1
|
Gatasheh MK. Identifying key genes against rutin on human colorectal cancer cells via ROS pathway by integrated bioinformatic analysis and experimental validation. Comput Biol Chem 2024; 112:108178. [PMID: 39191167 DOI: 10.1016/j.compbiolchem.2024.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) poses a significant global health challenge, characterized by substantial prevalence variations across regions. This study delves into the therapeutic potential of rutin, a polyphenol abundant in fruits, for treating CRC. The primary objectives encompass identifying molecular targets and pathways influenced by rutin through an integrated approach combining bioinformatic analysis and experimental validation. Employing Gene Set Enrichment Analysis (GSEA), the study focused on identifying potential differentially expressed genes (DEGs) associated with CRC, specifically those involved in regulating reactive oxygen species, metabolic reprogramming, cell cycle regulation, and apoptosis. Utilizing diverse databases such as GEO2R, CTD, and Gene Cards, the investigation revealed a set of 16 targets. A pharmacological network analysis was subsequently conducted using STITCH and Cytoscape, pinpointing six highly upregulated genes within the rutin network, including TP53, PCNA, CDK4, CCNEB1, CDKN1A, and LDHA. Gene Ontology (GO) analysis predicted functional categories, shedding light on rutin's potential impact on antioxidant properties. KEGG pathway analysis enriched crucial pathways like metabolic and ROS signaling pathways, HIF1a, and mTOR signaling. Diagnostic assessments were performed using UALCAN and GEPIA databases, evaluating mRNA expression levels and overall survival for the identified targets. Molecular docking studies confirmed robust binding associations between rutin and biomolecules such as TP53, PCNA, CDK4, CCNEB1, CDKN1A, and LDHA. Experimental validation included inhibiting colorectal cell HT-29 growth and promoting cell growth with NAC through MTT assay. Flow cytometric analysis also observed rutin-induced G1 phase arrest and cell death in HT-29 cells. RT-PCR demonstrated reduced expression levels of target biomolecules in HT-29 cells treated with rutin. This comprehensive study underscores rutin's potential as a promising therapeutic avenue for CRC, combining computational insights with robust experimental evidence to provide a holistic understanding of its efficacy.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Lei JX, Wang R, Hu C, Lou X, Lv MY, Li C, Gai B, Wu XJ, Dou R, Cai D, Gao F. Deciphering tertiary lymphoid structure heterogeneity reveals prognostic signature and therapeutic potentials for colorectal cancer: a multicenter retrospective cohort study. Int J Surg 2024; 110:5627-5640. [PMID: 38833363 PMCID: PMC11392219 DOI: 10.1097/js9.0000000000001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) exert a crucial role in the tumor microenvironment (TME), impacting tumor development, immune escape, and drug resistance. Nonetheless, the heterogeneity of TLSs in colorectal cancer (CRC) and their impact on prognosis and treatment response remain unclear. METHODS The authors collected genome, transcriptome, clinicopathological information, and digital pathology images from multiple sources. An unsupervised clustering algorithm was implemented to determine diverse TLS patterns in CRC based on the expression levels of 39 TLS signature genes (TSGs). Comprehensive explorations of heterogeneity encompassing mutation landscape, TME, biological characteristics, response to immunotherapy, and drug resistance were conducted using multiomics data. TLSscore was then developed to quantitatively assess TLS patterns of individuals for further clinical applicability. RESULTS Three distinct TLS patterns were identified in CRC. Cluster 1 exhibited upregulation of proliferation-related pathways, high metabolic activity, and intermediate prognosis, while Cluster 2 displayed activation of stromal and carcinogenic pathways and a worse prognosis. Both Cluster 1 and Cluster 2 may potentially benefit from adjuvant chemotherapy. Cluster 3, characterized by the activation of immune regulation and activation pathways, demonstrated a favorable prognosis and enhanced responsiveness to immunotherapy. The authors subsequently employed a regularization algorithm to construct the TLSscore based on nine core genes. Patients with lower TLSscore trended to prolonged prognosis and a more prominent presence of TLSs, which may benefit from immunotherapy. Conversely, those with higher TLSscore exhibited increased benefits from adjuvant chemotherapy. CONCLUSIONS The authors identified distinct TLS patterns in CRC and characterized their heterogeneity through multiomics analyses. The TLSscore held promise for guiding clinical decision-making and further advancing the field of personalized medicine in CRC.
Collapse
Affiliation(s)
- Jia-Xin Lei
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, ShenzhenGuangdong Province
| | - Runxian Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, ZhuhaiGuangdong Province
| | - Chuling Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Xiaoying Lou
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Min-Yi Lv
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Chenghang Li
- Artificial Intelligence Thrust, The Hong Kong University of Science and Technology, Guangzhou, People's Republic of China
| | - Baowen Gai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Xiao-Jian Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Ruoxu Dou
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, ZhuhaiGuangdong Province
| | - Du Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Feng Gao
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| |
Collapse
|
3
|
Mondal K, Posa MK, Shenoy RP, Roychoudhury S. KRAS Mutation Subtypes and Their Association with Other Driver Mutations in Oncogenic Pathways. Cells 2024; 13:1221. [PMID: 39056802 PMCID: PMC11274496 DOI: 10.3390/cells13141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 07/28/2024] Open
Abstract
The KRAS mutation stands out as one of the most influential oncogenic mutations, which directly regulates the hallmark features of cancer and interacts with other cancer-causing driver mutations. However, there remains a lack of precise information on their cooccurrence with mutated variants of KRAS and any correlations between KRAS and other driver mutations. To enquire about this issue, we delved into cBioPortal, TCGA, UALCAN, and Uniport studies. We aimed to unravel the complexity of KRAS and its relationships with other driver mutations. We noticed that G12D and G12V are the prevalent mutated variants of KRAS and coexist with the TP53 mutation in PAAD and CRAD, while G12C and G12V coexist with LUAD. We also noticed similar observations in the case of PIK3CA and APC mutations in CRAD. At the transcript level, a positive correlation exists between KRAS and PIK3CA and between APC and KRAS in CRAD. The existence of the co-mutation of KRAS and other driver mutations could influence the signaling pathway in the neoplastic transformation. Moreover, it has immense prognostic and predictive implications, which could help in better therapeutic management to treat cancer.
Collapse
Affiliation(s)
- Koushik Mondal
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- Department of Cancer Immunology, SwasthyaNiketan Integrated Healthcare & Research Foundation, Koramangala, Bengaluru 560034, Karnataka, India
| | - Mahesh Kumar Posa
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur 302017, Rajasthan, India;
| | - Revathi P. Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Susanta Roychoudhury
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
4
|
Gatasheh MK, Natarajan SR, Krishnamoorthy R, Alsulami TS, Rajagopal P, Palanisamy CP, Veeraraghavan VP, Jayaraman S. Molecular analysis to identify novel potential biomarkers as drug targets in colorectal cancer therapy: an integrated bioinformatics analysis. Mol Cell Oncol 2024; 11:2326699. [PMID: 38505173 PMCID: PMC10950290 DOI: 10.1080/23723556.2024.2326699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that requires new diagnostic and prognostic markers. Integrated bioinformatics approach to identify novel therapeutic targets associated with CRC. Using GEO2R identified DEGs in CRC, and Funrich software facilitated the visualization of DEGs through Venn diagrams. From a total of 114 enhanced DEGs, potential hub genes were further filtered based on their nodal strength and edges using STRING database. To gain insights into the functional roles of these hub genes, gene ontology and pathway enrichment were conducted thorough g: profiler web server. Subsequently, overall survival plots from GEPIA and oncogenic predictive functions like mRNA expressions for stages and nodal metastasis were employed to identify hub genes in CRC patient samples. Additionally, the cBioPortal and HPA databases also revealed genetic alterations and expression levels in these hub genes in CRC patients, further supporting their involvement in colorectal cancer. Gene expression by RT-PCR shows upregulation of hub genes in HT-29 cells. Finally, our integrated bioinformatic analysis revealed that ABCE1, AURKA, HSPD1, PHKA1, CDK4, and YWHAE as hub genes with potential oncogenic roles in CRC. These genes hold promise as diagnostic and prognostic markers for colorectal tumorigenesis, providing insights into targeted therapies for improved patient outcomes.
Collapse
Affiliation(s)
- Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Tawfiq S Alsulami
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ponnulakshmi Rajagopal
- Department of Central Research Laboratory, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, India
| | - Chella Perumal Palanisamy
- Mini-invasive Neurosurgery and Translational Medical Center, Xi’an Central Hospital, Xi’an Jiaotong University, Xi’an, PR China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai, India
| |
Collapse
|
5
|
Li X, Lei J, Shi Y, Peng Z, Gong M, Shu X. Developing a RiskScore Model based on Angiogenesis-related lncRNAs for Colon Adenocarcinoma Prognostic Prediction. Curr Med Chem 2024; 31:2449-2466. [PMID: 37961859 DOI: 10.2174/0109298673277243231108071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
AIM We screened key angiogenesis-related lncRNAs based on colon adenocarcinoma (COAD) to construct a RiskScore model for predicting COAD prognosis and help reveal the pathogenesis of the COAD as well as optimize clinical treatment. BACKGROUND Regulatory roles of lncRNAs in tumor progression and prognosis have been confirmed, but few studies have probed into the role of angiogenesis-related lncRNAs in COAD. OBJECTIVE To identify key angiogenesis-related lncRNAs and build a RiskScore model to predict the survival probability of COAD patients and help optimize clinical treatment. METHODS Sample data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The HALLMARK pathway score in the samples was calculated using the single sample gene set enrichment analysis (ssGSEA) method. LncRNAs associated with angiogenesis were filtered by an integrated pipeline algorithm. LncRNA-based subtypes were classified by ConsensusClusterPlus and then compared with other established subtypes. A RiskScore model was created based on univariate Cox, least absolute shrinkage and selection operator (LASSO) regression and stepwise regression analysis. The Kaplan-Meier curve was drawn by applying R package survival. The time-dependent ROC curves were drawn by the timeROC package. Finally, immunotherapy benefits and drug sensitivity were analyzed using tumor immune dysfunction and exclusion (TIDE) software and pRRophetic package. RESULTS Pathway analysis showed that the angiogenesis pathway was a risk factor affecting the prognosis of COAD patients. A total of 66 lncRNAs associated with angiogenesis were screened, and three molecular subtypes (S1, S2, S3) were obtained. The prognosis of S1 and S2 was better than that of S3. Compared with the existing subtypes, the S3 subtype was significantly different from the other two subtypes. Immunoassay showed that immune cell scores of the S2 subtype were lower than those of the S1 and S3 subtypes, which also had the highest TIDE scores. We recruited 8 key lncRNAs to develop a RiskScore model. The high RiskScore group with inferior survival and higher TIDE scores was predicted to benefit limitedly from immunotherapy, but it may be more sensitive to chemotherapeutics. A nomogram designed by RiskScore signature and other clinicopathological characteristics shed light on rational predictive power for COAD treatment. CONCLUSION We constructed a RiskScore model based on angiogenesis-related lncRNAs, which could serve as potential prognostic predictors for COAD patients and may offer clues for the intervention of anti-angiogenic application. Our results may help evaluate the prognosis of COAD and provide better treatment strategies.
