1
|
Erb HHH, Polishchuk N, Stasyk O, Kahya U, Weigel MM, Dubrovska A. Glutamine Metabolism and Prostate Cancer. Cancers (Basel) 2024; 16:2871. [PMID: 39199642 PMCID: PMC11352381 DOI: 10.3390/cancers16162871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Glutamine (Gln) is a non-essential amino acid that is involved in the development and progression of several malignancies, including prostate cancer (PCa). While Gln is non-essential for non-malignant prostate epithelial cells, PCa cells become highly dependent on an exogenous source of Gln. The Gln metabolism in PCa is tightly controlled by well-described oncogenes such as MYC, AR, and mTOR. These oncogenes contribute to therapy resistance and progression to the aggressive castration-resistant PCa. Inhibition of Gln catabolism impedes PCa growth, survival, and tumor-initiating potential while sensitizing the cells to radiotherapy. Therefore, given its significant role in tumor growth, targeting Gln metabolism is a promising approach for developing new therapeutic strategies. Ongoing clinical trials evaluate the safety and efficacy of Gln catabolism inhibitors in combination with conventional and targeted therapies in patients with various solid tumors, including PCa. Further understanding of how PCa cells metabolically interact with their microenvironment will facilitate the clinical translation of Gln inhibitors and help improve therapeutic outcomes. This review focuses on the role of Gln in PCa progression and therapy resistance and provides insights into current clinical trials.
Collapse
Affiliation(s)
- Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Nikita Polishchuk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Uğur Kahya
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Matthias M. Weigel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01309 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Delanne-Cuménal M, Lamoine S, Meleine M, Aissouni Y, Prival L, Fereyrolles M, Barbier J, Cercy C, Boudieu L, Schopp J, Lazdunski M, Eschalier A, Lolignier S, Busserolles J. The TREK-1 potassium channel is involved in both the analgesic and anti-proliferative effects of riluzole in bone cancer pain. Biomed Pharmacother 2024; 176:116887. [PMID: 38852511 DOI: 10.1016/j.biopha.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.
Collapse
Affiliation(s)
- Mélissa Delanne-Cuménal
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Youssef Aissouni
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathilde Fereyrolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Christine Cercy
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Ludivine Boudieu
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julien Schopp
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Michel Lazdunski
- Université de Nice Sophia Antipolis, Valbonne 06560, France; CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 Route des Lucioles Sophia Antipolis, Valbonne 06560, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France; Institut Analgesia, Faculté de Médecine, BP38, Clermont-Ferrand 63001, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France.
| |
Collapse
|
3
|
You H, Song G, Xu Z, Chen S, Shen W, Liu H, Deng B, Li J, Huang G. HuR promotes castration-resistant prostate cancer progression by altering ERK5 activation via posttranscriptional regulation of BCAT1. J Transl Med 2024; 22:178. [PMID: 38369471 PMCID: PMC10874581 DOI: 10.1186/s12967-024-04970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment, and the underlying mechanism has not been fully elucidated. This study aimed to clarify the role and mechanism of Human antigen R (HuR) as a therapeutic target for CRPC progression. METHODS HuR was knocked out by Cas9 or inhibited by the HuR-specific inhibitor KH-3 in CRPC cell lines and in a mouse xenograft model. The effects of HuR inhibition on tumour cell behaviors and signal transduction were examined by proliferation, transwell, and tumour xenograft assays. Posttranscriptional regulation of BCAT1 by HuR was determined by half-life and RIP assays. RESULTS HuR knockout attenuated the proliferation, migration, and invasion of PC3 and DU145 cells in vitro and inhibited tumour progression in vivo. Moreover, BCAT1 was a direct target gene of HuR and mediated the oncogenic effect of HuR on CRPC. Mechanistically, HuR directly interacted with BCAT1 mRNA and upregulated BCAT1 expression by increasing the stability and translation of BCAT1, which activated ERK5 signalling. Additionally, the HuR-specific inhibitor KH-3 attenuated CRPC progression by disrupting the HuR-BCAT1 interaction. CONCLUSIONS We confirmed that the HuR/BCAT1 axis plays a crucial role in CRPC progression and suggest that inhibiting the HuR/BCAT1 axis is a promising therapeutic approach for suppressing CRPC progression.
Collapse
Affiliation(s)
- Hang You
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Guojing Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Saipeng Chen
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China.
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China.
| |
Collapse
|
4
|
Chen X, Chen Y, Di L, Liu N, Liu T, Cai Y, Di W. Cerebellar encephalitis associated with anti-mGluR1 antibodies: a case report and comprehensive literature review. Front Neurol 2024; 15:1333658. [PMID: 38410193 PMCID: PMC10894994 DOI: 10.3389/fneur.2024.1333658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Anti-metabotropic glutamate receptor 1 encephalitis is an uncommon autoimmune condition characterized by a subacute onset of cerebellar syndrome. Frequently, it also manifests as sleep disorders and cognitive or behavioral changes. While immunotherapy is the primary treatment approach, the disease remains poorly understood. Herein, we present a case of anti-metabotropic glutamate receptor 1 encephalitis, highlighting its primary cerebellar syndrome manifestation. The first magnetic resonance imaging scan showed no obvious abnormality. Lumbar puncture showed increased cerebrospinal fluid pressure, increased white blood cell count and protein level. The next-generation sequencing of cerebrospinal fluid showed Epstein-Barr virus infection, and the patient was diagnosed with viral cerebellar encephalitis. However, antiviral therapy was ineffective. Finally, anti-metabotropic glutamate receptor 1 was measured at 1:1,000, and the patient was definitely diagnosed with anti-metabotropic glutamate receptor 1 encephalitis. Therefore, clinicians should pay attention to such diseases to avoid misdiagnosis.
Collapse
Affiliation(s)
- Xue Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanan Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lu Di
- Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Na Liu
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ting Liu
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yun Cai
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weiying Di
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
5
|
Cao Y, Li H, Gao Y, Long J, Zheng L, Zhang Q, Li N, Chi X. Esketamine induces apoptosis of nasopharyngeal carcinoma cells through the PERK/CHOP pathway. Toxicol Appl Pharmacol 2024; 483:116800. [PMID: 38219984 DOI: 10.1016/j.taap.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Nasopharyngeal carcinoma, a malignant tumor prevalent in southeast Asia and north Africa, still lacks effective treatment. Esketamine, an N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR) antagonist, is widely used in clinical anesthesia. Emerging evidence suggests that esketamine plays an important role in inhibiting tumor cell activity. However, the underlying mechanisms of esketamine on nasopharyngeal carcinoma remain unknown. In this study, we found that esketamine inhibited the proliferation and migration of nasopharyngeal carcinoma cells. Mechanically, transcriptome sequencing and subsequent verification experiments revealed that esketamine promoted the apoptosis of nasopharyngeal carcinoma cells through endoplasmic reticulum stress PERK/ATF4/CHOP signaling pathway mediated by NMDAR. Additionally, when combined with esketamine, the inhibitory effect of cisplatin on the proliferation of nasopharyngeal carcinoma cells was significantly enhanced. These findings provide new insights into future anti-nasopharyngeal carcinoma clinical strategies via targeting the NMDAR/PERK/CHOP axis alone or in combination with cisplatin.
Collapse
Affiliation(s)
- Yuling Cao
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Huiting Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunfei Gao
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiao Long
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lei Zheng
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
6
|
Liu T, Ren Y, Wang Q, Wang Y, Li Z, Sun W, Fan D, Luan Y, Gao Y, Yan Z. Exploring the role of the disulfidptosis-related gene SLC7A11 in adrenocortical carcinoma: implications for prognosis, immune infiltration, and therapeutic strategies. Cancer Cell Int 2023; 23:259. [PMID: 37919768 PMCID: PMC10623781 DOI: 10.1186/s12935-023-03091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Disulfidptosis and the disulfidptosis-related gene SLC7A11 have recently attracted significant attention for their role in tumorigenesis and tumour management. However, its association with adrenocortical carcinoma (ACC) is rarely discussed. METHODS Differential analysis, Cox regression analysis, and survival analysis were used to screen for the hub gene SLC7A11 in the TCGA and GTEx databases and disulfidptosis-related gene sets. Then, we performed an association analysis between SLC7A11 and clinically relevant factors in ACC patients. Univariate and multivariate Cox regression analyses were performed to evaluate the prognostic value of SLC7A11 and clinically relevant factors. Weighted gene coexpression analysis was used to find genes associated with SLC7A11. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and the LinkedOmics database were used to analyse the functions of SLC7A11-associated genes. The CIBERSORT and Xcell algorithms were used to analyse the relationship between SLC7A11 and immune cell infiltration in ACC. The TISIDB database was applied to search for the correlation between SLC7A11 expression and immune chemokines. In addition, we performed a correlation analysis for SLC7A11 expression and tumour mutational burden and immune checkpoint-related genes and assessed drug sensitivity based on SLC7A11 expression. Immunohistochemistry and RT‒qPCR were used to validate the upregulation of SLC7A11 in the ACC. RESULTS SLC7A11 is highly expressed in multiple urological tumours, including ACC. SLC7A11 expression is strongly associated with clinically relevant factors (M-stage and MYL6 expression) in ACC. SLC7A11 and the constructed nomogram can accurately predict ACC patient outcomes. The functions of SLC7A11 and its closely related genes are tightly associated with the occurrence of disulfidptosis in ACC. SLC7A11 expression was tightly associated with various immune cell infiltration disorders in the ACC tumour microenvironment (TME). It was positively correlated with the expression of immune chemokines (CXCL8, CXCL3, and CCL20) and negatively correlated with the expression of immune chemokines (CXCL17 and CCL14). SLC7A11 expression was positively associated with the expression of immune checkpoint genes (NRP1, TNFSF4, TNFRSF9, and CD276) and tumour mutation burden. The expression level of SLC7A11 in ACC patients is closely associated withcthe drug sensitivity. CONCLUSION In ACC, high expression of SLC7A11 is associated with migration, invasion, drug sensitivity, immune infiltration disorders, and poor prognosis, and its induction of disulfidptosis is a promising target for the treatment of ACC.
