell line, whereas A549 and NCI-H460 did not show this change. The pan-HER inhibitor afatinib inhibited this alternative signaling pathway, resulting in a superior cytotoxic effect in pemetrexed-resistant NCI-H3122 cell lines compared to that in the parental cells line. Conclusion: The activation of EGFR-HER2 contributes to the acquisition of resistance to pemetrexed in EML4-ALK rearranged non-small cell lung cancer. However, the inhibition of this alternative survival signaling pathway with RNAi against EGFR-HER2 and with afatinib overcomes this resistance.
Collapse
Affiliation(s)
- Ji-Hyun Kwon
- Translational Medicine, Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Ji Hea Sung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Ji Yun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Jong Seok Lee
- Translational Medicine, Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
- Correspondence: ; Tel.: +82-31-787-7022; Fax: +82-31-787-4052
| |
Collapse
|
26
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
27
|
Taylor-King JP, Baratchart E, Dhawan A, Coker EA, Rye IH, Russnes H, Chapman SJ, Basanta D, Marusyk A. Simulated ablation for detection of cells impacting paracrine signalling in histology analysis. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2019; 36:93-112. [PMID: 29452382 DOI: 10.1093/imammb/dqx022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Intra-tumour phenotypic heterogeneity limits accuracy of clinical diagnostics and hampers the efficiency of anti-cancer therapies. Dealing with this cellular heterogeneity requires adequate understanding of its sources, which is extremely difficult, as phenotypes of tumour cells integrate hardwired (epi)mutational differences with the dynamic responses to microenvironmental cues. The later comes in form of both direct physical interactions, as well as inputs from gradients of secreted signalling molecules. Furthermore, tumour cells can not only receive microenvironmental cues, but also produce them. Despite high biological and clinical importance of understanding spatial aspects of paracrine signaling, adequate research tools are largely lacking. Here, a partial differential equation (PDE)-based mathematical model is developed that mimics the process of cell ablation. This model suggests how each cell might contribute to the microenvironment by either absorbing or secreting diffusible factors, and quantifies the extent to which observed intensities can be explained via diffusion-mediated signalling. The model allows for the separation of phenotypic responses to signalling gradients within tumour microenvironments from the combined influence of responses mediated by direct physical contact and hardwired (epi)genetic differences. The method is applied to a multi-channel immunofluorescence in situ hybridisation (iFISH)-stained breast cancer histological specimen, and correlations are investigated between: HER2 gene amplification, HER2 protein expression and cell interaction with the diffusible microenvironment. This approach allows partial deconvolution of the complex inputs that shape phenotypic heterogeneity of tumour cells and identifies cells that significantly impact gradients of signalling molecules.
Collapse
Affiliation(s)
- Jake P Taylor-King
- Mathematical Institute, University of Oxford, Oxford, UK.,Department of Integrated Mathematical Oncology, Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Institute of Molecular Systems Biology, Department of Biology, ETHZ, Zurich, Switzerland
| | - Etienne Baratchart
- Department of Integrated Mathematical Oncology, Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew Dhawan
- Department of Oncology, University of Oxford, Oxford, UK
| | - Elizabeth A Coker
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Inga Hansine Rye
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Hege Russnes
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - S Jon Chapman
- Mathematical Institute, University of Oxford, Oxford, UK
| | - David Basanta
- Department of Integrated Mathematical Oncology, Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andriy Marusyk
- Department of Cancer Imaging and Metabolism, Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
28
|
Kaznatcheev A, Peacock J, Basanta D, Marusyk A, Scott JG. Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer. Nat Ecol Evol 2019; 3:450-456. [PMID: 30778184 PMCID: PMC6467526 DOI: 10.1038/s41559-018-0768-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2018] [Indexed: 01/22/2023]
Abstract
Heterogeneity in strategies for survival and proliferation among the cells which constitute a tumour is a driving force behind the evolution of resistance to cancer therapy. The rules mapping the tumour’s strategy distribution to the fitness of individual strategies can be represented as an evolutionary game. We develop a game assay to measure effective evolutionary games in co-cultures of non-small cell lung cancer cells which are sensitive and resistant to the anaplastic lymphoma kinase inhibitor Alectinib. The games are not only quantitatively different between different environments, but targeted therapy and cancer associated fibroblasts qualitatively switch the type of game being played by the in-vitro population from Leader to Deadlock. This observation provides empirical confirmation of a central theoretical postulate of evolutionary game theory in oncology: we can treat not only the player, but also the game. Although we concentrate on measuring games played by cancer cells, the measurement methodology we develop can be used to advance the study of games in other microscopic systems by providing a quantitative description of non-cell-autonomous effects.
