1
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Zhang Y, Shen Y, Wu J, Zhang J, Cao C, Mo J, Bao Y. The Study of PIK3CA Hotspot Mutations and Co-Occurring with EGFR, KRAS, and TP53 Mutations in Non-Small Cell Lung Cancer. Onco Targets Ther 2024; 17:755-763. [PMID: 39282132 PMCID: PMC11402363 DOI: 10.2147/ott.s468352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Objective PIK3CA-mutant non-small-cell lung cancer (NSCLC) is associated with other genetic mutations and may influence treatment strategies and clinical outcomes. We aimed to characterize PIK3CA mutations co-occurring with several major driver mutations using data from published cohorts and our medical center. Materials and Methods We analyzed NSCLC patients harboring PIK3CA mutations from The Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering (MSK) databases and retrospectively identified NSCLC patients with PIK3CA-mutants at a single medical center from our electronic records. The Log rank test was used to determine the association between PIK3CA mutations and overall survival (OS) in NSCLC patients. Results Common hotspot mutations in PIK3CA were found in exon 9 (c.1633G > A, E545K, and c.1624G > A, E542K) and exon 20 (c.3140A > G, H1047R) in all cohorts. Co-occurring mutations of PIK3CA with EGFR, KRAS, and TP53 have been frequently observed in patients with NSCLC, with different percentages in these datasets generated by different background. PIK3CA mutations were observed to be significantly associated with poor OS in lung adenocarcinomas patients in the MSKCC cohort (hazard ratio [HR] = 0.519, 95% confidence interval [CI] = 0.301-0.896; P <0.05). Conclusion PIK3CA co-occurring mutations in other genes may represent distinct subsets of NSCLC. Further elucidation of the roles of PIK3CA hotspot mutations combined with other driver mutations, including EGFR and KRAS, is needed to guide effective treatment in patients with advanced NSCLC.
Collapse
Affiliation(s)
- YuXuan Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310000, People's Republic of China
- The Key Laboratory, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Yuhong Shen
- Transfusion Center, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Jiayuan Wu
- The Key Laboratory, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Jun Zhang
- The Department of Thoracic Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Chenxi Cao
- The Department of Oncology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Juanfen Mo
- The Key Laboratory, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Yi Bao
- The Key Laboratory, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- The Department of Oncology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Sirico M, Jacobs F, Molinelli C, Nader-Marta G, Debien V, Dewhurst HF, Palleschi M, Merloni F, Gianni C, De Giorgi U, de Azambuja E. Navigating the complexity of PI3K/AKT pathway in HER-2 negative breast cancer: biomarkers and beyond. Crit Rev Oncol Hematol 2024; 200:104404. [PMID: 38815877 DOI: 10.1016/j.critrevonc.2024.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
The results of the SOLAR-1 and CAPItello-291, highlight the benefit of the ɑ-selective phosphoinositide 3-Kinase Pathway inhibitor (PI3Ki) alpelisib and the AKT inhibitor (AKTi) capivasertib in patients with hormone receptor-positive (HR+)/Human Epidermal Growth Factor Receptor 2 (HER2)- negative metastatic breast cancer (mBC) that have PIK3CA/AKT1/PTEN tumour alterations. Although effective, these drugs are associated with significant toxicities, which often limit their use, particularly in frail patients. Following the recent incorporation of these agents into clinical practice, and with many others currently in development, significant challenges have emerged, particularly those regarding biomarkers for patient selection. This review will discuss biomarkers of response and their resistance to PI3K/AKT inhibitors (PI3K/AKTis) in HR+/HER- BC in early and advanced settings to ascertain which populations will most benefit from these drugs. Of the biomarkers that were analysed, such as PIK3CA, AKT, PTEN mutations, insulin levels, 18 F-FDG-PET/TC, only the PIK3CA-mutations (PIK3CA-mut) and the AKT pathway alterations seem to have a predictive value for treatments with alpelisib and capivasertib. However, due to the retrospective and exploratory nature of the study, the data did not provide conclusive results. In addition, the different methods used to detect PIK3CA/AKT1/PTEN alterations underline the fact that the optimal diagnostic companion has yet to be established. We have summarised the clinical data on the approved and discontinued agents targeting this pathway and have assessed the drugs development, successes, and failures. Finally, because of tumour heterogeneity, we emphasise the importance of reassessing the mutational status of PI3KCA in both metastatic tissue and blood at the time of disease progression to better tailor treatment for patients.
Collapse
Affiliation(s)
- M Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - F Jacobs
- Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, via Manzoni 56, 20089 Rozzano, Milan, Italy; Early Phase Trials Unit Institut Bergonié Bordeaux, France
| | - C Molinelli
- Early Phase Trials Unit Institut Bergonié Bordeaux, France; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O. Clinical di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - V Debien
- Early Phase Trials Unit Institut Bergonié Bordeaux, France
| | - H Faith Dewhurst
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - M Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - F Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - C Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - U De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | |
Collapse
|
4
|
Miranda AX, Kemp J, Davidson BA, Bellomo SE, Miranda VE, Manoni A, Marchiò C, Croessmann S, Park BH, Hodges E. Genomic dissection and mutation-specific target discovery for breast cancer PIK3CA hotspot mutations. BMC Genomics 2024; 25:519. [PMID: 38802751 PMCID: PMC11129441 DOI: 10.1186/s12864-024-10368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Recent advancements in high-throughput genomics and targeted therapies have provided tremendous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless of affected codon or phenotype. RESULTS In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel bearing two distinct hotspot PIK3CA mutations, E545K and H1047R, to accurately identify targetable differences between mutations within the same gene. We performed RNA-seq and ATAC-seq and identified distinct transcriptomic and epigenomic differences associated with each PIK3CA hotspot mutation. We used this data to curate a select CRISPR knock out screen to identify mutation-specific gene pathway vulnerabilities. These data revealed AREG as a E545K-preferential target that was further validated through in vitro analysis and publicly available patient databases. CONCLUSIONS Using our multi-modal genomics framework, we discover distinct differences in genomic regulation between PIK3CA hotspot mutations, suggesting the PIK3CA mutations have different regulatory effects on the function and downstream signaling of the PI3K complex. Our results demonstrate the potential to rapidly uncover mutation specific molecular targets, specifically AREG and a proximal gene regulatory region, that may provide clinically relevant therapeutic targets. The methods outlined provide investigators with an integrative strategy to identify mutation-specific targets for the treatment of other oncogenic mutations in an isogenic system.
Collapse
Affiliation(s)
- Adam X Miranda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Kemp
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brad A Davidson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Verda E Miranda
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexandra Manoni
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sarah Croessmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben H Park
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
5
|
Khorasani ABS, Hafezi N, Sanaei MJ, Jafari-Raddani F, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/AKT/mTOR signaling pathway in breast cancer: Review of clinical trials and latest advances. Cell Biochem Funct 2024; 42:e3998. [PMID: 38561964 DOI: 10.1002/cbf.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Attiogbe MKI, Zhao HY, Wang J, Huang TT, Yan PP, Liu YN, Li W, Cao L, Zhang SQ, Cao YX. Anticancer effect of covalent purine-containing EGFR TKI, ZZC4 and its mechanism of action through network pharmacology. Life Sci 2024; 336:122308. [PMID: 38030059 DOI: 10.1016/j.lfs.2023.122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
AIMS Epidermal growth factor receptor (EGFR) has been documented in many malignancies as participating in the progression of cancer cells. Here, we present a novel EGFR tyrosine kinase inhibitor, ZZC4, and examine its effect on cancer cell proliferation, migration, and tumor-bearing xenograft models. MAIN METHODS The antiproliferative effect of ZZC4 was assessed in vitro by MTT assay, colony formation, and wound healing assay and in vivo with tumor-bearing xenograft nude mice. Further, Western blotting analysis and computational network pharmacology were used to explore and understand the mechanism of ZZC4. KEY FINDINGS The results showed that ZZC4 potently inhibited the proliferation of lung, breast, and melanoma cells, and was more sensitive to lung cancer cells HCC827, H1975, and breast cancer cell T47D. In vitro findings were corroborated in vivo as results showed the suppressive effect of ZZC4 on HCC827 and H1975 tumor growth. Western blotting analysis confirmed that ZZC4 is an effective inhibitor of the EGFR pathways as it down-regulated p-EGFR, p-Akt, and p-MAPK. Computational molecular docking confirmed the strong binding affinity between ZZC4 and EGFR. Moreover, network pharmacology suggested that ZZC4 might play a suppressive role in the progression of malignancies with EGFR/PI-3K/Akt axis dysregulation or in cancer-related drug resistance. SIGNIFICANCE Our study showed that ZZC4 is an anticancer drug candidate.
