1
|
Habibollahzadeh N, Yavari S, Mirazimi Y, Aghayan AH, Davoudian A, Rafiee M. MicroRNAs utilization as effective factors on hematopoietic stem cell transplantation, its outcomes and prognosis; a comprehensive systematic review. BMC Cancer 2024; 24:890. [PMID: 39048974 PMCID: PMC11267663 DOI: 10.1186/s12885-024-12640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION The therapeutic method for many malignant and non-malignant diseases is hematopoietic stem cell transplantation (HSCT), but it is not always fully successful in all patients. Indeed, HSCT can be influenced by a variety of factors. Here we reviewed the effect of microRNAs (miRs) on HSCT-related outcomes, like survival, infections, relapse, engraftment, and so on, systematically. METHOD WOS, Scopus, PubMed, Google Scholar, and ProQuest databases were searched. The PRISMA guideline was performed, and 24 studies were included through quality assessment. Classified data extraction was done based on the type of disease. RESULTS The systematic review identified 47 miRs effective on HSCT. The role of miRs as tumor suppressors or oncogenes is reported in acute myeloblastic and lymphoblastic leukemia patients undergoing HSCT due to their effects on overall or event-free survival. Additionally, relapse after HSCT in multiple myeloma is correlated with miRs expression. Also, recovery from post-autologous HSCT cytopenia or platelet and neutrophil engraftment can be influenced by miRs. We highlighted here reports on specific miRs. CONCLUSION We reported prognostic miRs for in-depth clinical management of the HSCT process and its outcomes. Also, miRs are introduced for the prevention of HSCT-related complications, and future studies are suggested to evaluate personalized medicine's utilization of miRs in therapeutic methods like HSCT in neoplasia.
Collapse
Affiliation(s)
- Negar Habibollahzadeh
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samin Yavari
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atefeh Davoudian
- Deputy of Research and Technology, Zanjan University of Medical sciences, Zanjan, Iran
| | - Mohammad Rafiee
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
2
|
Kang DS, Moriarty A, Wang YJ, Thomas A, Hao J, Unger BA, Klotz R, Ahmmed S, Amzaleg Y, Martin S, Vanapalli S, Xu K, Smith A, Shen K, Yu M. Ectopic Expression of a Truncated Isoform of Hair Keratin 81 in Breast Cancer Alters Biophysical Characteristics to Promote Metastatic Propensity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300509. [PMID: 37949677 PMCID: PMC10837353 DOI: 10.1002/advs.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Keratins are an integral part of cell structure and function. Here, it is shown that ectopic expression of a truncated isoform of keratin 81 (tKRT81) in breast cancer is upregulated in metastatic lesions compared to primary tumors and patient-derived circulating tumor cells, and is associated with more aggressive subtypes. tKRT81 physically interacts with keratin 18 (KRT18) and leads to changes in the cytosolic keratin intermediate filament network and desmosomal plaque formation. These structural changes are associated with a softer, more elastically deformable cancer cell with enhanced adhesion and clustering ability leading to greater in vivo lung metastatic burden. This work describes a novel biomechanical mechanism by which tKRT81 promotes metastasis, highlighting the importance of the biophysical characteristics of tumor cells.
Collapse
Affiliation(s)
- Diane S. Kang
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Aidan Moriarty
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Yiru Jess Wang
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Amal Thomas
- Department of Molecular and Computational BiologyUSC David and Dana Dornsife College of LettersArts and SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Jia Hao
- Department of Biomedical EngineeringViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Bret A. Unger
- Department of ChemistryUniversity of California at BerkeleyBerkeleyCA94720USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Shamim Ahmmed
- Department of Chemical EngineeringTexas Tech UniversityLubbockTX79409USA
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Stuart Martin
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Siva Vanapalli
- Department of Chemical EngineeringTexas Tech UniversityLubbockTX79409USA
| | - Ke Xu
- Department of ChemistryUniversity of California at BerkeleyBerkeleyCA94720USA
| | - Andrew Smith
- Department of Molecular and Computational BiologyUSC David and Dana Dornsife College of LettersArts and SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Keyue Shen
- Department of Biomedical EngineeringViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| |
Collapse
|
3
|
Mikulski D, Nowicki M, Dróźdż I, Misiewicz M, Kościelny KP, Okoński K, Krawiec K, Perdas E, Wierzbowska A, Fendler W. High serum miR-223-3p expression level predicts complete response and prolonged overall survival in multiple myeloma patients undergoing autologous hematopoietic stem cell transplantation. Front Oncol 2023; 13:1250355. [PMID: 37829335 PMCID: PMC10565214 DOI: 10.3389/fonc.2023.1250355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction AHSCT is the treatment of choice for newly diagnosed patients with transplant-eligible multiple myeloma (MM). However, considerable variability in response to autologous hematopoietic stem cell transplantation (AHSCT) results in only 50% of patients achieving complete response (CR) after AHSCT, which is directly associated with improved progression-free and overall survival (OS). In this study, we aimed to investigate the potential predictive role of selected serum miRNAs in MM patients who underwent AHSCT. Patients and methods Serum expression level of 6 miRNAs: miR-221-3p, miR-15b-5p, miR-223-3p, miR-320c, miR-361-3p, and miR-150-5p was evaluated in 51 patients who underwent AHSCT. Blood samples were collected at two time points: before conditioning chemotherapy (T1) and fourteen days after transplant (+14) (T2). Results All selected miRNAs significantly changed their expression level across the procedure- two were up-regulated after AHSCT: hsa-miR-320c (FC 1.42, p<0.0001) and hsa-miR-361-3p (FC 1.35, p=0.0168); four were down-regulated: hsa-miR-15b-5p (FC 0.53, p<0.0001), hsa-miR-221-3p (FC 0.78, p=0.0004), hsa-miR-223-3p (FC 0.74, p=0.0015) and hsa-miR-150-5p (FC 0.75, p=0.0080). Notably, before AHSCT, hsa-miR-223-3p was down-regulated in International Staging System (ISS) III patients (FC=0.76, p=0.0155), and hsa-miR-320c was up-regulated (FC=1.27, p=0.0470). These differences became non-significant after AHSCT. Eight (15.69%) patients achieved CR before AHSCT and 17 patients (33.33%) at +100 days after AHSCT. In multivariate logistic regression analysis, achievement of CR after induction and hsa-miR-223-3p at T1 were independent predictors of CR after AHSCT. In multivariate Cox regression analysis, hsa-miR-223-3p at T1 expression level was associated with prolonged OS (HR 0.06, 95%CI: 0.00 - 0.99, p=0.0488). Conclusion Serum expression of has-miR-223-3p is a predictor of CR and prolonged OS in MM patients undergoing AHSCT.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Izabela Dróźdż
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Misiewicz
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Kacper Piotr Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Karol Okoński
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Navabi A, Aznab M, Heydarpour F. The association between microRNA polymorphisms and the risk of childhood acute lymphoblastic leukemia: A meta-analysis. Cancer Epidemiol 2022; 81:102285. [PMID: 36343468 DOI: 10.1016/j.canep.2022.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The aim of this meta-analysis was to determine the relationship between microRNA polymorphisms and the risk of childhood acute lymphoblastic leukemia comprehensively. PubMed, EMBASE, Scopus, Web of Science, the Cochrane Library, Global Index Medicus, Clinicaltrials.gov, ProQuest, and Open Grey databases were used to find relevant papers. Using the STATA 16.0 and CMA 3.0 software, the significance of relationships between microRNA polymorphisms and childhood acute lymphoblastic leukemia risk was evaluated using odds ratios (ORs) and 95 % confidence intervals (95 % CIs) for five genetic models. The results of the meta-analysis showed that there was no significant association between the polymorphism of miR-146a rs2910164 and childhood acute lymphoblastic leukemia risk in different genetic models. Also, in the sensitivity analysis, removing Xue's study from the analysis indicated that both the homozygote and recessive models are significantly affected. Additionally, there was a statistically significant relationship between the polymorphisms of pri-miR-34b/c rs4938723 (in the homozygote and recessive models) and miR-612 rs12803915 (in the allele and dominant models) and childhood acute lymphoblastic leukemia risk. These findings suggest that the rs4938723 and rs12803915 polymorphisms may have a role in the development of childhood acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Abbas Navabi
- Student Research Committee, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozaffar Aznab
- Medical Oncologist-Hematologist, Internal Medicine Department, Talaghani Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Heydarpour
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Mutation in XPO5 causes adult-onset autosomal dominant familial focal segmental glomerulosclerosis. Hum Genomics 2022; 16:57. [DOI: 10.1186/s40246-022-00430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/04/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Focal and segmental glomerulosclerosis (FSGS) is a histological pathology that characterizes a wide spectrum of diseases. Many genes associated with FSGS have been studied previously, but there are still some FSGS families reported in the literature without the identification of known gene mutations. The aim of this study was to investigate the new genetic cause of adult-onset FSGS.
Methods
This study included 40 FSGS families, 77 sporadic FSGS cases, 157 non-FSGS chronic kidney disease (CKD) families and 195 healthy controls for analyses. Whole-exome sequencing (WES) and Sanger sequencing were performed on probands and family members of all recruited families and sporadic FSGS cases.