Collapse
Affiliation(s)
- Artem Kaznatcheev
- Department of Computer Science, University of Oxford, Oxford, UK. .,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
| | - Jeffrey Peacock
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Jacob G Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA. .,Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
29
|
Fukuda K, Takeuchi S, Arai S, Katayama R, Nanjo S, Tanimoto A, Nishiyama A, Nakagawa T, Taniguchi H, Suzuki T, Yamada T, Nishihara H, Ninomiya H, Ishikawa Y, Baba S, Takeuchi K, Horiike A, Yanagitani N, Nishio M, Yano S. Epithelial-to-Mesenchymal Transition Is a Mechanism of ALK Inhibitor Resistance in Lung Cancer Independent of ALK Mutation Status. Cancer Res 2019; 79:1658-1670. [PMID: 30737231 DOI: 10.1158/0008-5472.can-18-2052] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
Abstract
Mutations in the ALK gene are detectable in approximately 40% of ALK-rearranged lung cancers resistant to ALK inhibitors. Although epithelial-to-mesenchymal transition (EMT) is a mechanism of resistance to various targeted drugs, its involvement in ALK inhibitor resistance is largely unknown. In this study, we report that both ALK-mutant L1196M and EMT were concomitantly detected in a single crizotinib-resistant lesion in a patient with ALK-rearranged lung cancer. Digital PCR analyses combined with microdissection after IHC staining for EMT markers revealed that ALK L1196M was predominantly detected in epithelial-type tumor cells, indicating that mesenchymal phenotype and ALK mutation can coexist as independent mechanisms underlying ALK inhibitor-resistant cancers. Preclinical experiments with crizotinib-resistant lung cancer cells showed that EMT associated with decreased expression of miR-200c and increased expression of ZEB1 caused cross-resistance to new-generation ALK inhibitors alectinib, ceritinib, and lorlatinib. Pretreatment with the histone deacetylase (HDAC) inhibitor quisinostat overcame this resistance by reverting EMT in vitro and in vivo. These findings indicate that HDAC inhibitor pretreatment followed by a new ALK inhibitor may be useful to circumvent resistance constituted by coexistence of resistance mutations and EMT in the heterogeneous tumor. SIGNIFICANCE: These findings show that dual inhibition of HDAC and ALK receptor tyrosine kinase activities provides a means to circumvent crizotinib resistance in lung cancer.
Collapse
Affiliation(s)
- Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Nakagawa
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Taniguchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hironori Ninomiya
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuichi Ishikawa
- Pathology Project for Molecular Targets and Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets and Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets and Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Horiike
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
30
|
Kitadai R, Okuma Y, Kawai S. Ceritinib for an anaplastic lymphoma kinase rearrangement-positive patient previously treated with alectinib with poor performance status. Onco Targets Ther 2018; 12:15-19. [PMID: 30588026 PMCID: PMC6301300 DOI: 10.2147/ott.s186213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ALK inhibitors are promising for treating ALK rearrangement non-small-cell lung cancer (NSCLC), but secondary mutations of ALK can sometimes inhibit their effectiveness. A 54-year-old woman with lung adenocarcinoma harboring ALK rearrangement previously treated with first-line alectinib and second-line cisplatin/pemetrexed showed poor performance status (PS) with rapid progression. She was treated with ceritinib as salvage treatment, upon which tumor shrinkage was demonstrated on CT and her PS gradually improved. The best supportive care is recommended for patients with advanced NSCLC with poor PS due to lower treatment efficacy and more toxicities than those with good PS. In this case, rapid progression led to a poor PS; however, ceritinib achieved a breakthrough in this case. The optimal treatment sequence and key drugs in ALK-positive NSCLC remain controversial.