Collapse
Affiliation(s)
- Tonghu Liu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yilin Ren
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Qixin Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Surgery, Nanyang Central Hospital, 473005, Nanyang, Henan, China
| | - Yu Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Zhiyuan Li
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Weibo Sun
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Radiation Oncology and Oncology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 450003, Zhengzhou, Henan, China
| | - Dandan Fan
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yongkun Luan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| | - Yukui Gao
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, China.
| | - Zechen Yan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Zhang G, Zhang Z, Pei Y, Hu W, Xue Y, Ning R, Guo X, Sun Y, Zhang Q. Biological and clinical significance of radiomics features obtained from magnetic resonance imaging preceding pre-carbon ion radiotherapy in prostate cancer based on radiometabolomics. Front Endocrinol (Lausanne) 2023; 14:1272806. [PMID: 38027108 PMCID: PMC10644841 DOI: 10.3389/fendo.2023.1272806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction We aimed to investigate the feasibility of metabolomics to explain the underlying biological implications of radiomics features obtained from magnetic resonance imaging (MRI) preceding carbon ion radiotherapy (CIRT) in patients with prostate cancer and to further explore the clinical significance of radiomics features on the prognosis of patients, based on their biochemical recurrence (BCR) status. Methods Metabolomic results obtained using high-performance liquid chromatography coupled with tandem mass spectrometry of urine samples, combined with pre-RT radiomic features extracted from MRI images, were evaluated to investigate their biological significance. Receiver operating characteristic (ROC) curve analysis was subsequently conducted to examine the correlation between these biological implications and clinical BCR status. Statistical and metabolic pathway analyses were performed using MetaboAnalyst and R software. Results Correlation analysis revealed that methionine alteration extent was significantly related to four radiomic features (Contrast, Difference Variance, Small Dependence High Gray Level Emphasis, and Mean Absolute Deviation), which were significantly correlated with BCR status. The area under the curve (AUC) for BCR prediction of these four radiomic features ranged from 0.704 to 0.769, suggesting that the higher the value of these four radiomic features, the greater the decrease in methionine levels after CIRT and the lower the probability of BCR. Pre-CIRT MRI radiomic features were associated with CIRT-suppressed metabolites. Discussion These radiomic features can be used to predict the alteration in the amplitude of methionine after CIRT and the BCR status, which may contribute to the optimization of the CIRT strategy and deepen the understanding of PCa.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yulei Pei
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Wei Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yushan Xue
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Renli Ning
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
8
|
Li M, Lin C, Cai Z. Breast cancer stem cell-derived extracellular vesicles transfer ARRDC1-AS1 to promote breast carcinogenesis via a miR-4731-5p/AKT1 axis-dependent mechanism. Transl Oncol 2023; 31:101639. [PMID: 36801666 PMCID: PMC9971553 DOI: 10.1016/j.tranon.2023.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVES Deregulation of long non-coding RNAs (lncRNAs) has been frequently reported in breast cancer (BC). This goes to show the importance of understanding its significant contribution towards breast carcinogenesis. In the present study, we clarified a carcinogenic mechanism based on the ARRDC1-AS1 delivered by breast cancer stem cells-derived extracellular vesicles (BCSCs-EVs) in BC. METHODS The isolated and well characterized BCSCs-EVs were co-cultured with BC cells. The expression of ARRDC1-AS1, miR-4731-5p, and AKT1 was determined in BC cell lines. BC cells were assayed for their viability, invasion, migration and apoptosis in vitro by CCK-8, Transwell and flow cytometry, as well as tumor growth in vivo after loss- and gain-of function assays. Dual-luciferase reporter gene, RIP and RNA pull-down assays were performed to determine the interactions among ARRDC1-AS1, miR-4731-5p, and AKT1. RESULTS Elevation of ARRDC1-AS1 and AKT1 as well as miR-4731-5p downregulation were observed in BC cells. ARRDC1-AS1 was enriched in BCSCs-EVs. Furthermore, EVs containing ARRDC1-AS1 enhanced the BC cell viability, invasion and migration and glutamate concentration. Mechanistically, ARRDC1-AS1 elevated the expression of AKT1 by competitively binding to miR-4731-5p. ARRDC1-AS1-containing EVs were also found to enhance tumor growth in vivo. CONCLUSION Collectively, BCSCs-EVs-mediated delivery of ARRDC1-AS1 may promote the malignant phenotypes of BC cells via the miR-4731-5p/AKT1 axis.
Collapse
Affiliation(s)
- Mingzhu Li
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, Fujian 362000, China.
| | - Conglin Lin
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, Fujian 362000, China
| | - Zhibing Cai
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, Fujian 362000, China
| |
Collapse
|
9
|
Spencer KR, Portal DE, Aisner J, Stein MN, Malhotra J, Shih W, Chan N, Silk AW, Ganesan S, Goodin S, Gounder M, Lin H, Li J, Cerchio R, Marinaro C, Chen S, Mehnert JM. A phase I trial of riluzole and sorafenib in patients with advanced solid tumors: CTEP #8850. Oncotarget 2023; 14:302-315. [PMID: 37036756 PMCID: PMC10085060 DOI: 10.18632/oncotarget.28403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/21/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Overexpression of metabotropic glutamate receptor 1 (GRM1) has been implicated in the pathogenesis of multiple cancers. Riluzole, an inhibitor of glutamate release, showed synergistic antitumor activity in combination with the multi-kinase inhibitor sorafenib in preclinical models. This phase I trial identified the toxicity profile, dose-limiting toxicities, maximum tolerated dose (MTD), and pharmacokinetic and pharmacodynamic properties of riluzole combined with sorafenib in patients with advanced cancers. PATIENTS AND METHODS Patients with refractory solid tumors were enrolled utilizing a 3+3 dose-escalation design. Riluzole was given at 100 mg PO BID in combination with sorafenib, beginning at 200 mg PO daily and escalating in 200 mg increments per level in 28-day cycles. Restaging evaluations were performed every 2 cycles. RESULTS 35 patients were enrolled over 4 dose levels. The MTD was declared at dose level 3 (riluzole: 100 mg PO BID; sorafenib: 400 mg AM/200 mg PM). Pharmacokinetic analyses did not reveal definitive evidence of drug-drug interactions. Consistent decreases in phospho-forms of ERK and AKT in tumor tissue analyses with accompanying decrease in GRM1 expression and increase in pro-apoptotic BIM suggest target engagement by the combination. Best responses included a partial response in 1 (2.9%) patient with pancreatic acinar cell carcinoma with a KANK4-RAF1 fusion, and stable disease in 11 (36%) patients. CONCLUSION Combination therapy with riluzole and sorafenib was safe and tolerable in patients with advanced solid tumors. The partial response in a patient with a RAF1 fusion suggests that further exploration in a genomically selected cohort may be warranted.
Collapse
Affiliation(s)
- Kristen R. Spencer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniella E. Portal
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph Aisner
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Mark N. Stein
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Weichung Shih
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann W. Silk
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Murugesan Gounder
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hongxia Lin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jiadong Li
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Robert Cerchio
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina Marinaro
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Janice M. Mehnert
- Department of Medicine, New York University Grossman School of Medicine, Perlmutter Cancer Center of NYU Langone Health, NY 10016, USA
| |
Collapse
|
10
|
Ovarian Cancer and Glutamine Metabolism. Int J Mol Sci 2023; 24:ijms24055041. [PMID: 36902470 PMCID: PMC10003179 DOI: 10.3390/ijms24055041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer cells are known to have a distinct metabolic profile and to exhibit significant changes in a variety of metabolic mechanisms compared to normal cells, particularly glycolysis and glutaminolysis, in order to cover their increased energy requirements. There is mounting evidence that there is a link between glutamine metabolism and the proliferation of cancer cells, demonstrating that glutamine metabolism is a vital mechanism for all cellular processes, including the development of cancer. Detailed knowledge regarding its degree of engagement in numerous biological processes across distinct cancer types is still lacking, despite the fact that such knowledge is necessary for comprehending the differentiating characteristics of many forms of cancer. This review aims to examine data on glutamine metabolism and ovarian cancer and identify possible therapeutic targets for ovarian cancer treatment.
Collapse
|
11
|
Wang F, Gu Z, Zhao X, Chen Z, Zhang Z, Sun S, Han M. Metabolic characteristics of the various incision margins for breast cancer conservation surgery. Front Oncol 2023; 12:959454. [PMID: 36686765 PMCID: PMC9846322 DOI: 10.3389/fonc.2022.959454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background Breast cancer (BC) has recently become the most prevalent malignancy in women. There are many alternative treatments for BC, and for aesthetic and postoperative quality of life concerns, breast-conserving surgery and corresponding adjuvant therapy have become the predominant treatment for early invasive BC. Currently, the main method used to assess the margins for breast-conserving surgery is intraoperative pathological diagnosis. However, the designation of surgical margins is controversial, and metabolomics may be a novel approach to evaluate surgical margins. Methods We collected specimens from 10 breast cancer patients and samples from its surrounding tissues and divided them into cancerous tissue and 1 mm, 2 mm, 3 mm, 5 mm and 10 mm cutting edge tissues, with a total of 60 samples. The samples were analyzed by mass spectrometry on an ultra-performance liquid chromatography-quadrupole/Orbitrap high resolution platform. The data were then statistically analyzed to detect metabolic changes in the different cutting edges and to identify possible surgical cutting edges with statistically significant findings. Abnormal metabolic pathways were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG), which elucidated potential markers. Results Statistical analysis indicated that there were substantial differences between the 1 mm margin tissue and the cancer tissue, while there were no statistically significant differences between the 1 mm tissue and tissues from the other margins. The levels of 6 metabolites in the 1 mm tissue were significantly different from those in the cancer tissue and were not significantly different from those in the 2 mm tissue. The six metabolites were pyruvate, N-acetyl-L-aspartate, glutamic acid, γ-aminobutyric acid, fumaric acid, and citric acid. Metabolic pathways such as amino acid metabolism and amino t-RNA synthesis in the margin tissue were significantly distinct from those in cancer tissues based on KEGG analysis. Conclusion There was a significant difference between the 1 mm margin tissue and the cancerous tissue. Based on metabolomic analysis, the 1 mm negative margin is sufficient for surgery, and the six metabolites that we identified as abnormal, including pyruvic acid, N-acetyl-L-aspartic acid, glutamic acid, gamma-aminobutyric acid, fumaric acid and citric acid, may serve as biomarkers for a negative margin and help surgeons select an appropriate surgical margin.