Results
Using WES, we have identified a novel heterozygous missense variant (c.T1655C:p.V552A) in exportin 5 gene (XPO5) in two families (FS-133 and CKD-05) affected with FSGS and CKD. Sanger sequencing has confirmed the co-segregation of this identified variant in an autosomal dominant pattern within two families, while this variant was absent in healthy controls. Furthermore, the identified mutation was absent in 195 ethnically matched healthy controls by Sanger sequencing. Subsequently, in silico analysis demonstrated that the identified variant was highly conservative in evolution and likely to be pathogenic.
Conclusions
Our study reports an adult-onset autosomal dominant inheritance of the XPO5 variant in familial FSGS for the first time. Our study expanded the understanding of the genotypic, phenotypic and ethnical spectrum of mutation in this gene.
Collapse
|
6
|
Gandhi M, Bakhai V, Trivedi J, Mishra A, De Andrés F, LLerena A, Sharma R, Nair S. Current perspectives on interethnic variability in multiple myeloma: Single cell technology, population pharmacogenetics and molecular signal transduction. Transl Oncol 2022; 25:101532. [PMID: 36103755 PMCID: PMC9478452 DOI: 10.1016/j.tranon.2022.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
This review discusses the emerging single cell technologies and applications in Multiple myeloma (MM), population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction. The role(s) of epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of MM are also discussed. It is understood that ethnic component acts as a driver of variable response to chemotherapy in different sub-populations globally. This review augments our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, myeloma microenvironment at the molecular and cellular level, and developing precision medicine strategies to combat this malignancy. The emerging single cell technologies hold great promise for enhancing our understanding of MM tumor heterogeneity and clonal diversity.
Multiple myeloma (MM) is an aggressive cancer characterised by malignancy of the plasma cells and a rising global incidence. The gold standard for optimum response is aggressive chemotherapy followed by autologous stem cell transplantation (ASCT). However, majority of the patients are above 60 years and this presents the clinician with complications such as ineligibility for ASCT, frailty, drug-induced toxicity and differential/partial response to treatment. The latter is partly driven by heterogenous genotypes of the disease in different subpopulations. In this review, we discuss emerging single cell technologies and applications in MM, population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction, as well as the role(s) played by epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of the disease. Taken together, our discussions further our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, augment our understanding of the myeloma microenvironment at the molecular and cellular level and provide a basis for developing precision medicine strategies to combat this malignancy.
Collapse
Affiliation(s)
- Manav Gandhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Viral Bakhai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Jash Trivedi
- University of Mumbai, Santa Cruz, Mumbai 400055, India
| | - Adarsh Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Fernando De Andrés
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Sujit Nair
- University of Mumbai, Santa Cruz, Mumbai 400055, India.
| |
Collapse
|
7
|
Zhang K, Liang Y, Zhang W, Zeng N, Tang S, Tian R. KRT81 Knockdown Inhibits Malignant Progression of Melanoma Through Regulating Interleukin-8. DNA Cell Biol 2021; 40:1290-1297. [PMID: 34591651 DOI: 10.1089/dna.2021.0317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
KRT81 is involved in carcinogenesis and progression of many types of human cancers. However, little is known about the role of KRT81 in melanoma. In this study, we identified that KRT81 expression is upregulated in melanoma tissues compared with corresponding adjacent nontumor tissues. Overexpression of KRT81 was also found in human melanoma cell lines. Cell functional studies have shown that KRT81 knockdown could inhibit proliferation, colony formation, migration, invasion, and promote apoptosis of A375 cells. Consistently, in vivo tumorigenesis experiments showed that KRT81 knockdown significantly suppressed the growth of xenograft tumors. Moreover, KRT81 knockdown increased the chemosensitivity of A375 cells to DDP. Mechanical exploration revealed that KRT81 knockdown mediated the downregulation of inflammatory cytokine interleukin-8 (IL-8). In conclusion, these findings indicate that downregulation of KRT81 could inhibit progression of melanoma by regulating IL-8. Therefore, KRT81 represents a potential therapeutic target for melanoma therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Yan Liang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ning Zeng
- Department of Nephrology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ruoxi Tian
- School of Basic Medicine, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
8
|
Vecoli C, Borghini A, Turchi S, Mercuri A, Andreassi MG. Genetic polymorphisms of miRNA machinery genes in bicuspid aortic valve and associated aortopathy. Per Med 2020; 18:21-29. [PMID: 33124523 DOI: 10.2217/pme-2020-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aim: SNPs in miRNA machinery genes may affect miRNA function by impacting their biogenesis. Here, we investigated the association between three SNPs in miRNA machinery genes (DICER rs1057035, DROSHA rs10719 and XPO5 rs11077) and bicuspid aortic valve (BAV). Materials & methods: Three polymorphisms were analyzed in 177 BAV patients and 414 healthy subjects by using a TaqMan®SNP assay. Results: The frequencies of XPO5 rs11077 genotype were significantly different between BAV patients and controls (p = 0.022). On multivariate logistic regression analysis, the XPO5 rs11077 C allele resulted a significant predictor of BAV (odds ratioadjusted = 0.65; CI: 0.42-0.98; p = 0.047). Conclusion: The XPO5 rs11077 SNP was associated with a decreased BAV risk supporting the causative role of miRNAs in aortic valve development.
Collapse
|
9
|
Zheng Y, Liu Y, Wang M, He Q, Xie X, Lu L, Zhong W. Association between miR-492 rs2289030 G>C and susceptibility to Hirschsprung disease in southern Chinese children. J Int Med Res 2020; 48:300060520961680. [PMID: 33103535 PMCID: PMC7604986 DOI: 10.1177/0300060520961680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hirschsprung disease (HSCR) originates from disruption of normal neural crest cell migration, differentiation, and proliferation during the fifth to eighth weeks of gestation. This results in the absence of intestinal ganglion cells in the distal intestinal tract. However, genetic variations affecting embryonic development of intestinal ganglion cells are unclear. Therefore, this study aimed to investigated the potential value of miR-492 rs2289030 G>C as a marker of susceptibility to HSCR. METHODS In this case-control study in southern Chinese children, we collected samples from 1473 controls and 1470 patients with HSCR. TaqMan genotyping of miR-492 rs2289030 G>C was performed by real-time fluorescent quantitative polymerase chain reaction. RESULTS Multivariate logistic regression analysis showed that there was no significant association between the presence of the miR-492 rs2289030 G>C polymorphism and susceptibility to HSCR by evaluating the values of pooled odds ratios and 95% confidence intervals. Similarly, among different HSCR subtypes, rs2289030 G>C was also not associated with HSCR in hierarchical analysis. CONCLUSIONS Our results suggest that the miR-492 rs2289030 G>C polymorphism is not associated with susceptibility to HSCR in southern Chinese children. These results need to be further confirmed by investigating a more diverse ethnic population of patients with HSCR.
Collapse
Affiliation(s)
| | | | | | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Lifeng Lu
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
10
|
Sha Z, Lai R, Zhang X, Zhao Y, Wu J, Geng C, Guo Z. A Polymorphism at the microRNA Binding Site in the 3' Untranslated Region of KRT81 Is Associated with Breast Cancer. DNA Cell Biol 2020; 39:1886-1894. [PMID: 32678982 DOI: 10.1089/dna.2019.5179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Single nucleotide polymorphisms in miRNA binding sites (miR-SNPs) are associated with cancer risk. We assessed the relationship between five miR-SNPs in the 3' untranslated region (3'-UTR) of RYR3 (rs1044129), KIAA0423 (rs1053667), C14orf101 (rs4901706), GOLGA7 (rs11337), and KRT81 (rs3660) and the risk of breast cancer (BC). The CC genotype of rs3660 located in the 3'-UTR of KRT81 was identified for its association with lower BC risk (odds ratio, 0.093; 95% confidence interval, 0.045-0.193; p = 0.000). Immunnochemical analysis and Renilla luciferase reporter assays indicated that the CC genotype of KRT81 was associated with lower expression of KRT81 (p < 0.05). The subsequently functional analysis showed that knockdown the KRT81 could inhibit proliferation and promote apoptosis of the MDA-MB-231 BC cells (p < 0.05) with monocyte chemotactic protein-1 (MCP-1) deregulation. Meanwhile, KRT81 overexpression could promote the proliferation and inhibit the apoptosis of MCF-7 BC cells (p < 0.05). Our data demonstrated that the KRT81 expressional change modulated by rs3660 miR-SNP could modify the carcinogenesis of BC, thereby KRT81 would be a new target for BC treatment.