Collapse
Affiliation(s)
- Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Junping Lei
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441021, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Minmin Gong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441021, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
6
|
Kang Z, Chen B, Ma X, Yan F, Wang Z. Immune-related gene-based model predicts the survival of colorectal carcinoma and reflected various biological statuses. Front Mol Biosci 2023; 10:1277933. [PMID: 37920710 PMCID: PMC10619740 DOI: 10.3389/fmolb.2023.1277933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Bakcground: Prognosis of colorectal cancer (CRC) varies due to complex genetic-microenviromental interactions, and multiple gene-based prognostic models have been highlighted. Material and Method: In this work, the immune-related genes' expression-based model was developed and the scores of each sample were calculated. The correlation between the model and clinical information, immune infiltration, drug response and biological pathways were analyzed. Results: The high-score samples have a significantly longer survival (overall survival and progression-free survival) period than those with a low score, which was validated across seven datasets containing 1,325 samples (GSE17536 (N = 115), GSE17537 (N = 55), GSE33113 (N = 90), GSE37892 (N = 130), GSE38832 (N = 74), GSE39582 (N = 481), and TCGA (N = 380)). The score is significantly associated with clinical indicators, including age and stage, and further associated with PD-1/PD-L1 gene expression. Furthermore, high-score samples have significantly higher APC and a lower MUC5B mutation rate. The high-score samples show more immune infiltration (including CD4+ and CD8+ T cells, M1/M2 macrophages, and NK cells). Enriched pathway analyses showed that cancer-related pathways, including immune-related pathways, were significantly activated in high-score samples and that some drugs have significantly lower IC50 values than those with low score. Conclusion: The model developed based on immune-related genes is robust and reflected various statuses of CRC and may be a potential clinical indicator.
Collapse
Affiliation(s)
| | | | | | - Feihu Yan
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhen Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Quarshie JT, Fosu K, Offei NA, Sobo AK, Quaye O, Aikins AR. Cryptolepine Suppresses Colorectal Cancer Cell Proliferation, Stemness, and Metastatic Processes by Inhibiting WNT/β-Catenin Signaling. Pharmaceuticals (Basel) 2023; 16:1026. [PMID: 37513937 PMCID: PMC10383422 DOI: 10.3390/ph16071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths globally. Evidence shows that over 90% of CRC cases are initiated by a deregulated Wingless Integrated Type-1 (WNT)/β-catenin signaling pathway. The WNT/β-catenin pathway also promotes CRC cell proliferation, stemness, and metastasis. Therefore, modulators of the WNT/β-catenin pathway may serve as promising regimens for CRC. This study investigated the effect of cryptolepine-a plant-derived compound-on the WNT/β-catenin pathway in CRC. Two CRC cell lines, COLO205 and DLD1, were treated with cryptolepine or XAV 939 (a WNT inhibitor) in the presence or absence of WNT3a (a WNT activator). Using a tetrazolium-based assay, cryptolepine was found to reduce cell viability in a dose- and time-dependent manner and was a more potent inhibitor of viability than XAV 939. RT-qPCR analyses showed that cryptolepine reverses WNT3a-induced expression of β-catenin, c-MYC, and WISP1, suggesting that cryptolepine inhibits WNT3a-mediated activation of WNT/β-catenin signaling. Cryptolepine also repressed WNT3a-induced OCT4 and CD133 expression and suppressed colony formation of the cells, indicating that cryptolepine inhibits the stemness of CRC cells. Additionally, cryptolepine inhibited WNT3a-induced epithelial-to-mesenchymal transition by reducing the expression of SNAI1 and TWIST1 genes. In a wound healing assay, cryptolepine was found to suppress cell migration under unstimulated and WNT3a-stimulated conditions. Moreover, cryptolepine downregulated WNT3a-induced expression of MMP2 and MMP9 genes, which are involved in cancer cell invasion. Altogether, cryptolepine suppresses CRC cell proliferation, stemness, and metastatic properties by inhibiting WNT3a-mediated activation of the WNT/β-catenin signaling pathway. These findings provide a rationale for considering cryptolepine as a potential WNT inhibitor in CRC.
Collapse
Affiliation(s)
- Jude Tetteh Quarshie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Kwadwo Fosu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Nicholas Awuku Offei
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Augustine Kojo Sobo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Anastasia Rosebud Aikins
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| |
Collapse
|
8
|
Martínez-Zamudio RI, Stefa A, Nabuco Leva Ferreira Freitas JA, Vasilopoulos T, Simpson M, Doré G, Roux PF, Galan MA, Chokshi RJ, Bischof O, Herbig U. Escape from oncogene-induced senescence is controlled by POU2F2 and memorized by chromatin scars. CELL GENOMICS 2023; 3:100293. [PMID: 37082139 PMCID: PMC10112333 DOI: 10.1016/j.xgen.2023.100293] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/22/2023]
Abstract
Although oncogene-induced senescence (OIS) is a potent tumor-suppressor mechanism, recent studies revealed that cells could escape from OIS with features of transformed cells. However, the mechanisms that promote OIS escape remain unclear, and evidence of post-senescent cells in human cancers is missing. Here, we unravel the regulatory mechanisms underlying OIS escape using dynamic multidimensional profiling. We demonstrate a critical role for AP1 and POU2F2 transcription factors in escape from OIS and identify senescence-associated chromatin scars (SACSs) as an epigenetic memory of OIS detectable during colorectal cancer progression. POU2F2 levels are already elevated in precancerous lesions and as cells escape from OIS, and its expression and binding activity to cis-regulatory elements are associated with decreased patient survival. Our results support a model in which POU2F2 exploits a precoded enhancer landscape necessary for senescence escape and reveal POU2F2 and SACS gene signatures as valuable biomarkers with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Ricardo Iván Martínez-Zamudio
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Alketa Stefa
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - José Américo Nabuco Leva Ferreira Freitas
- Sorbonne Université, UMR 8256, Biological Adaptation and Ageing – IBPS, 75005 Paris, France
- INSERM U1164, 75005 Paris, France
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Themistoklis Vasilopoulos
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - Mark Simpson
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Gregory Doré
- Institut Pasteur, Plasmodium RNA Biology Unit, 25 Rue du Docteur Roux, 75724 Cedex 15 Paris, France
| | - Pierre-François Roux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Mark A. Galan
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ravi J. Chokshi
- Department of Surgery, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Utz Herbig
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Arroyo-Berdugo Y, Sendino M, Greaves D, Nojszewska N, Idilli O, So CW, Di Silvio L, Quartey-Papafio R, Farzaneh F, Rodriguez JA, Calle Y. High Throughput Fluorescence-Based In Vitro Experimental Platform for the Identification of Effective Therapies to Overcome Tumour Microenvironment-Mediated Drug Resistance in AML. Cancers (Basel) 2023; 15:1988. [PMID: 37046649 PMCID: PMC10093176 DOI: 10.3390/cancers15071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.
Collapse
Affiliation(s)
- Yoana Arroyo-Berdugo
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - David Greaves
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Natalia Nojszewska
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Orest Idilli
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Chi Wai So
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | | | - Farzin Farzaneh
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Yolanda Calle
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| |
Collapse
|
10
|
Lu H, Yang D, Shi Y, Chen K, Li P, Huang S, Cui D, Feng Y, Wang T, Yang J, Zhu X, Xia D, Wu Y. Toxicogenomics scoring system: TGSS, a novel integrated risk assessment model for chemical carcinogenicity prediction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114466. [PMID: 36587411 DOI: 10.1016/j.ecoenv.2022.114466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Given the increasing exposure of humans to environmental chemicals and the limitations of conventional toxicity test, there is an urgent need to develop next-generation risk assessment methods. OBJECTIVES This study aims to establish a novel computational system named Toxicogenomics Scoring System (TGSS) to predict the carcinogenicity of chemicals coupling chemical-gene interactions with multiple cancer transcriptomic datasets. METHODS Chemical-related gene signatures were derived from chemical-gene interaction data from the Comparative Toxicogenomics Database (CTD). For each cancer type in TCGA, genes were ranked by their effects on tumorigenesis, which is based on the differential expression between tumor and normal samples. Next, we developed carcinogenicity scores (C-scores) using pre-ranked GSEA to quantify the correlation between chemical-related gene signatures and ranked gene lists. Then we established TGSS by systematically evaluating the C-scores in multiple chemical-tumor pairs. Furthermore, we examined the performance of our approach by ROC curves or prognostic analyses in TCGA and multiple independent cancer cohorts. RESULTS Forty-six environmental chemicals were finally included in the study. C-score was calculated for each chemical-tumor pair. The C-scores of IARC Group 3 chemicals were significantly lower than those of chemicals in Group 1 (P-value = 0.02) and Group 2 (P-values = 7.49 ×10-5). ROC curves analysis indicated that C-score could distinguish "high-risk chemicals" from the other compounds (AUC = 0.67) with a specificity and sensitivity of 0.86 and 0.57. The results of survival analysis were also in line with the assessed carcinogenicity in TGSS for the chemicals in Group 1. Finally, consistent results were further validated in independent cancer cohorts. CONCLUSION TGSS highlighted the great potential of integrating chemical-gene interactions with gene-cancer relationships to predict the carcinogenic risk of chemicals, which would be valuable for systems toxicology.
Collapse
Affiliation(s)
- Haohua Lu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dexin Yang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Shi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peiwei Li
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sisi Huang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongyu Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqin Feng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianru Wang
- Epidemiology Stream, Dalla Lana School of Public Health, University of Toronto, M5T 3M7 ON, Canada
| | - Jun Yang
- Department of Public Health, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinqiang Zhu
- Central Laboratory of the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kaida T, Fujiyama Y, Soeno T, Yokota M, Nakamoto S, Goto T, Watanabe A, Okuno K, Nie Y, Fujino S, Yokota K, Harada H, Tanaka Y, Tanaka T, Yokoi K, Kojo K, Miura H, Yamanashi T, Sato T, Sasaki J, Sangai T, Hiki N, Kumamoto Y, Naitoh T, Yamashita K. Less demand on stem cell marker-positive cancer cells may characterize metastasis of colon cancer. PLoS One 2023; 18:e0277395. [PMID: 37098074 PMCID: PMC10128954 DOI: 10.1371/journal.pone.0277395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/26/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND CD44 and CD133 are stem cell markers in colorectal cancer (CRC). CD44 has distinctive isoforms with different oncological properties like total CD44 (CD44T) and variant CD44 (CD44V). Clinical significance of such markers remains elusive. METHODS Sixty colon cancer were examined for CD44T/CD44V and CD133 at mRNA level in a quantitative PCR, and clarified for their association with clinicopathological factors. RESULTS (1) Both CD44T and CD44V showed higher expression in primary colon tumors than in non-cancerous mucosas (p<0.0001), while CD133 was expressed even in non-cancerous mucosa and rather decreased in the tumors (p = 0.048). (2) CD44V expression was significantly associated with CD44T expression (R = 0.62, p<0.0001), while they were not correlated to CD133 at all in the primary tumors. (3) CD44V/CD44T expressions were significantly higher in right colon cancer than in left colon cancer (p = 0.035/p = 0.012, respectively), while CD133 expression were not (p = 0.20). (4) In primary tumors, unexpectedly, CD44V/CD44T/CD133 mRNA expressions were not correlated with aggressive phenotypes, but CD44V/CD44T rather significantly with less aggressive lymph node metastasis/distant metastasis (p = 0.040/p = 0.039, respectively). Moreover, both CD44V and CD133 expressions were significantly decreased in liver metastasis as compared to primary tumors (p = 0.0005 and p = 0.0006, respectively). CONCLUSION Our transcript expression analysis of cancer stem cell markers did not conclude that their expression could represent aggressive phenotypes of primary and metastatic tumors, and rather represented less demand on stem cell marker-positive cancer cells.