Collapse
Affiliation(s)
- Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 311300, PR China
| | - Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Ping-Ping Yan
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Yan-Ni Liu
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
7
|
Stecoza CE, Nitulescu GM, Draghici C, Caproiu MT, Hanganu A, Olaru OT, Mihai DP, Bostan M, Mihaila M. Synthesis of 1,3,4-Thiadiazole Derivatives and Their Anticancer Evaluation. Int J Mol Sci 2023; 24:17476. [PMID: 38139304 PMCID: PMC10743895 DOI: 10.3390/ijms242417476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Thiadiazole derivatives have garnered significant attention in the field of medicinal chemistry due to their diverse pharmacological activities, including anticancer properties. This article presents the synthesis of a series of thiadiazole derivatives and investigates their chemical characterization and potential anticancer effects on various cell lines. The results of the nuclear magnetic resonance (NMR) analyses confirmed the successful formation of the target compounds. The anticancer potential was evaluated through in silico and in vitro cell-based assays using LoVo and MCF-7 cancer lines. The assays included cell viability, proliferation, apoptosis, and cell cycle analysis to assess the compounds' effects on cancer cell growth and survival. Daphnia magna was used as an invertebrate model for the toxicity evaluation of the compounds. The results revealed promising anticancer activity for several of the synthesized derivatives, suggesting their potential as lead compounds for further drug development. The novel compound 2g, 5-[2-(benzenesulfonylmethyl)phenyl]-1,3,4-thiadiazol-2-amine, demonstrated good anti-proliferative effects, exhibiting an IC50 value of 2.44 µM against LoVo and 23.29 µM against MCF-7 after a 48-h incubation and little toxic effects in the Daphnia test.
Collapse
Affiliation(s)
- Camelia Elena Stecoza
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (C.E.S.); (O.T.O.); (D.P.M.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (C.E.S.); (O.T.O.); (D.P.M.)
| | - Constantin Draghici
- “Costin D. Neniţescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenţei, 060023 Bucharest, Romania (A.H.)
| | - Miron Teodor Caproiu
- “Costin D. Neniţescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenţei, 060023 Bucharest, Romania (A.H.)
| | - Anamaria Hanganu
- “Costin D. Neniţescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenţei, 060023 Bucharest, Romania (A.H.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (C.E.S.); (O.T.O.); (D.P.M.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (C.E.S.); (O.T.O.); (D.P.M.)
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Street, 030304 Bucharest, Romania; (M.B.); (M.M.)
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Street, 030304 Bucharest, Romania; (M.B.); (M.M.)
| |
Collapse
|
8
|
Wilson GA, Vuina K, Sava G, Huard C, Meneguello L, Coulombe-Huntington J, Bertomeu T, Maizels RJ, Lauring J, Kriston-Vizi J, Tyers M, Ali S, Bertoli C, de Bruin RAM. Active growth signaling promotes senescence and cancer cell sensitivity to CDK7 inhibition. Mol Cell 2023; 83:4078-4092.e6. [PMID: 37977119 DOI: 10.1016/j.molcel.2023.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.
Collapse
Affiliation(s)
- Gemma A Wilson
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Georgina Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Leticia Meneguello
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Rory J Maizels
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Josh Lauring
- Janssen Research and Development, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Cosetta Bertoli
- Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
9
|
Foy R, Crozier L, Pareri AU, Valverde JM, Park BH, Ly T, Saurin AT. Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol Cell 2023; 83:4047-4061.e6. [PMID: 37977117 DOI: 10.1016/j.molcel.2023.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Juan Manuel Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
10
|
Hany D, Zoetemelk M, Bhattacharya K, Nowak-Sliwinska P, Picard D. Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell Mol Life Sci 2023; 80:80. [PMID: 36869202 PMCID: PMC10032341 DOI: 10.1007/s00018-023-04730-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21311, Egypt
| | - Marloes Zoetemelk
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Patrycja Nowak-Sliwinska
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland.
| |
Collapse
|
11
|
Hajmomeni P, Sisakhtnezhad S, Bidmeshkipour A. Thymoquinone-treated mouse mesenchymal stem cells-derived conditioned medium inhibits human breast cancer cells in vitro. Chem Biol Interact 2023; 369:110283. [PMID: 36450322 DOI: 10.1016/j.cbi.2022.110283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer is now the most prevalent cancer in females, therefore, it is essential to identify factors affecting its initiation and progression. Mesenchymal stem cells (MSCs) have received considerable attention in stem cell-based therapies and drug delivery applications. Because the therapeutic potential of MSCs is primarily achieved by their paracrine effects, thus identifying and employing bioactive molecules that promote the paracrine activity of MSCs is crucial for their efficient use in cancer treatment. Thymoquinone (TQ) has many biomedical properties, including anti-inflammatory, anti-diabetic, anti-aging, anti-cancer, etc. In addition, it has been found that TQ affects the self-renewal and immunomodulatory properties of MSCs. The present study aimed to investigate the effect of TQ-treated mouse bone marrow-derived MSCs conditioned medium (TQ-MSC-CM) on the biological characteristics of breast cancer cell line MCF7. MSCs were cultured and treated with TQ for 24 h. The TQ-MSC-CM and MSC-CM were collected, and their effects were investigated on ROS production, mitochondrial membrane potential (MMP), cell death, cell cycle, and migration of MCF7 cells by DCFDA-cellular ROS assay, Rhodamine-123 MMP assay, Annexin-PI staining and Caspase-3/7 activity assays, PI-staining and flow-cytometry, and in vitro wound healing assay, respectively. Moreover, the effects of TQ-MSC-CM and MSC-CM were studied on Cdk4, Sox2, c-Met, and Bcl2 gene expression by real-time PCR. Results demonstrated that MSC-CM and TQ-MSC-CM did not have a significant effect on the apoptosis induction in MCF7 cells; however, they significantly stimulated necrosis in the cells. Although TQ-MSC-CM promoted ROS production in MCF7 cells, it decreased the MMP of the cells. TQ-MSC-CM also induced Bcl2 anti-apoptosis gene expression and Casp-3/7 activity in cells. In addition, although MSC-CM induced MCF7 cells to enter the cell cycle, TQ-MSC-CM inhibited its progression. TQ-MSC-CM also downregulated the Cdk4 and Sox2 gene expression. Furthermore, TQ-MSC-CM induced the migration potential of MCF7 in a c-Met-independent manner. Altogether, we conclude that TQ may induce programmed necrosis and inhibits the proliferation and migration of the breast cancer cells by affecting the paracrine activity of MSCs.