Collapse
Affiliation(s)
- Ziyue Sha
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ruixue Lai
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Xiaoyun Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jianhua Wu
- Department of Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
11
|
Li J, Zou J, Wan X, Sun C, Chu Z, Hu Y. Roles of noncoding RNAs in drug resistance in multiple myeloma. J Cell Physiol 2020; 235:7681-7695. [PMID: 32324301 DOI: 10.1002/jcp.29726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Despite the administration of new effective drugs in recent years, relapse and drug resistance are still the main obstacles in multiple myeloma (MM) treatment, making MM an incurable disease. To overcome drug resistance in MM, it is critical to understand the underlying mechanisms of malfunctioning gene expression and develop novel targeted therapies. During the past few decades, with the discovery and characterization of noncoding RNAs (ncRNAs), the landscape of dysregulated ncRNAs of cancers as well as their biological and pathobiological functions in tumorigenesis and drug resistance have been recognized. Studies about ncRNAs improved the understanding of variations of drug response among individuals at a level distinguished from genetic polymorphism, and provided with new orientations for targeted therapies. In this review, we will summarize the emerging impact and underlying molecular mechanisms of the most relevant classes of ncRNAs in drug resistance of MM, and discuss the potential as well as strategies of treating ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Single-Nucleotide Polymorphisms in XPO5 are Associated with Noise-Induced Hearing Loss in a Chinese Population. Biochem Res Int 2020; 2020:9589310. [PMID: 32148964 PMCID: PMC7048908 DOI: 10.1155/2020/9589310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
Objectives The purpose of this study was to investigate the correlation between single-nucleotide polymorphism (SNP) in 3′UTR of XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on Methods We conducted a case-control study involving 1040 cases and 1060 controls. The effects of SNPs on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on Results We genotyped four SNPs (rs2257082, rs11077, rs7755135, and rs1106841) in the XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5. Conclusion. The genetic polymorphism, rs11077, within XPO5 is associated with the risk of noise-induced hearing loss in a Chinese population.XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on
Collapse
|
13
|
Yuan J, Su Z, Gu W, Shen X, Zhao Q, Shi L, Jin C, Wang X, Cong H, Ju S. MiR-19b and miR-20a suppress apoptosis, promote proliferation and induce tumorigenicity of multiple myeloma cells by targeting PTEN. Cancer Biomark 2019; 24:279-289. [PMID: 30883341 DOI: 10.3233/cbm-182182] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy that is often associated with osteolytic lesions, anemia and renal impairment. Deregulation of miRNA has been implicated in the pathogenesis of MM. It was found in our study that miR-19b and miR-20a as members of crucial oncogene miR-17-92 cluster were differentially expressed between patients with MM and normal controls by genechip microarray, and this result was further confirmed in sera of patients with MM by qRT-PCR. The functional effect of miR-19b/20a was analyzed and results showed that miR-19b/20a promoted cell proliferation and migration, inhibited cell apoptosis and altered cell cycle in MM cells. PTEN protein expression was reduced after transfection of miR-19b/20a, suggesting that PTEN was a direct target of miR-19b/20a. In addition, over-expression of miR-19b/20a reversed the anti-proliferation and pro-apoptosis effect of PTEN in MM cells. Finally, our in vivo experiment demonstrated that lentivirus-mediated delivery of miR-20a promoted tumor growth in murine xenograft model of MM, which provide evidence that miR-20a inhibitor exerts therapeutic activity in preclinical models and supports a framework for the development of miR-19b/20a-based treatment strategies for MM patients.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | - Wenchao Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | | | - Chunjing Jin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Borghini A, Pulignani S, Mercuri A, Vecoli C, Turchi S, Carpeggiani C, Andreassi MG. Influence of genetic polymorphisms in DICER and XPO5 genes on the risk of coronary artery disease and circulating levels of vascular miRNAs. Thromb Res 2019; 180:32-36. [DOI: 10.1016/j.thromres.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
|
15
|
Factors Regulating microRNA Expression and Function in Multiple Myeloma. Noncoding RNA 2019; 5:ncrna5010009. [PMID: 30654527 PMCID: PMC6468559 DOI: 10.3390/ncrna5010009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Intensive research has been undertaken during the last decade to identify the implication of microRNAs (miRNAs) in the pathogenesis of multiple myeloma (MM). The expression profiling of miRNAs in MM has provided relevant information, demonstrating different patterns of miRNA expression depending on the genetic abnormalities of MM and a key role of some miRNAs regulating critical genes associated with MM pathogenesis. However, the underlying causes of abnormal expression of miRNAs in myeloma cells remain mainly elusive. The final expression of the mature miRNAs is subject to multiple regulation mechanisms, such as copy number alterations, CpG methylation or transcription factors, together with impairment in miRNA biogenesis and differences in availability of the mRNA target sequence. In this review, we summarize the available knowledge about the factors involved in the regulation of miRNA expression and functionality in MM.
Collapse
|
16
|
Involving the microRNA Targetome in Esophageal-Cancer Development and Behavior. Cancers (Basel) 2018; 10:cancers10100381. [PMID: 30322005 PMCID: PMC6210990 DOI: 10.3390/cancers10100381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common and sixth leading cause of cancer-related mortality in the world. Despite breakthroughs in EC diagnosis and treatment, patients with complete pathologic response after being submitted to chemoradiotherapy are still submitted to surgery, despite its high morbidity. Single-nucleotide polymorphisms (SNPs) in miRNA, miRNA-binding sites, and in its biogenesis pathway genes can alter miRNA expression patterns, thereby influencing cancer risk and prognosis. In this review, we systematized the information available regarding the impact of these miR-SNPs in EC development and prognosis. We found 34 miR-SNPs that were associated with EC risk. Despite the promising applicability of these miR-SNPs as disease biomarkers, they still lack validation in non-Asian populations. Moreover, there should be more pathway-based approaches to evaluate the cumulative effect of multiple unfavorable genotypes and, consequently, identify miR-SNPs signatures capable of predicting EC therapy response and prognosis.
Collapse
|
17
|
Caracciolo D, Montesano M, Altomare E, Scionti F, Di Martino MT, Tagliaferri P, Tassone P. The potential role of miRNAs in multiple myeloma therapy. Expert Rev Hematol 2018; 11:793-803. [DOI: 10.1080/17474086.2018.1517041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| |
Collapse
|
18
|
Patrão AS, Dias F, Teixeira AL, Maurício J, Medeiros R. XPO5 genetic polymorphisms in cancer risk and prognosis. Pharmacogenomics 2018; 19:799-808. [DOI: 10.2217/pgs-2018-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
miRNAs are small noncoding RNA molecules that have a very important role in gene expression regulation and, therefore, in cell homeostasis. SNPs in certain miRNA-related genes have been shown to influence cancer risk and prognosis. miRNA cellular processing is complex and involves multiple proteins. XPO5 is a key factor in this process as it is responsible for the nuclear export of the precursor pre-miRNA to the cytoplasm, where it will be further processed to its final miRNA conformation in order to be loaded to RNA inducing silencing complex to exert its regulatory effect. SNPs in miRNA machinery related genes have previously been shown to influence carcinogenesis, but the role of XPO5 SNPs in its expression and function is not yet fully understood. In our review, we elaborate comprehensively on the role of XPO5 and how polymorphisms have been shown to influence cancer risk and prognosis to date.
Collapse
Affiliation(s)
- Ana Sofia Patrão
- Medical Oncology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Porto, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Porto, Portugal
| | - Joaquina Maurício
- Medical Oncology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
19
|
Wu K, He J, Pu W, Peng Y. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:120-126. [PMID: 29723684 PMCID: PMC6112314 DOI: 10.1016/j.gpb.2017.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are conserved small non-coding RNAs that play an important role in the regulation of gene expression and participate in a variety of biological processes. The biogenesis of miRNAs is tightly controlled at multiple steps, such as transcription of miRNA genes, processing by Drosha and Dicer, and transportation of precursor miRNAs (pre-miRNAs) from the nucleus to the cytoplasm by exportin-5 (XPO5). Given the critical role of nuclear export of pre-miRNAs in miRNA biogenesis, any alterations of XPO5, resulting from either genetic mutation, epigenetic change, abnormal expression level or posttranslational modification, could affect miRNA expression and thus have profound effects on tumorigenesis. Importantly, XPO5 phosphorylation by ERK kinase and its cis/trans isomerization by the prolyl isomerase Pin1 impair XPO5′s nucleo-to-cytoplasmic transport ability of pre-miRNAs, leading to downregulation of mature miRNAs in hepatocellular carcinoma. In this review, we focus on how XPO5 transports pre-miRNAs in the cells and summarize the dysregulation of XPO5 in human tumors.