Collapse
Affiliation(s)
- Rui Kitadai
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo, Tokyo 113-8677, Japan,
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo, Tokyo 113-8677, Japan,
| | - Shoko Kawai
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo, Tokyo 113-8677, Japan,
| |
Collapse
|
31
|
Zeng L, Kang R, Zhu S, Wang X, Cao L, Wang H, Billiar TR, Jiang J, Tang D. ALK is a therapeutic target for lethal sepsis. Sci Transl Med 2018; 9:9/412/eaan5689. [PMID: 29046432 DOI: 10.1126/scitranslmed.aan5689] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/30/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022]
Abstract
Sepsis, a life-threatening organ dysfunction caused by infection, is a major public health concern with limited therapeutic options. We provide evidence to support a role for anaplastic lymphoma kinase (ALK), a tumor-associated receptor tyrosine kinase, in the regulation of innate immunity during lethal sepsis. The genetic disruption of ALK expression diminishes the stimulator of interferon genes (STING)-mediated host immune response to cyclic dinucleotides in monocytes and macrophages. Mechanistically, ALK directly interacts with epidermal growth factor receptor (EGFR) to trigger serine-threonine protein kinase AKT phosphorylation and activate interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) signaling pathways, enabling STING-dependent rigorous inflammatory responses. Moreover, pharmacological or genetic inhibition of the ALK-STING pathway confers protection against lethal endotoxemia and sepsis in mice. The ALK pathway is up-regulated in patients with sepsis. These findings uncover a key role for ALK in modulating the inflammatory signaling pathway and shed light on the development of ALK-targeting therapeutics for lethal systemic inflammatory disorders.
Collapse
Affiliation(s)
- Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Research institute for Traffic Medicine of People's Liberation Army, Daping Hospital, Third Military Medical University, Chongqing 400042, China.,The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong 510510, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shan Zhu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Xiao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Research institute for Traffic Medicine of People's Liberation Army, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Research institute for Traffic Medicine of People's Liberation Army, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong 510510, China. .,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
32
|
Nakamichi S, Seike M, Miyanaga A, Chiba M, Zou F, Takahashi A, Ishikawa A, Kunugi S, Noro R, Kubota K, Gemma A. Overcoming drug-tolerant cancer cell subpopulations showing AXL activation and epithelial-mesenchymal transition is critical in conquering ALK-positive lung cancer. Oncotarget 2018; 9:27242-27255. [PMID: 29930762 PMCID: PMC6007478 DOI: 10.18632/oncotarget.25531] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/14/2018] [Indexed: 02/03/2023] Open
Abstract
Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) induce a dramatic response in non-small cell lung cancer (NSCLC) patients with the ALK fusion gene. However, acquired resistance to ALK-TKIs remains an inevitable problem. In this study, we aimed to discover novel therapeutic targets to conquer ALK-positive lung cancer. We established three types of ALK-TKI (crizotinib, alectinib and ceritinib)-resistant H2228 NSCLC cell lines by high exposure and stepwise methods. We found these cells showed a loss of ALK signaling, overexpressed AXL with epithelial-mesenchymal transition (EMT), and had cancer stem cell-like (CSC) properties, suggesting drug-tolerant cancer cell subpopulations. Similarly, we demonstrated that TGF-β1 treated H2228 cells also showed AXL overexpression with EMT features and ALK-TKI resistance. The AXL inhibitor, R428, or HSP90 inhibitor, ganetespib, were effective in reversing ALK-TKI resistance and EMT changes in both ALK-TKI-resistant and TGF-β1-exposed H2228 cells. Tumor volumes of xenograft mice implanted with established H2228-ceritinib-resistant (H2228-CER) cells were significantly reduced after treatment with ganetespib, or ganetespib in combination with ceritinib. Some ALK-positive NSCLC patients with AXL overexpression showed a poorer response to crizotinib therapy than patients with a low expression of AXL. ALK signaling-independent AXL overexpressed in drug-tolerant cancer cell subpopulations with EMT and CSC features may be commonly involved commonly involved in intrinsic and acquired resistance to ALK-TKIs. This suggests AXL and HSP90 inhibitors may be promising therapeutic drugs to overcome drug-tolerant cancer cell subpopulations in ALK-positive NSCLC patients for the reason that ALK-positive NSCLC cells do not live through ALK-TKI therapy.