Collapse
Affiliation(s)
- Pouria Hajmomeni
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
12
|
Sieber B, Lu F, Stribbling SM, Grieve AG, Ryan AJ, Freeman M. iRhom2 regulates ERBB signalling to promote KRAS-driven tumour growth of lung cancer cells. J Cell Sci 2022; 135:jcs259949. [PMID: 35971826 PMCID: PMC9482348 DOI: 10.1242/jcs.259949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of the ERBB/EGFR signalling pathway causes multiple types of cancer. Accordingly, ADAM17, the primary shedding enzyme that releases and activates ERBB ligands, is tightly regulated. It has recently become clear that iRhom proteins, inactive members of the rhomboid-like superfamily, are regulatory cofactors for ADAM17. Here, we show that oncogenic KRAS mutants target the cytoplasmic domain of iRhom2 (also known as RHBDF2) to induce ADAM17-dependent shedding and the release of ERBB ligands. Activation of ERK1/2 by oncogenic KRAS induces the phosphorylation of iRhom2, recruitment of the phospho-binding 14-3-3 proteins, and consequent ADAM17-dependent shedding of ERBB ligands. In addition, cancer-associated mutations in iRhom2 act as sensitisers in this pathway by further increasing KRAS-induced shedding of ERBB ligands. This mechanism is conserved in lung cancer cells, where iRhom activity is required for tumour xenograft growth. In this context, the activity of oncogenic KRAS is modulated by the iRhom2-dependent release of ERBB ligands, thus placing the cytoplasmic domain of iRhom2 as a central component of a positive feedback loop in lung cancer cells. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Fangfang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Adam G. Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anderson J. Ryan
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
13
|
Sweidan K, Elfadel H, Sabbah DA, Bardaweel SK, Hajjo R, Anjum S, Sinoj J, Nair VA, Abu‐Gharbieh E, El‐Huneidi W. Novel Derivatives of 4,6‐Dihydroxy‐2‐Quinolone‐3‐Carboxamides as Potential PI3Kα Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kamal Sweidan
- Department of Chemistry Institution The University of Jordan Amman 11942 Jordan
| | - Hussein Elfadel
- Department of Chemistry Institution The University of Jordan Amman 11942 Jordan
| | - Dima A. Sabbah
- Department of Pharmacy Faculty of Pharmacy Institution Al-Zaytoonah University of Jordan P.O. Box 130 Amman 11733 Jordan
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences School of Pharmacy Institution The University of Jordan Amman 11942 Jordan
| | - Rima Hajjo
- Department of Pharmacy Faculty of Pharmacy Institution Al-Zaytoonah University of Jordan P.O. Box 130 Amman 11733 Jordan
| | - Shabana Anjum
- Sharjah Institute for Medical Research Institution University of Sharjah Sharjah 27272 United Arab Emirates
| | - Jithna Sinoj
- Sharjah Institute for Medical Research Institution University of Sharjah Sharjah 27272 United Arab Emirates
| | - Vidhya A. Nair
- Sharjah Institute for Medical Research Institution University of Sharjah Sharjah 27272 United Arab Emirates
| | - Eman Abu‐Gharbieh
- Sharjah Institute for Medical Research Institution University of Sharjah Sharjah 27272 United Arab Emirates
- College of Medicine Institution University of Sharjah Sharjah 27272 United Arab Emirates
| | - Waseem El‐Huneidi
- Sharjah Institute for Medical Research Institution University of Sharjah Sharjah 27272 United Arab Emirates
- College of Medicine Institution University of Sharjah Sharjah 27272 United Arab Emirates
| |
Collapse
|
14
|
Skolariki A, D’Costa J, Little M, Lord S. Role of PI3K/Akt/mTOR pathway in mediating endocrine resistance: concept to clinic. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:172-199. [PMID: 36046843 PMCID: PMC9400772 DOI: 10.37349/etat.2022.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/11/2022] [Indexed: 01/06/2023] Open
Abstract
The majority of breast cancers express the estrogen receptor (ER) and for this group of patients, endocrine therapy is the cornerstone of systemic treatment. However, drug resistance is common and a focus for breast cancer preclinical and clinical research. Over the past 2 decades, the PI3K/Akt/mTOR axis has emerged as an important driver of treatment failure, and inhibitors of mTOR and PI3K are now licensed for the treatment of women with advanced ER-positive breast cancer who have relapsed on first-line hormonal therapy. This review presents the preclinical and clinical data that led to this new treatment paradigm and discusses future directions.
Collapse
Affiliation(s)
- Aglaia Skolariki
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Jamie D’Costa
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Martin Little
- Department of Oncology, Churchill Hospital, OX3 7LE Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| |
Collapse
|
15
|
Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front Oncol 2022; 12:819128. [PMID: 35402264 PMCID: PMC8987494 DOI: 10.3389/fonc.2022.819128] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a severe public health issue that is a leading cause of mortality globally. It is also an impediment to improving life expectancy worldwide. Furthermore, the global burden of cancer incidence and death is continuously growing. Current therapeutic options are insufficient for patients, and tumor complexity and heterogeneity necessitate customized medicine or targeted therapy. It is critical to identify potential cancer therapeutic targets. Aberrant activation of the PI3K/AKT/mTOR pathway has a significant role in carcinogenesis. This review summarized oncogenic PI3K/Akt/mTOR pathway alterations in cancer and various cancer hallmarks associated with the PI3K/AKT/mTOR pathway, such as cell proliferation, autophagy, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and chemoresistance. Importantly, this review provided recent advances in PI3K/AKT/mTOR inhibitor research. Overall, an in-depth understanding of the association between the PI3K/AKT/mTOR pathway and tumorigenesis and the development of therapies targeting the PI3K/AKT/mTOR pathway will help make clinical decisions.
Collapse
Affiliation(s)
- Yan Peng
- Department of Obstetrics, Longhua District Central Hospital, Shenzhen, China
| | - Yuanyuan Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Cheng Zhou
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
16
|
Shimoi T, Hashimoto J, Sudo K, Shimomura A, Noguchi E, Shimizu C, Yunokawa M, Yonemori K, Yoshida H, Yoshida M, Kato T, Kinoshita T, Fukuda T, Fujiwara Y, Tamura K. Hotspot mutation profiles of AKT1 in Asian women with breast and endometrial cancers. BMC Cancer 2021; 21:1131. [PMID: 34670536 PMCID: PMC8529845 DOI: 10.1186/s12885-021-08869-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The V-Akt murine thymoma viral oncogene (AKT) 1 (E17K) is a subfamily of serine/threonine protein kinases that affects the survival, proliferation, and invasion of cancer cells. The clinicopathological features and frequencies in Asian populations with AKT1 mutations in breast and endometrial cancers are unclear. Hence, we aimed to determine the frequencies and relationships between clinicopathological features and AKT1 mutations in Asian women with cancer. METHODS We extracted DNA from 311 and 143 samples derived from patients with breast and endometrial cancers to detect the AKT1 point mutation (hotspot), E17K. We examined correlations between clinicopathological features and AKT1 mutation status. RESULTS The frequency of AKT1 mutations in breast cancer was 7.4%, and they were found more frequently in human epidermal growth factor receptor 2 (HER2)-negative breast cancer subtypes, although this was not statistically significant (P = 0.08). The frequency of AKT1 mutations in endometrial cancer was 4.1%, and the mutations were histologically detected only in endometrioid types. However, AKT1 mutations did not correlate with relapse-free or overall survival of patients with breast or endometrial cancer. CONCLUSIONS AKT1 mutations are associated with HER2-negative subtype in breast cancer and in endometrial cancer with endometrioid histology. The frequencies of AKT1 mutations in breast and endometrial cancers were similar between Asian and other regional women. The frequency of mutations is too low in both tumor types to talk about predictive significance.
Collapse
Affiliation(s)
- Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, 3-1-3 Hongoh, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Jun Hashimoto
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, 3-1-3 Hongoh, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Medical Oncology, Department of Internal Medicine, St. Lukes International Hospital, Tokyo, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chikako Shimizu
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mayu Yunokawa
- Department of Gynecologic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Takayuki Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
- Division of Breast Surgery, Tokyo Medical Center, Tokyo, Japan
| | - Takahiro Fukuda
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, 3-1-3 Hongoh, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenji Tamura
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Innovative Cancer Center, Department of Medical Oncology, Shimane University Hospital, Shimane, Japan
| |
Collapse
|
17
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
18
|
Inhibition of the lncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells. Noncoding RNA 2021; 7:ncrna7030049. [PMID: 34449674 PMCID: PMC8395837 DOI: 10.3390/ncrna7030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs are nucleotide molecules that regulate transcription in numerous cellular processes and are related to the occurrence of many diseases, including cancer. In this regard, we recently discovered a polyadenylated long non-coding RNA (named TG2-lncRNA) encoded within the first intron of the Transglutaminase type 2 gene (TGM2), which is related to tumour proliferation in human cancer cell lines. To better characterize this new biological player, we investigated the effects of its suppression in MCF-7 breast cancer cells, using siRNA treatment and RNA-sequencing. In this way, we found modifications in several networks associated to biological functions relevant for tumorigenesis (apoptosis, chronic inflammation, angiogenesis, immunomodulation, cell mobility, and epithelial–mesenchymal transition) that were originally attributed only to Transglutaminase type 2 protein but that could be regulated also by TG2-lncRNA. Moreover, our experiments strongly suggest the ability of TG2-lncRNA to directly interact with important transcription factors, such as RXRα and TP53, paving the way for several regulatory loops that can potentially influence the phenotypic behaviour of MCF-7 cells. These considerations imply the need to further investigate the relative relevance of the TG2 protein itself and/or other gene products as key regulators in the organization of breast cancer program.