Collapse
Affiliation(s)
- Ke Wu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan He
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Wang G, Bi C. Correlations of pri-Let-7 gene polymorphisms with the recurrence and metastasis of primary liver cancer after transcatheter arterial chemoembolization. Pathol Res Pract 2018; 214:667-672. [PMID: 29627220 DOI: 10.1016/j.prp.2018.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Single nucleotide polymorphisms (SNPs) within miRNAs could change their production or affinity with target genes, thus leading to malignant diseases. This study aims to explore correlations of pri-let-7 gene polymorphisms with the recurrence and metastasis of primary liver cancer (PLC) after a transcatheter arterial chemoembolization (TACE) surgical procedure. MATERIALS AND METHODS A total of 302 PLC patients treated with hepatoprotective therapies after TACE were selected to and assigned into recurrent and non-recurrent groups. Genotypes of pri-let-7a-1 rs1073997 and pri-let-7a-2 rs629367 were analyzed by Taqman assay. The relationship between PLC with the mutation of each SNP was determined by a multivariate logistic regression analyses. Moreover, the association between survival and pri-let-7 gene polymorphisms was analyzed by the Kaplan-Meier method. The Progress Free Survival (PFS) curve, correlation of pri-let-7a-1 rs629367 with alcohol, HBsAg-positive and TNM III/IV were analyzed by a stratified analysis. Additionally, the risk factors for the recurrence of PLC were analyzed by a multivariate logistic regression analyses. RESULTS Results showed that the allelic frequency of the pri-let-7a-2 rs629367 SNP in the recurrent group was higher than that of the non-recurrent group. The distribution of CC genotype was significantly higher than non-CC genotype in the recurrent group. Alcohol consumption, positive expression of hepatitis B surface antigen (HBsAg), AC + CC genotype of rs629367 and TNM III/IV were determined to be the risk factors for the recurrence and metastasis of PLC after TACE. We found a positive correlation between pri-let-7a-2 rs629367 with alcohol consumption, HBsAg-positive and TNM III/IV. The median PFS of HBsAg-positive and TNM III/IV patients with the AC + CC genotype of rs629367 was shorter than those with non-AC + CC genotype. CONCLUSION Our findings provide evidence that patients with PLC that carry the AC + CC genotype of pri-let-7a-2 rs629367 after TACE have a worse prognosis than those who carry the AA genotype. We speculate that the pri-let-7 rs629367 SNP could be used as a predictor of recurrence and metastasis after TACE for patients with PLC.
Collapse
Affiliation(s)
- Gang Wang
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| |
Collapse
|
21
|
Ott CA, Linck L, Kremmer E, Meister G, Bosserhoff AK. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget 2018; 7:62292-62304. [PMID: 27556702 PMCID: PMC5308727 DOI: 10.18632/oncotarget.11410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023] Open
Abstract
Regulation of gene expression via microRNAs is known to promote the development of many types of cancer. In melanoma, miRNAs are globally up-regulated, and alterations of miRNA-processing enzymes have already been identified. However, mis-regulation of miRNA transport has not been analyzed in melanoma yet. We hypothesized that alterations in miRNA transport disrupt miRNA processing. Therefore, we investigated whether the pre-miRNA transporter Exportin-5 (XPO5) was involved in altered miRNA maturation and functional consequences in melanoma. We found that XPO5 is significantly over-expressed in melanoma compared with melanocytes. We showed enhanced XPO5 mRNA stability in melanoma cell lines which likely contributes to up-regulated XPO5 protein expression. In addition, we identified MEK signaling as a regulator of XPO5 expression in melanoma. Knockdown of XPO5 expression in melanoma cells led to decreased mature miRNA levels and drastic functional changes. Our data revealed that aberrant XPO5 expression is important for the maturation of miRNAs and the malignant behavior of melanoma cells. We suggest that the high abundance of XPO5 in melanoma leads to enhanced survival, proliferation and metastasis and thereby supports the aggressiveness of melanoma.
Collapse
Affiliation(s)
- Corinna Anna Ott
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lisa Linck
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 81377 Munich, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 093053 Regensburg, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
22
|
Karyopherins in cancer. Curr Opin Cell Biol 2018; 52:30-42. [PMID: 29414591 DOI: 10.1016/j.ceb.2018.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 12/16/2022]
Abstract
Malfunction of nuclear-cytoplasmic transport contributes to many diseases including cancer. Defective nuclear transport leads to changes in both the physiological levels and temporal-spatial location of tumor suppressors, proto-oncogenes and other macromolecules that in turn affect the tumorigenesis process and drug sensitivity of cancer cells. In addition to their nuclear transport functions in interphase, Karyopherin nuclear transport receptors also have important roles in mitosis and chromosomal integrity. Therefore, alterations in the expressions or regular functions of Karyopherins may have substantial effects on the course and outcome of diseases.
Collapse
|
23
|
Significance of microRNA-related variants in susceptibility to recurrence of oropharyngeal cancer patients after definitive radiotherapy. Oncotarget 2018; 7:35015-25. [PMID: 27145460 PMCID: PMC5085206 DOI: 10.18632/oncotarget.9014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022] Open
Abstract
Common single nucleotide polymorphisms (SNPs) in miRNAs may affect miRNA functions and their target expression and thus may affect biological activities and cancer etiology as well as prognosis. Thus, we determined whether the 9 SNPs in microRNAs modify the risk of recurrence of squamous cell carcinoma of the oropharynx (SCCOP) in a cohort of 1008 patients. The log-rank test and multivariate Cox models were used to evaluate the associations. We found that the SNPs in the miRNA146, miRNA196, and Gemin3 were associated with a significantly reduced and increased risk of SCCOP recurrence after multivariate adjustment (aHR, 0.6, 95%CI, 0.4-0.9, aHR, 2.1, 95%CI, 1.6-2.8, and aHR, 0.6, 95%CI, 0.5-0.9, respectively). Furthermore, the similar effect of these 3 SNPs on SCCOP recurrence risk was found in HPV-positive SCCOP patients only. However, no significant associations were found for other SNPs. To evaluate the aggregate effects of these SNPs, we performed a combined risk genotype analysis. We found that, compared with the low-risk reference group with less than 4 risk genotypes, the medium-risk group with 4 or 5 risk genotypes exhibited a 1.7-fold (1.2-2.4) increased risk whereas the high-risk group with more than 5 risk genotypes exhibited a 3.0-fold (1.7-4.2) increased risk (Ptrend < 0.001). Such combined effects were particularly pronounced in HPV-positive SCCOP patients. Taken together, this is the first study with a large cohort of SCCOP patients showing that miRNA-related genetic variants may modify risk of SCCOP recurrence individually and jointly. Larger studies are needed to validate these results.
Collapse
|
24
|
Wang C, Dong H, Fan H, Wu J, Wang G. Genetic polymorphisms of microRNA machinery genes predict overall survival of esophageal squamous carcinoma. J Clin Lab Anal 2017; 32. [PMID: 29226993 DOI: 10.1002/jcla.22170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/15/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA)-related single nucleotide polymorphisms (miR-SNPs) in miRNA processing machinery genes are implicated in carcinogenesis, as they change the expression profiles of miRNA. Six miR-SNPs in miRNA processing machinery genes, including Dicer (rs3742330), RAN (rs14035), XPO5 (rs11077), TNRC6B (rs9623117), GEMIN3 (rs197412), and GEMIN4 (rs2740348), were evaluated for their association with esophageal squamous cell carcinoma (ESCC). METHODS The miR-SNP of the miRNA processing genes were genotyped using the polymerase chain reaction-ligase detection reaction (PCR-LDR) assay, while the XPO5 expression levels in ESCC tissues were measured by immunochemistry methods. RESULTS Patients carrying the rs11077 AA allele exhibited a significantly increased lifespan than AC+CC carriers, as determined by univariate and multivariate analyses (relative risk: 2.490; 95% confidence interval [CI]: 1.225-5.058; P=.012). Furthermore, the rs11077 AA genotype displayed a trend for high XPO5 expression in ESCC tissues by immunochemistry analysis, and these high XPO5 expression levels were also associated with high survival rates among ESCC patients. CONCLUSION Our results suggested that the miRNA machinery gene expression-associated miR-SNPs would modify cancer outcomes; in this light, XPO5 may be an important new target for ESCC therapy.