Collapse
Affiliation(s)
- Takeshi Kaida
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiki Fujiyama
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuji Nakamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuya Goto
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akiko Watanabe
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kota Okuno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Nie
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shiori Fujino
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazuko Yokota
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroki Harada
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hirohisa Miura
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takahiro Yamanashi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeo Sato
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jiichiro Sasaki
- Multidisciplinary Cancer Care and Treatment Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Division of Advanced Surgical Oncology, Research and Development Center for New Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
12
|
Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature 2022; 611:603-613. [DOI: 10.1038/s41586-022-05402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
|
13
|
Hu C, Cai D, Zhong ME, Fan D, Li CH, Lv MY, Huang ZP, Wang W, Wu XJ, Gao F. Predicting prognosis and immunotherapy response among colorectal cancer patients based on a tumor immune microenvironment-related lncRNA signature. Front Genet 2022; 13:993714. [PMID: 36159987 PMCID: PMC9489948 DOI: 10.3389/fgene.2022.993714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) remodel the tumor immune microenvironment (TIME) by regulating the functions of tumor-infiltrating immune cells. It remains uncertain the way that TIME-related lncRNAs (TRLs) influence the prognosis and immunotherapy response of colorectal cancer (CRC). Aiming at providing survival and immunotherapy response predictions, a CRC TIME-related lncRNA signature (TRLs signature) was developed and the related potential regulatory mechanisms were explored with a comprehensive analysis on gene expression profiles from 97 immune cell lines, 61 CRC cell lines and 1807 CRC patients. Stratifying CRC patients with the TRLs signature, prolonged survival was observed in the low-risk group, while the patients in the high-risk group had significantly higher pro-tumor immune cells infiltration and higher immunotherapy response rate. Through the complex TRLs-mRNA regulation network, immunoregulation pathways and immunotherapy response pathways were found to be differently activated between the groups. In conclusion, the CRC TRLs signature is capable of making prognosis and immunotherapy response predictions, which may find application in stratifying patients for immunotherapy in the bedside.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min-Yi Lv
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Jian Wu, ; Feng Gao,
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Jian Wu, ; Feng Gao,
| |
Collapse
|
14
|
Sharma A, Yadav D, Rao P, Sinha S, Goswami D, Rawal RM, Shrivastava N. Identification of potential therapeutic targets associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Comput Biol Med 2022; 146:105688. [DOI: 10.1016/j.compbiomed.2022.105688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023]
|
15
|
Xu C, Chen Y, Long F, Ye J, Li X, Huang Q, Yao D, Wang X, Zhao J, Meng W, Mo X, Lu R, Fan C, Zhang T. Prognostic value and biological function of LRRN4 in colorectal cancer. Cancer Cell Int 2022; 22:158. [PMID: 35440048 PMCID: PMC9020117 DOI: 10.1186/s12935-022-02579-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/08/2022] [Indexed: 02/08/2023] Open
Abstract
Background Several nervous and nerve-related biomarkers have been detected in colorectal cancer (CRC) and can contribute to the progression of CRC. However, the role of leucine-rich repeat neuronal 4 (LRRN4), a recently identified neurogenic marker, in CRC remains unclear. Methods We examined the expression and clinical outcomes of LRRN4 in CRC from TCGA-COREAD mRNA-sequencing datasets and immunohistochemistry in a Chinese cohort. Furthermore, colony formation, flow cytometry, wound healing assays and mouse xenograft models were used to investigate the biological significance of LRRN4 in CRC cell lines with LRRN4 knockdown or overexpression in vitro and in vivo. In addition, weighted coexpression network analysis, DAVID and western blot analysis were used to explore the potential molecular mechanism. Results We provide the first evidence that LRRN4 expression, at both the mRNA and protein levels, was remarkably high in CRC compared to controls and positively correlated with the clinical outcome of CRC patients. Specifically, LRRN4 was an independent prognostic factor for progression-free survival and overall survival in CRC patients. Further functional experiments showed that LRRN4 promoted cell proliferation, cell DNA synthesis and cell migration and inhibited apoptosis. Knockdown of LRRN4 can correspondingly decrease these effects in vitro and can significantly suppress the growth of xenografts. Several biological functions and signaling pathways were regulated by LRRN4, including proteoglycans in cancer, glutamatergic synapse, Ras, MAPK and PI3K. LRRN4 knockdown resulted in downregulation of Akt, p-Akt, ERK1/2 and p-ERK1/2, the downstream of the Ras/MAPK signaling pathway, overexpression of LRRN4 leaded to the upregulation of these proteins. Conclusions Our results suggest that LRRN4 could be a biological and molecular determinant to stratify CRC patients into distinct risk categories, and mechanistically, this is likely attributable to LRRN4 regulating several malignant phenotypes of neoplastic cells via RAS/MAPK signal pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02579-x.
Collapse
Affiliation(s)
- Cheng Xu
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.,Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Yulin Chen
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Feiwu Long
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, and Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC CC.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China
| | - Junman Ye
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Qiaorong Huang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Dejiao Yao
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.,Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Xiaoli Wang
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.,Department of Oncology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jin Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ran Lu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Chuanwen Fan
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China. .,Department of Gastrointestinal, Bariatric and Metabolic Surgery, and Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC CC.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China. .,Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden.
| | - Tao Zhang
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China. .,Cancer Center, The General Hospital of Western Theater Command, Chengdu, 610000, China.
| |
Collapse
|
16
|
Qi J, Sun H, Zhang Y, Wang Z, Xun Z, Li Z, Ding X, Bao R, Hong L, Jia W, Fang F, Liu H, Chen L, Zhong J, Zou D, Liu L, Han L, Ginhoux F, Liu Y, Ye Y, Su B. Single-cell and spatial analysis reveal interaction of FAP + fibroblasts and SPP1 + macrophages in colorectal cancer. Nat Commun 2022; 13:1742. [PMID: 35365629 PMCID: PMC8976074 DOI: 10.1038/s41467-022-29366-6] [Citation(s) in RCA: 308] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies with limited treatments other than surgery. The tumor microenvironment (TME) profiling enables the discovery of potential therapeutic targets. Here, we profile 54,103 cells from tumor and adjacent tissues to characterize cellular composition and elucidate the potential origin and regulation of tumor-enriched cell types in CRC. We demonstrate that the tumor-specific FAP+ fibroblasts and SPP1+ macrophages were positively correlated in 14 independent CRC cohorts containing 2550 samples and validate their close localization by immuno-fluorescent staining and spatial transcriptomics. This interaction might be regulated by chemerin, TGF-β, and interleukin-1, which would stimulate the formation of immune-excluded desmoplasic structure and limit the T cell infiltration. Furthermore, we find patients with high FAP or SPP1 expression achieved less therapeutic benefit from an anti-PD-L1 therapy cohort. Our results provide a potential therapeutic strategy by disrupting FAP+ fibroblasts and SPP1+ macrophages interaction to improve immunotherapy. Tumour microenvironment profiling during colorectal cancer progression may enable the discovery of therapeutic targets. Here, single cell and spatial RNA sequencing of tumour and adjacent normal tissues reveals an interaction between FAP+ fibroblasts and SPP1+ macrophages that could be disrupted as an immunotherapy strategy.
Collapse
Affiliation(s)
- Jingjing Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Xun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rujuan Bao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Hong
- Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Jia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Fang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duowu Zou
- Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Immunos Building, Level 3 and 4, Singapore, 138648, Singapore
| | - Yingbin Liu
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Sibilio A, Suñer C, Fernández-Alfara M, Martín J, Berenguer A, Calon A, Chanes V, Millanes-Romero A, Fernández-Miranda G, Batlle E, Fernández M, Méndez R. Immune translational control by CPEB4 regulates intestinal inflammation resolution and colorectal cancer development. iScience 2022; 25:103790. [PMID: 35243213 PMCID: PMC8859527 DOI: 10.1016/j.isci.2022.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 12/05/2022] Open
Abstract
Upon tissue injury, cytokine expression reprogramming transiently remodels the inflammatory immune microenvironment to activate repair processes and subsequently return to homeostasis. However, chronic inflammation induces permanent changes in cytokine production which exacerbate tissue damage and may even favor tumor development. Here, we address the contribution of post-transcriptional regulation, by the RNA-binding protein CPEB4, to intestinal immune homeostasis and its role in inflammatory bowel diseases (IBD) and colorectal cancer (CRC) development. We found that intestinal damage induces CPEB4 expression in adaptive and innate immune cells, which is required for the translation of cytokine mRNA(s) such as the one encoding interleukin-22. Accordingly, CPEB4 is required for the development of gut-associated lymphoid tissues and to maintain intestinal immune homeostasis, mediating repair and remodeling after acute inflammatory tissue damage and promoting the resolution of intestinal inflammation. CPEB4 is chronically overexpressed in inflammatory cells in patients with IBD and in CRC, favoring tumor development. CPEB4 is overexpressed in Th17 and ILC3 cells upon intestinal barrier damage CPEB4 is required for Il-22 mRNA translation and IL-22 expression CPEB4 promotes tissue repair in acute transient inflammation In chronic inflammation CPEB4 exacerbates intestinal pathology and promotes tumor growth
Collapse
Affiliation(s)
- Annarita Sibilio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Clara Suñer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marcos Fernández-Alfara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Judit Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Antonio Berenguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Alexandre Calon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Veronica Chanes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gonzalo Fernández-Miranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | | | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
18
|
Luo D, Yang J, Liu J, Yong X, Wang Z. Identification of four novel hub genes as monitoring biomarkers for colorectal cancer. Hereditas 2022; 159:11. [PMID: 35093172 PMCID: PMC8801129 DOI: 10.1186/s41065-021-00216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background It must be admitted that the incidence of colorectal cancer (CRC) was on the rise all over the world, but the related treatment had not caught up. Further research on the underlying pathogenesis of CRC was conducive to improving the survival status of current CRC patients. Methods Differentially expressed genes (DEGs) screening were conducted based on “limma” and “RobustRankAggreg” package of R software. Weighted gene co-expression network analysis (WGCNA) was performed in the integrated DEGs that from The Cancer Genome Atlas (TCGA), and all samples of validation were from Gene Expression Omnlbus (GEO) dataset. Results The terms obtained in the functional annotation for primary DEGs indicated that they were associated with CRC. The MEyellow stand out whereby showed the significant correlation with clinical feature (disease), and 4 hub genes, including ABCC13, AMPD1, SCNN1B and TMIGD1, were identified in yellow module. Nine datasets from Gene Expression Omnibus database confirmed these four genes were significantly down-regulated and the survival estimates for the low-expression group of these genes were lower than for the high-expression group in Kaplan-Meier survival analysis section. MEXPRESS suggested that down-regulation of some top hub genes may be caused by hypermethylation. Receiver operating characteristic curves indicated that these genes had certain diagnostic efficacy. Moreover, tumor-infiltrating immune cells and gene set enrichment analysis for hub genes suggested that there were some associations between these genes and the pathogenesis of CRC. Conclusion This study identified modules that were significantly associated with CRC, four novel hub genes, and further analysis of these genes. This may provide a little new insights and directions into the potential pathogenesis of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00216-7.