Collapse
|
19
|
Itzhaki E, Hadad E, Moskovits N, Stemmer SM, Margel S. Tumor-Targeted Fluorescent Proteinoid Nanocapsules Encapsulating Synergistic Drugs for Personalized Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:648. [PMID: 34358074 PMCID: PMC8308547 DOI: 10.3390/ph14070648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Personalized cancer treatment based on specific mutations offers targeted therapy and is preferred over "standard" chemotherapy. Proteinoid polymers produced by thermal step-growth polymerization of amino acids may form nanocapsules (NCs) that encapsulate drugs overcoming miscibility problems and allowing passive targeted delivery with reduced side effects. The arginine-glycine-glutamic acid (RGD) sequence is known for its preferential attraction to αvβ3 integrin, which is highly expressed on neovascular endothelial cells that support tumor growth. Here, tumor-targeted RGD-based proteinoid NCs entrapping a synergistic combination of Palbociclib (Pal) and Alpelisib (Alp) were synthesized by self-assembly to induce the reduction of tumor cell growth in different types of cancers. The diameters of the hollow and drug encapsulating poly(RGD) NCs were 34 ± 5 and 22 ± 3 nm, respectively; thereby, their drug targeted efficiency is due to both passive and active targeting. The encapsulation yield of Pal and Alp was 70 and 90%, respectively. In vitro experiments with A549, MCF7 and HCT116 human cancer cells demonstrate a synergistic effect of Pal and Alp, controlled release and dose dependence. Preliminary results in a 3D tumor spheroid model with cells derived from patient-derived xenografts of colon cancer illustrate disassembly of spheroids, indicating that the NCs have therapeutic potential.
Collapse
Affiliation(s)
- Ella Itzhaki
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Elad Hadad
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Neta Moskovits
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
| | - Salomon M. Stemmer
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| |
Collapse
|
20
|
Combined inhibition of DDR1 and CDK4/6 induces synergistic effects in ER-positive, HER2-negative breast cancer with PIK3CA/AKT1 mutations. Oncogene 2021; 40:4425-4439. [PMID: 34108622 DOI: 10.1038/s41388-021-01819-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Molecular alterations in the PI3K/AKT pathway occur frequently in hormone receptor-positive breast tumors. Patients with ER-positive, HER2-negative metastatic breast cancer are often treated with CDK4/6 inhibitors such as palbociclib in combination with endocrine therapy. Although this is an effective regimen, most patients ultimately progress. The purpose of this study was identifying synthetic lethality partners that can enhance palbociclib's antitumor efficacy in the presence of PIK3CA/AKT1 mutations. We utilized a barcoded shRNA library to determine critical targets for survival in isogenic MCF7 cells with PIK3CA/AKT1 mutations. We demonstrated that the efficacy of palbociclib is reduced in the presence of PIK3CA/AKT1 mutations. We also identified that the downregulation of discoidin domain receptor 1 (DDR1) is synthetically lethal with palbociclib. DDR1 knockdown and DDR1 pharmacological inhibitor decreased cell growth and inhibited cell cycle progression in all cell lines, while enhanced the sensitivity of PIK3CA/AKT1 mutant cells to palbociclib. Combined treatment of palbociclib and 7rh further induced cell cycle arrest in PIK3CA/AKT1 mutant cell lines. In vivo, 7rh significantly enhanced palbociclib's antitumor efficacy. Our data indicates that DDR1 inhibition can augment cell cycle suppressive effect of palbociclib and could be effective strategy for targeted therapy of ER-positive, HER2-negative breast cancers with PI3K pathway activation.
Collapse
|
21
|
Chen H, Pu S, Yu S, Liao X, He J, Zhang H. A nomogram based on CENPP expression for survival prediction in breast cancer. Gland Surg 2021; 10:1874-1888. [PMID: 34268072 DOI: 10.21037/gs-21-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Background In recent years, it has been found that the expression of 17 centromere proteins (CENPs) was closely related to malignant tumors, however, the role of CENPs in breast cancer (BC) has not been fully investigated. This study intends to investigate the prognostic value of CENPs in BC and establish nomogram based on expression of CENPs to predict BC patients' prognosis. Methods A total of 800 BC patients with complete relevant data were included from the TCGA database and were further randomly divided into training set (N=480) and validation set (N=320). Univariate and multivariate Cox regression analysis were used to screen independent factors for overall survival (OS) prediction of BC patients in the training set. Then, the nomogram was established based on these independent predictors and further validated by receiver-operating characteristic (ROC) curves and calibration plots. The GEPIA and bcGenExMiner v4.4 databases were utilized to analyze mRNA expression of candidate gene in BC patients with different clinicopathological features, respectively. Results Multivariate Cox regression analysis showed that age, Her2 status, pathologic_T stage, pathologic_M stage and CENPP expression were of independent prognostic value for BC. CENPP was overexpressed in BC tissues (P<0.01) and lower expression of CENPP was associated with worse OS (P=0.005, HR =2.35; 95% CI: 1.30-4.23). We then established a nomogram based on those independent predictors, and the calibration curve demonstrated good fitness of the nomogram for OS prediction. In the training set, the AUCs of 3- and 5-year survival were 0.757 and 0.797, respectively. In the validation set, the AUCs of 3- and 5-year survival were 0.727 and 0.71, respectively. Conclusions Our study showed that CENPP was a novel prognostic factor for patients with BC, and the established nomogram could provide valuable information on prognostic prediction for patients with BC.
Collapse
Affiliation(s)
- Heyan Chen
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengyu Pu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shibo Yu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqin Liao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Karthikeyan S, Waters IG, Dennison L, Chu D, Donaldson J, Shin DH, Rosen DM, Gonzalez-Ericsson PI, Sanchez V, Sanders ME, Pantone MV, Bergman RE, Davidson BA, Reed SC, Zabransky DJ, Cravero K, Kyker-Snowman K, Button B, Wong HY, Hurley PJ, Croessmann S, Park BH. Hierarchical tumor heterogeneity mediated by cell contact between distinct genetic subclones. J Clin Invest 2021; 131:143557. [PMID: 33529175 PMCID: PMC7954606 DOI: 10.1172/jci143557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Intratumor heterogeneity is an important mediator of poor outcomes in many cancers, including breast cancer. Genetic subclones frequently contribute to this heterogeneity; however, their growth dynamics and interactions remain poorly understood. PIK3CA and HER2 alterations are known to coexist in breast and other cancers. Herein, we present data that describe the ability of oncogenic PIK3CA mutant cells to induce the proliferation of quiescent HER2 mutant cells through a cell contact-mediated mechanism. Interestingly, the HER2 cells proliferated to become the major subclone over PIK3CA counterparts both in vitro and in vivo. Furthermore, this phenotype was observed in both hormone receptor-positive and -negative cell lines, and was dependent on the expression of fibronectin from mutant PIK3CA cells. Analysis of human tumors demonstrated similar HER2:PIK3CA clonal dynamics and fibronectin expression. Our study provides insight into nonrandom subclonal architecture of heterogenous tumors, which may aid the understanding of tumor evolution and inform future strategies for personalized medicine.