Collapse
Affiliation(s)
- Cuiju Wang
- Department of Gynecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hailing Dong
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyan Fan
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Cao HX, Miao CF, Yan L, Tang P, Zhang LR, Sun L. Polymorphisms at microRNA binding sites of Ara-C and anthracyclines-metabolic pathway genes are associated with outcome of acute myeloid leukemia patients. J Transl Med 2017; 15:235. [PMID: 29141648 PMCID: PMC5688732 DOI: 10.1186/s12967-017-1339-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022] Open
Abstract
Background Gene polymorphisms at microRNA-binding sites (poly-miRTS) may affect gene transcription and expression through miRNA regulation, which is associated with cancer susceptibility, sensitivity to chemotherapy and prognosis. This study investigated the association between poly-miRTS of Ara-C/anthracycline metabolic pathways genes and the outcome of acute myeloid leukemia (AML) in Chinese patients after Ara-C-based chemotherapy. Methods A total of 17 poly-miRTS were selected from the SNPinfo Web Server and genotyped in 206 Chinese Han non-FAB-M3 AML patients using the SEQUENOM Mass-ARRAY system. Results Among these 17 poly-miRTS, five Ara-C metabolic gene single nucleotide polymorphisms (SNPs, NT5C2 rs10786736 and rs8139, SLC29A1 rs3734703, DCTD rs7278, and RRM1 rs1042919) were identified to significantly associate with complete AML remission and/or overall and relapse-free survival (OS and RFS, respectively), and four anthracycline-metabolic gene SNPs (ABCC1 rs3743527, rs212091, and rs212090 and CBR1 rs9024) were significantly associated with chemotherapy-related toxicities. Moreover, SLC29A1 rs3734703 was shown to associate with both chemotherapy response and survival (adjusted OR 2.561 in the overdominant model; adjusted HR 2.876 for OS and 2.357 for RFS in the dominant model). Conclusions The data from the current study demonstrated that the poly-miRTS of Ara-C/anthracyclines metabolic genes predicted the sensitivity and side effects of AML to Ara-C-based chemotherapy and patient survival. Further study will confirm them as biomarkers for AML patients after Ara-C-based chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-017-1339-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai-Xia Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, 450052, Henan, China
| | - Chao-Feng Miao
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ping Tang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
26
|
Abstract
microRNAs (miRNAs) are a small RNA species without protein-coding potential. However, they are key modulators of protein translation. Many studies have linked miRNAs with cancer initiation, progression, diagnosis, and prognosis, and recent studies have also linked them with cancer etiology and susceptibility, especially through single-nucleotide polymorphisms (SNPs). This review discusses some of the recent advances in miRNA-SNP literature-including SNPs in miRNA genes, miRNA target sites, and the processing machinery. In addition, we highlight some emerging areas of interest, including isomiRs and non-3'UTR focused miRNA-binding mechanisms that could provide further novel insight into the relationship between miR-SNPs and cancer. Finally, we note that additional epidemiological and experimental research is needed to close the gap in our understanding of the genotype-phenotype relationship between miRNA-SNPs and cancer.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
27
|
Faluyi OO, Eng L, Qiu X, Che J, Zhang Q, Cheng D, Ying N, Tse A, Kuang Q, Dodbiba L, Renouf DJ, Marsh S, Savas S, Mackay HJ, Knox JJ, Darling GE, Wong RKS, Xu W, Azad AK, Liu G. Validation of microRNA pathway polymorphisms in esophageal adenocarcinoma survival. Cancer Med 2017; 6:361-373. [PMID: 28074552 PMCID: PMC5313634 DOI: 10.1002/cam4.989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/19/2016] [Accepted: 11/04/2016] [Indexed: 12/23/2022] Open
Abstract
Polymorphisms in miRNA and miRNA pathway genes have been previously associated with cancer risk and outcome, but have not been studied in esophageal adenocarcinoma outcomes. Here, we evaluate candidate miRNA pathway polymorphisms in esophageal adenocarcinoma prognosis and attempt to validate them in an independent cohort of esophageal adenocarcinoma patients. Among 231 esophageal adenocarcinoma patients of all stages/treatment plans, 38 candidate genetic polymorphisms (17 biogenesis, 9 miRNA targets, 5 pri-miRNA, 7 pre-miRNA) were genotyped and analyzed. Cox proportional hazard models adjusted for sociodemographic and clinicopathological covariates helped assess the association of genetic polymorphisms with overall survival (OS) and progression-free survival (PFS). Significantly associated polymorphisms were then evaluated in an independent cohort of 137 esophageal adenocarcinoma patients. Among the 231 discovery cohort patients, 86% were male, median diagnosis age was 64 years, 34% were metastatic at diagnosis, and median OS and PFS were 20 and 12 months, respectively. GEMIN3 rs197412 (aHR = 1.37, 95%CI: [1.04-1.80]; P = 0.02), hsa-mir-124-1 rs531564 (aHR = 0.60, 95% CI: [0.53-0.90]; P = 0.05), and KIAA0423 rs1053667 (aHR = 0.51, 95% CI: [0.28-0.96]; P = 0.04) were found associated with OS. Furthermore, GEMIN3 rs197412 (aHR = 1.33, 95% CI: [1.03-1.74]; P = 0.03) and KRT81 rs3660 (aHR = 1.29, 95% CI: [1.01-1.64]; P = 0.04) were found associated with PFS. Although none of these polymorphisms were significant in the second cohort, hsa-mir-124-1 rs531564 and KIAA0423 rs1053667 had trends in the same direction; when both cohorts were combined together, GEMIN3 rs197412, hsa-mir-124-1 rs531564, and KIAA0423 rs1053667 remained significantly associated with OS. We demonstrate the association of multiple miRNA pathway polymorphisms with esophageal adenocarcinoma prognosis in a discovery cohort of patients, which did not validate in a separate cohort but had consistent associations in the pooled cohort. Larger studies are required to confirm/validate the prognostic value of these polymorphisms in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Olusola O. Faluyi
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
| | - Lawson Eng
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
| | - Xin Qiu
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Department of BiostatisticsPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Jiahua Che
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Department of BiostatisticsPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Qihuang Zhang
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Department of BiostatisticsPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Dangxiao Cheng
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
| | - Nanjiao Ying
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Institute of Biomedical EngineeringHangzhou Dianzi UniversityZhejiangChina
| | - Alvina Tse
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
| | - Qin Kuang
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
| | - Lorin Dodbiba
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
| | - Daniel J. Renouf
- British Columbia Cancer AgencyDepartment of Medical OncologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sharon Marsh
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Sevtap Savas
- Discipline of GeneticsMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Helen J. Mackay
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Odette Cancer CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Jennifer J. Knox
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
| | - Gail E. Darling
- Division of Thoracic SurgeryDepartment of SurgeryToronto General HospitalTorontoOntarioCanada
| | - Rebecca K. S. Wong
- Department of Radiation OncologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Wei Xu
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Department of BiostatisticsPrincess Margaret Cancer CentreTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Abul Kalam Azad
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Department of Genitourinary Medical OncologyDivision of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Geoffrey Liu
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Division of Applied Molecular OncologyOntario Cancer Institute‐Princess Margaret Cancer Centre and University of TorontoTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
28
|
Association between Polymorphism of Exportin-5 and Susceptibility to Lead Poisoning in a Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 14:ijerph14010036. [PMID: 28042866 PMCID: PMC5295287 DOI: 10.3390/ijerph14010036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/11/2016] [Accepted: 12/14/2016] [Indexed: 12/28/2022]
Abstract
Lead (Pb) is one of the major contaminants in many industries, and imposes hazardous effects on multiple human organs and systems. Studies have shown that lead is able to induce the alteration of microRNA (miRNA) expression in serum and organs. In this study we investigated whether polymorphisms in miRNA-regulating genes were associated with the risk of lead exposure. We genotyped seven single-nucleotide polymorphisms (SNPs) in 113 lead-sensitive and 113 lead-resistant lead-related Chinese workers by Taqman analysis. The lead-sensitive group showed a significantly higher blood lead level (BLL) than the resistant group based on unconditional logistic regression results. One SNP in XPO5 extron (rs2257082) was significantly associated with lead-poisoning (p = 0.022, odds rate (OR) = 1.63, 95% confidence interval (CI) = 1.07-2.47 in the C allele compared to the T allele). There were no significant associations between the other six SNPs and the blood lead levels. Therefore, polymorphism rs2257082 could be used to distinguish lead-resistant and lead-susceptible populations, and to develop more specific and accurate preventions.
Collapse
|
29
|
Bradshaw G, Sutherland HG, Haupt LM, Griffiths LR. Dysregulated MicroRNA Expression Profiles and Potential Cellular, Circulating and Polymorphic Biomarkers in Non-Hodgkin Lymphoma. Genes (Basel) 2016; 7:genes7120130. [PMID: 27999330 PMCID: PMC5192506 DOI: 10.3390/genes7120130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
A large number of studies have focused on identifying molecular biomarkers, including microRNAs (miRNAs) to aid in the diagnosis and prognosis of the most common subtypes of non-Hodgkin lymphoma (NHL), Diffuse Large B-cell Lymphoma and Follicular Lymphoma. NHL is difficult to diagnose and treat with many cases becoming resistant to chemotherapy, hence the need to identify improved biomarkers to aid in both diagnosis and treatment modalities. This review summarises more recent research on the dysregulated miRNA expression profiles found in NHL, as well as the regulatory role and biomarker potential of cellular and circulating miRNAs found in tissue and serum, respectively. In addition, the emerging field of research focusing on miRNA single nucleotide polymorphisms (miRSNPs) in genes of the miRNA biogenesis pathway, in miRNA genes themselves, and in their target sites may provide new insights on gene expression changes in these genes. These miRSNPs may impact miRNA networks and have been shown to play a role in a host of different cancer types including haematological malignancies. With respect to NHL, a number of SNPs in miRNA-binding sites in target genes have been shown to be associated with overall survival.
Collapse
Affiliation(s)
- Gabrielle Bradshaw
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
30
|
Li MP, Hu YD, Hu XL, Zhang YJ, Yang YL, Jiang C, Tang J, Chen XP. MiRNAs and miRNA Polymorphisms Modify Drug Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111096. [PMID: 27834829 PMCID: PMC5129306 DOI: 10.3390/ijerph13111096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Differences in expression of drug response-related genes contribute to inter-individual variation in drugs’ biological effects. MicroRNAs (miRNAs) are small noncoding RNAs emerging as new players in epigenetic regulation of gene expression at post-transcriptional level. MiRNAs regulate the expression of genes involved in drug metabolism, drug transportation, drug targets and downstream signal molecules directly or indirectly. MiRNA polymorphisms, the genetic variations affecting miRNA expression and/or miRNA-mRNA interaction, provide a new insight into the understanding of inter-individual difference in drug response. Here, we provide an overview of the recent progress in miRNAs mediated regulation of biotransformation enzymes, drug transporters, and nuclear receptors. We also describe the implications of miRNA polymorphisms in cancer chemotherapy response.