Collapse
|
12
|
Lasorsa F, di Meo NA, Rutigliano M, Ferro M, Terracciano D, Tataru OS, Battaglia M, Ditonno P, Lucarelli G. Emerging Hallmarks of Metabolic Reprogramming in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24020910. [PMID: 36674430 PMCID: PMC9863674 DOI: 10.3390/ijms24020910] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is the most common male malignancy and the fifth leading cause of cancer death in men worldwide. Prostate cancer cells are characterized by a hybrid glycolytic/oxidative phosphorylation phenotype determined by androgen receptor signaling. An increased lipogenesis and cholesterogenesis have been described in PCa cells. Many studies have shown that enzymes involved in these pathways are overexpressed in PCa. Glutamine becomes an essential amino acid for PCa cells, and its metabolism is thought to become an attractive therapeutic target. A crosstalk between cancer and stromal cells occurs in the tumor microenvironment because of the release of different cytokines and growth factors and due to changes in the extracellular matrix. A deeper insight into the metabolic changes may be obtained by a multi-omic approach integrating genomics, transcriptomics, metabolomics, lipidomics, and radiomics data.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureș, Romania
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
13
|
Shi Z, Yang C, Xu X, Wu W, Jiang D, Yan D. Plasma metabolite profiles identify pediatric medulloblastoma and other brain cancer. Anal Bioanal Chem 2023; 415:471-480. [PMID: 36369592 DOI: 10.1007/s00216-022-04427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Medulloblastoma is a malignancy of the central nervous system that occurs most frequently in childhood and is often difficult to diagnose due to its similarities to conventional imaging findings for other pediatric intracranial tumors such as astrocytomas and ependymomas. The purpose of this study was to identify new metabolites and differential metabolic pathways by analyzing the significantly different metabolites present in the plasma of children with medulloblastoma in comparison with those with other intracranial tumors. Plasma was collected from 37 children with medulloblastoma and 34 children with other intracranial tumors. Targeted and non-targeted metabolomics based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses were performed to determine metabolic changes in pediatric medulloblastomas versus other intracranial tumors. Based on multivariate statistical analysis and regression models, we identified differential metabolites in the plasma and investigated different metabolic pathways. A total of 61 differential metabolites in the plasma of children with medulloblastoma were identified by non-targeted metabolomics analysis. In addition, targeted metabolomics analysis identified four differential amino acids, thus allowing us to establish a diagnostic model for children with medulloblastoma. Metabolic pathway analysis showed that there were significant differences in patients with medulloblastoma in terms of glycerophospholipid and α-linolenic acid metabolism pathways as well as several amino acid metabolism pathways (phenylalanine, tyrosine, and tryptophan biosynthesis). We identified differential profiles of key plasma metabolites between children with medulloblastoma and other forms of intracranial tumor, thus providing a basis for identifying early diagnostic markers of medulloblastoma and new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zhengyuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Xiqiao Xu
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Wanshui Wu
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dechun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Dan Yan
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China. .,Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Li F, He C, Yao H, Zhao Y, Ye X, Zhou S, Zou J, Li Y, Li J, Chen S, Han F, Huang K, Lian G, Chen S. Glutamate from nerve cells promotes perineural invasion in pancreatic cancer by regulating tumor glycolysis through HK2 mRNA-m6A modification. Pharmacol Res 2023; 187:106555. [PMID: 36403721 DOI: 10.1016/j.phrs.2022.106555] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Perineural invasion (PNI) has a high incidence and poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Our study aimed to identify the underlying molecular mechanism of PNI and propose effective intervention strategies. METHODS To observe PNI in vitro and in vivo, a Matrigel/ dorsal root ganglia (DRG) model and a murine sciatic nerve invasion model were respectively used. Magnetic resonance (MR) imaging and positron emission tomography/computed tomography (PET-CT) imaging were also used to evaluate tumor growth. Publicly available datasets and PDAC tissues were used to verify how the nerve cells regulate PDAC cells' PNI. RESULTS Our results showed that glutamate from nerve cells could cause calcium influx in PDAC cells via the N-methyl-d-aspartate receptor (NMDAR), subsequently activating the downstream Ca2+ dependent protein kinase CaMKII/ERK-MAPK pathway and promoting the mRNA transcription of gene METTL3. Next, METTL3 upregulates the expression of hexokinase 2 (HK2) through N6-methyladenosine (m6A) modification in mRNA, enhances the PDAC cells' glycolysis, and promotes PNI. Furthermore, the IONPs-PEG-scFvCD44v6-scAbNMDAR2B nanoparticles dual targeting CD44 variant isoform 6 (CD44v6) and t NMDAR subunit 2B (NMDAR2B) on PDAC cells were synthesized and verified showing a satisfactory blocking effect on PNI. CONCLUSIONS Here, we firstly provided evidence that glutamate from the nerve cells could upregulate the expression of HK2 through mRNA m6A modification via NMDAR2B and downstream Ca2+ dependent CaMKII/ERK-MAPK pathway, enhance the glycolysis in PDAC cells, and ultimately promote PNI. In addition, the dual targeting nanoparticles we synthesized were verified to block PNI effectively in PDAC.
Collapse
Affiliation(s)
- Fengjiao Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Gastroenterology, Shandong Provincial Hospital Afliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Chong He
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hanming Yao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yue Zhao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xijiu Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shurui Zhou
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yaqing Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fanghai Han
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Shangxiang Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
15
|
Yang T, Tian Y, Yang Y, Tang M, Shi M, Chen Y, Yang Z, Chen L. Design, synthesis, and pharmacological evaluation of 2-(1-(1,3,4-thiadiazol-2-yl)piperidin-4-yl)ethan-1-ol analogs as novel glutaminase 1 inhibitors. Eur J Med Chem 2022; 243:114686. [DOI: 10.1016/j.ejmech.2022.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
|
16
|
Yaman I, Ağaç Çobanoğlu D, Xie T, Ye Y, Amit M. Advances in understanding cancer-associated neurogenesis and its implications on the neuroimmune axis in cancer. Pharmacol Ther 2022; 239:108199. [PMID: 35490859 PMCID: PMC9991830 DOI: 10.1016/j.pharmthera.2022.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
Nerves and immunologic mediators play pivotal roles in body homeostasis by interacting with each other through diverse mechanisms. The spread of nerves in the tumor microenvironment increases tumor cell proliferation and disease progression, and this correlates with poor patient outcomes. The effects of sympathetic and parasympathetic nerves on cancer regulation are being investigated. Recent findings demonstrate the possibility of developing therapeutic strategies that target the tumor microenvironment and its components such as immune cells, neurotransmitters, and extracellular vesicles. Therefore, examining and understanding the mechanisms and pathways associated with the sympathetic and parasympathetic nervous systems, neurotransmitters, cancer-derived mediators and their interactions with the immune system in the tumor microenvironment may lead to the development of new cancer treatments. This review discusses the effects of nerve cells, immune cells, and cancer cells have on each other that regulate neurogenesis, cancer progression, and dissemination.
Collapse
Affiliation(s)
- Ismail Yaman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Didem Ağaç Çobanoğlu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Head and Neck Surgery, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
17
|
Huang J, Zhao B, Weinstein SJ, Albanes D, Mondul AM. Metabolomic profile of prostate cancer-specific survival among 1812 Finnish men. BMC Med 2022; 20:362. [PMID: 36280842 PMCID: PMC9594924 DOI: 10.1186/s12916-022-02561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Abnormal metabolism and perturbations in metabolic pathways play significant roles in the development and progression of prostate cancer; however, comprehensive metabolomic analyses of human data are lacking and needed to elucidate the interrelationships. METHODS We examined the serum metabolome in relation to prostate cancer survival in a cohort of 1812 cases in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Using an ultrahigh-performance LC-MS/MS platform, we identified 961 known metabolites in prospectively collected serum. Median survival time from diagnosis to prostate cancer-specific death (N=472) was 6.6 years (interquartile range=2.9-11.1 years). Cox proportional hazards regression models estimated hazard ratios and 95% confidence intervals of the associations between the serum metabolites (in quartiles) and prostate cancer death, adjusted for age at baseline and diagnosis, disease stage, and Gleason sum. In order to calculate risk scores, we first randomly divided the metabolomic data into a discovery set (70%) and validated in a replication set (30%). RESULTS Overall, 49 metabolites were associated with prostate cancer survival after Bonferroni correction. Notably, higher levels of the phospholipid choline, amino acid glutamate, long-chain polyunsaturated fatty acid (n6) arachidonate (20:4n6), and glutamyl amino acids gamma-glutamylglutamate, gamma-glutamylglycine, and gamma-glutamylleucine were associated with increased risk of prostate cancer-specific mortality (fourth versus first quartile HRs=2.07-2.14; P-values <5.2×10-5). By contrast, the ascorbate/aldarate metabolite oxalate, xenobiotics S-carboxymethyl-L-cysteine, fibrinogen cleavage peptides ADpSGEGDFXAEGGGVR and fibrinopeptide B (1-12) were related to reduced disease-specific mortality (fourth versus first quartile HRs=0.82-0.84; P-value <5.2×10-5). Further adjustment for years from blood collection to cancer diagnosis, body mass index, smoking intensity and duration, and serum total and high-density lipoprotein cholesterol did not alter the results. Participants with a higher metabolic score based on the discovery set had an elevated risk of prostate cancer-specific mortality in the replication set (fourth versus first quartile, HR=3.9, P-value for trend<0.0001). CONCLUSIONS The metabolic traits identified in this study, including for choline, glutamate, arachidonate, gamma-glutamyl amino acids, fibrinopeptides, and endocannabinoid and redox pathways and their composite risk score, corroborate our previous analysis of fatal prostate cancer and provide novel insights and potential leads regarding the molecular basis of prostate cancer progression and mortality.