Collapse
Affiliation(s)
- Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Mika Chiba
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Fenfei Zou
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akiko Takahashi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Arimi Ishikawa
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
33
|
Dexamethasone alleviates pemetrexed-induced senescence in Non-Small-Cell Lung Cancer. Food Chem Toxicol 2018; 119:86-97. [PMID: 29753869 DOI: 10.1016/j.fct.2018.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
Abstract
Pemetrexed (PEM) is a novel and multi-targeted antifolate used as an antineoplastic agent for non-small cell lung cancer (NSCLC) and pleural mesothelioma. Although glucocorticoid was often used with PEM to reduce toxicity during the chemotherapy, it is not clear yet whether glucocorticoid co-administration could affect PEM efficacy in NSCLC. Here we established NSCLC cell lines and examined the effects of dexamethasone (DEX) on PEM sensitivity in vitro and in xenograft models. DEX co-administration reduced chemotherapy sensitivity to PEM in xenograft models. DEX co-administration promoted cell growth and weakened senescence growth arrest, such as altered secretions of proinflammatory and mitogenic cytokines, reminiscent of a senescence associate secretory phenotype (SASP). CSCs in DEX co-administration group were subsequently found to be less sensitive towards PEM treatment as measured by cell proliferation and generation of tumor spheres in the presence of PEM. Survival molecule B-cell lymphoma-2 (Bcl-2) may involve in this process and blockage of Bcl-2 could reverse altered senescence and CSCs abilities, thus alleviated PEM insensitivity. As such, DEX might suppress the antitumor activity of PEM through altered SASP level that had induced traits similar to CSCs.
Collapse
|
34
|
ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers (Basel) 2018; 10:cancers10040113. [PMID: 29642598 PMCID: PMC5923368 DOI: 10.3390/cancers10040113] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40-50%. Therefore, novel treatment strategies aimed at providing long-term disease remission are urgently sought. ALK, encoding the anaplastic lymphoma kinase receptor, is altered by gain-of-function point mutations in around 14% of high-risk NB and represents an ideal therapeutic target given its low or absent expression in healthy tissue postnatally. Small-molecule inhibitors of Anaplastic Lymphoma Kinase (ALK) approved in ALK fusion-positive lung cancer are currently undergoing clinical assessment in patients with ALK-mutant NB. Parallel pre-clinical studies are demonstrating the efficacy of ALK inhibitors against common ALK variants in NB; however, a complex picture of therapeutic resistance is emerging. It is anticipated that long-term use of these compounds will require combinatorial targeting of pathways downstream of ALK, functionally-related 'bypass' mechanisms and concomitant oncogenic pathways.
Collapse
|
35
|
Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer 2018; 17:43. [PMID: 29455663 PMCID: PMC5817793 DOI: 10.1186/s12943-018-0800-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour microenvironment (TME) is a key determinant of tumour growth and metastasis. TME could be very different for each type and location of tumour and TME may change constantly during tumour growth. Multiple counterparts in surrounding microenvironment including mesenchymal-, hematopoietic-originated cells as well as non-cellular components affect TME. Thus, therapeutics that can disrupt the tumour-favouring microenvironment should be further explored for cancer therapy. Previous efforts in unravelling the dysregulated mechanisms of TME components has identified numerous protein tyrosine kinases, while its corresponding inhibitors have demonstrated potent modulatory effect on TME. Recent works have demonstrated that beyond the direct action on cancer cells, tyrosine kinase inhibitors (TKIs) have been implicated in inactivation or normalization of dysregulated TME components leading to cancer regression. Either through re-sensitizing the tumour cells or reversing the immunological tolerance microenvironment, the emergence of these TME modulatory mechanism of TKIs supports the combinatory use of TKIs with current chemotherapy or immunotherapy for cancer therapy. Therefore, an appropriate understanding on TME modulation by TKIs may offer another mode of action of TKIs for cancer treatment. This review highlights mode of kinase activation or paracrine ligand production from TME components and summarises the findings on the potential use of various TKIs on regulating TME components. At last, the combination use of current TKIs with immunotherapy in the perspectives of efficacy and safety are discussed.