Collapse
Affiliation(s)
- Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yao-Dong Hu
- Department of Cardiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China.
| | - Xiao-Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yan-Jiao Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yong-Long Yang
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, China.
| | - Chun Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
31
|
Zhao Y, Yang H, Luo X, Wang C, Zhang R, Guo Z. Single nucleotide polymorphisms at the microRNA-binding site of KIAA0423 are associated with colorectal cancer. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1212672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yue Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P. R. China
| | - Huichai Yang
- Department of Pathology, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P. R. China
| | - Xiaoxu Luo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P. R. China
| | - Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P. R. China
| | - Ruixing Zhang
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P. R. China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P. R. China
| |
Collapse
|
32
|
Association of Polymorphic Variants of miRNA Processing Genes with Larynx Cancer Risk in a Polish Population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:298378. [PMID: 26688807 PMCID: PMC4673325 DOI: 10.1155/2015/298378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/02/2015] [Accepted: 10/25/2015] [Indexed: 11/29/2022]
Abstract
Laryngeal cancer (LC) is one of the most prevalent types of head and neck cancer. An increasing interest has been focused on the role of microRNA (miRNAs) in LC development. The study group consisted of 135 larynx cancer patients and 170 cancer-free individuals. Nine polymorphisms of pre-miRNA processing genes, DROSHA (rs6877842), DGCR8 (rs3757, rs417309, and rs1640299), RAN (rs14035), XPO5 (rs11077), DICER1 (rs13078 and rs3742330) and TARBP2 (rs784567), were performed by TaqMan SNP Genotyping Assay. It was found that the frequency of the GT and the TT polymorphic variants of XPO5 gene were higher in LC patients than in controls (p < 0.0001 and p = 0.000183, resp.). In turn, the frequency of the CT genotype of RAN gene was higher in controls than in LC patients (p < 0.0001). The TT and the AG of DICER1 gene (p = 0.034697 for rs13078 and p = 0.0004 for rs3742330) as well as the AG and the GG genotypes of TARBP2 gene (p = 0.008335 and p < 0.0001, resp.) were associated with higher risk of LC occurrence. Our data suggested that polymorphisms of miRNA processing genes might be useful as predictive factors for the LC development.
Collapse
|
33
|
Ghaedi H, Bastami M, Zare-Abdollahi D, Alipoor B, Movafagh A, Mirfakhraie R, Omrani MD, Masotti A. Bioinformatics prioritization of SNPs perturbing microRNA regulation of hematological malignancy-implicated genes. Genomics 2015; 106:360-6. [PMID: 26520014 DOI: 10.1016/j.ygeno.2015.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
The contribution of microRNAs (miRNAs) to cancer has been extensively investigated and it became obvious that a strict regulation of miRNA-mRNA regulatory network is crucial for safeguarding cell health. Apart from the direct impact of miRNA dysregulation in cancer pathogenesis, genetic variations in miRNAs are likely to disrupt miRNA-target interaction. Indeed, many evidences suggested that SNPs within miRNA regulome are associated with the development of different hematological malignancies. However, a full catalog of SNPs within miRNAs target sites of genes relevant to hematopoiesis and hematological malignancies is still lacking. Accordingly, we aimed to systematically identify and characterize such SNPs and provide a prioritized list of most potentially disrupting SNPs. Although in the present study we did not address the functional significance of these potential disturbing variants, we believe that our compiled results will be valuable for researchers interested in determining the role of target-SNPs in the development of hematological malignancies.
Collapse
Affiliation(s)
- Hamid Ghaedi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Zare-Abdollahi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Alipoor
- Clinical Biochemistry Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Gene Expression - Microarrays Laboratory, V.le San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
34
|
Gao Y, Diao L, Li H, Guo Z. Single nucleotide polymorphisms of microRNA processing genes and outcome of non-Hodgkin's lymphoma. Onco Targets Ther 2015. [PMID: 26203264 PMCID: PMC4508071 DOI: 10.2147/ott.s86338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective microRNA (miRNA)-related single nucleotide polymorphisms (miR-SNPs) in miRNA-processing machinery genes can affect cancer risk, treatment efficacy, and patients’ prognosis by mediating the expression of targeted genes. Five miR-SNPs in miRNA processing machinery genes, including XPO5 (rs11077), RAN (rs14035), TNRC6B (rs9623117), GEMIN3 (rs197412), and GEMIN4 (rs2740348), in 168 non-Hodgkin’s lymphoma (NHL) patients were evaluated for their association with the cancer risk and outcomes associated with NHL. Materials and methods miR-SNPs were genotyped using polymerase chain reaction–ligase detection reaction. The survival curves were calculated using the Kaplan–Meier method, and comparisons between the curves were made using the log-rank test. Multivariate survival analysis was performed using a Cox proportional hazards model. Results Among the five SNPs, only rs197412 located in the coding region of the GEMIN3 gene was identified; it was independently associated with overall survival in NHL patients, as determined by multivariate analysis (relative risk: 1.649; 95% confidence interval: 1.110–2.449; P=0.013). The prognostic value of this miR-SNP in patient outcomes was also observed in the diffuse large B-cell lymphoma and T-cell lymphoma NHL subtypes. Conclusion Our results suggested that the specific genetic variants observed in the miRNA machinery genes may affect NHL survival.
Collapse
Affiliation(s)
- Yuhuan Gao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Lanping Diao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Huan Li
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
35
|
Lee SY, Choi JE, Jeon HS, Hong MJ, Choi YY, Kang HG, Yoo SS, Lee EB, Jeong JY, Lee WK, Lee J, Cha SI, Kim CH, Kim YT, Jheon S, Son JW, Park JY. A genetic variation in microRNA target site of KRT81 gene is associated with survival in early-stage non-small-cell lung cancer. Ann Oncol 2015; 26:1142-1148. [PMID: 25716425 DOI: 10.1093/annonc/mdv100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/12/2015] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have a key role in carcinogenesis through negative regulation of their target genes. Therefore, genetic variations in miRNAs or their target sites may affect miRNA-mRNA interactions, thereby result in altered expression of target genes. This study was conducted to investigate the associations between single-nucleotide polymorphisms (SNP) located in the miRNA target sites (poly-miRTSs) and survival of patients with early-stage non-small-cell lung cancer (NSCLC). METHODS Using public SNP database and miRNA target sites prediction program, 354 poly-miRTSs were selected for genotyping. Among these, 154 SNPs applicable to Sequenom's MassARRAY platform were investigated in 357 patients. A replication study was carried out on an independent patient population (n = 479). Renilla luciferase assay and reverse transcription-polymerase chain reaction were conducted to examine functional relevance of potentially functional poly-miRTSs. RESULTS Of the 154 SNPs analyzed in a discovery set, 14 SNPs were significantly associated with survival outcomes. Among these, KRT81 rs3660G>C was found to be associated with survival outcomes in the validation cohort. In the combined analysis, patients with the rs3660 GC + CC genotype had a significantly better overall survival compared with those with GG genotype [adjusted hazard ratio (aHR) for OS, 0.65; 95% confidence interval (CI) 0.50-0.85; P = 0.001]. An increased expression of the reporter gene for the C allele of rs3660 compared with the G allele was observed by luciferase assay. Consistently, the C allele was associated with higher relative expression level of KRT81 in tumor tissues. CONCLUSION The rs3660G>C affects KRT81 expression and thus influences survival in early-stage NSCLC. The analysis of the rs3660G>C polymorphism may be useful to identify patients at high risk of a poor disease outcome.
Collapse
MESH Headings
- 3' Untranslated Regions
- Aged
- Binding Sites
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Computational Biology
- Databases, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Frequency
- Genetic Predisposition to Disease
- HEK293 Cells
- Humans
- Kaplan-Meier Estimate
- Keratins, Hair-Specific/genetics
- Keratins, Hair-Specific/metabolism
- Keratins, Type II/genetics
- Keratins, Type II/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Staging
- Phenotype
- Polymorphism, Single Nucleotide
- Proportional Hazards Models
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
- Time Factors
- Transfection
Collapse
Affiliation(s)
- S Y Lee
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu
| | - J E Choi
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu; Department of Biochemistry and Cell Biology, School of Medicine.
| | - H S Jeon
- The Molecular Diagnostics & Imaging Research Institute
| | - M J Hong
- Department of Biochemistry and Cell Biology, School of Medicine
| | - Y Y Choi
- Department of Biochemistry and Cell Biology, School of Medicine
| | - H G Kang
- Department of Biochemistry and Cell Biology, School of Medicine
| | - S S Yoo
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu
| | - E B Lee
- Departments of Thoracic Surgery
| | | | - W K Lee
- Biostatistics Center, School of Medicine, Kyungpook National University, Daegu
| | - J Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu
| | - S I Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu
| | - C H Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu
| | - Y T Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul
| | - S Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul
| | - J W Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon
| | - J Y Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu; Department of Biochemistry and Cell Biology, School of Medicine; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
36
|
Xie Y, Wang Y, Zhao Y, Guo Z. Single-nucleotide polymorphisms of microRNA processing machinery genes are associated with risk for gastric cancer. Onco Targets Ther 2015; 8:567-71. [PMID: 25784816 PMCID: PMC4356688 DOI: 10.2147/ott.s79150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies demonstrate that microRNA-related single-nucleotide polymorphisms (miR-SNPs) are associated with the development of numerous human cancers. In this study, we investigated six miR-SNPs in microRNA processing machinery genes, including rs11077 of the XPO5 gene, rs14035 of the RAN gene, rs3742330 of the Dicer gene, rs9623117 of the TNRC6B gene, rs197412 of the GEMIN3 gene, and rs2740348 of the GEMIN4 gene, in gastric cancer patients and subsequently evaluated their potential roles in gastric cancer risk in a case control study. The results indicate that the C/C genotype of rs14035 from RAN, the A/A genotype of rs3742330 from Dicer, and the T/T genotype of rs9623117 from TNRC6B are significantly associated with gastric cancer risk. In conclusion, these miR-SNPs can be used as predictive biomarkers in gastric cancer.