Collapse
Affiliation(s)
- Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Cells 2022; 11:cells11182857. [PMID: 36139432 PMCID: PMC9496915 DOI: 10.3390/cells11182857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death, and incidences are increasing globally. Simply defined, cancer is the uncontrolled proliferation of a cell, and depending on the tissue of origin, the cancer etiology, biology, progression, prognosis, and treatment will differ. Carcinogenesis and its progression are associated with genetic factors that can either be inherited and/or acquired and are classified as an oncogene or tumor suppressor. Many of these genetic factors converge on common signaling pathway(s), such as the MAPK and PI3K/AKT pathways. In this review, we will focus on the metabotropic glutamate receptor (mGluR) family, an upstream protein that transmits extracellular signals into the cell and has been shown to regulate many aspects of tumor development and progression. We explore the involvement of members of this receptor family in various cancers that include breast cancer, colorectal cancer, glioma, kidney cancer, melanoma, oral cancer, osteosarcoma, pancreatic cancer, prostate cancer, and T-cell cancers. Intriguingly, depending on the member, mGluRs can either be classified as oncogenes or tumor suppressors, although in general most act as an oncogene. The extensive work done to elucidate the role of mGluRs in various cancers suggests that it might be a viable strategy to therapeutically target glutamatergic signaling.
Collapse
|
19
|
Sheehan B, Guo C, Neeb A, Paschalis A, Sandhu S, de Bono JS. Prostate-specific Membrane Antigen Biology in Lethal Prostate Cancer and its Therapeutic Implications. Eur Urol Focus 2022; 8:1157-1168. [PMID: 34167925 DOI: 10.1016/j.euf.2021.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a promising, novel theranostic target in advanced prostate cancer (PCa). Multiple PSMA-targeted therapies are currently in clinical development, with some agents showing impressive antitumour activity, although optimal patient selection and therapeutic resistance remain ongoing challenges. OBJECTIVE To review the biology of PSMA and recent advances in PSMA-targeted therapies in PCa, and to discuss potential strategies for patient selection and further therapeutic development. EVIDENCE ACQUISITION A comprehensive literature search was performed using PubMed and review of American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to April 2021. EVIDENCE SYNTHESIS PSMA is a largely extracellular protein that is frequently, but heterogeneously, expressed by PCa cells. PSMA expression is associated with disease progression, worse clinical outcomes and the presence of tumour defects in DNA damage repair (DDR). PSMA is also expressed by other cancer cell types and is implicated in glutamate and folate metabolism. It may confer a tumour survival advantage in conditions of cellular stress. PSMA regulation is complex, and recent studies have shed light on interactions with androgen receptor, PI3K/Akt, and DDR signalling. A phase 2 clinical trial has shown that 177Lu-PSMA-617 causes tumour shrinkage and delays disease progression in a significant subset of patients with metastatic castration-resistant PCa in comparison to second-line chemotherapy. Numerous novel PSMA-targeting immunotherapies, small molecules, and antibody therapies are currently in clinical development, including in earlier stages of PCa, with emerging evidence of antitumour activity. To date, the regulation and function of PSMA in PCa cells remain poorly understood. CONCLUSIONS There has been rapid recent progress in PSMA-targeted therapies for the management of advanced PCa. Dissection of PSMA biology will help to identify biomarkers for and resistance mechanisms to these therapies and facilitate further therapeutic development to improve PCa patient outcomes. PATIENT SUMMARY There have been major advances in the development of therapies targeting a molecule, PSMA, in PCa. Radioactive molecules targeting PSMA can cause tumour shrinkage and delay progression in some patients with lethal disease. Future studies are needed to determine which patients are most likely to respond, and how other treatments can be combined with therapies targeting PSMA so that more patients may benefit.
Collapse
Affiliation(s)
| | - Christina Guo
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - Alec Paschalis
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
20
|
Li S, Chen J, Chen X, Yu J, Guo Y, Li M, Pu X. Therapeutic and prognostic potential of GPCRs in prostate cancer from multi-omics landscape. Front Pharmacol 2022; 13:997664. [PMID: 36110544 PMCID: PMC9468875 DOI: 10.3389/fphar.2022.997664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PRAD) is a common and fatal malignancy. It is difficult to manage clinically due to drug resistance and poor prognosis, thus creating an urgent need for novel therapeutic targets and prognostic biomarkers. Although G protein-coupled receptors (GPCRs) have been most attractive for drug development, there have been lack of an exhaustive assessment on GPCRs in PRAD like their molecular features, prognostic and therapeutic values. To close this gap, we herein systematically investigate multi-omics profiling for GPCRs in the primary PRAD by analyzing somatic mutations, somatic copy-number alterations (SCNAs), DNA methylation and mRNA expression. GPCRs exhibit low expression levels and mutation frequencies while SCNAs are more prevalent. 46 and 255 disease-related GPCRs are identified by the mRNA expression and DNA methylation analysis, respectively, complementing information lack in the genome analysis. In addition, the genomic alterations do not exhibit an observable correlation with the GPCR expression, reflecting the complex regulatory processes from DNA to RNA. Conversely, a tight association is observed between the DNA methylation and mRNA expression. The virtual screening and molecular dynamics simulation further identify four potential drugs in repositioning to PRAD. The combination of 3 clinical characteristics and 26 GPCR molecular features revealed by the transcriptome and genome exhibit good performance in predicting progression-free survival in patients with the primary PRAD, providing candidates as new biomarkers. These observations from the multi-omics analysis on GPCRs provide new insights into the underlying mechanism of primary PRAD and potential of GPCRs in developing therapeutic strategies on PRAD.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| |
Collapse
|
21
|
Roy SK, Ma Y, Lam BQ, Shrivastava A, Srivastav S, Shankar S, Srivastava RK. Riluzole regulates pancreatic cancer cell metabolism by suppressing the Wnt-β-catenin pathway. Sci Rep 2022; 12:11062. [PMID: 35773307 PMCID: PMC9246955 DOI: 10.1038/s41598-022-13472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer cells rely on aerobic glycolysis to support uncontrolled proliferation and evade apoptosis. However, pancreatic cancer cells switch to glutamine metabolism to survive under hypoxic conditions. Activation of the Wnt/β-catenin pathway induces aerobic glycolysis by activating enzymes required for glucose metabolism and regulating the expression of glutamate transporter and glutamine synthetase. The results demonstrate that riluzole inhibits pancreatic cancer cell growth and has no effect on human pancreatic normal ductal epithelial cells. RNA-seq experiments identified the involvement of Wnt and metabolic pathways by riluzole. Inhibition of Wnt-β-catenin/TCF-LEF pathway by riluzole suppresses the expression of PDK, MCT1, cMyc, AXIN, and CyclinD1. Riluzole inhibits glucose transporter 2 expression, glucose uptake, lactate dehydrogenase A expression, and NAD + level. Furthermore, riluzole inhibits glutamate release and glutathione levels, and elevates reactive oxygen species. Riluzole disrupts mitochondrial homeostasis by inhibiting Bcl-2 and upregulating Bax expression, resulting in a drop of mitochondrial membrane potential. Finally, riluzole inhibits pancreatic cancer growth in KPC (Pdx1-Cre, LSL-Trp53R172H, and LSL-KrasG12D) mice. In conclusion, riluzole can inhibit pancreatic cancer growth by regulating glucose and glutamine metabolisms and can be used to treat pancreatic cancer.
Collapse
Affiliation(s)
- Sanjit K Roy
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
| | - Yiming Ma
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA
| | - Bao Q Lam
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
| | - Anju Shrivastava
- St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Sudesh Srivastav
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70112, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA.
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA.
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
22
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
23
|
Azahar II, Sharudin NA, Noor Din AHM, Che Has AT, Mohd Nafi SN, Jaafar H, Mokhtar NF. nNav1.5 expression is associated with glutamate level in breast cancer cells. Biol Res 2022; 55:18. [PMID: 35488278 PMCID: PMC9052458 DOI: 10.1186/s40659-022-00387-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
Background Glutamate and voltage-gated sodium channels, both have been the target of intense investigation for its involvement in carcinogenesis and progression of malignant disease. Breast cancer with increased level of glutamate often metastasize to other organs (especially bone), whilst re-expression of ‘neonatal’ Nav1.5, nNav1.5 in breast cancer is known to promote cell invasion in vitro, metastasis in vivo and positive lymph node metastasis in patients. Methods In this study, the role of nNav1.5 in regulating glutamate level in human breast cancer cells was examined using pharmacological approach (VGSCs specific blocker, TTX, glutamate release inhibitor, riluzole and siRNA-nNav1.5). Effect of these agents were evaluated based on endogenous and exogenous glutamate concentration using glutamate fluorometric assay, mRNA expression of nNav1.5 using qPCR and finally, invasion using 3D culture assay. Results Endogenous and exogenous glutamate levels were significantly higher in aggressive human breast cancer cells, MDA-MB-231 cells compared to less aggressive human breast cancer cells, MCF-7 and non-cancerous human breast epithelial cells, MCF-10A. Treatment with TTX to MDA-MB-231 cells resulted in significant reduction of endogenous and exogenous glutamate levels corresponded with significant suppression of cell invasion. Subsequently, downregulation of nNav1.5 gene was observed in TTX-treated cells. Conclusions An interesting link between nNav1.5 expression and glutamate level in aggressive breast cancer cells was detected and requires further investigation.