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
36
|
Tabbò F, Pizzi M, Kyriakides PW, Ruggeri B, Inghirami G. Oncogenic kinase fusions: an evolving arena with innovative clinical opportunities. Oncotarget 2018; 7:25064-86. [PMID: 26943776 PMCID: PMC5041889 DOI: 10.18632/oncotarget.7853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer biology relies on intrinsic and extrinsic deregulated pathways, involving a plethora of intra-cellular and extra-cellular components. Tyrosine kinases are frequently deregulated genes, whose aberrant expression is often caused by major cytogenetic events (e.g. chromosomal translocations). The resulting tyrosine kinase fusions (TKFs) prompt the activation of oncogenic pathways, determining the biological and clinical features of the associated tumors. First reported half a century ago, oncogenic TKFs are now found in a large series of hematologic and solid tumors. The molecular basis of TKFs has been thoroughly investigated and tailored therapies against recurrent TKFs have recently been developed. This review illustrates the biology of oncogenic TKFs and their role in solid as well as hematological malignancies. We also address the therapeutic implications of TKFs and the many open issues concerning their clinical impact.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Peter W Kyriakides
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bruce Ruggeri
- Pre-Clinical Discovery Biology, Incyte Corporation, Wilmington, DE, USA
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Ye M, Zhang X, Li N, Zhang Y, Jing P, Chang N, Wu J, Ren X, Zhang J. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance. Oncotarget 2017; 7:12289-304. [PMID: 26802023 PMCID: PMC4914285 DOI: 10.18632/oncotarget.6935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
During the past decade, more than 10 targetable oncogenic driver genes have been validated in non-small cell lung cancer (NSCLC). Anaplastic lymphoma kinase (ALK) and ROS1 kinase are two new driver genes implicated in ALK- and ROS1-rearranged NSCLC. Inhibition of ALK and ROS1 by crizotinib has been reported to be highly effective and well tolerated in these patients. However, resistance to crizotinib emerges years after treatment, and increasing efforts have been made to overcome this issue. Here, we review the biology of ALK and ROS1 and their roles in cancer progression. We also summarize the ongoing and completed clinical trials validating ALK and ROS1 as targets for cancer treatment. In the last section of the review, we will discuss the molecular mechanisms of crizotinib resistance and focus approaches to overcome it. This review describes an exciting new area of research and may provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
- Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinxin Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Nan Li
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ning Chang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianxiong Wu
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinling Ren
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
38
|
Dagogo-Jack I, Shaw AT. Crizotinib resistance: implications for therapeutic strategies. Ann Oncol 2017; 27 Suppl 3:iii42-iii50. [PMID: 27573756 DOI: 10.1093/annonc/mdw305] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In 2007, a chromosomal rearrangement resulting in a gene fusion leading to expression of a constitutively active anaplastic lymphoma kinase (ALK) fusion protein was identified as an oncogenic driver in non-small-cell lung cancer (NSCLC). ALK rearrangements are detected in 3%-7% of patients with NSCLC and are particularly enriched in younger patients with adenocarcinoma and a never or light smoking history. Fortuitously, crizotinib, a small molecule tyrosine kinase inhibitor initially developed to target cMET, was able to be repurposed for ALK-rearranged (ALK+) NSCLC. Despite dramatic and durable initial responses to crizotinib; however, the vast majority of patients will develop resistance within a few years. Diverse molecular mechanisms underlie resistance to crizotinib. This review will describe the clinical activity of crizotinib, review identified mechanisms of crizotinib resistance, and end with a survey of emerging therapeutic strategies aimed at overcoming crizotinib resistance.
Collapse
Affiliation(s)
- I Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, USA
| | - A T Shaw
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, USA
| |
Collapse
|
39
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
40
|
Diagnosis and Treatment of Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer. Hematol Oncol Clin North Am 2017; 31:101-111. [PMID: 27912826 DOI: 10.1016/j.hoc.2016.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anaplastic lymphoma kinase (ALK) gene rearrangements occur in a small portion of patients with non-small cell lung cancer (NSCLC). These gene rearrangements lead to constitutive activation of the ALK kinase and subsequent ALK-driven tumor formation. Patients with tumors harboring such rearrangements are highly sensitive to ALK inhibitors, such as crizotinib, ceritinib, and alectinib. Resistance to these kinase inhibitors occurs through several mechanisms, resulting in ongoing clinical challenges. This review summarizes the biology of ALK-positive lung cancer, methods for diagnosing ALK-positive NSCLC, current FDA-approved ALK inhibitors, mechanisms of resistance to ALK inhibition, and potential strategies to combat resistance.
Collapse
|
41
|
Ye M, Zhang Y, Zhang X, Zhang J, Jing P, Cao L, Li N, Li X, Yao L, Zhang J, Zhang J. Targeting FBW7 as a Strategy to Overcome Resistance to Targeted Therapy in Non–Small Cell Lung Cancer. Cancer Res 2017; 77:3527-3539. [PMID: 28522751 DOI: 10.1158/0008-5472.can-16-3470] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/27/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xinxin Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Cao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Nan Li
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Libo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China.