Collapse
Affiliation(s)
- Swathi Karthikeyan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ian G. Waters
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren Dennison
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua Donaldson
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Dong Ho Shin
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - D. Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paula I. Gonzalez-Ericsson
- Department of Pathology, Microbiology, and Immunology, and
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Violeta Sanchez
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melinda E. Sanders
- Department of Pathology, Microbiology, and Immunology, and
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Morgan V. Pantone
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Riley E. Bergman
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Brad A. Davidson
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Sarah C. Reed
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Daniel J. Zabransky
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen Cravero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Kyker-Snowman
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Berry Button
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hong Yuen Wong
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Paula J. Hurley
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Sarah Croessmann
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center
| |
Collapse
|
23
|
Gao SP, Kiliti AJ, Zhang K, Vasani N, Mao N, Jordan E, Wise HC, Shrestha Bhattarai T, Hu W, Dorso M, Rodrigues JA, Kim K, Hanrahan AJ, Razavi P, Carver B, Chandarlapaty S, Reis-Filho JS, Taylor BS, Solit DB. AKT1 E17K Inhibits Cancer Cell Migration by Abrogating β-Catenin Signaling. Mol Cancer Res 2020; 19:573-584. [PMID: 33303690 DOI: 10.1158/1541-7786.mcr-20-0623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/09/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
Mutational activation of the PI3K/AKT pathway is among the most common pro-oncogenic events in human cancers. The clinical utility of PI3K and AKT inhibitors has, however, been modest to date. Here, we used CRISPR-mediated gene editing to study the biological consequences of AKT1 E17K mutation by developing an AKT1 E17K-mutant isogenic system in a TP53-null background. AKT1 E17K expression under the control of its endogenous promoter enhanced cell growth and colony formation, but had a paradoxical inhibitory effect on cell migration and invasion. The mechanistic basis by which activated AKT1 inhibited cell migration and invasion was increased E-cadherin expression mediated by suppression of ZEB1 transcription via altered β-catenin subcellular localization. This phenotypic effect was AKT1-specific, as AKT2 activation had the opposite effect, a reduction in E-cadherin expression. Consistent with the opposing effects of AKT1 and AKT2 activation on E-cadherin expression, a pro-migratory effect of AKT1 activation was not observed in breast cancer cells with PTEN loss or expression of an activating PIK3CA mutation, alterations which induce the activation of both AKT isoforms. The results suggest that the use of AKT inhibitors in patients with breast cancer could paradoxically accelerate metastatic progression in some genetic contexts and may explain the frequent coselection for CDH1 mutations in AKT1-mutated breast tumors. IMPLICATIONS: AKT1 E17K mutation in breast cancer impairs migration/invasiveness via sequestration of β-catenin to the cell membrane leading to decreased ZEB1 transcription, resulting in increased E-cadherin expression and a reversal of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sizhi Paul Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amber J Kiliti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kai Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Naresh Vasani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emmet Jordan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hannah C Wise
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tripti Shrestha Bhattarai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Madeline Dorso
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Rodrigues
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Medical College of Cornell University, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
24
|
Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. Development and characterization of protein kinase B/AKT isoform-specific nanobodies. PLoS One 2020; 15:e0240554. [PMID: 33045011 PMCID: PMC7549812 DOI: 10.1371/journal.pone.0240554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
The serine/threonine protein kinase AKT is frequently over-activated in cancer and is associated with poor prognosis. As a central node in the PI3K/AKT/mTOR pathway, which regulates various processes considered to be hallmarks of cancer, this kinase has become a prime target for cancer therapy. However, AKT has proven to be a highly complex target as it comes in three isoforms (AKT1, AKT2 and AKT3) which are highly homologous, yet non-redundant. The isoform-specific functions of the AKT kinases can be dependent on context (i.e. different types of cancer) and even opposed to one another. To date, there is no isoform-specific inhibitor available and no alternative to genetic approaches to study the function of a single AKT isoform. We have developed and characterized nanobodies that specifically interact with the AKT1 or AKT2 isoforms. These new tools should enable future studies of AKT1 and AKT2 isoform-specific functions. Furthermore, for both isoforms we obtained a nanobody that interferes with the AKT-PIP3-interaction, an essential step in the activation of the kinase. The nanobodies characterized in this study are a new stepping stone towards unravelling AKT isoform-specific signalling.
Collapse
Affiliation(s)
- Tijs Merckaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H. Effect of AKT1 (p. E17K) Hotspot Mutation on Malignant Tumorigenesis and Prognosis. Front Cell Dev Biol 2020; 8:573599. [PMID: 33123537 PMCID: PMC7573235 DOI: 10.3389/fcell.2020.573599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
The substitution of the seventeenth amino acid glutamate by lysine in the homologous structural domain of the Akt1 gene pleckstrin is a somatic cellular mutation found in breast, colorectal, and ovarian cancers, named p. Glu17Lys or E17K. In recent years, a growing number of studies have suggested that this mutation may play a unique role in the development of tumors. In this review article, we describe how AKT1(E17K) mutations stimulate downstream signals that cause cells to emerge transformed; we explore the differential regulation and function of E17K in different physiological and pathological settings; and we also describe the phenomenon that E17K impedes tumor growth by interfering with growth-promoting and chemotherapy-resistant AKT1lowQCC generation, an intriguing finding that mutants may prolong tumor patient survival by activating feedback mechanisms and disrupting transcription. This review is intended to provide a better understanding of the role of AKT1(E17K) in cancer and to inform the development of AKT1(E17K)-based antitumor strategies.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjian Dong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
26
|
Mechanism of action biomarkers predicting response to AKT inhibition in the I-SPY 2 breast cancer trial. NPJ Breast Cancer 2020; 6:48. [PMID: 33083527 PMCID: PMC7532145 DOI: 10.1038/s41523-020-00189-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The AKT inhibitor MK2206 (M) was evaluated in I-SPY 2 and graduated in
the HER2+, HR−, and HR− HER2+ signatures. We hypothesized that AKT signaling axis
proteins/genes may specifically predict response to M and tested 26 phospho-proteins
and 10 genes involved in AKT-mTOR-HER signaling; in addition, we tested 9 genes from
a previous study in the metastatic setting. One hundred and fifty patients had gene
expression data from pretreatment biopsies available for analysis (M: 94, control:
56) and 138 had protein data (M: 87, control: 51). Logistic modeling was used to
assess biomarker performance in pre-specified analysis. In general, phospho-protein
biomarkers of activity in the AKT-mTOR-HER pathway appeared more predictive of
response to M than gene expression or total protein biomarkers in the same pathway;
however, the nature of the predictive biomarkers differed in the HER2+ and TN
groups. In the HER2+ subset, patients achieving a pCR in M had higher levels of
multiple AKT kinase substrate phospho-proteins (e.g., pmTOR, pTSC2). In contrast, in
the TN subset responding patients had lower levels of AKT pathway phospho-proteins,
such as pAKT, pmTOR, and pTSC2. Pathway mutations did not appear to account for
these associations. Additional exploratory whole-transcriptome analysis revealed
immune signaling as strongly associated with response to M in the HER2+ subset.
While our sample size is small, these results suggest that the measurement of
particular AKT kinase substrate phospho-proteins could be predictive of MK2206
efficacy in both HER2+ and TN tumors and that immune signaling may play a role in
response in HER2+ patients.