Collapse
Affiliation(s)
- Irfan Irsyad Azahar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Aishah Sharudin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Hafiz Murtadha Noor Din
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health, Kelantan, Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
24
|
Chen Y, Hu L, Lin H, Yu H, You J. Serum metabolomic profiling for patients with adenocarcinoma of the esophagogastric junction. Metabolomics 2022; 18:26. [PMID: 35441991 DOI: 10.1007/s11306-022-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The incidence of adenocarcinoma in the esophagogastric junction (AEG) has increased in the recent years. AEG is reported to have a worse prognosis compared with tumor confined to the stomach (non-AEG). Although the metabolic changes of non-AEG have been investigated in extensive studies, little effort focused on the metabolic profiling of AEG serum. OBJECTIVES Here we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to explore the abnormal metabolism underlying AEG. METHODS GC-MS-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of serum samples from AEG patients (n = 70), non-AEG patients (n = 70) and health controls (n = 71). RESULTS A novel serum metabolic profiling of 18 metabolites from patients of AEG and non-AEG was indicated, in comparison with health controls. Moreover, AEG and non-AEG were also well-classified with 9 distinguishing metabolites including hypoxanthine, alanine, proline, pyroglutamate, glycine, lactate, succinic acid, glutamate and kynurenine, which produced a discriminatory model with an area under the Receiver Operating Characteristic (ROC) curve of 0.852, suggesting a distinct metabolic signature of AEG. Importantly, lactate and glutamate disclosed outcome-prediction values by multivariate cox-proportional hazard model and Kaplan-Meier method based on follow-up information for 2-5 years. CONCLUSION This is the first metabolomics study to identify serum metabolic signature of AEG. The distinguishing metabolites show a promising application on clinical diagnose and outcome prediction, and allow us to unveil several key metabolic variations coexisting in AEG, which may aid to understand the underlying metabolic mechanisms.
Collapse
Affiliation(s)
- Yinan Chen
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Lei Hu
- Department of General Surgery, The First Affliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hexin Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Huangdao Yu
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jun You
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
25
|
Gómez V, Galazi M, Weitsman G, Monypenny J, Al-Salemee F, Barber PR, Ng K, Beatson R, Szokol B, Orfi L, Mullen G, Vanhaesebroeck B, Chowdhury S, Leung HY, Ng T. HER2 Mediates PSMA/mGluR1-Driven Resistance to the DS-7423 Dual PI3K/mTOR Inhibitor in PTEN Wild-type Prostate Cancer Models. Mol Cancer Ther 2022; 21:667-676. [PMID: 35086953 PMCID: PMC7612588 DOI: 10.1158/1535-7163.mct-21-0320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors.
Collapse
Affiliation(s)
- Valentí Gómez
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Myria Galazi
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James Monypenny
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Paul R. Barber
- UCL Cancer Institute, University College London, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Kenrick Ng
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - László Orfi
- Vichem Chemie Ltd., Veszprém, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Greg Mullen
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | | | - Simon Chowdhury
- Guy's, King's, and St. Thomas' Hospitals, and Sarah Cannon Research Institute, London, United Kingdom
| | - Hing Y. Leung
- Cancer Research United Kingdom Beatson Institute, Bearsden, Glasgow, United Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Tony Ng
- UCL Cancer Institute, University College London, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
27
|
Rao R, Shah S, Bhattacharya D, Toukam DK, Cáceres R, Pomeranz Krummel DA, Sengupta S. Ligand-Gated Ion Channels as Targets for Treatment and Management of Cancers. Front Physiol 2022; 13:839437. [PMID: 35350689 PMCID: PMC8957973 DOI: 10.3389/fphys.2022.839437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Ligand-gated ion channels are an ionotropic receptor subtype characterized by the binding of an extracellular ligand, followed by the transient passage of ions through a transmembrane pore. Ligand-gated ion channels are commonly subcategorized into three superfamilies: purinoreceptors, glutamate receptors, and Cys-loop receptors. This classification is based on the differing topographical morphology of the receptors, which in turn confers functional differences. Ligand-gated ion channels have a diverse spatial and temporal expression which implicate them in key cellular processes. Given that the transcellular electrochemical gradient is finely tuned in eukaryotic cells, any disruption in this homeostasis can contribute to aberrancies, including altering the activity of pro-tumorigenic molecular pathways, such as the MAPK/ERK, RAS, and mTOR pathways. Ligand-gated ion channels therefore serve as a potential targetable system for cancer therapeutics. In this review, we analyze the role that each of the three ligand-gated ion channel superfamilies has concerning tumor proliferation and as a target for the treatment of cancer symptomatology.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
28
|
García-Gaytán AC, Hernández-Abrego A, Díaz-Muñoz M, Méndez I. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Front Endocrinol (Lausanne) 2022; 13:1029210. [PMID: 36457557 PMCID: PMC9705578 DOI: 10.3389/fendo.2022.1029210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.
Collapse
|
29
|
Kumar D, Bansal N, Gupta A, Mandhani A, Lal H, Kumar M, Sankhwar SN. Metabolomics of prostate cancer: Knock-in versus knock-out prostate. J Pharm Biomed Anal 2021; 205:114333. [PMID: 34461489 DOI: 10.1016/j.jpba.2021.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Several metabolomics-derived biomarkers of prostate cancer (PC) have been reported with pre-radical prostatectomy (RP) (knock-in PC) conditions; however, uncontested PC biomarkers panel appraisal and investigation of correlative evidence of these measures is lacking through post-RP (knock-out PC). We sought to explore patients' filtered serum-based metabolomics derived signature measures in knock-in PC (n = 90) using nuclear magnetic resonance spectroscopy and multiple rigorous statistical analyses, and to develop the correlative evidence of these measures through knock-out PC (n = 90) follow-up on the 15th and 30th days. The glutamate, citrate and glycine were observed as hallmarks of PC. Observed trends revealed; augmented glutamate level in knock-in PC following a sudden drop and subsequently upside of glutamate at 15th and 30th days of knock-out PC, reduction of citrate in knock-in PC subsequently gradual increase of citrate in knock-out PC, and glycine lessening in knock-in PC following augmentation on 30th day of knock-out PC. This study-based evidence clears the doubts regarding the discovery of metabolomics-derived PC biomarkers.
Collapse
Affiliation(s)
- Deepak Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Navneeta Bansal
- Department of Urology, King George's Medical University, Lucknow, India
| | - Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India.
| | - Anil Mandhani
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Hira Lal
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- Department of Urology, King George's Medical University, Lucknow, India
| | | |
Collapse
|
30
|
Marín-Aguilera M, Pereira MV, Jiménez N, Reig Ò, Cuartero A, Victoria I, Aversa C, Ferrer-Mileo L, Prat A, Mellado B. Glutamine and Cholesterol Plasma Levels and Clinical Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer Treated with Taxanes. Cancers (Basel) 2021; 13:cancers13194960. [PMID: 34638444 PMCID: PMC8507765 DOI: 10.3390/cancers13194960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Altered metabolism is a hallmark of cancer. Malignant cells metabolise glutamine to fulfil their metabolic needs. In prostate cancer, androgen receptor signalling promotes glutamine metabolism, which is also involved in cholesterol homeostasis. We aimed to determine whether the plasma glutamine levels correlate with the blood lipid profile, clinical characteristics and outcomes in patients with metastatic castration resistance prostate cancer (mCRPC) undergoing taxanes. We retrospectively assessed the glutamine and glutamate levels in plasma samples by a bioluminescent assay. Pre-treatment glutamine, glutamate, cholesterol and triglycerides levels were correlated with patients' clinical characteristics, taxanes response and clinical outcomes. Seventy-five patients with mCRPC treated with taxanes were included. The plasma glutamine levels were significantly higher in patients that received abiraterone or enzalutamide prior to taxanes (p = 0.003). Besides, patients with low glutamine levels were more likely to present a PSA response to taxanes (p = 0.048). Higher glutamine levels were significantly correlated with shorter biochemical/clinical progression-free survival (PSA/RX-PFS) (median 2.5 vs. 4.2 months; p = 0.048) and overall survival (OS) (median 12.6 vs. 20.3; p = 0.008). High cholesterol levels independently predicted early PSA/RX-PFS (p = 0.034). High glutamine and cholesterol in the plasma from patients with mCRPC were associated with adverse clinical outcomes, supporting the relevance of further research on metabolism in prostate cancer progression.
Collapse
Affiliation(s)
- Mercedes Marín-Aguilera
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.V.P.); (N.J.); (Ò.R.); (I.V.); (A.P.)
- Correspondence: (M.M.-A.); (B.M.); Tel.: +34-932-275-400 (ext. 4801) (M.M.-A.); +34-932-275-400 (ext. 2262) (B.M.)
| | - María V. Pereira
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.V.P.); (N.J.); (Ò.R.); (I.V.); (A.P.)
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
- Rosell Cancer Institute, 08028 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | - Natalia Jiménez
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.V.P.); (N.J.); (Ò.R.); (I.V.); (A.P.)
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | - Òscar Reig
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.V.P.); (N.J.); (Ò.R.); (I.V.); (A.P.)
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
| | - Anna Cuartero
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
| | - Iván Victoria
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.V.P.); (N.J.); (Ò.R.); (I.V.); (A.P.)