Collapse
Affiliation(s)
- Ying Xie
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yingnan Wang
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuefei Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
37
|
Zhao Y, Du Y, Zhao S, Guo Z. Single-nucleotide polymorphisms of microRNA processing machinery genes and risk of colorectal cancer. Onco Targets Ther 2015; 8:421-5. [PMID: 25709475 PMCID: PMC4334349 DOI: 10.2147/ott.s78647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective MicroRNA (miRNA)-related single-nucleotide polymorphisms (miR-SNPs) in miRNA processing machinery genes can affect cancer risk, treatment efficacy, and patient prognosis. We genotyped 6 miR-SNPs of miRNA processing machinery genes including XPO5 (rs11077), RAN (rs14035), Dicer (rs3742330), TNRC6B (rs9623117), GEMIN3 (rs197412), and GEMIN4 (rs2740348) in a case-control study to evaluate their impact on colorectal cancer (CRC) risk. Materials and methods miR-SNPs were genotyped using the polymerase chain reaction– ligase detection reaction. The χ2 test was used to analyze dichotomous values, such as the presence or absence of any individual SNP in CRC patients and healthy controls. Results Two of these SNPs were identified for their association with cancer risk in the Dicer and GEMIN3 genes. The AA allele of rs3742330 located in the Dicer gene exhibited a significantly increased risk of CRC (odds ratio, 2.11; 95% confidence interval: 1.33–3.34; P=0.001); the TT allele of rs197412 located in GEMIN3 also exhibited a significantly increased risk of CRC (odds ratio, 1.68; 95% confidence interval: 1.07–2.65; P=0.024). Conclusion Our results suggest that the specific genetic variants in miRNA machinery genes may affect CRC susceptibility.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yanming Du
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shengnan Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
38
|
Karnati HK, Raghuwanshi S, Sarvothaman S, Gutti U, Saladi RGV, Komati JK, Tummala PR, Gutti RK. microRNAs: Key Players in Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:171-211. [DOI: 10.1007/978-3-319-22380-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Dzikiewicz-Krawczyk A. MicroRNA-binding site polymorphisms in hematological malignancies. J Hematol Oncol 2014; 7:83. [PMID: 25421940 PMCID: PMC4261542 DOI: 10.1186/s13045-014-0083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of microRNA networks has been implicated in hematological malignancies. One of the reasons for disturbed miRNA-mediated regulation are polymorphisms in miRNA-binding sites (miRSNPs), which alter the strength of miRNA interaction with target transcripts. In the recent years the first findings of miRSNPs associated with risk and prognosis in hematological malignancies have been reported. From the studies described in this review miRSNPs not only emerge as novel markers of risk and prognosis but can also lead to better understanding of the role of miRNAs in regulating gene expression in health and disease.
Collapse
|
40
|
Dzikiewicz-Krawczyk A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Crit Rev Oncol Hematol 2014; 93:1-17. [PMID: 25217091 DOI: 10.1016/j.critrevonc.2014.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022] Open
Abstract
MicroRNA dysregulation is a common event in hematological malignancies. Apart from genomic and epigenetic alterations, miRNA networks may be disturbed by polymorphisms in the miRNA regulatory pathway (miRSNPs). In this review we provide an overview of three categories of miRSNPs: (1) SNPs in genes involved in miRNA biogenesis and processing; (2) SNPs in miRNA genes; and (3) SNPs in miRNA binding sites in target genes and discuss their potential role as markers of disease risk, prognosis and treatment response in hematological cancers. Although so far only the tip of the iceberg has been touched, studies of polymorphisms in the miRNA regulatory pathways have already provided some clues for the mechanisms of miRNA dysregulation in cancer and open new perspectives in the management of hematological malignancies.
Collapse
|
41
|
Rocci A, Hofmeister CC, Pichiorri F. The potential of miRNAs as biomarkers for multiple myeloma. Expert Rev Mol Diagn 2014; 14:947-59. [DOI: 10.1586/14737159.2014.946906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
MicroRNA: important player in the pathobiology of multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:521586. [PMID: 24991558 PMCID: PMC4065722 DOI: 10.1155/2014/521586] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/19/2014] [Indexed: 01/13/2023]
Abstract
Recent studies have revealed a pivotal role played by a class of small, noncoding RNAs, microRNA (miRNA), in multiple myeloma (MM), a plasma cell (PC) malignancy causing significant morbidity and mortality. Deregulated miRNA expression in patient's PCs and plasma has been associated with tumor progression, molecular subtypes, clinical staging, prognosis, and drug response in MM. A number of important oncogenic and tumor suppressor miRNAs have been discovered to regulate important genes and pathways such as p53 and IL6-JAK-STAT signaling. miRNAs may also form complex regulatory circuitry with genetic and epigenetic machineries, the deregulation of which could lead to malignant transformation and progression. The translational potential of miRNAs in the clinic is being increasingly recognized that they could represent novel biomarkers and therapeutic targets. This review comprehensively summarizes current progress in delineating the roles of miRNAs in MM pathobiology and management.
Collapse
|
43
|
Huang JT, Wang J, Srivastava V, Sen S, Liu SM. MicroRNA Machinery Genes as Novel Biomarkers for Cancer. Front Oncol 2014; 4:113. [PMID: 24904827 PMCID: PMC4032885 DOI: 10.3389/fonc.2014.00113] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/01/2014] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) directly and indirectly affect tumorigenesis. To be able to perform their myriad roles, miRNA machinery genes, such as Drosha, DGCR8, Dicer1, XPO5, TRBP, and AGO2, must generate precise miRNAs. These genes have specific expression patterns, protein-binding partners, and biochemical capabilities in different cancers. Our preliminary analysis of data from The Cancer Genome Atlas consortium on multiple types of cancer revealed significant alterations in these miRNA machinery genes. Here, we review their biological structures and functions with an eye toward understanding how they could serve as cancer biomarkers.
Collapse
Affiliation(s)
- Jing-Tao Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Vibhuti Srivastava
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
44
|
Liu S, An J, Lin J, Liu Y, Bao L, Zhang W, Zhao JJ. Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma. PLoS One 2014; 9:e92791. [PMID: 24676133 PMCID: PMC3968016 DOI: 10.1371/journal.pone.0092791] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/25/2014] [Indexed: 01/12/2023] Open
Abstract
MicroRNA (miRNA)-related single nucleotide polymorphisms (miR-SNPs) can affect cancer development, treatment efficacy and patients prognosis. We examined 6 miR-SNPs in miRNA processing machinery genes including exportin 5 (XPO5) (rs11077), Ran-GTPase (RAN) (rs14035), Dicer (rs3742330), Trinucleotide Repeat Containing 6B (TNRC6B) (rs9623117), GEMIN3 (rs197412), GEMIN4 (rs2740348) in 108 surgically resected HCC patients and evaluated the impact of these miR-SNPs on HCC outcome. Among the 6 SNPs, only the A/A genotype of rs11077 located in XPO5 3'UTR was identified to associated independently with worse survival in HCC patients by multivariate analysis with relative risk, 0.395; 95% CI, 0.167-0.933; p = 0.034. This is the first study reporting that polymorphisms related to miRSNPs have prognostic value in hepatocellular carcinoma and identify the A/A genotype of rs11077 SNP site located in XPO5 3'UTR can help to predict worse prognosis in patients.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, China
- * E-mail: (SL); (JJZ)
| | - Jie An
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Jianhong Lin
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanli Liu
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Lidao Bao
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wen Zhang
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Jian-Jun Zhao
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SL); (JJZ)
| |
Collapse
|
45
|
Chu YH, Hsieh MJ, Chiou HL, Liou YS, Yang CC, Yang SF, Kuo WH. MicroRNA gene polymorphisms and environmental factors increase patient susceptibility to hepatocellular carcinoma. PLoS One 2014; 9:e89930. [PMID: 24587132 PMCID: PMC3935960 DOI: 10.1371/journal.pone.0089930] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/25/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Micro RNAs (miRNAs) are small RNA fragments that naturally exist in the human body. Through various physiological mechanisms, miRNAs can generate different functions for regulating RNA protein levels and balancing abnormalities. Abnormal miRNA expression has been reported to be highly related to several diseases and cancers. Single-nucleotide polymorphisms (SNPs) in miRNAs have been reported to increase patient susceptibility and affect patient prognosis and survival. We adopted a case-control research design to verify the relationship between miRNAs and hepatocellular carcinoma. METHODOLOGY/PRINCIPAL FINDINGS A total of 525 subjects, including 377 controls and 188 hepatocellular carcinoma patients, were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and real-time PCR were used to analyze miRNA146a (rs2910164), miRNA149 (rs2292832), miRNA196 (rs11614913), and miRNA499 (rs3746444) genetic polymorphisms between the control group and the case group. The results indicate that people who carry the rs3746444 CT or CC genotypes may have a significantly increased susceptibility to hepatocellular carcinoma (adjusted odds ratio [AOR] = 2.84, 95% confidence interval [CI] = 1.88-4.30). In addition, when combined with environmental risk factors, such as smoking and alcohol consumption, interaction effects were observed between gene polymorphisms and environmental factors (odds ratio [OR] = 4.69, 95% CI = 2.52-8.70; AOR = 3.38, 95% CI = 1.68-6.80). CONCLUSIONS These results suggest that a significant association exists between miRNA499 SNPs and hepatocellular carcinoma. Gene-environment interactions of miRNA499 polymorphisms, smoking, and alcohol consumption might alter hepatocellular carcinoma susceptibility.