| |
Collapse
|
42
|
Nanjo S, Arai S, Wang W, Takeuchi S, Yamada T, Hata A, Katakami N, Okada Y, Yano S. MET Copy Number Gain Is Associated with Gefitinib Resistance in Leptomeningeal Carcinomatosis of EGFR-mutant Lung Cancer. Mol Cancer Ther 2017; 16:506-515. [PMID: 28138027 DOI: 10.1158/1535-7163.mct-16-0522] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/13/2023]
Abstract
Leptomeningeal carcinomatosis occurs frequently in EGFR-mutant lung cancer, and develops acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs). This study aimed to clarify the mechanism of EGFR-TKI resistance in leptomeningeal carcinomatosis and seek for a novel therapeutic strategy. We examined EGFR mutations, including the T790M gatekeeper mutation, in 32 re-biopsy specimens from 12 leptomeningeal carcinomatosis and 20 extracranial lesions of EGFR-mutant lung cancer patients who became refractory to EGFR-TKI treatment. All the 32 specimens had the same baseline EGFR mutations, but the T790M mutation was less frequent in leptomeningeal carcinomatosis specimens than in extracranial specimens (8% vs. 55%, P < 0.01). To study molecular mechanisms of acquired EGFR-TKI resistance in leptomeningeal carcinomatosis, we utilized our previously developed mouse model of leptomeningeal carcinomatosis with the EGFR-mutant lung cancer cell line PC-9/ffluc cells, in which acquired resistance to gefitinib was induced by continuous oral treatment. Compared with subcutaneously inoculated gefitinib-resistant tumors, the T790M mutation was less frequent in leptomeningeal carcinomatosis that acquired resistance to gefitinib. PC-9/LMC-GR cells were established from the gefitinib-resistant leptomeningeal carcinomatosis model, and they were found to be intermediately resistant to gefitinib and osimertinib (third-generation EGFR-TKI). Although EGFR-T790M was negative, gefitinib resistance of PC-9/LMC-GR cells was related to MET copy number gain with MET activation. Moreover, combined use of EGFR-TKI and crizotinib, a MET inhibitor, dramatically regressed leptomeningeal carcinomatosis with acquired resistance to gefitinib or osimertinib. These findings suggest that combination therapy with MET inhibitors may be promising for controlling leptomeningeal carcinomatosis that acquires resistance to EGFR-TKIs. Mol Cancer Ther; 16(3); 506-15. ©2017 AACR.
Collapse
Affiliation(s)
- Shigeki Nanjo
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan.,Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Chuo-ku, Kobe, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Wei Wang
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Shinji Takeuchi
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Tadaaki Yamada
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Akito Hata
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Chuo-ku, Kobe, Japan
| | - Nobuyuki Katakami
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Chuo-ku, Kobe, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Yano
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan.
| |
Collapse
|
43
|
Chang H, Sung JH, Moon SU, Kim HS, Kim JW, Lee JS. EGF Induced RET Inhibitor Resistance in CCDC6-RET Lung Cancer Cells. Yonsei Med J 2017; 58:9-18. [PMID: 27873490 PMCID: PMC5122657 DOI: 10.3349/ymj.2017.58.1.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Rearrangement of the proto-oncogene rearranged during transfection (RET) has been newly identified potential driver mutation in lung adenocarcinoma. Clinically available tyrosine kinase inhibitors (TKIs) target RET kinase activity, which suggests that patients with RET fusion genes may be treatable with a kinase inhibitor. Nevertheless, the mechanisms of resistance to these agents remain largely unknown. Thus, the present study aimed to determine whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) trigger RET inhibitor resistance in LC-2/ad cells with CCDC6-RET fusion genes. MATERIALS AND METHODS The effects of EGF and HGF on the susceptibility of a CCDC6-RET lung cancer cell line to RET inhibitors (sunitinib, E7080, vandetanib, and sorafenib) were examined. RESULTS CCDC6-RET lung cancer cells were highly sensitive to RET inhibitors. EGF activated epidermal growth factor receptor (EGFR) and triggered resistance to sunitinib, E7080, vandetanib, and sorafenib by transducing bypass survival signaling through ERK and AKT. Reversible EGFR-TKI (gefitinib) resensitized cancer cells to RET inhibitors, even in the presence of EGF. Endothelial cells, which are known to produce EGF, decreased the sensitivity of CCDC6-RET lung cancer cells to RET inhibitors, an effect that was inhibited by EGFR small interfering RNA (siRNA), anti-EGFR antibody (cetuximab), and EGFR-TKI (Iressa). HGF had relatively little effect on the sensitivity to RET inhibitors. CONCLUSION EGF could trigger resistance to RET inhibition in CCDC6-RET lung cancer cells, and endothelial cells may confer resistance to RET inhibitors by EGF. E7080 and other RET inhibitors may provide therapeutic benefits in the treatment of RET-positive lung cancer patients.