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | - Caterina Aversa
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | - Laura Ferrer-Mileo
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.V.P.); (N.J.); (Ò.R.); (I.V.); (A.P.)
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Begoña Mellado
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.V.P.); (N.J.); (Ò.R.); (I.V.); (A.P.)
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain; (A.C.); (C.A.); (L.F.-M.)
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: (M.M.-A.); (B.M.); Tel.: +34-932-275-400 (ext. 4801) (M.M.-A.); +34-932-275-400 (ext. 2262) (B.M.)
| |
Collapse
|
31
|
Eddy K, Chen S. Glutamatergic Signaling a Therapeutic Vulnerability in Melanoma. Cancers (Basel) 2021; 13:3874. [PMID: 34359771 PMCID: PMC8345431 DOI: 10.3390/cancers13153874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Like other cancers, melanomas are associated with the hyperactivation of two major cell signaling cascades, the MAPK and PI3K/AKT pathways. Both pathways are activated by numerous genes implicated in the development and progression of melanomas such as mutated BRAF, RAS, and NF1. Our lab was the first to identify yet another driver of melanoma, Metabotropic Glutamate Receptor 1 (protein: mGluR1, mouse gene: Grm1, human gene: GRM1), upstream of the MAPK and PI3K/AKT pathways. Binding of glutamate, the natural ligand of mGluR1, activates MAPK and PI3K/AKT pathways and sets in motion the deregulated cellular responses in cell growth, cell survival, and cell metastasis. In this review, we will assess the proposed modes of action that mediate the oncogenic properties of mGluR1 in melanoma and possible application of anti-glutamatergic signaling modulator(s) as therapeutic strategy for the treatment of melanomas.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Hyväkkä A, Virtanen V, Kemppainen J, Grönroos TJ, Minn H, Sundvall M. More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Cancers (Basel) 2021; 13:cancers13092244. [PMID: 34067046 PMCID: PMC8125679 DOI: 10.3390/cancers13092244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is overexpressed in prostate cancer and correlates with the aggressiveness of the disease. PSMA is a promising target for imaging and therapeutics in prostate cancer patients validated in prospective trials. However, the role of PSMA in prostate cancer progression is poorly understood. In this review, we discuss the biology and scientific rationale behind the use of PSMA and other targets in the detection and theranostics of metastatic prostate cancer. Abstract Prostate cancer is the second most common cancer type in men globally. Although the prognosis for localized prostate cancer is good, no curative treatments are available for metastatic disease. Better diagnostic methods could help target therapies and improve the outcome. Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein that is overexpressed on malignant prostate tumor cells and correlates with the aggressiveness of the disease. PSMA is a clinically validated target for positron emission tomography (PET) imaging-based diagnostics in prostate cancer, and during recent years several therapeutics have been developed based on PSMA expression and activity. The expression of PSMA in prostate cancer can be very heterogeneous and some metastases are negative for PSMA. Determinants that dictate clinical responses to PSMA-targeting therapeutics are not well known. Moreover, it is not clear how to manipulate PSMA expression for therapeutic purposes and develop rational treatment combinations. A deeper understanding of the biology behind the use of PSMA would help the development of theranostics with radiolabeled compounds and other PSMA-based therapeutic approaches. Along with PSMA several other targets have also been evaluated or are currently under investigation in preclinical or clinical settings in prostate cancer. Here we critically elaborate the biology and scientific rationale behind the use of PSMA and other targets in the detection and therapeutic targeting of metastatic prostate cancer.
Collapse
Affiliation(s)
- Anniina Hyväkkä
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
| | - Verneri Virtanen
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, FI-20520 Turku, Finland
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Docrates Cancer Center, FI-00180 Helsinki, Finland
| | - Tove J. Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, FI-20520 Turku, Finland;
| | - Heikki Minn
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
| | - Maria Sundvall
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
- Correspondence:
| |
Collapse
|
33
|
Wang X, Zhao X, Zhao J, Yang T, Zhang F, Liu L. Serum metabolite signatures of epithelial ovarian cancer based on targeted metabolomics. Clin Chim Acta 2021; 518:59-69. [PMID: 33746017 DOI: 10.1016/j.cca.2021.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a common gynecological cancer with high mortality rates. The main objective of this study was to investigate the serum amino acid and organic acid profiles to distinguish key metabolites for screening EOC patients. METHODS In total, 39 patients with EOC and 31 healthy controls were selected as the training set. Serum amino acid and organic acid profiles were determined using the targeted metabolomics approach. Metabolite profiles were processed via multivariate analysis to identify potential metabolites and construct a metabolic network. Finally, a test dataset derived from 29 patients and 28 healthy controls was constructed to validate the potential metabolites. RESULTS Distinct amino acid and organic acid profiles were obtained between EOC and healthy control groups. Methionine, glutamine, asparagine, glutamic acid and glycolic acid were identified as potential metabolites to distinguish EOC from control samples. The areas under the curve for methionine, glutamine, asparagine, glutamic acid and glycolic acid were 0.775, 0 778, 0.955, 0.874 and 0.897, respectively, in the validation study. Metabolic network analysis of the training set indicated key roles of alanine, aspartate and glutamate metabolism as well as D-glutamine and D-glutamate metabolism in the pathogenesis of EOC. CONCLUSIONS Amino acid and organic acid profiles may serve as potential screening tools for EOC. Data from this study provide useful information to bridge gaps in the understanding of the amino acid and organic acid alterations associated with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Xinyang Wang
- Department of Microbiology, Harbin Medical University, Harbin, PR China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, PR China
| | - Xinshu Zhao
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin, PR China
| | - Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Tongshu Yang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin, PR China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, PR China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, PR China.
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
34
|
Annese VF, Patil SB, Hu C, Giagkoulovits C, Al-Rawhani MA, Grant J, Macleod M, Clayton DJ, Heaney LM, Daly R, Accarino C, Shah YD, Cheah BC, Beeley J, Evans TRJ, Jones R, Barrett MP, Cumming DRS. A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection. MICROSYSTEMS & NANOENGINEERING 2021; 7:21. [PMID: 34567735 PMCID: PMC8433377 DOI: 10.1038/s41378-021-00243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 05/18/2023]
Abstract
There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the bedside or in the doctor's office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary clinical study using l-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to revolutionize low-cost, rapid, point-of-care testing.
Collapse
Affiliation(s)
- Valerio F. Annese
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Samadhan B. Patil
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Chunxiao Hu
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Christos Giagkoulovits
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Mohammed A. Al-Rawhani
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Grant
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Martin Macleod
- Beatson West of Scotland Cancer Centre, Glasgow, G12 0YN UK
| | - David J. Clayton
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NF UK
| | - Liam M. Heaney
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU UK
| | - Ronan Daly
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
| | - Claudio Accarino
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Yash D. Shah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Boon C. Cheah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Beeley
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Thomas R. Jeffry Evans
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Robert Jones
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA UK
| | - David R. S. Cumming
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
35
|
Koyuncu İ, Gönel A, Temiz E, Karaoğul E, Uyar Z. Pistachio Green Hull Extract Induces Apoptosis through Multiple Signaling Pathways by Causing Oxidative Stress on Colon Cancer Cells. Anticancer Agents Med Chem 2021; 21:725-737. [PMID: 32748756 DOI: 10.2174/1871520620999200730155524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pistachio is considered to be one of the fifty foods with the highest antioxidant effect. However, the anticancer effect mechanisms of this plant extracts are unknown. OBJECTIVE The aim of this study was to investigate the anticancer effect of different extracts from the green hull of pistachio. METHODS The cytotoxic effects of different solvent extracts on cancer and normal cells were examined by cell viability assay and flow cytometric analysis. The levels of the apoptotic gene and protein were investigated by Western Blot and ELISA, and qPCR. The intracellular free radical exchange was determined by oxidative and nitric oxide analyses. DNA damage level was measured by the 8-OHdG test. Phenolic and free fatty acid components were examined by LC-MS/MS and GC-MS, respectively. RESULTS It was determined that the n-hexane fraction showed a higher cytotoxic effect on cancer cells. Oxidative and cell cycle analyses indicated that the n-hexane fraction arrested cell cycle of HT-29 at the sub-G1 phase by increasing DNA damage through oxidative stress. In addition, gene expression analysis of the HT-29 treated with the n-hexane fraction indicated that apoptotic and autophagic gene expressions were significantly upregulated. LC-MS/MS analysis of the n-hexane fraction revealed the presence of 15 phenolic compounds, containing mainly gallic acid and catechin hydrate, and GC-MS analysis determined the presence of the following fatty acids: 9-octadecenoic acid, 9,12-octadecadienoic acid and hexadecenoic acid. CONCLUSION Based on these grounds, we suggest that the n-hexane fraction of pistachio green hull damages DNA, arrests the cell cycle at the G1 subphase, and induces apoptosis through oxidative pathways in colon cancer.