Collapse
|
19
|
Liu J, Li J, Du H, Xu L, Yang Z, Yuan M, Zhang K, Li J, Xing W, Wang S, Hu T, Wang J, Wang J, Gong Q. Three Potential Tumor Markers Promote Metastasis and Recurrence of Colorectal Cancer by Regulating the Inflammatory Response: ADAM8, LYN, and S100A9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3118046. [PMID: 35103068 PMCID: PMC8800630 DOI: 10.1155/2022/3118046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Metastasis and recurrence are major causes of colorectal cancer (CRC) death, but their molecular mechanisms are unclear. In this study, genes associated with CRC metastasis and recurrence were identified by weighted gene coexpression network analysis, selecting the top 25% most variant genes in the dataset GSE33113. By average linkage hierarchical clustering, a total of 21 modules were generated. One key module was identified as the most relevant to the prognosis of CRC. Gene Ontology analysis indicated that genes associated with tumor metastasis and recurrence in this module were significantly enriched in inflammatory biological functions. Functional analysis was performed on the key module, and candidate hub genes (ADAM8, LYN, and S100A9) were screened out by expression and survival analysis. In summary, the three core genes identified in this study could greatly improve our understanding of CRC metastasis and recurrence. The results also provide a theoretical basis for the use of three core genes (ADAM8, LYN, and S100A9) as a combined marker for early diagnosis, which could benefit CRC patients.
Collapse
Affiliation(s)
- Jiawei Liu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Kailuan General Hospital, Tangshan, Hebei 063210, China
| | - Haolin Du
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Department of Clinical Laboratory, Tianshui Hospital of Traditional Chinese Medicine, Tianshui 741000, China
| | - Liming Xu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Zhenbang Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mengjiao Yuan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Kaiyue Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jialei Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Wenjun Xing
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shoujie Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tingting Hu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jinjin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| |
Collapse
|
20
|
Colorectal Cancer Stem Cells: An Overview of Evolving Methods and Concepts. Cancers (Basel) 2021; 13:cancers13235910. [PMID: 34885020 PMCID: PMC8657142 DOI: 10.3390/cancers13235910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In recent years, colorectal cancer stem cells (cCSCs) have been the object of intense investigation for their promise to disclose new aspects of colorectal cancer cell biology, as well as to devise new treatment strategies for colorectal cancer (CRC). However, accumulating studies on cCSCs by complementary technologies have progressively disclosed their plastic nature, i.e., their capability to acquire different phenotypes and/or functions under different circumstances in response to both intrinsic and extrinsic signals. In this review, we aim to recapitulate how a progressive methodological development has contributed to deepening and remodeling the concept of cCSCs over time, up to the present. Abstract Colorectal cancer (CRC) represents one of the most deadly cancers worldwide. Colorectal cancer stem cells (cCSCs) are the driving units of CRC initiation and development. After the concept of cCSC was first formulated in 2007, a huge bulk of research has contributed to expanding its definition, from a cell subpopulation defined by a fixed phenotype in a plastic entity modulated by complex interactions with the tumor microenvironment, in which cell position and niche-driven signals hold a prominent role. The wide development of cellular and molecular technologies recent years has been a main driver of advancements in cCSCs research. Here, we will give an overview of the parallel role of technological progress and of theoretical evolution in shaping the concept of cCSCs.
Collapse
|
21
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
22
|
Accumulation of Paneth Cells in Early Colorectal Adenomas Is Associated with Beta-Catenin Signaling and Poor Patient Prognosis. Cells 2021; 10:cells10112928. [PMID: 34831152 PMCID: PMC8616107 DOI: 10.3390/cells10112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Previous studies in mice indicated that Paneth cells and c-Kit-positive goblet cells represent the stem cell niche of the small intestine and colon, respectively, partly by supporting Wnt and Notch activation. Whether these cell populations play a similar role in human intestinal cancer remains unexplored. Methods: We performed histopathological evaluation and immunohistochemical analysis of early colorectal adenomas and carcinoma adenoma from patients at the Hospital del Mar in Barcelona. We then determined the possible correlation between the different parameters analyzed and with patient outcomes. Results: Paneth cells accumulate in a subset of human colorectal adenomas directly associated with Notch and Wnt/β-catenin activation. Adenoma areas containing Paneth cells display increased vessel density in the lamina propria and higher levels of the stem cell marker EphB2. In an in-house cohort of 200 colorectal adenoma samples, we also observed a significant correlation between the presence of Paneth cells and Wnt activation. Kaplan–Meier analysis indicated that early adenoma patients carrying Paneth cell-positive tumors display reduced disease-free survival compared with patients with Paneth cell-free lesions. Conclusions: Our results indicate that Paneth cells contribute to the initial steps of cancer progression by providing the stem cell niche to adenoma cells, which could be therapeutically exploited.
Collapse
|
23
|
Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from The Cancer Genome Atlas. Biosci Rep 2021; 41:229248. [PMID: 34308980 PMCID: PMC8314434 DOI: 10.1042/bsr20211280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.
Collapse
|
24
|
Jongeneel G, Greuter MJE, Kunst N, van Erning FN, Koopman M, Medema JP, Vermeulen L, Ijzermans JNM, Vink GR, Punt CJA, Coupé VMH. Early Cost-effectiveness Analysis of Risk-Based Selection Strategies for Adjuvant Treatment in Stage II Colon Cancer: The Potential Value of Prognostic Molecular Markers. Cancer Epidemiol Biomarkers Prev 2021; 30:1726-1734. [PMID: 34162659 DOI: 10.1158/1055-9965.epi-21-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To explore the potential value of consensus molecular subtypes (CMS) in stage II colon cancer treatment selection, we carried out an early cost-effectiveness assessment of a CMS-based strategy for adjuvant chemotherapy. METHODS We used a Markov cohort model to evaluate three selection strategies: (i) the Dutch guideline strategy (MSS+pT4), (ii) the mutation-based strategy (MSS plus a BRAF and/or KRAS mutation or MSS plus pT4), and (iii) the CMS-based strategy (CMS4 or pT4). Outcomes were number of colon cancer deaths per 1,000 patients, total discounted costs per patient (pp), and quality-adjusted life-years (QALY) pp. The analyses were conducted from a Dutch societal perspective. The robustness of model predictions was assessed in sensitivity analyses. To evaluate the value of future research, we performed a value of information (VOI) analysis. RESULTS The Dutch guideline strategy resulted in 8.10 QALYs pp and total costs of €23,660 pp. The CMS-based and mutation-based strategies were more effective and more costly, with 8.12 and 8.13 QALYs pp and €24,643 and €24,542 pp, respectively. Assuming a threshold of €50,000/QALY, the mutation-based strategy was considered as the optimal strategy in an incremental analysis. However, the VOI analysis showed substantial decision uncertainty driven by the molecular markers (expected value of partial perfect information: €18M). CONCLUSIONS On the basis of current evidence, our analyses suggest that the mutation-based selection strategy would be the best use of resources. However, the extensive decision uncertainty for the molecular markers does not allow selection of an optimal strategy at present. IMPACT Future research is needed to eliminate decision uncertainty driven by molecular markers.
Collapse
Affiliation(s)
- Gabrielle Jongeneel
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University, Amsterdam, the Netherlands.
| | - Marjolein J E Greuter
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| | - Natalia Kunst
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University, Amsterdam, the Netherlands.,Harvard Medical School & Harvard Pilgrim Health Care Institute, Boston, Massachusetts.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University School of Medicine, New Haven, Connecticut.,Public Health Modeling Unit, Yale University School of Public Health, New Haven, Connecticut
| | - Felice N van Erning
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, the Netherlands
| | - Miriam Koopman
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan P Medema
- Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Center for Experimental Molecular Medicine (CEMM), Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Center for Experimental Molecular Medicine (CEMM), Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Jan N M Ijzermans
- Department of General Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Geraldine R Vink
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, the Netherlands.,University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cornelis J A Punt
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Varga J, Nicolas A, Petrocelli V, Pesic M, Mahmoud A, Michels BE, Etlioglu E, Yepes D, Häupl B, Ziegler PK, Bankov K, Wild PJ, Wanninger S, Medyouf H, Farin HF, Tejpar S, Oellerich T, Ruland J, Siebel CW, Greten FR. AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J Exp Med 2021; 217:151998. [PMID: 32749453 PMCID: PMC7537393 DOI: 10.1084/jem.20191515] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Recently, a transcriptome-based consensus molecular subtype (CMS) classification of colorectal cancer (CRC) has been established, which may ultimately help to individualize CRC therapy. However, the lack of animal models that faithfully recapitulate the different molecular subtypes impedes adequate preclinical testing of stratified therapeutic concepts. Here, we demonstrate that constitutive AKT activation in intestinal epithelial cells markedly enhances tumor invasion and metastasis in Trp53ΔIEC mice (Trp53ΔIECAktE17K) upon challenge with the carcinogen azoxymethane. Gene-expression profiling indicates that Trp53ΔIECAktE17K tumors resemble the human mesenchymal colorectal cancer subtype (CMS4), which is characterized by the poorest survival rate among the four CMSs. Trp53ΔIECAktE17K tumor cells are characterized by Notch3 up-regulation, and treatment of Trp53ΔIECAktE17K mice with a NOTCH3-inhibiting antibody reduces invasion and metastasis. In CRC patients, NOTCH3 expression correlates positively with tumor grading and the presence of lymph node as well as distant metastases and is specifically up-regulated in CMS4 tumors. Therefore, we suggest NOTCH3 as a putative target for advanced CMS4 CRC patients.