Collapse
|
27
|
Smyth LM, Tamura K, Oliveira M, Ciruelos EM, Mayer IA, Sablin MP, Biganzoli L, Ambrose HJ, Ashton J, Barnicle A, Cashell DD, Corcoran C, de Bruin EC, Foxley A, Hauser J, Lindemann JPO, Maudsley R, McEwen R, Moschetta M, Pass M, Rowlands V, Schiavon G, Banerji U, Scaltriti M, Taylor BS, Chandarlapaty S, Baselga J, Hyman DM. Capivasertib, an AKT Kinase Inhibitor, as Monotherapy or in Combination with Fulvestrant in Patients with AKT1 E17K-Mutant, ER-Positive Metastatic Breast Cancer. Clin Cancer Res 2020; 26:3947-3957. [PMID: 32312891 PMCID: PMC7415507 DOI: 10.1158/1078-0432.ccr-19-3953] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/20/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE The activating mutation AKT1 E17K occurs in approximately 7% of estrogen receptor-positive (ER+) metastatic breast cancer (MBC). We report, from a multipart, first-in-human, phase I study (NCT01226316), tolerability and activity of capivasertib, an oral AKT inhibitor, as monotherapy or combined with fulvestrant in expansion cohorts of patients with AKT1 E17K-mutant ER+ MBC. PATIENTS AND METHODS Patients with an AKT1 E17K mutation, detected by local (next-generation sequencing) or central (plasma-based BEAMing) testing, received capivasertib 480 mg twice daily, 4 days on, 3 days off, weekly or 400 mg twice daily combined with fulvestrant at the labeled dose. Study endpoints included safety, objective response rate (ORR; RECIST v1.1), progression-free survival (PFS), and clinical benefit rate at 24 weeks (CBR24). Biomarker analyses were conducted in the combination cohort. RESULTS From October 2013 to August 2018, 63 heavily pretreated patients received capivasertib (20 monotherapy, 43 combination). ORR was 20% with monotherapy, and within the combination cohort was 36% in fulvestrant-pretreated and 20% in fulvestrant-naïve patients, although the latter group may have had more aggressive disease at baseline. AKT1 E17K mutations were detectable in plasma by BEAMing (95%, 41/43), droplet digital PCR (80%, 33/41), and next-generation sequencing (76%, 31/41). A ≥50% decrease in AKT1 E17K at cycle 2 day 1 was associated with improved PFS. Combination therapy appeared more tolerable than monotherapy [most frequent grade ≥3 adverse events: rash (9% vs. 20%), hyperglycemia (5% vs. 30%), diarrhea (5% vs. 10%)]. CONCLUSIONS Capivasertib demonstrated clinically meaningful activity in heavily pretreated patients with AKT1 E17K-mutant ER+ MBC, including those with prior disease progression on fulvestrant. Tolerability and activity appeared improved by the combination.
Collapse
Affiliation(s)
| | | | - Mafalda Oliveira
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | - Laura Biganzoli
- Breast Centre, Oncology Department, Hospital of Prato, Prato, Italy
| | | | - Jack Ashton
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Alan Barnicle
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Des D Cashell
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Andrew Foxley
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Joana Hauser
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Robert McEwen
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | - Martin Pass
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | - Gaia Schiavon
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Udai Banerji
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Barry S Taylor
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - José Baselga
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
28
|
Tasdemir N, Ding K, Savariau L, Levine KM, Du T, Elangovan A, Bossart EA, Lee AV, Davidson NE, Oesterreich S. Proteomic and transcriptomic profiling identifies mediators of anchorage-independent growth and roles of inhibitor of differentiation proteins in invasive lobular carcinoma. Sci Rep 2020; 10:11487. [PMID: 32661241 PMCID: PMC7359337 DOI: 10.1038/s41598-020-68141-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer with distinct molecular and clinical features from the more common subtype invasive ductal carcinoma (IDC). ILC cells exhibit anchorage-independent growth in ultra-low attachment (ULA) suspension cultures, which is largely attributed to the loss of E-cadherin. In addition to anoikis resistance, herein we show that human ILC cell lines exhibit enhanced cell proliferation in ULA cultures as compared to IDC cells. Proteomic comparison of ILC and IDC cell lines identified induction of PI3K/Akt and p90-RSK pathways specifically in ULA culture in ILC cells. Further transcriptional profiling uncovered unique upregulation of the inhibitors of differentiation family transcription factors ID1 and ID3 in ILC ULA culture, the knockdown of which diminished the anchorage-independent growth of ILC cell lines through cell cycle arrest. We find that ID1 and ID3 expression is higher in human ILC tumors as compared to IDC, correlated with worse prognosis uniquely in patients with ILC and associated with upregulation of angiogenesis and matrisome-related genes. Altogether, our comprehensive study of anchorage independence in human ILC cell lines provides mechanistic insights and clinical implications for metastatic dissemination of ILC and implicates ID1 and ID3 as novel drivers and therapeutic targets for lobular breast cancer.
Collapse
Affiliation(s)
- Nilgun Tasdemir
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kai Ding
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura Savariau
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, USA
| | - Kevin M Levine
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Tian Du
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ashuvinee Elangovan
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Emily A Bossart
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Adrian V Lee
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- University of Washington, Seattle, WA, 98195, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
29
|
Wu W, Chen Y, Huang L, Li W, Tao C, Shen H. Effects of AKT1 E17K mutation hotspots on the biological behavior of breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:332-346. [PMID: 32269671 PMCID: PMC7137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/19/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To investigate the effect of the AKT1 gene mutation hotspot E17K on the growth, proliferation, survival, and migration of breast cancer cells, based on the survival and prognosis of breast cancer patients with the AKT1 E17K mutation shown in TCGA database. METHODS The survival and incidence rates of AKT1 E17K mutation hotspots in breast cancer and other cancers were extracted from the Cancer Genome Atlas (TCGA). The recombinant eukaryotic expression plasmid AKT1 E17K-pIRES2-EGFP was constructed and transfected into breast cancer MCF-7, and MDA-MB-231 cell lines. MCF-7 and MDA-MB-231 cell lines were randomly divided into blank control groups, empty plasmid groups, and recombinant plasmid groups. The growth curve was drawn using the cell counting method. The proliferation and division of breast cancer cells were detected by CFSE fluorescent dye tracking. Apoptosis was detected by Annexin V/PI double labeling and cell vitality was detected using MTT assays, and cell migratory ability was detected by cell scratch and transwell chamber tests. RESULTS In breast cancer, and other cancers, the overall survival rate of patients with an AKT E17K mutation was higher than that of patients with non-point mutation, and this mutation was the most common found in breast cancer. Compared with the wild type, the growth function of mutant MCF-7 cells was inhibited (P < 0.05), as was the proliferation of MCF-7 cells expressing the AKT1 E17K mutation gene (P < 0.001). The late apoptosis rate of mutant breast cancer cells increased (P < 0.05) and the viability was lower than that of wild-type cells (P < 0.05). Mutant MDA-MB-231 cells showed increased migration ability when compared to wild-type MDA-MB-231 cells (P < 0.05). CONCLUSIONS The expression of the AKT1 E17K mutation hotspot can inhibit the growth, proliferation, and survival ability of breast cancer cells, and promote apoptosis, while it also improves their migratory ability. The survival and prognosis of breast cancer patients with this mutation are good, which may be related to the inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wanwen Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Wenjian Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| |
Collapse
|
30
|
Alday-Parejo B, Richard F, Wörthmüller J, Rau T, Galván JA, Desmedt C, Santamaria-Martinez A, Rüegg C. MAGI1, a New Potential Tumor Suppressor Gene in Estrogen Receptor Positive Breast Cancer. Cancers (Basel) 2020; 12:cancers12010223. [PMID: 31963297 PMCID: PMC7016640 DOI: 10.3390/cancers12010223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an intracellular adaptor protein that stabilizes epithelial junctions consistent with a tumor suppressive function in several cancers of epithelial origin. Here we report, based on experimental results and human breast cancer (BC) patients’ gene expression data, that MAGI1 is highly expressed and acts as tumor suppressor in estrogen receptor (ER)+/HER2− but not in HER2+ or triple negative breast cancer (TNBC). Within the ER+/HER2− subset, high MAGI1 expression associates with ESR1 and luminal genes GATA3 and FOXA1 expression and better prognosis, while low MAGI1 levels correlates with higher histological grade, more aggressive phenotype and worse prognosis. Experimentally, MAGI1 downregulation in the ER+ human BC cells MCF7 impairs ER expression and signaling, promotes cell proliferation, and reduces apoptosis and epithelial differentiation. MAGI1 downregulation in the ER+ murine BC cell line 67NR accelerates primary tumor growth and enhances experimental lung metastasis formation. MAGI1 expression is upregulated by estrogen/ER, downregulated by prostaglandin E2/COX-2axis, and negatively correlates with inflammation in ER+/HER2− BC patients. Taken together, we show that MAGI1 is a new potential tumor suppressor in ER+/HER2− breast cancer with possible prognostic value for the identification of patients at high-risk of relapse within this subset.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
| | - François Richard
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3001 Leuven, Belgium;
| | - Janine Wörthmüller
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
| | - Tilman Rau
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.R.); (J.A.G.)
| | - José A. Galván
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.R.); (J.A.G.)