Collapse
Affiliation(s)
- İsmail Koyuncu
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Sanliurfa, Turkey
| | - Ataman Gönel
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Sanliurfa, Turkey
| | - Eyyüp Karaoğul
- Food Science and Technology, Engineering Faculty, Harran University, Sanliurfa, Turkey
| | - Zafer Uyar
- Department of Chemistry, Science Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
36
|
Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer 2021; 124:862-879. [PMID: 33223534 PMCID: PMC7921671 DOI: 10.1038/s41416-020-01156-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157, Oeiras, Portugal
| |
Collapse
|
37
|
Bridging the Metabolic Parallels Between Neurological Diseases and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:229-248. [PMID: 34014547 DOI: 10.1007/978-3-030-65768-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the many recent breakthroughs in cancer research, oncology has traditionally been seen as a distinct field from other diseases. Recently, more attention has been paid to repurposing established therapeutic strategies and targets of other diseases towards cancer treatment, with some of these attempts generating promising outcomes [1, 2]. Recent studies using advanced metabolomics technologies [3] have shown evidence of close metabolic similarities between cancer and neurological diseases. These studies have unveiled several metabolic characteristics shared by these two categories of diseases, including metabolism of glutamine, gamma-aminobutyric acid (GABA), and N-acetyl-aspartyl-glutamate (NAAG) [4-6]. The striking metabolic overlap between cancer and neurological diseases sheds light on novel therapeutic strategies for cancer treatment. For example, 2-(phosphonomethyl) pentanedioic acid (2-PMPA), one of the glutamate carboxypeptidase II (GCP II) inhibitors that prevent the conversion of NAAG to glutamate, has been shown to suppress cancer growth [6, 7]. These promising results have led to an increased interest in integrating this metabolic overlap between cancer and neurological diseases into the study of cancer metabolism. The advantages of studying this metabolic overlap include not only drug repurposing but also translating existing knowledge from neurological diseases to the field of cancer research. This chapter discusses the specific overlapping metabolic features between cancer and neurological diseases, focusing on glutamine, GABA, and NAAG metabolisms. Understanding the interconnections between cancer and neurological diseases will guide researchers and clinicians to find more effective cancer treatments.
Collapse
|
38
|
Hoang G, Nguyen K, Le A. Metabolic Intersection of Cancer and Cardiovascular Diseases: Opportunities for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:249-263. [PMID: 34014548 PMCID: PMC9703259 DOI: 10.1007/978-3-030-65768-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
According to data from the World Health Organization, cardiovascular diseases and cancer are the two leading causes of mortality in the world [1]. Despite the immense effort to study these diseases and the constant innovation in treatment modalities, the number of deaths associated with cardiovascular diseases and cancer is predicted to increase in the coming decades [1]. From 2008 to 2030, due to population growth and population aging in many parts of the world, the number of deaths caused by cancer globally is projected to increase by 45%, corresponding to an annual increase of around four million people [1]. For cardiovascular diseases, this number is six million people [1]. In the United States, treatments for these two diseases are among the most costly and result in a disproportionate impact on low- and middleincome people. As the fight against these fatal diseases continues, it is crucial that we continue our investigation and broaden our understanding of cancer and cardiovascular diseases to innovate our prognostic and treatment approaches. Even though cardiovascular diseases and cancer are usually studied independently [2-12], there are some striking overlaps between their metabolic behaviors and therapeutic targets, suggesting the potential application of cardiovascular disease treatments for cancer therapy. More specifically, both cancer and many cardiovascular diseases have an upregulated glutaminolysis pathway, resulting in low glutamine and high glutamate circulating levels. Similar treatment modalities, such as glutaminase (GLS) inhibition and glutamine supplementation, have been identified to target glutamine metabolism in both cancer and some cardiovascular diseases. Studies have also found similarities in lipid metabolism, specifically fatty acid oxidation (FAO) and synthesis. Pharmacological inhibition of FAO and fatty acid synthesis have proven effective against many cancer types as well as specific cardiovascular conditions. Many of these treatments have been tested in clinical trials, and some have been medically prescribed to patients to treat certain diseases, such as angina pectoris [13, 14]. Other metabolic pathways, such as tryptophan catabolism and pyruvate metabolism, were also dysregulated in both diseases, making them promising treatment targets. Understanding the overlapping traits exhibited by both cancer metabolism and cardiovascular disease metabolism can give us a more holistic view of how important metabolic dysregulation is in the progression of diseases. Using established links between these illnesses, researchers can take advantage of the discoveries from one field and potentially apply them to the other. In this chapter, we highlight some promising therapeutic discoveries that can support our fight against cancer, based on common metabolic traits displayed in both cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Giang Hoang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Kiet Nguyen
- Department of Chemistry and Biology, Emory University, Atlanta, GA, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
39
|
Metabotropic glutamate receptor 1 is associated with unfavorable prognosis in ER-negative and triple-negative breast cancer. Sci Rep 2020; 10:22292. [PMID: 33339858 PMCID: PMC7749122 DOI: 10.1038/s41598-020-79248-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
New therapies are an urgent medical need in all breast cancer subgroups. Metabotropic glutamate receptor 1 (mGluR1) is suggested as a potential new molecular target. We examined the prevalence mGluR1 expression in different clinically relevant breast cancer subgroups and determined its association with prognosis. In this retrospective cohort, 394 consecutive primary breast cancer tissues were incorporated into a tissue microarray and immunohistochemically stained for mGluR1. The prevalence of mGluR1 protein expression in different breast cancer subgroups was evaluated and correlated with metastasis-free survival (MFS) and overall survival (OS). In total, 56% (n = 219) breast cancer tissues had mGluR1 expression. In estrogen receptor (ER)-negative tumors, 31% (n = 18/58) had mGluR1 expression that was significantly associated with MFS (HR 5.00, 95% CI 1.03–24.35, p = 0.046) in multivariate analysis, independently from other prognostic factors. Of the 44 triple-negative breast cancer (TNBC), 25% (n = 11) expressed mGluR1. mGluR1 expression in TNBC was significantly associated with shorter MFS (HR 8.60, 95% CI 1.06–20.39, p = 0.044) and with poor OS (HR 16.07, 95% CI 1.16–223.10, p = 0.039). In conclusion, mGluR1 is frequently expressed in breast cancer. In ER-negative breast cancer and in TNBC mGluR1 protein expression is an unfavorable prognostic marker. This study provides rationale to explore mGluR1 as a novel target for breast cancer treatment, especially for the more aggressive TNBC.
Collapse
|
40
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
41
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
42
|
Mollazadeh H, Mohtashami E, Mousavi SH, Soukhtanloo M, Vahedi MM, Hosseini A, Afshari AR, Sahebkar A. Deciphering the Role of Glutamate Signaling in Glioblastoma Multiforme: Current Therapeutic Modalities and Future Directions. Curr Pharm Des 2020; 26:4777-4788. [DOI: 10.2174/1381612826666200603132456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
As the most popular intrinsic neoplasm throughout the brain, glioblastoma multiforme (GBM) is resistant
to existing therapies. Due to its invasive nature, GBM shows a poor prognosis despite aggressive surgery
and chemoradiation. Therefore, identifying and understanding the critical molecules of GBM can help develop
new therapeutic strategies. Glutamatergic signaling dysfunction has been well documented in neurodegenerative
diseases as well as in GBM. Inhibition of glutamate receptor activation or extracellular glutamate release by specific
antagonists inhibits cell development, invasion, and migration and contributes to apoptosis and autophagy in
GBM cells. This review outlines the current knowledge of glutamate signaling involvement and current therapeutic
modalities for the treatment of GBM.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H. Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad M. Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | |
Collapse
|
43
|
Liu Y, Jiang H. Compositional differences of gut microbiome in matched hormone-sensitive and castration-resistant prostate cancer. Transl Androl Urol 2020; 9:1937-1944. [PMID: 33209658 PMCID: PMC7658119 DOI: 10.21037/tau-20-566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background It is known that gut microbiota can regulate cancer therapies. We hypothesized that gut microbiota may interact with androgen deprivation therapy (ADT) in the process of castration-resistant prostate cancer (CRPC). Here, the differences in gut microbiota between matched hormone-sensitive prostate cancer (HSPC) and CRPC were determined before and after ADT. Methods We profiled the fecal microbiota in matched HSPC and CRPC from 21 patients who received ADT at our urological center using 16S rRNA gene amplicon sequencing. Differences in microbiota were determined with α/β-diversity and LefSe analysis. Functional inference of microbiota was performed with PICRUSt. Results The results showed that the gut microbial community in CRPC was significantly altered with increased abundance of several bacterial flora including genus Phascolarctobacterium and Ruminococcus. For functional analyses, bacterial gene pathways involved in terpenoids/polyketides metabolism and ether lipid metabolism were significantly activated in CRPC. Conclusions Measurable differences in the gut microbiota were identified between HSPC and CRPC. Functional validations are further needed to ascertain the underlying mechanism of these differential microbiota in the process of CRPC, and their potential as new targets to enhance ADT responses.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Zeynaloo E, Yang YP, Dikici E, Landgraf R, Bachas LG, Daunert S. Design of a mediator-free, non-enzymatic electrochemical biosensor for glutamate detection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102305. [PMID: 32992017 DOI: 10.1016/j.nano.2020.102305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
A mediator-free, non-enzymatic electrochemical biosensor was constructed by covalent immobilization of a genetically engineered periplasmic glutamate binding protein onto gold nanoparticle-modified, screen-printed carbon electrodes (GluBP/AuNP/SPCE) for the purpose of direct measurement of glutamate levels. Glutamate serves as the predominant excitatory neurotransmitter in the central nervous system. As high levels of glutamate are an indicator of many neurologic disorders, there is a need for advancements in glutamate detection technologies. The biosensor was evaluated for glutamate detection by cyclic voltammetry. Binding of glutamate to the immobilized glutamate binding protein results in a conformational change of the latter that alters the microenvironment on the surface of the sensor, which is manifested as a change in signal. Dose-response plots correlating the electrochemical signal to glutamate concentration revealed a detection limit of 0.15 μM with a linear range of 0.1-0.8 μM. Selectivity studies confirmed a strong preferential response of the biosensor for glutamate against common interfering compounds.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Department of Chemistry, University of Miami, Miami, Florida, United States
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States; University of Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, United States.