Collapse
Affiliation(s)
- Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Adele Nicolas
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Valentina Petrocelli
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Abdelrahman Mahmoud
- German Cancer Research Center, Division of Applied Bioinformatics, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Birgitta E Michels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Emre Etlioglu
- Digestive Oncology Unit, Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Diego Yepes
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Björn Häupl
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Paul K Ziegler
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefan Wanninger
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Henner F Farin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Thomas Oellerich
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Jürgen Ruland
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Li X, Wang X, Zhao J, Wang J, Wu J. PRMT5 promotes colorectal cancer growth by interaction with MCM7. J Cell Mol Med 2021; 25:3537-3547. [PMID: 33675123 PMCID: PMC8034445 DOI: 10.1111/jcmm.16436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type of methyltransferase enzyme that can catalyse arginine methylation of histones and non‐histone proteins. Accumulating evidence indicates that PRMT5 promotes cancer development and progression. However, its function in colorectal cancer (CRC) is poorly understood. In this study, we revealed the oncogenic roles of PRMT5 in CRC. We found that PRMT5 promoted CRC cell proliferation, migration and invasion in vitro and in vivo. We identified minichromosome maintenance‐7 (MCM7) as the direct PRMT5‐binding partner. A co‐immunoprecipitation (co‐IP) assay indicated that PRMT5 physically interacted with MCM7 and that the direct binding domain was located between residues 1‐248 in MCM7. In addition, our results from analysis of 99 CRC tissues and 77 adjacent non‐cancerous tissues indicated that the PRMT5 and MCM7 expression levels were significantly higher in CRC tissues than in control tissues, which was further confirmed by bioinformatic analysis using TCGA and GEO datasets. We also found that MCM7 promoted CRC cell proliferation, migration and invasion in vitro. Furthermore, we observed that increased PRMT5 expression predicted unfavourable patient survival in CRC patients and in the subgroup of patients with a tumour size of ≤5 cm. These data suggested that PRMT5 and MCM7 might be novel potential targets for the treatment of CRC.
Collapse
Affiliation(s)
- Xiangwei Li
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Wang
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahui Zhao
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Hu HT, Wang Z, Kim MJ, Jiang LS, Xu SJ, Jung J, Lee E, Park JH, Bakheet N, Yoon SH, Kim KY, Song HY, Chang S. The Establishment of a Fast and Safe Orthotopic Colon Cancer Model Using a Tissue Adhesive Technique. Cancer Res Treat 2020; 53:733-743. [PMID: 33321564 PMCID: PMC8291175 DOI: 10.4143/crt.2020.494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose We aimed to develop a novel method for orthotopic colon cancer model, using tissue adhesive in place of conventional surgical method. Materials and Methods RFP HCT 116 cell line were used to establish the colon cancer model. Fresh tumor tissue harvested from a subcutaneous injection was grafted into twenty nude mice, divided into group A (suture method) and group B (tissue adhesive method). For the group A, we fixed the tissue on the serosa layer of proximal colon by 8-0 surgical suture. For the group B, tissue adhesive (10 μL) was used to fix the tumor. The mortality, tumor implantation success, tumor metastasis, primary tumor size, and operation time were compared between the two groups. Dissected tumor tissue was analyzed for the histology and immunohistochemistry. Also, we performed tumor marker analysis. Results We observed 30% increase in graft success and 20% decrease in mortality, by using tissue adhesive method, respectively. The median colon tumor size was significantly increased by 4 mm and operation time was shortened by 6.5 minutes. The H&E showed similar tumor structure between the two groups. The immunohistochemistry staining for cancer antigen 19-9, carcinoembryonic antigen, cytokeratin 20, and Ki-67 showed comparable intensities in both groups. Real-time quantitative reverse transcription analysis showed eight out of nine tumor markers are unchanged in the tissue adhesive group. Western blot indicated the tissue adhesive group expressed less p-JNK (apototic marker) and more p-MEK/p-p38 (proliferation marker) levels. Conclusion We concluded the tissue adhesive method is a quick and safe way to generate orthotopic, colon cancer model.
Collapse
Affiliation(s)
- Hong-Tao Hu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Wang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Myung Ji Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lu-Shang Jiang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shi-Jun Xu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jaeyun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Hoon Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nader Bakheet
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Gastrointestinal Endoscopy and Liver Unit, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sung Hwan Yoon
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Yung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ho-Young Song
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Li J, Zeng Z, Chen J, Liu X, Jiang X, Sun W, Luo Y, Ren J, Gong Y, Xie C. Pathologic evolution-related Gene Analysis based on both single-cell and bulk transcriptomics in Colorectal Cancer. J Cancer 2020; 11:6861-6873. [PMID: 33123277 PMCID: PMC7591993 DOI: 10.7150/jca.49262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: The patients diagnosed with colorectal cancer (CRC) are likely to undergo differential outcomes in clinical survival owing to different pathologic stages. However, signatures in association with pathologic evolution and CRC prognosis are not clearly defined. This study aimed to identify pathologic evolution-related genes in CRC based on both single-cell and bulk transcriptomics. Patients and methods: The CRC single-cell transcriptomic dataset (GSE81861, n=590) with clinical information and tumor microenvironmental tissues was collected to identify the pathologic evolution-related genes. The colonic adenocarcinoma and rectum adenocarcinoma transcriptomics from The Cancer Genome Atlas were obtained as the training dataset (n=363) and 5 other CRC transcriptomics cohorts from Gene Expression Omnibus (n=1031) were acquired as validation data. Graph-based clustering analysis algorithm was applied to identify pathologic evolution-related cell populations. Pseudotime analysis was performed to construct the trajectory plot of pathologic evolution and to define hub genes in the evolution process. Cell-type identification by estimating relative subsets of RNA transcripts was then executed to build a novel cell infiltration classifier. The prediction efficacy of this classifier was validated in bulk transcriptomic datasets. Results: Epithelial and T cells were elucidated to be related to the pathologic stages in CRC tissues. Pseudotime analysis and survival analysis indicated that HOXC5, HOXC8 and BMP5 were the marker genes in pathologic evolution process. Our cell infiltration classifier exhibited excellent forecast efficacy in predicting pathologic stages and prognosis of CRC patients. Conclusion: We identified pathologic evolution-related genes in single-cell transcriptomic and proposed a novel specific cell infiltration classifier to forecast the prognosis of CRC patients based on pathologic stage-related hub genes HOXC6, HOXC8 and BMP5.
Collapse
Affiliation(s)
- Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Transcriptomic Profiling for the Autophagy Pathway in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21197101. [PMID: 32993062 PMCID: PMC7582824 DOI: 10.3390/ijms21197101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The role of autophagy in colorectal cancer (CRC) pathogenesis appears to be crucial. Autophagy acts both as a tumor suppressor, by removing redundant cellular material, and a tumor-promoting factor, by providing access to components necessary for growth, metabolism, and proliferation. To date, little is known about the expression of genes that play a basal role in the autophagy in CRC. In this study, we aimed to compare the expression levels of 46 genes involved in the autophagy pathway between tumor-adjacent and tumor tissue, employing large RNA sequencing (RNA-seq) and microarray datasets. Additionally, we verified our results using data on 38 CRC cell lines. Gene set enrichment analysis revealed a significant deregulation of autophagy-related gene sets in CRC. The unsupervised clustering of tumors using the mRNA levels of autophagy-related genes revealed the existence of two major clusters: microsatellite instability (MSI)-enriched and -depleted. In cluster 1 (MSI-depleted), ATG9B and LAMP1 genes were the most prominently expressed, whereas cluster 2 (MSI-enriched) was characterized by DRAM1 upregulation. CRC cell lines were also clustered according to MSI-enriched/-depleted subgroups. The moderate deregulation of autophagy-related genes in cancer tissue, as compared to adjacent tissue, suggests a prominent field cancerization or early disruption of autophagy. Genes differentiating these clusters are promising candidates for CRC targeting therapy worthy of further investigation.
Collapse
|
30
|
Lizárraga-Verdugo E, Avendaño-Félix M, Bermúdez M, Ramos-Payán R, Pérez-Plasencia C, Aguilar-Medina M. Cancer Stem Cells and Its Role in Angiogenesis and Vasculogenic Mimicry in Gastrointestinal Cancers. Front Oncol 2020; 10:413. [PMID: 32296643 PMCID: PMC7136521 DOI: 10.3389/fonc.2020.00413] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are able to promote initiation, survival and maintenance of tumor growth and have been involved in gastrointestinal cancers (GICs) such as esophageal, gastric and colorectal. It is well known that blood supply facilitates cancer progression, recurrence, and metastasis. In this regard, tumor-induced angiogenesis begins with expression of pro-angiogenic molecules such as vascular endothelial growth factor (VEGF), which in turn lead to neovascularization and thus to tumor growth. Another pattern of blood supply is called vasculogenic mimicry (VM). It is a reminiscent of the embryonic vascular network and is carried out by CSCs that have the capability of transdifferentiate and form vascular-tube structures in absence of endothelial cells. In this review, we discuss the role of CSCs in angiogenesis and VM, since these mechanisms represent a source of tumor nutrition, oxygenation, metabolic interchange and facilitate metastasis. Identification of CSCs mechanisms involved in angiogenesis and VM could help to address therapeutics for GICs.
Collapse
Affiliation(s)
- Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Melisa Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | | | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
31
|
The Leader Position of Mesenchymal Cells Expressing N-Cadherin in the Collective Migration of Epithelial Cancer. Cells 2020; 9:cells9030731. [PMID: 32188112 PMCID: PMC7140612 DOI: 10.3390/cells9030731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding how heterogeneous cancer cell populations migrate collectively is of paramount importance to arrest metastasis. Here, we applied 3D culture-based approaches for in vitro modeling of the collective migration of squamous carcinoma cells and examine the impact of epithelial and mesenchymal cell interactions on this type of migration. We show that both mesenchymal N-cadherin-expressing cancer cells and cancer-associated fibroblasts cooperate in collective migration of epithelial cancer cells by leading their collective migration. This was consistent with the observed distribution of E-cadherin/N-cadherin in the human carcinoma tissues of head and neck. The presence of “leader” mesenchymal cancer cells or “leader” fibroblasts was significantly associated with metastasis development, recurrent disease and low overall disease survival in head and neck squamous cell carcinomas (HNSCC). In silico analysis of independent public datasets revealed that increased N-cadherin expression in the heterogeneous cancer tissues is associated with disease progression not only in HNSCC but also in other prevalent tumors, such as colorectal, breast and lung cancer. Collectively, our data highlight the importance of mesenchymal cells in collective cell migration and disease progression, findings that may have a broad significance in cancer, especially in those in which aberrant N-cadherin expression negatively impacts disease survival.