Collapse
Affiliation(s)
- Hyun Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, Korea.
| | - Ji Hea Sung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Ung Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Han Soo Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
44
|
Dong X, Fernandez-Salas E, Li E, Wang S. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non-Small Cell Lung Cancer Cells. Neoplasia 2016; 18:162-71. [PMID: 26992917 PMCID: PMC4796802 DOI: 10.1016/j.neo.2016.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non-small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC.
Collapse
Affiliation(s)
- Xuyuan Dong
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China; University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ester Fernandez-Salas
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Enxiao Li
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.
| | - Shaomeng Wang
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Kashima J, Okuma Y, Hishima T. A patient previously treated with ALK inhibitors for central nervous system lesions from ALK rearranged lung cancer: a case report. Onco Targets Ther 2016; 9:6059-6063. [PMID: 27785052 PMCID: PMC5066989 DOI: 10.2147/ott.s112833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) are now preferentially treated with tyrosine kinase inhibitors (TKIs). However, patients treated with ALK inhibitors end up with acquired resistance. Case presentation We present a patient with recurrent ALK-rearranged NSCLC that developed multiple brain metastases and meningitis carcinomatosa after sequential treatment with several lines of cytotoxic chemotherapy, crizotinib, and alectinib. After the patient underwent retreatment with crizotinib as salvage therapy because of poor performance status, the intracranial metastatic foci and meningeal thickening were shrank within 1 week. Conclusion Our experience with this case suggests that alectinib may restore sensitivity to crizotinib or amplified pathway such as MET which bestowed alectinib resistance was inhibited with crizotinib.
Collapse
Affiliation(s)
- Jumpei Kashima
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital; Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| |
Collapse
|
46
|
You L, Shou J, Deng D, Jiang L, Jing Z, Yao J, Li H, Xie J, Wang Z, Pan Q, Pan H, Huang W, Han W. Crizotinib induces autophagy through inhibition of the STAT3 pathway in multiple lung cancer cell lines. Oncotarget 2016; 6:40268-82. [PMID: 26384345 PMCID: PMC4741894 DOI: 10.18632/oncotarget.5592] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an evolutionarily conserved survival pathway in eukaryote and is frequently upregulated in cancer cells after chemotherapy or targeted therapy. Thus induction of autophagy has emerged as a drug resistance mechanism. In this study, we found that crizotinib induced a high level of autophagy in lung cancer cells through inhibition of STAT3. Ectopic expression of wild-type or constitutive activated STAT3 significantly suppressed the effect of crizotinib on autophagy. Interestingly, crizotinib-mediated inhibition of STAT3 is in a step-wise manner. Firstly it inhibited cytoplasmic STAT3, which leads to the phosphorylation of EIF2A, then inhibited nuclear STAT3, which leads to the downregulation of BCL-2. Cell death induced by crizotinib was greatly enhanced after the inhibition of autophagy by the pharmacological inhibitors or shRNAs against Beclin-1. Moreover, the autophagy inhibitor HCQ significantly augmented the anti-tumor effect of crizotinib in a mouse xenograft model. In conclusion, crizotinib can induce cytoprotective autophagy by suppression of STAT3 in lung cancer cells. Thus, autophagy inhibition represents a promising approach to improve the efficacy of crizotinib in the treatment of targeted lung cancer patients.
Collapse
Affiliation(s)
- Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiawei Shou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danchen Deng
- Department of Gynaecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liming Jiang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Jing
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhanggui Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wendong Huang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Wicki A, Mandalà M, Massi D, Taverna D, Tang H, Hemmings BA, Xue G. Acquired Resistance to Clinical Cancer Therapy: A Twist in Physiological Signaling. Physiol Rev 2016; 96:805-29. [DOI: 10.1152/physrev.00024.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although modern therapeutic strategies have brought significant progress to cancer care in the last 30 years, drug resistance to targeted monotherapies has emerged as a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling axes, loss of suppressive regulations, and impaired functionalities of the immune system, have been extensively investigated aiming to understand the diversity of molecular mechanisms that underlie cancer development and progression. In this review, we intend to discuss the molecular mechanisms of how conventional physiological signal transduction confers to acquired drug resistance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles of the deregulated host immune system that may actively promote cancer progression and attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to develop more effective therapeutic strategies that are able to keep the tumor in check and even possibly turn cancer into a chronic disease.