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3001 Leuven, Belgium;
- Correspondence: (C.D.); (C.R.)
| | - Albert Santamaria-Martinez
- Tumor Ecology Laboratory, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
- Correspondence: (C.D.); (C.R.)
| |
Collapse
|
31
|
Brandão M, Caparica R, Eiger D, de Azambuja E. Biomarkers of response and resistance to PI3K inhibitors in estrogen receptor-positive breast cancer patients and combination therapies involving PI3K inhibitors. Ann Oncol 2019; 30:x27-x42. [PMID: 31859350 PMCID: PMC6923785 DOI: 10.1093/annonc/mdz280] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we discuss biomarkers of response and resistance to PI3K inhibitors (PI3Ki) in estrogen receptor-positive breast cancer, both in the early and advanced settings. We analyse data regarding PIK3CA mutations, PI3K pathway activation, PTEN expression loss, Akt signalling, insulin levels, 18FFDG-PET/CT imaging, FGFR1/2 amplification, KRAS and TP53 mutations. Most of the discussed data comprise retrospective and exploratory studies, hence many results are not conclusive. Therefore, among all of these biomarkers, only PIK3CA mutations have proved to have a predictive value for treatment with the α-selective PI3Ki alpelisib (SOLAR-1 trial) and the β-sparing PI3Ki taselisib (SANDPIPER trial) in the advanced setting. Since the accuracy of current individual biomarkers is not optimal, a composite biomarker, including DNA, RNA and protein expression data, to more precisely assess the PI3K/AKT/mTOR pathway activation status, may arise as a promising approach. Finally, we describe the rational for new combination therapies involving PI3Ki and anti-HER2 agents, chemotherapy, CDK4/6 inhibitors, mTOR inhibitors or new endocrine treatments and discuss the ongoing trials in this field.
Collapse
Affiliation(s)
| | | | - D Eiger
- Academic Trials Promoting Team
| | - E de Azambuja
- Academic Trials Promoting Team
- Medical Oncology Department, Institut Jules Bordet
| |
Collapse
|
32
|
Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019; 17:154. [PMID: 31752925 PMCID: PMC6873690 DOI: 10.1186/s12964-019-0450-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AKT, also known as protein kinase B, is a key element of the PI3K/AKT signaling pathway. Moreover, AKT regulates the hallmarks of cancer, e.g. tumor growth, survival and invasiveness of tumor cells. After AKT was discovered in the early 1990s, further studies revealed that there are three different AKT isoforms, namely AKT1, AKT2 and AKT3. Despite their high similarity of 80%, the distinct AKT isoforms exert non-redundant, partly even opposing effects under physiological and pathological conditions. Breast cancer as the most common cancer entity in women, frequently shows alterations of the PI3K/AKT signaling. MAIN CONTENT A plethora of studies addressed the impact of AKT isoforms on tumor growth, metastasis and angiogenesis of breast cancer as well as on therapy response and overall survival in patients. Therefore, this review aimed to give a comprehensive overview about the isoform-specific effects of AKT in breast cancer and to summarize known downstream and upstream mechanisms. Taking account of conflicting findings among the studies, the majority of the studies reported a tumor initiating role of AKT1, whereas AKT2 is mainly responsible for tumor progression and metastasis. In detail, AKT1 increases cell proliferation through cell cycle proteins like p21, p27 and cyclin D1 and impairs apoptosis e.g. via p53. On the downside AKT1 decreases migration of breast cancer cells, for instance by regulating TSC2, palladin and EMT-proteins. However, AKT2 promotes migration and invasion most notably through regulation of β-integrins, EMT-proteins and F-actin. Whilst AKT3 is associated with a negative ER-status, findings about the role of AKT3 in regulation of the key properties of breast cancer are sparse. Accordingly, AKT1 is mutated and AKT2 is amplified in some cases of breast cancer and AKT isoforms are associated with overall survival and therapy response in an isoform-specific manner. CONCLUSIONS Although there are several discussed hypotheses how isoform specificity is achieved, the mechanisms behind the isoform-specific effects remain mostly unrevealed. As a consequence, further effort is necessary to achieve deeper insights into an isoform-specific AKT signaling in breast cancer and the mechanism behind it.
Collapse
Affiliation(s)
- Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
33
|
Vasan N, Razavi P, Johnson JL, Shao H, Shah H, Antoine A, Ladewig E, Gorelick A, Lin TY, Toska E, Xu G, Kazmi A, Chang MT, Taylor BS, Dickler MN, Jhaveri K, Chandarlapaty S, Rabadan R, Reznik E, Smith ML, Sebra R, Schimmoller F, Wilson TR, Friedman LS, Cantley LC, Scaltriti M, Baselga J. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 2019; 366:714-723. [PMID: 31699932 PMCID: PMC7173400 DOI: 10.1126/science.aaw9032] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Activating mutations in PIK3CA are frequent in human breast cancer, and phosphoinositide 3-kinase alpha (PI3Kα) inhibitors have been approved for therapy. To characterize determinants of sensitivity to these agents, we analyzed PIK3CA-mutant cancer genomes and observed the presence of multiple PIK3CA mutations in 12 to 15% of breast cancers and other tumor types, most of which (95%) are double mutations. Double PIK3CA mutations are in cis on the same allele and result in increased PI3K activity, enhanced downstream signaling, increased cell proliferation, and tumor growth. The biochemical mechanisms of dual mutations include increased disruption of p110α binding to the inhibitory subunit p85α, which relieves its catalytic inhibition, and increased p110α membrane lipid binding. Double PIK3CA mutations predict increased sensitivity to PI3Kα inhibitors compared with single-hotspot mutations.
Collapse
Affiliation(s)
- Neil Vasan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erik Ladewig
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eneda Toska
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guotai Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abiha Kazmi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maura N Dickler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Komal Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raul Rabadan
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | | | | | | | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - José Baselga
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
Sakane T, Murase T, Okuda K, Saida K, Masaki A, Yamada T, Saito Y, Nakanishi R, Inagaki H. A mutation analysis of the EGFR pathway genes, RAS, EGFR, PIK3CA, AKT1 and BRAF, and TP53 gene in thymic carcinoma and thymoma type A/B3. Histopathology 2019; 75:755-766. [PMID: 31179560 DOI: 10.1111/his.13936] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/10/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
AIMS Thymic carcinoma is rare and usually has a fatal outcome. Gene mutations in the epidermal growth factor receptor (EGFR) signalling pathway and TP53 have not been well analysed in thymic carcinoma. METHODS AND RESULTS We examined a large cohort of thymic carcinoma and thymoma type A/B3 and looked for gene mutations in the RAS family, EGFR, PIK3CA, AKT1, BRAF and TP53. Among 54 thymic carcinoma cases, RAS family mutations were detected in 10 cases, EGFR in two, PIK3CA in one, AKT1 in one, BRAF in none and TP53 in five. Among 33 thymoma type A/B3 cases, HRAS gene mutation were found in one, PIK3CA in two and AKT1 in one. All these mutations were those of missense type activating mutations. RAS family mutations were significantly more frequent in thymic carcinoma than in thymoma type A/B3 (P = 0.0461). A prognostic analysis focusing on thymic squamous cell carcinoma cases (n = 44) showed that the overall survival was significantly shorter in patients with EGFR pathway mutations (n = 9) than in those without in a univariate analysis (P = 0.0173). Subsequently, EGFR pathway mutations were selected as an independent factor for a poor overall survival in a multivariate analysis (P = 0.0389). CONCLUSIONS Mutations in the EGFR pathway and TP53 in thymic carcinoma may be frequent, and the EGFR pathway mutations may be associated with a poor prognosis in thymic squamous cell carcinoma patients. The therapeutic significance of gene mutations in thymic carcinoma should be further clarified.