Collapse
|
32
|
Olsen CE, Cheung LH, Weyergang A, Berg K, Vallera DA, Rosenblum MG, Selbo PK. Design, Characterization, and Evaluation of scFvCD133/rGelonin: A CD133-Targeting Recombinant Immunotoxin for Use in Combination with Photochemical Internalization. J Clin Med 2019; 9:jcm9010068. [PMID: 31888091 PMCID: PMC7019722 DOI: 10.3390/jcm9010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 01/02/2023] Open
Abstract
The objective of this study was to develop and explore a novel CD133-targeting immunotoxin (IT) for use in combination with the endosomal escape method photochemical internalization (PCI). scFvCD133/rGelonin was recombinantly constructed by fusing a gene (scFvCD133) encoding the scFv that targets both non-glycosylated and glycosylated forms of both human and murine CD133/prominin-1 to a gene encoding the ribosome-inactivating protein (RIP) gelonin (rGelonin). RIP-activity was assessed in a cell-free translation assay. Selective binding and intracellular accumulation of scFvCD133/rGelonin was evaluated by flow cytometry and fluorescence microscopy. PCI of scFvCD133/rGelonin was explored in CD133high and CD133low cell lines and a CD133neg cell line, where cytotoxicity was evaluated by the MTT assay. scFvCD133/rGelonin exhibited superior binding to and a higher accumulation in CD133high cells compared to CD133low cells. No cytotoxic responses were detected in either CD133high or CD133low cells after 72 h incubation with <100 nM scFvCD133/rGelonin. Despite a severe loss in RIP-activity of scFvCD133/rGelonin compared to free rGelonin, PCI of scFvCD133/rGelonin induced log-fold reduction of viability compared to PCI of rGelonin. Strikingly, PCI of scFvCD133/rGelonin exceeded the cytotoxicity of PCI of rGelonin also in CD133low cells. In conclusion, PCI promotes strong cytotoxic activity of the per se non-toxic scFvCD133/rGelonin in both CD133high and CD133low cancer cells.
Collapse
Affiliation(s)
- Cathrine Elisabeth Olsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
| | - Lawrence H. Cheung
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.H.C.); (M.G.R.)
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
| | - Daniel A. Vallera
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA;
| | - Michael G. Rosenblum
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.H.C.); (M.G.R.)
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
- Correspondence: ; Tel.: +47-22781469
| |
Collapse
|
33
|
Akbari M, Shomali N, Faraji A, Shanehbandi D, Asadi M, Mokhtarzadeh A, Shabani A, Baradaran B. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol Int 2019; 44:368-380. [PMID: 31579983 DOI: 10.1002/cbin.11243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Recently, the role of cancer stem cells (CSCs) has been highlighted as a crucial emerging factor in chemoresistance, cancer relapse, and metastasis. CD133 is a surface marker of CSCs and has been argued to have prognostic and therapeutic values in CRC along with its related pathways such as Wnt, Notch, and hedgehog. Several studies have successfully applied targeted therapies against CD133 in CRC models namely bispecific antibodies (BiAbs) and anti-Wnt and notch pathways agents. These studies have yielded initial promising results in this regard. However, none of the therapeutics have been used in the clinical setting and their efficacy and adverse effects profile are yet to be elucidated. This review aims to gather the old and most recent data on the prognostic and therapeutic values of CD133 and CD133-targeted therapies in CRC.
Collapse
Affiliation(s)
- Morteza Akbari
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 3514799422, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Afsaneh Faraji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Aliakbar Shabani
- Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| |
Collapse
|
34
|
Shirmohamadi M, Eghbali E, Najjary S, Mokhtarzadeh A, Kojabad AB, Hajiasgharzadeh K, Lotfinezhad P, Baradaran B. Regulatory mechanisms of microRNAs in colorectal cancer and colorectal cancer stem cells. J Cell Physiol 2019; 235:776-789. [PMID: 31264216 DOI: 10.1002/jcp.29042] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most lethal and hard-to-treat cancers in the world, which in its advanced stages, surgery and chemotherapy are the main common treatment approaches. The microRNAs (miRNAs), as novel markers for CRC detection, promote their regulatory effects via the 3'-untranslated binding region (3'-UTR) of target messenger RNA in posttranscriptional regulation of genes and also play a pivotal role in modulating resistance to chemotherapeutic agents. These small noncoding RNAs have also a critical role in CRC stem cells (CRCSCs) regulation, comprising self-renewal, differentiation, and tumorigenesis. Cancer stem cells (CSCs) are distinctive cell types inside a tumor tissue that are believed to derive from normal somatic stem cells. The CSCs have self-renewal abilities, angiogenesis, as well as specific surface markers expression characteristics. Furthermore, they are frequently criticized for tumor maintenance, treatment resistance, tumor development, and distant metastasis. In this review, we discuss the current understandings of CRCSCs and their environment with a focus on the role of miRNAs on the regulation of CSCs and their targeting application in CRC treatment.
Collapse
Affiliation(s)
- Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Eghbali
- Medical Radiation Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Najjary
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Parisa Lotfinezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Aghajani M, Mansoori B, Mohammadi A, Asadzadeh Z, Baradaran B. New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. J Cell Physiol 2019; 234:21642-21661. [PMID: 31102292 DOI: 10.1002/jcp.28824] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Chen J, Wang Z, Shen X, Cui X, Guo Y. Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis. Mol Genet Genomic Med 2019; 7:e00713. [PMID: 31087508 PMCID: PMC6625111 DOI: 10.1002/mgg3.713] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors. In the present study, the expression profile of human multistage colorectal mucosa tissues, including healthy, adenoma, and adenocarcinoma samples was downloaded to identify critical genes and potential drugs in CRC. Methods Expression profiles, GSE33113 and GSE44076, were integrated using bioinformatics methods. Differentially expressed genes (DEGs) were analyzed by R language. Functional enrichment analyses of the DEGs were performed using the Database for Annotation, visualization, and integrated discovery (DAVID) database. Then, the search tool for the retrieval of interacting genes (STRING) database and Cytoscape were used to construct a protein–protein interaction (PPI) network and identify hub genes. Subsequently, survival analysis was performed among the key genes using Gene Expression Profiling Interactive Analysis (GEPIA). Connectivity Map (CMap) was used to query potential drugs for CRC. Results A total of 428 upregulated genes and 751 downregulated genes in CRC were identified. The functional changes of these DEGs were mainly associated with cell cycle, oocyte meiosis, DNA replication, p53 signaling pathway, and progesterone‐mediated oocyte maturation. A PPI network was identified by STRING with 482 nodes and 2,368 edges. Survival analysis revealed that high mRNA expression of AURKA, CCNB1, CCNF, and EXO1 was significantly associated with longer overall survival. Moreover, CMap predicted a panel of small molecules as possible adjuvant drugs to treat CRC. Conclusion Our study found key dysregulated genes involved in CRC and potential drugs to combat it, which may provide novel insights and potential biomarkers for prognosis, as well as providing new CRC treatments.
Collapse
Affiliation(s)
- Juan Chen
- Laboratory Medicine Center, People's Hospital of Hai'an County, Nantong, P. R. China
| | - Ziheng Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, P. R. China.,Department of Medicine, Nantong University Xinling college, Nantong, P.R. China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Xiaopeng Cui
- Department of general surgery, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Yuehua Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, P. R. China
| |
Collapse
|
37
|
Zahran AM, Rayan A, Fakhry H, Attia AM, Ashmawy AM, Soliman A, Elkady A, Hetta HF. Pretreatment detection of circulating and tissue CD133 + CD44 + cancer stem cells as a prognostic factor affecting the outcomes in Egyptian patients with colorectal cancer. Cancer Manag Res 2019; 11:1237-1248. [PMID: 30799951 PMCID: PMC6369859 DOI: 10.2147/cmar.s189653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background and aim Colorectal cancer is one of the most common malignant tumors worldwide. As CD133 and CD44 are notable markers of cancer stem cells (CSCs) identity, it is thought to be a predictive indicator for colorectal cancer. The aim of this study was to investigate the cell cycle state of CD133+ CD44+ and CD133− CD44−cells, isolated from primary human colorectal tumors, and to assess the clinical impact of CD133+ CD44+ CSCs on patients’ outcome regarding disease-free survival (DFS) and overall survival (OS). Materials and methods Tissue samples were collected from 50 primary colorectal cancer patients. Flow cytometric analysis was performed to isolate tissue CD133+ CD44+ CSCs and CD133− CD44− tumor cells from primary colorectal cancer tissue to compare the cell cycle of both types of cells. Also circulating CSCs were assessed by flow cytometry. Results Higher percentage of tissue CD133+ CD44+ CSCs isolated from colorectal cancer patients was found in G0/G1 phase. However, tissue CD133− CD44− tumor cells were predominantly found in the S phase; there were significant negative correlations between tissue CD133+ CD44+ CSCs and DFS and OS (r=−0.470, P<0.001, respectively and r=−0.487, P<0.001, respectively), also significant negative correlations between tissue CSCs and DFS and OS (r=−0.548, P<0.001, respectively and r=−0.497, P<0.001, respectively). Only the pathological grade (P<0.004) and T stage (P<0.004) had a significant effect on circulating CSC counts. Conclusion Tissue CD133+ CD44+ CSCs were more quiescent than tissue CD133− CD44− tumor cells and both circulating CSCs and tissue CSCs were considered independent negative prognostic factors on OS and DFS.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Amal Rayan
- Department of Clinical Oncology, Assiut University Hospital, Assiut University, Assiut, Egypt
| | - Hussein Fakhry
- Department of Surgical Oncology, South Egypt Cancer Institute, Assiut, Egypt
| | - Alia M Attia
- Department of Radiation Oncology, South Egypt Cancer Institute, Assiut, Egypt
| | - Ahmed M Ashmawy
- Department of Internal Medicine, Assiut University Hospital, Assiut, Egypt
| | - Ahmed Soliman
- Department of General Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Azza Elkady
- Sohag University Medical Administration, Sohag, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt, .,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA,
| |
Collapse
|
38
|
Abbasian M, Mousavi E, Arab-Bafrani Z, Sahebkar A. The most reliable surface marker for the identification of colorectal cancer stem-like cells: A systematic review and meta-analysis. J Cell Physiol 2018; 234:8192-8202. [PMID: 30317669 DOI: 10.1002/jcp.27619] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Several surface markers have been proposed for the identification and characterization of colorectal cancer stem-like cells (CR-CSLCs). However, their reliability in CR-CSLCs identification remains controversial. This study evaluated the correlation between all candidate surface marker's expression and CSLCs properties (tumorigenicity) through monitoring in vivo tumor incidence and final tumor volume. PubMed, Web of Science, and Scopus databases were systematically searched until November 2017. A total of 27 studies were found that met the inclusion criteria for cluster of differentiation 133 (CD133) and CD44 markers. Results indicated that either CD133 or CD44 positive cells caused about twofold increase in tumor volume compared with the negative cells (p < 0.05). In two groups of cells derived from primary tumors and cell lines, CD133 + cells had 25 and 1.45 times higher tumor incidence potential than CD133 - cells, respectively ( p < 0.05). Also, cohort evaluation showed that CD133 overexpression at protein level is a marker of poor overall survival in colorectal cancer (CRC) patients. While CD44 + cells displayed twofold tumorigenicity compared with the negative cells ( p < 0.05), combination of CD44 and CD133 showed about sevenfold tumorigenicity potential ( p < 0.05). In conclusion, the present meta-analysis suggests that CD133 is a robust biomarker to identify primary tumor CSLCs and can be proposed as a prognostic marker of CRC patient whereas it should be used with caution in cell lines. It seems to be more reliable to use CD133 in combination with CD44 as target biomarkers for the isolation of CR-CSLCs in both cell line and primary tumor cells populations.