Collapse
Affiliation(s)
- Yin-Hung Chu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Sheng Liou
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Chieh Yang
- Division of Gastroenterology, Department of Internal Medicine, Mennonite Christian Hospital, Hualien, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wu-Hsien Kuo
- Department of Medicine, Armed-Force Taichung General Hospital, Taichung, Taiwan
| |
Collapse
|
46
|
Xie Y, Diao L, Zhang L, Liu C, Xu Z, Liu S. A miR-SNP of the KRT81 gene is associated with the prognosis of non-Hodgkin's lymphoma. Gene 2014; 539:198-202. [PMID: 24530479 DOI: 10.1016/j.gene.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022]
Abstract
MicroRNA (miRNA), which plays an important role in tumorigenesis, can regulate post-transcriptional gene expression by binding to the 3' untranslated regions (3'-UTRs) of messenger RNAs and repressing its translation. Several single nucleotide polymorphisms (SNPs) are considered to have significant impacts on susceptibility of the role these genetic polymorphisms in development of carcinogenesis through that mechanism. But few of them focus their impact on non-Hodgkin's lymphoma (NHL). Therefore, we conducted this study to investigate the associations between the genetic variants and cancer risk or cancer outcome. MiRNA-related single nucleotide polymorphism (miR-SNP) sites rs3660 of KRT81, rs1044129 of RYR3, rs4901706 of f101, and rs1053667 of KIAA0423 were selected and analyzed in 210 patients in NHL to evaluate their association with cancer risk and prognosis. The results indicated that none of them is associated with the cancer risk in NHL. Otherwise KRT81 rs3660 GG type is associated with a shorter survival time (p=0.012), after being assessed by multivariate Cox analyses, its effect on prognosis was verified (p=0.003). It suggests that KRT81 rs3660 GG type is an independent prognostic marker in NHL.
Collapse
Affiliation(s)
- Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, PR China
| | - Lanping Diao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Li Zhang
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, PR China
| | - Chao Liu
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, PR China
| | - Zengnian Xu
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, PR China
| | - Shufeng Liu
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
47
|
Ahmad N, Haider S, Jagannathan S, Anaissie E, Driscoll JJ. MicroRNA theragnostics for the clinical management of multiple myeloma. Leukemia 2013; 28:732-8. [PMID: 24714346 DOI: 10.1038/leu.2013.262] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Theragnostics represent cutting-edge, multi-disciplinary strategies that combine diagnostics with therapeutics in order to generate personalized therapies that improve patient outcome. In oncology, the approach is aimed at more accurate diagnosis of cancer, optimization of patient selection to identify those most likely to benefit from a specific therapy and to generate effective therapeutics that enhance patient survival. MicroRNAs (miRNAs) are master regulators of the human genome that orchestrate myriad cellular pathways to control growth during physiologic and pathologic conditions. Compelling evidence shows that miRNA deregulation promotes events linked to tumor initiation, metastasis and drug resistance as seen in multiple myeloma (MM), an invariably fatal hematologic malignancy. miRNAs are readily detected in body fluids, for example, serum, plasma, urine, as well as circulating tumor cells to demonstrate their potential as readily accessible, non-invasive diagnostic and prognostic biomarkers and potential therapeutics. Specific miRNAs are aberrantly expressed early in myelomagenesis and may more readily detect high-risk disease than current methods. Although only recently discovered miRNAs have rapidly advanced from preclinical studies to evaluation in human clinical trials. The development of miRNA theragnostics should provide widely applicable tools for the targeted delivery of personalized medicines to improve the outcome of patients with MM.
Collapse
Affiliation(s)
- N Ahmad
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Haider
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Jagannathan
- 1] Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] The Vontz Center for Molecular Studies, Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E Anaissie
- 1] Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J J Driscoll
- 1] Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA [3] The Vontz Center for Molecular Studies, Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA [4] Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
48
|
Ding C, Li C, Wang H, Li B, Guo Z. A miR-SNP of the XPO5 gene is associated with advanced non-small-cell lung cancer. Onco Targets Ther 2013; 6:877-81. [PMID: 23874110 PMCID: PMC3713958 DOI: 10.2147/ott.s48284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives MicroRNA (miRNA)-related single-nucleotide polymorphisms (SNPs) in miRNA processing machinery genes can affect cancer risk, treatment efficacy, and patient prognosis. A miR-SNP of rs11077 located in the 3′ untranslated region (3′ UTR) of the miRNA processing machinery gene XPO5 was examined in 112 advanced non-small-cell lung cancer (NSCLC) patients to evaluate its association with cancer outcome. Materials and methods The miR-SNP was genotyped with ligase detection reaction method. Survival curves were calculated using the Kaplan-Meier method, and multivariate survival analysis was performed using a Cox proportional hazards model. Results The AC genotype of rs11077, which carries C or A allele, was significantly associated with a better chemotherapy response (P = 0.001). In addition, rs11077 was independently associated with overall survival in advanced NSCLC patients through multivariate analysis (relative risk 0.457; 95% confidence interval: 0.251–0.831; P = 0.010). Conclusion rs11077 was associated with chemotherapy response and survival of advanced NSCLC patients. The analysis of miR-SNPs in miRNA processing machinery genes can help identify patient subgroups that are at high risk for poor disease outcomes.
Collapse
Affiliation(s)
- Cuimin Ding
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
GUO ZHANJUN, WANG HONGJING, LI YANTAO, LI BIN, LI CUIQIAO, DING CUIMIN. A microRNA-related single nucleotide polymorphism of the XPO5 gene is associated with survival of small cell lung cancer patients. Biomed Rep 2013; 1:545-548. [PMID: 24648983 PMCID: PMC3917003 DOI: 10.3892/br.2013.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/20/2013] [Indexed: 01/19/2023] Open
Abstract
MicroRNA (miRNA)-related single nucleotide polymorphisms (miR-SNPs) in miRNA processing machinery genes affect cancer risk, treatment efficacy and patient prognosis. A miR-SNP of rs11077 located in the 3'UTR of miRNA processing machinery gene XPO5 was examined in small cell lung cancer (SCLC) patients to evaluate its association with cancer survival. A total of 42 patients were enrolled in the present study and genotyped for rs11077 and survival was assessed using the Kaplan-Meier method, as well as univariate and multivariate analyses. The AA genotype of rs11077 was identified for its significant association with better survival time (P=0.023). In addition, rs11077 was found to associate independently with overall survival in SCLC patients by multivariate analysis (relative risk 2.469; 95% CI, 1.088-5.603; P=0.031). The findings of this study suggest that although miR-SNP studies for miRNA processing machinery genes are still at an early age, miR-SNPs have an impact on cancer survival. In conclusion, a miR-SNP in the 3'UTR region of the XPO5 gene was identified as an independent prognostic marker for survival of advanced SCLC patients.
Collapse
Affiliation(s)
- ZHANJUN GUO
- Departments of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - HONGJING WANG
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - YANTAO LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - BIN LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - CUIQIAO LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - CUIMIN DING
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| |
Collapse
|
50
|
Amodio N, Di Martino MT, Neri A, Tagliaferri P, Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther 2013; 13 Suppl 1:S125-37. [PMID: 23692413 DOI: 10.1517/14712598.2013.796356] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Increasing evidence indicates that non-coding RNAs (ncRNAs) are aberrantly expressed and/or functionally deregulated in hematological malignancies, including multiple myeloma. Harnessing these abnormalities by either replacing or inhibiting ncRNAs is emerging as novel therapeutic option. AREAS COVERED We review the recent remarkable advancement in the understanding of the biological functions of human ncRNAs in multiple myeloma, including the biogenesis, the mechanisms of expression, the relevance as biomarkers, and mostly, the therapeutic potential. Special emphasis is given to microRNAs, the best characterized class of ncRNAs. EXPERT OPINION An improved understanding of the role of ncRNAs in multiple myeloma would provide valuable information about key cancer-promoting pathways and might be highly useful for diagnostic and prognostic assessments. This knowledge might also lead to advancement in the management of multiple myeloma through the development of novel personalized ncRNA-based therapies.
Collapse
Affiliation(s)
- Nicola Amodio
- Magna Graecia University and T. Campanella Cancer Center, Department of Experimental and Clinical Medicine, Medical Oncology Unit, Viale Europa, 88100 Catanzaro, Italy
| | | | | | | | | |
Collapse
|