| |
Collapse
|
45
|
Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12092652. [PMID: 32957515 PMCID: PMC7564346 DOI: 10.3390/cancers12092652] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are key players in the tumor microenvironment. They are responsible for potentiating growth and metastasis through versatile functions, including maintenance of the extracellular matrix, blood vessel formation, modulation of tumor metabolism, suppression of antitumor immunity, and promotion of chemotherapy resistance. As such, CAFs are associated with poor prognosis and have emerged as a focus of anticancer research. In this review, we discuss the origins of CAFs, their heterogenous subtypes and their properties. We then detail the current state of preclinical and clinical research targeting CAF activities. We believe the limited efficacy of current cancer therapeutic approaches is driven by an incomplete understanding of CAF functions and by a nonstandardized CAF classification system. Therefore, we suggest a unified CAF classification based on specific functions to develop a new class of therapies that will focus on targeting the pro-tumorigenic properties of CAFs during tumor progression. Abstract Cancer-associated fibroblasts (CAFs) are indispensable architects of the tumor microenvironment. They perform the essential functions of extracellular matrix deposition, stromal remodeling, tumor vasculature modulation, modification of tumor metabolism, and participation in crosstalk between cancer and immune cells. In this review, we discuss our current understanding of the principal differences between normal fibroblasts and CAFs, the origin of CAFs, their functions, and ultimately, highlight the intimate connection of CAFs to virtually all of the hallmarks of cancer. We address the remarkable degree of functional diversity and phenotypic plasticity displayed by CAFs and strive to stratify CAF biology among different tumor types into practical functional groups. Finally, we summarize the status of recent and ongoing trials of CAF-directed therapies and contend that the paucity of trials resulting in Food and Drug Administration (FDA) approvals thus far is a consequence of the failure to identify targets exclusive of pro-tumorigenic CAF phenotypes that are mechanistically linked to specific CAF functions. We believe that the development of a unified CAF nomenclature, the standardization of functional assays to assess the loss-of-function of CAF properties, and the establishment of rigorous definitions of CAF subpopulations and their mechanistic functions in cancer progression will be crucial to fully realize the promise of CAF-targeted therapies.
Collapse
|
46
|
Metabolic Signaling Cascades Prompted by Glutaminolysis in Cancer. Cancers (Basel) 2020; 12:cancers12092624. [PMID: 32937954 PMCID: PMC7565600 DOI: 10.3390/cancers12092624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Within the last few years, accumulating evidences suggest the involvement of altered metabolisms in human diseases including cancer. Metabolism is defined as the sum of biochemical processes in living organisms that produce and consume energy. Tumor growth requires restructuring of cellular metabolism to meet the increasing demand for building blocks to support the ever-increasing cancer cell numbers. The principle of perturbed metabolism in tumors is known for 50–60 years, it regains greater appreciation within the last few years with the realization that there is interdependency between metabolism and all aspects of cellular function including regulation and control of cell growth. Tumor cells do not need stimulation signals from the surrounding environment to promote cell proliferation; in some cases, the tumor cells can generate their own growth signals. In order to support the continuous tumor cell growth even under stressful conditions, a change in metabolism is necessary to fulfill the continuous demand for energy and building blocks. A better understanding of the relationship between tumor environment and altered cell metabolisms will provide valuable insights to design innovative approaches to limit the supply of energy and macromolecules for the treatment of cancer including melanoma. Abstract Aberrant glutamatergic signaling has been implicated in altered metabolic activity and the demand to synthesize biomass in several types of cancer including melanoma. In the last decade, there has been a significant contribution to our understanding of metabolic pathways. An increasing number of studies are now emphasizing the importance of glutamate functioning as a signaling molecule and a building block for cancer progression. To that end, our group has previously illustrated the role of glutamatergic signaling mediated by metabotropic glutamate receptor 1 (GRM1) in neoplastic transformation of melanocytes in vitro and spontaneous development of metastatic melanoma in vivo. Glutamate, the natural ligand of GRM1, is one of the most abundant amino acids in humans and the predominant excitatory neurotransmitter in the central nervous system. Elevated levels of glutaminolytic mitochondrial tricarboxylic acid (TCA) cycle intermediates, especially glutamate, have been reported in numerous cancer cells. Herein, we highlight and critically review metabolic bottlenecks that are prevalent during tumor evolution along with therapeutic implications of limiting glutamate bioavailability in tumors.
Collapse
|
47
|
An Update on the Prognostic and Predictive Serum Biomarkers in Metastatic Prostate Cancer. Diagnostics (Basel) 2020; 10:diagnostics10080549. [PMID: 32752137 PMCID: PMC7459446 DOI: 10.3390/diagnostics10080549] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Serum biomarkers are molecules produced by normal and abnormal cells. Prostate specific antigen (PSA) is an example of a serum biomarker used widely in the diagnosis and prognostication of prostate cancer. PSA has its limitations as it is organ- but not cancer-specific. The aim of this review is to summarize the current published data on the potential prognostic and predictive biomarkers in metastatic prostate cancer (mPC) that can be used in conjunction with PSA. These biomarkers include microRNAs, androgen receptor variants, bone metabolism, neuroendocrine and metabolite biomarkers, and could guide treatment selection and sequence in an era where we strive to personalized therapy.
Collapse
|
48
|
Serpa J. Cysteine as a Carbon Source, a Hot Spot in Cancer Cells Survival. Front Oncol 2020; 10:947. [PMID: 32714858 PMCID: PMC7344258 DOI: 10.3389/fonc.2020.00947] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cells undergo a metabolic rewiring in order to fulfill the energy and biomass requirements. Cysteine is a pivotal organic compound that contributes for cancer metabolic remodeling at three different levels: (1) in redox control, free or as a component of glutathione; (2) in ATP production, via hydrogen sulfide (H2S) production, serving as a donor to electron transport chain (ETC), and (3) as a carbon source for biomass and energy production. In the present review, emphasis will be given to the role of cysteine as a carbon source, focusing on the metabolic reliance on cysteine, benefiting the metabolic fitness and survival of cancer cells. Therefore, the interplay between cysteine metabolism and other metabolic pathways, as well as the regulation of cysteine metabolism related enzymes and transporters, will be also addressed. Finally, the usefulness of cysteine metabolic route as a target in cancer treatment will be highlighted.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
49
|
Yu Y, Gong L, Ye J. The Role of Aberrant Metabolism in Cancer: Insights Into the Interplay Between Cell Metabolic Reprogramming, Metabolic Syndrome, and Cancer. Front Oncol 2020; 10:942. [PMID: 32596159 PMCID: PMC7301691 DOI: 10.3389/fonc.2020.00942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) is characterized by hyperglycemia, hypertension, dyslipidemia and abdominal obesity. Patients with MetS or other metabolic disorders are more susceptible to cancer development and recurrence and have a worse long-term prognosis. Moreover, the metabolic reprogramming observed in cancer cells has also been described as one of the new hallmarks of cancer. Thus, aberrant metabolism has been proposed as an important risk factor for cancer. Chronic inflammation, reactive oxygen species (ROS), and oncogenic signaling pathways are considered as main potential triggers. Considering the strong association between metabolism and cancer, metabolism-modulating drugs, including metformin and statins, as well as adopting a healthy lifestyle, have been extensively investigated as strategies to combat cancer. Furthermore, strategies that interfere with the metabolic rewiring of cells may also have potent anti-cancer effects. In this article, we provide a comprehensive review of current knowledge on the relationship between aberrant metabolism and cancer and discuss the potential use of metabolism-targeting strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Yina Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Gong
- Department of Otolaryngology, Cixi People's Hospital, Ningbo, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Yi JH, Whitcomb DJ, Park SJ, Martinez-Perez C, Barbati SA, Mitchell SJ, Cho K. M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer's disease pathology. Brain Commun 2020; 2:fcaa058. [PMID: 32766549 PMCID: PMC7391992 DOI: 10.1093/braincomms/fcaa058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Aggregation of amyloid beta and loss of cholinergic innervation in the brain are predominant components of Alzheimer’s disease pathology and likely underlie cognitive impairment. Acetylcholinesterase inhibitors are one of the few treatment options for Alzheimer’s disease, where levels of available acetylcholine are enhanced to counteract the cholinergic loss. However, these inhibitors show limited clinical efficacy. One potential explanation for this is a concomitant dysregulation of cholinergic receptors themselves as a consequence of the amyloid beta pathology. We tested this hypothesis by examining levels of M1 muscarinic acetylcholine receptors in the temporal cortex from seven Alzheimer’s disease and seven non-disease age-matched control brain tissue samples (control: 85 ± 2.63 years old, moderate Alzheimer’s disease: 84 ± 2.32 years old, P-value = 0.721; eight female and six male patients). The samples were categorized into two groups: ‘control’ (Consortium to Establish a Registry for Alzheimer’s Disease diagnosis of ‘No Alzheimer’s disease’, and Braak staging pathology of I–II) and ‘moderate Alzheimer’s disease’ (Consortium to Establish a Registry for Alzheimer’s Disease diagnosis of ‘possible/probable Alzheimer’s disease’, and Braak staging pathology of IV). We find that in comparison to age-matched controls, there is a loss of M1 muscarinic acetylcholine receptors in moderate Alzheimer’s disease tissue (control: 2.17 ± 0.27 arbitrary units, n = 7, Mod-AD: 0.83 ± 0.16 arbitrary units, n = 7, two-tailed t-test, t = 4.248, P = 0.00113). Using a functional rat cortical brain slice model, we find that postsynaptic muscarinic acetylcholine receptor function is dysregulated by aberrant amyloid beta-mediated activation of metabotropic glutamate receptor 5. Crucially, blocking metabotropic glutamate receptor 5 restores muscarinic acetylcholine receptor function and object recognition memory in 5XFAD transgenic mice. This indicates that the amyloid beta-mediated activation of metabotropic glutamate receptor 5 negatively regulates muscarinic acetylcholine receptor and illustrates the importance of muscarinic acetylcholine receptors as a potential disease-modifying target in the moderate pathological stages of Alzheimer’s disease.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Daniel J Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Se Jin Park
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Celia Martinez-Perez
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Saviana A Barbati
- UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Scott J Mitchell
- UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Kwangwook Cho
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK.,UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| |
Collapse
|