Collapse
Affiliation(s)
- Mahdi Abbasian
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Elham Mousavi
- Department of Medical Microbiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Arab-Bafrani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Cortazar AR, Torrano V, Martín-Martín N, Caro-Maldonado A, Camacho L, Hermanova I, Guruceaga E, Lorenzo-Martín LF, Caloto R, Gomis RR, Apaolaza I, Quesada V, Trka J, Gomez-Muñoz A, Vincent S, Bustelo XR, Planes FJ, Aransay AM, Carracedo A. CANCERTOOL: A Visualization and Representation Interface to Exploit Cancer Datasets. Cancer Res 2018; 78:6320-6328. [PMID: 30232219 DOI: 10.1158/0008-5472.can-18-1669] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 11/16/2022]
Abstract
With the advent of OMICs technologies, both individual research groups and consortia have spear-headed the characterization of human samples of multiple pathophysiologic origins, resulting in thousands of archived genomes and transcriptomes. Although a variety of web tools are now available to extract information from OMICs data, their utility has been limited by the capacity of nonbioinformatician researchers to exploit the information. To address this problem, we have developed CANCERTOOL, a web-based interface that aims to overcome the major limitations of public transcriptomics dataset analysis for highly prevalent types of cancer (breast, prostate, lung, and colorectal). CANCERTOOL provides rapid and comprehensive visualization of gene expression data for the gene(s) of interest in well-annotated cancer datasets. This visualization is accompanied by generation of reports customized to the interest of the researcher (e.g., editable figures, detailed statistical analyses, and access to raw data for reanalysis). It also carries out gene-to-gene correlations in multiple datasets at the same time or using preset patient groups. Finally, this new tool solves the time-consuming task of performing functional enrichment analysis with gene sets of interest using up to 11 different databases at the same time. Collectively, CANCERTOOL represents a simple and freely accessible interface to interrogate well-annotated datasets and obtain publishable representations that can contribute to refinement and guidance of cancer-related investigations at all levels of hypotheses and design.Significance: In order to facilitate access of research groups without bioinformatics support to public transcriptomics data, we have developed a free online tool with an easy-to-use interface that allows researchers to obtain quality information in a readily publishable format. Cancer Res; 78(21); 6320-8. ©2018 AACR.
Collapse
Affiliation(s)
- Ana R Cortazar
- CIC bioGUNE, Bizkaia Technology Park, Bizkaia, Spain.,CIBERONC, Madrid, Spain
| | - Veronica Torrano
- CIC bioGUNE, Bizkaia Technology Park, Bizkaia, Spain.,CIBERONC, Madrid, Spain
| | | | | | - Laura Camacho
- CIC bioGUNE, Bizkaia Technology Park, Bizkaia, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | - Elizabeth Guruceaga
- CIBERONC, Madrid, Spain.,Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Luis F Lorenzo-Martín
- CIBERONC, Madrid, Spain.,Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| | - Ruben Caloto
- CIBERONC, Madrid, Spain.,Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| | - Roger R Gomis
- CIBERONC, Madrid, Spain.,Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Iñigo Apaolaza
- University of Navarra, Tecnun School of Engineering, San Sebastián, Spain
| | - Victor Quesada
- CIBERONC, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Jan Trka
- CLIP-Childhood Leukaemia Investigation Prague and Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Antonio Gomez-Muñoz
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Silvestre Vincent
- CIBERONC, Madrid, Spain.,University of Navarra, Department of Histology and Pathology, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Center for Applied Medical Research, Program of Solid Tumors, University of Navarra, Pamplona, Spain
| | - Xose R Bustelo
- CIBERONC, Madrid, Spain.,Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| | - Francisco J Planes
- University of Navarra, Tecnun School of Engineering, San Sebastián, Spain
| | - Ana M Aransay
- CIC bioGUNE, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, Bizkaia, Spain. .,CIBERONC, Madrid, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
40
|
Cheng X, Hu M, Chen C, Hou D. Computational analysis of mRNA expression profiles identifies a novel triple-biomarker model as prognostic predictor of stage II and III colorectal adenocarcinoma patients. Cancer Manag Res 2018; 10:2945-2952. [PMID: 30214289 PMCID: PMC6118290 DOI: 10.2147/cmar.s170502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Although remarkable progress has been made to determine the prognosis of patients with colorectal cancer (CRC), it is inadequate to identify the subset of high-risk TNM stage II and stage III patients that have a high potential of developing tumor recurrence and may experience death. In this study, we aimed to develop biomarkers as a prognostic signature for the clinical outcome of CRC patients with stage II and stage III. Materials and methods We performed a systematic and comprehensive discovery step to identify recurrence-associated genes in CRC patients through publicly available GSE41258 (n=253) and GSE17536 (n=107) datasets. We subsequently determined the prognostic relevance of candidate genes in stage II and III patients and developed a triple-biomarker for predicting RFS in GSE17536, which was later validated in an independent cohort GSE33113 dataset (n=90). Results Based upon mRNA expression profiling studies, we identified 45 genes which differentially expressed in recurrent vs non-recurrent CRC patients. By using Cox proportional hazard models, we then developed a triple-marker model (THBS2, SERPINE1, and FN1) to predict prognosis in GSE17536, which successfully identified poor prognosis in stage II and stage III, particularly high-risk stage II CRC patients. Discussion Notably, we found that our triple-marker model once again predicted recurrence in stage II patients in GSE33113. Kaplan-Meier survival analysis demonstrated that patients with high scores have a poor outcome compared to those with low scores. Our triple-marker model is a reliable predictive tool for determining prognosis in CRC patients with stage II and stage III, and might be able to identify high-risk patients that are candidates for more targeted personalized clinical management and surveillance.
Collapse
Affiliation(s)
- Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China,
| | - Meilin Hu
- Department of Endodontics, Tianjin Medical University School of Stomatology, Heping, Tianjin, People's Republic of China
| | - Chuancui Chen
- Infectious Diseases Clinic, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China,
| | - Dongsheng Hou
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China,
| |
Collapse
|
41
|
Duong HQ, Nemazanyy I, Rambow F, Tang SC, Delaunay S, Tharun L, Florin A, Büttner R, Vandaele D, Close P, Marine JC, Shostak K, Chariot A. The Endosomal Protein CEMIP Links WNT Signaling to MEK1-ERK1/2 Activation in Selumetinib-Resistant Intestinal Organoids. Cancer Res 2018; 78:4533-4548. [PMID: 29915160 DOI: 10.1158/0008-5472.can-17-3149] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
MAPK signaling pathways are constitutively active in colon cancer and also promote acquired resistance to MEK1 inhibition. Here, we demonstrate that BRAFV600E -mutated colorectal cancers acquire resistance to MEK1 inhibition by inducing expression of the scaffold protein CEMIP through a β-catenin- and FRA-1-dependent pathway. CEMIP was found in endosomes and bound MEK1 to sustain ERK1/2 activation in MEK1 inhibitor-resistant BRAFV600E-mutated colorectal cancers. The CEMIP-dependent pathway maintained c-Myc protein levels through ERK1/2 and provided metabolic advantage in resistant cells, potentially by sustaining amino acids synthesis. CEMIP silencing circumvented resistance to MEK1 inhibition, partly, through a decrease of both ERK1/2 signaling and c-Myc. Together, our data identify a cross-talk between Wnt and MAPK signaling cascades, which involves CEMIP. Activation of this pathway promotes survival by potentially regulating levels of specific amino acids via a Myc-associated cascade. Targeting this node may provide a promising avenue for treatment of colon cancers that have acquired resistance to targeted therapies.Significance: MEK1 inhibitor-resistant colorectal cancer relies on the scaffold and endosomal protein CEMIP to maintain ERK1/2 signaling and Myc-driven transcription. Cancer Res; 78(16); 4533-48. ©2018 AACR.
Collapse
Affiliation(s)
- Hong Quan Duong
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), GIGA-Molecular Biology of Diseases, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Institute of Research and Development, Duy Tan University, Quang Trung, Danang, Vietnam.,Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Ivan Nemazanyy
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology and KULeuven Department of Oncology, Leuven, Belgium
| | - Seng Chuan Tang
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), GIGA-Molecular Biology of Diseases, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Sylvain Delaunay
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), GIGA-Molecular Biology of Diseases, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Lars Tharun
- Laboratory of Cancer Signaling, University of Liege, Liège, Belgium
| | - Alexandra Florin
- Laboratory of Cancer Signaling, University of Liege, Liège, Belgium
| | - Reinhard Büttner
- Laboratory of Cancer Signaling, University of Liege, Liège, Belgium
| | - Daniel Vandaele
- Gastroenterology Department, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), GIGA-Molecular Biology of Diseases, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology and KULeuven Department of Oncology, Leuven, Belgium
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), GIGA-Molecular Biology of Diseases, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), GIGA-Molecular Biology of Diseases, University of Liege, CHU, Sart-Tilman, Liège, Belgium. .,Laboratory of Medical Chemistry, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| |
Collapse
|
42
|
Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA, Schwabe RF. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 2018; 128:2436-2451. [PMID: 29558367 DOI: 10.1172/jci91786] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and hepatocarcinogenesis in CLD. While liver-specific HMGB1 deficiency did not significantly affect chronic injury responses such as fibrosis, regeneration, and inflammation, it inhibited ductular/progenitor cell expansion and hepatocyte metaplasia. HMGB1 promoted ductular expansion independently of active secretion in a nonautonomous fashion, consistent with its role as a DAMP. Liver-specific HMGB1 deficiency reduced HCC development in 3 mouse models of chronic injury but not in a model lacking chronic liver injury. As with CLD, HMGB1 ablation reduced the expression of progenitor and oncofetal markers, a key determinant of HCC aggressiveness, in tumors. In summary, HMGB1 links hepatocyte death to ductular reaction, progenitor signature, and hepatocarcinogenesis in CLD.