Collapse
Affiliation(s)
- Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Mario Mandalà
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Massi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Taverna
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Huifang Tang
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Brian A. Hemmings
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| |
Collapse
|
48
|
Abstract
INTRODUCTION Lung cancer is associated with poor prognosis and limited benefit from chemotherapy. The treatment of non-small cell lung cancer (NSCLC) has been revolutionized by the discovery of targetable genetic alterations, including the ALK fusion oncogene. AREAS COVERED Three drugs have been approved for clinical use in ALK-positive patients - crizotinib, ceritinib and alectinib. Unfortunately, treatment resistance inevitably develops. Several mechanisms of acquired resistance are reported. In this review, we will discuss emerging treatment options in ALK-positive advanced NSCLC and strategies to overcome resistance mechanisms, including newer generation of ALK inhibitors, Hsp90 inhibitors and immunotherapy. EXPERT OPINION Tremendous advances have been made in the treatment of ALK-positive lung cancers, but management hurdles still exist, including universal development of resistance to ALK inhibitors and limited CNS activity. Given that specific treatment strategies target distinct patterns of resistance, re-biopsy at the time of progression appears necessary to optimize management. However, there remain many issues in routine clinical application including the burden placed on the patients by serial biopsies and the risks of repeat invasive procedures. Future studies are needed to validate the usage of non- or minimally invasive tests and to determine the optimal orders of utilizing different ALK inhibitors.
Collapse
Affiliation(s)
- Janaki Sharma
- a Division of Medical Oncology , Montefiore Medical Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Vipul Pareek
- a Division of Medical Oncology , Montefiore Medical Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Huijie Liu
- a Division of Medical Oncology , Montefiore Medical Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Division of Medical Oncology , Montefiore Medical Center, Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
49
|
Mutational and network level mechanisms underlying resistance to anti-cancer kinase inhibitors. Semin Cell Dev Biol 2016; 50:164-76. [DOI: 10.1016/j.semcdb.2015.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
|
50
|
Greco FA, Lennington WJ, Spigel DR, Hainsworth JD. Poorly differentiated neoplasms of unknown primary site: diagnostic usefulness of a molecular cancer classifier assay. Mol Diagn Ther 2016; 19:91-7. [PMID: 25758902 DOI: 10.1007/s40291-015-0133-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Definition of the lineage of poorly differentiated neoplasms (PDNs) presenting as cancer of unknown primary site (CUP) is important since many of these tumors are treatment-sensitive. Gene expression profiling and a molecular cancer classifier assay (MCCA) may provide a new method of diagnosis when standard pathologic evaluation and immunohistochemical (IHC) staining is unsuccessful. PATIENTS AND METHODS Thirty of 751 CUP patients (4%) seen from 2000-2012 had PDNs without a definitive lineage diagnosed by histology or IHC (median 18 stains, range 9-46). Biopsies from these 30 patients had MCCA (92-gene reverse transcriptase-polymerase chain reaction mRNA) performed. Additional IHC, gene sequencing, fluorescent in situ hybridization for specific genetic alterations, and repeat biopsies were performed to support MCCA diagnoses, and clinical features correlated. Seven patients had MCCA performed initially and received site-specific therapy. RESULTS Lineage diagnoses were made by MCCA in 25 of 30 (83 %) patients, including ten carcinomas (three germ cell, two neuroendocrine, five others), eight sarcomas [three peritoneal mesotheliomas, one primitive neuroectodermal tumor (PNET), four others], five melanomas, and two lymphomas. Additional IHC and genetic testing [BRAF, i(12)p] supported the MCCA diagnoses in 11 of 16 tumors. All seven patients (two germ cell, two neuroendocrine, two mesothelioma, one lymphoma) responded to site-specific therapy based on the MCCA diagnosis, and remain alive (five progression-free) from 25+ to 72+ months. CONCLUSION The MCCA provided a specific lineage diagnosis and tissue of origin in most patients with PDNs unclassifiable by standard pathologic evaluation. Earlier use of MCCA will expedite diagnosis and direct appropriate first-line therapy, which is potentially curative for several of these tumor types.
Collapse
Affiliation(s)
- F Anthony Greco
- Sarah Cannon Research Institute and Cancer Center, Tennessee Oncology, PLLC, Suite 100, 250 25th Avenue North, Nashville, TN, 37203, USA,
| | | | | | | |
Collapse
|