Collapse
Affiliation(s)
- Celine Hernandez
- Department of Medicine, Columbia University, New York, New York, USA
| | - Peter Huebener
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Philippe Pradere
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
43
|
Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel) 2018; 6:E31. [PMID: 29652830 PMCID: PMC6024750 DOI: 10.3390/medsci6020031] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
44
|
Qin J, Zeng Z, Luo T, Li Q, Hao Y, Chen L. Clinicopathological significance of G9A expression in colorectal carcinoma. Oncol Lett 2018; 15:8611-8619. [PMID: 29805595 PMCID: PMC5958720 DOI: 10.3892/ol.2018.8446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
Abstract
G9A, the primary histone methyltransferase (HMTase) for histone H3 lysine 9, is upregulated in numerous types of cancer and is critical for tumor cell proliferation. The present study aimed to investigate the G9A expression level in colorectal carcinoma (CRC) to evaluate the clinical significance of G9A in CRC. First, the present study detected the expression of G9A protein in 100 pairs of CRC specimens by immunohistochemistry staining and analyzed the correlations between G9A expression and pathological tumor features. It was found that G9A expression was increased markedly in CRC tumor specimens and the high expression was associated with tumor distant metastasis. Oncomine database analysis demonstrated an elevated expression level of G9A in various types of CRC. In total, 6 public available data sets from the Gene Expression Omnibus (GEO) were used and Gene set enrichment analysis (GSEA) was conducted. The results of the bioinformatics analysis demonstrated that high G9A expression was associated with American Joint Committee on Cancer staging, tumor differentiation, tumor relapse of CRC, and may serve a role in CRC cell proliferation. These findings suggested that G9A was overexpressed in CRC and involved in the tumorigenesis and distant metastasis of CRC. The expression level may also serve as a potential indicator for tumor recurrence in CRC. The present findings aided in the understanding of the crucial role of G9A in tumorigenesis and also offered novel ideas for CRC therapy.
Collapse
Affiliation(s)
- Jian Qin
- Central Laboratory, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Zhi Zeng
- Department of Pathology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Qingyun Li
- Central Laboratory, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China.,Department of Geriatrics, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Yarong Hao
- Department of Geriatrics, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Lang Chen
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
45
|
Tang Y, Berlind J, Mavila N. Inhibition of CREB binding protein-beta-catenin signaling down regulates CD133 expression and activates PP2A-PTEN signaling in tumor initiating liver cancer cells. Cell Commun Signal 2018. [PMID: 29530069 PMCID: PMC5848530 DOI: 10.1186/s12964-018-0222-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The WNT-beta-catenin pathway is known to regulate cellular homeostasis during development and tissue regeneration. Activation of WNT signaling increases the stability of cytoplasmic beta-catenin and enhances its nuclear translocation. Nuclear beta-catenin function is regulated by transcriptional co-factors such as CREB binding protein (CBP) and p300. Hyper-activated WNT-beta-catenin signaling is associated with many cancers. However, its role in inducing stemness to liver cancer cells, its autoregulation and how it regulates tumor suppressor pathways are not well understood. Here we have investigated the role of CBP-beta-catenin signaling on the expression of CD133, a known stem cell antigen and PP2A-PTEN pathway in tumor initiating liver cancer cells. Methods Human hepatoblastoma cell line HepG2 and clonally expanded CD133 expressing tumor initiating liver cells (TICs) from premalignant murine liver were used in this study. CBP-beta-catenin inhibitor ICG001 was used to target CBP-beta catenin signaling in liver cancer cells in vitro. Western blotting and real time PCR (qPCR) were used to quantify protein expression/phosphorylation and mRNA levels, respectively. CBP and CD133 gene silencing was performed by siRNA transfection. Fluorescence Activated Cell Sorting (FACS) was performed to quantify CD133 positive cells. Protein Phosphatase (PP2A) activity was measured after PP2AC immunoprecipitation. Results CBP inhibitor ICG001 and CBP silencing significantly reduced CD133 expression and anchorage independent growth in HepG2 and murine TICs. CD133 silencing in TICs decreased cell proliferation and expression levels of cell cycle regulatory genes, CyclinD1 and CyclinA2. ICG001 treatment and CBP silencing reduced the levels of phosphoSer380/Tyr382/383PTEN, phosphoSer473-AKT, Phospho-Ser552beta-catenin in TICs. ICG001 mediated de-phosphorylation of PTEN in TICs was PP2A dependent and partly prevented by co-treatment with PP2A inhibitor okadaic acid. Conclusions CBP-beta-catenin signaling promotes stemness via CD133 induction and cell proliferation in TICs. We found a novel functional link between CBP-beta-catenin and PP2A-PTEN-AKT pathway in liver TICs. Therefore, CBP-beta-catenin-PP2A-PTEN-AKT signaling axis could be a novel therapeutic target to prevent liver tumor initiation and cancer recurrence. Electronic supplementary material The online version of this article (10.1186/s12964-018-0222-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Joshua Berlind
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Nirmala Mavila
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA. .,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
46
|
Nagata H, Ishihara S, Kishikawa J, Sonoda H, Murono K, Emoto S, Kaneko M, Sasaki K, Otani K, Nishikawa T, Tanaka T, Kiyomatsu T, Hata K, Kawai K, Nozawa H. CD133 expression predicts post-operative recurrence in patients with colon cancer with peritoneal metastasis. Int J Oncol 2018; 52:721-732. [PMID: 29328371 PMCID: PMC5807045 DOI: 10.3892/ijo.2018.4240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research on cancer stem cells in colorectal cancer, the impact of stem cell markers on patient survival remains unclear, particularly in those with distant metastasis. In this study, we focused on colon cancer with peritoneal metastasis and investigated the association between the expression of CD133, aldehyde dehydrogenase-1 (ALDH1) and leucine-rich repeating G-protein coupled receptor-5 (Lgr5), and disease prognosis. Putative stem cell marker expression was immunohistochemically evaluated in samples from 142 primary tumours and 75 peritoneal nodules. The associations between the expression of these markers and clinicopathological characteristics, overall survival and disease-free survival were analysed. The expression of CD133, ALDH1 and Lgr5 was found to be positive in 55.6, 47.2 and 78.9% of the primary tumour samples, respectively. While their expression was not associated with overall survival, disease-free survival was significantly worse in the CD133‑negative group (36.1 vs. 13.7%, P=0.041). Multivariable analysis confirmed that a negative CD133 expression was an independent risk factor for a reduced disease-free survival (P=0.005). Furthermore, the benefit of systemic chemotherapy was significantly greater in the CD133-negative group (P=0.039). On the whole, our data indicated that patients with colon cancer with CD133-negative expression had a reduced disease-free survival. Thus, we propose that CD133 expression may be a useful clinical biomarker in the treatment of colon cancer with peritoneal metastasis.
Collapse
Affiliation(s)
- Hiroshi Nagata
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Soichiro Ishihara
- Department of Surgery, International University of Health and Welfare Sanno Hospital, Minato-ku, Tokyo 107-0052, Japan
| | - Junko Kishikawa
- Department of Surgery, Tohto Bunkyo Hospital, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Hirofumi Sonoda
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Koji Murono
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Manabu Kaneko
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Otani
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nishikawa
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshiaki Tanaka
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomomichi Kiyomatsu
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
47
|
Karpinski P, Rossowska J, Sasiadek MM. Immunological landscape of consensus clusters in colorectal cancer. Oncotarget 2017; 8:105299-105311. [PMID: 29285252 PMCID: PMC5739639 DOI: 10.18632/oncotarget.22169] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Recent, large-scale expression–based subtyping has advanced our understanding of the genomic landscape of colorectal cancer (CRC) and resulted in a consensus molecular classification that enables the categorization of most CRC tumors into one of four consensus molecular subtypes (CMS). Currently, major progress in characterization of immune landscape of tumor-associated microenvironment has been made especially with respect to microsatellite status of CRCs. While these studies profoundly improved the understanding of molecular and immunological profile of CRCs heterogeneity less is known about repertoire of the tumor infiltrating immune cells of each CMS. In order to comprehensively characterize the immune landscape of CRC we re-analyzed a total of 15 CRC genome-wide expression data sets encompassing 1597 tumors and 125 normal adjacent colon tissues. After quality filtering, CRC clusters were discovered using a combination of multiple clustering algorithms and multiple validity metrics. CIBERSORT algorithm was used to compute relative proportions of 22 human leukocyte subpopulations across CRC clusters and normal colon tissue. Subsequently, differential expression specific to tumor epithelial cells was calculated to characterize mechanisms of tumor escape from immune surveillance occurring in particular CRC clusters. Our results not only characterize the common and cluster-specific influx of immune cells into CRCs but also identify several deregulated gene targets that may contribute to improvement of immunotherapeutic strategies in CRC.
Collapse
Affiliation(s)
- Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Rossowska
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | |
Collapse
|
48
|
Tian X, Zhu X, Yan T, Yu C, Shen C, Hu Y, Hong J, Chen H, Fang JY. Recurrence-associated gene signature optimizes recurrence-free survival prediction of colorectal cancer. Mol Oncol 2017; 11:1544-1560. [PMID: 28796930 PMCID: PMC5664005 DOI: 10.1002/1878-0261.12117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 12/28/2022] Open
Abstract
High throughput gene expression profiling has showed great promise in providing insight into molecular mechanisms. Metastasis‐related mRNAs may potentially enrich genes with the ability to predict cancer recurrence, therefore we attempted to build a recurrence‐associated gene signature to improve prognostic prediction of colorectal cancer (CRC). We identified 2848 differentially expressed mRNAs by analyzing CRC tissues with or without metastasis. For the selection of prognostic genes, a LASSO Cox regression model (least absolute shrinkage and selection operator method) was employed. Using this method, a 13‐mRNA signature was identified and then validated in two independent Gene Expression Omnibus cohorts. This classifier could successfully discriminate the high‐risk patients in discovery cohort [hazard ratio (HR) = 5.27, 95% confidence interval (CI) 2.30–12.08, P < 0.0001). Analysis in two independent cohorts yielded consistent results (GSE14333: HR = 4.55, 95% CI 2.18–9.508, P < 0.0001; GSE33113: HR = 3.26, 95% CI 2.16–9.16, P = 0.0176). Further analysis revealed that the prognostic value of this signature was independent of tumor stage, postoperative chemotherapy and somatic mutation. Receiver operating characteristic (ROC) analysis showed that the area under ROC curve of this signature was 0.8861 and 0.8157 in the discovery and validation cohort, respectively. A nomogram was constructed for clinicians, and did well in the calibration plots. Furthermore, this 13‐mRNA signature outperformed other known gene signatures, including oncotypeDX colon cancer assay. Single‐sample gene‐set enrichment analysis revealed that a group of pathways related to drug resistance, cancer metastasis and stemness were significantly enriched in the high‐risk patients. In conclusion, this 13‐mRNA signature may be a useful tool for prognostic evaluation and will facilitate personalized management of CRC patients.
Collapse
Affiliation(s)
- Xianglong Tian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Xiaoqiang Zhu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Tingting Yan
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Chenyang Yu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Chaoqin Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Ye Hu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China
| |
Collapse
|
49
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
50
|
Wahab SR, Islam F, Gopalan V, Lam AKY. The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clin Colorectal Cancer 2017; 16:93-102. [DOI: 10.1016/j.clcc.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
|