Collapse
Affiliation(s)
- Tadashi Sakane
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takayuki Murase
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kosuke Saida
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Masaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Yamada
- Department of Thoracic Surgery, Kariya Toyota General Hospital, Kariya, Japan
| | - Yushi Saito
- Department of Chest Surgery, Toyota Memorial Hospital, Toyota, Japan
| | - Ryoichi Nakanishi
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
35
|
Liu JJ, Ho JY, Lee HW, Baik MW, Kim O, Choi YJ, Hur SY. Inhibition of Phosphatidylinositol 3-kinase (PI3K) Signaling Synergistically Potentiates Antitumor Efficacy of Paclitaxel and Overcomes Paclitaxel-Mediated Resistance in Cervical Cancer. Int J Mol Sci 2019; 20:E3383. [PMID: 31295843 PMCID: PMC6679163 DOI: 10.3390/ijms20143383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022] Open
Abstract
Acquired paclitaxel (PTX) resistance limits its effectiveness and results in advanced cancer progression. This review investigated whether the inhibition of phosphatidylinositol 3-kinase (PI3K) signaling overcomes paclitaxel resistance in cervical cancer. It was established paclitaxel-resistant cell lines (PTX-R ME180/PTX-R HeLa) and determined the combination index for paclitaxel and PI3K inhibitors (BYL-719/ LY294002) by tetrazolium dye assay. Flow cytometry was used to detect the cell cycle and apoptosis. Migration and invasion were explored by wound healing and transwell assays. Genes related to multiple pathways were assessed by a western blot. It was found that the PI3K pathway was significantly activated in paclitaxel-resistant HeLa and ME180 cells compared to parental cells. PTX + PI3K inhibitor combined therapy showed a synergistic effect by strengthening paclitaxel-induced S and G2M arrest in PTX-R cell sublines by the inactivation of cyclin A1, cyclin B1, cyclin E, and Cdc2 expression. Moreover, combination therapy significantly enhanced drug sensitivity and apoptosis through the activation of Bax, and cleavage of poly-(ADP-ribose) polymerase compared with paclitaxel alone. In addition, PI3K inhibition also suppressed tumor migration and invasion by targeting β-catenin and matrix metalloproteinase-2/9. The authors suggest that the combination of a PI3K inhibitor with paclitaxel may enhance antitumor activity through a cascade of PI3K signaling events.
Collapse
Affiliation(s)
- Jing Jing Liu
- Department of Gynecology and Obstetrics, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, Department of Medical Life Science, and Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung Yoon Ho
- Department of Gynecology and Obstetrics, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, Department of Medical Life Science, and Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hye Won Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06591, Korea
| | - Min Wha Baik
- Department of Gynecology and Obstetrics, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Oyoung Kim
- Department of Gynecology and Obstetrics, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Youn Jin Choi
- Department of Gynecology and Obstetrics, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea.
- Cancer Research Institute, Department of Medical Life Science, and Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Soo Young Hur
- Department of Gynecology and Obstetrics, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea.
- Cancer Research Institute, Department of Medical Life Science, and Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
36
|
Kanomata N, Yamaguchi R, Kurebayashi J, Moriya T. Multiplex PCR analysis of apocrine lesions shows frequent PI3K–AKT pathway mutations in both benign and malignant apocrine breast tumors. Med Mol Morphol 2019; 53:15-20. [DOI: 10.1007/s00795-019-00226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
|
37
|
Sabbah DA, Ibrahim AH, Talib WH, Alqaisi KM, Sweidan K, Bardaweel SK, Sheikha GA, Zhong HA, Al-Shalabi E, Khalaf RA, Mubarak MS. Ligand-Based Drug Design: Synthesis and Biological Evaluation of Substituted Benzoin Derivatives as Potential Antitumor Agents. Med Chem 2019; 15:417-429. [DOI: 10.2174/1573406414666180912111846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022]
Abstract
Background:
Phosphoinositide 3-kinase α (PI3Kα) has emerged as a promising target
for anticancer drug design.
Objectives:
Target compounds were designed to investigate the effect of the p-OCH3 motifs on
ligand/PI3Kα complex interaction and antiproliferative activity.
Methods:
Synthesis of the proposed compounds, biological examination tests against human colon
adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell
lines, along with Glide docking studies.
Results:
A series of 1,2-bis(4-methoxyphenyl)-2-oxoethyl benzoates was synthesized and characterized
by means of FT-IR, 1H and 13C NMR, and by elemental analysis. Biological investigation
demonstrated that the newly synthesized compounds exhibit antiproliferative activity in human colon
adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D)
cell lines possibly via inhibition of PI3Kα and estrogen receptor alpha (ERα). Additionally, results
revealed that these compounds exert selective inhibitory activity, induce apoptosis, and suppress
VEGF production. Compound 3c exhibited promising antiproliferative activity in HCT-116 interrogating
that hydrogen bond-acceptor mediates ligand/PI3Kα complex formation on m- position.
Compounds 3e and 3i displayed high inhibitory activity in MCF-7 and T47D implying a wide cleft
discloses the o-attachment. Furthermore, compound 3g exerted selective inhibitory activity against
T47D. Glide docking studies against PI3Kα and ERα demonstrated that the series accommodate
binding to PI3Kα and/or ERα.
Conclusion:
The series exhibited a potential antitumor activity in human carcinoma cell lines encoding
PI3Kα and/or ERα.
Collapse
Affiliation(s)
- Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Ameerah H. Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Khalid M. Alqaisi
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, P.O. Box 132222, Zarqa 13132, Jordan
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Ghassan A. Sheikha
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Haizhen A. Zhong
- DSC 362, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| | - Eveen Al-Shalabi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Reema A. Khalaf
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | | |
Collapse
|
38
|
Zhou Y, Xu Y, Gong Y, Zhang Y, Lu Y, Wang C, Yao R, Li P, Guan Y, Wang J, Xia X, Yang L, Yi X, Sun Q. Clinical factors associated with circulating tumor DNA (ctDNA) in primary breast cancer. Mol Oncol 2019; 13:1033-1046. [PMID: 30672098 PMCID: PMC6487710 DOI: 10.1002/1878-0261.12456] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Noninvasive circulating tumor DNA (ctDNA) can be used to predict breast cancer recurrence and prognosis. In this study, we detected 226 and 114 somatic variants in tumor DNA from 70 primary breast cancer (PBC) patients (98.59%) and ctDNA from 48 patients (67.61%), respectively. Gene frequencies of tumor DNA and ctDNA significantly correlated (R2 = 0.9532, P < 0.0001), and tumor-derived variants were detectable in the blood of 43 patients. ctDNA was more often detected in locally advanced/metastatic and nonluminal patients. Multivariate analysis revealed that individual N stage (P < 0.001) and hormone receptor (HR) status (P = 0.001) could independently predict the detectability of tumor-derived mutations in blood. The maximal variant allele frequency of ctDNA was significantly higher in patients with stage IV/M1 (P = 0.0136) and stage T3/T4 (P = 0.0085) cancers. Finally, clonal variants in tumor DNA were more easily traced in ctDNA than subclonal variants (84.62% vs 48.75%). In conclusion, ctDNA fragments concordant with tumor DNA can be consistently detected in the majority of tested PBC patients, which may enable noninvasive genomic profiling of PBC, particularly for patients with advanced-stage tumors and positive HR status.
Collapse
Affiliation(s)
- Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, China
| | - Jiayin Wang
- Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, China
| | | | | | - Xin Yi
- Geneplus-Beijing Institute, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Ogundijo OE, Zhu K, Wang X, Anastassiou D. A sequential Monte Carlo algorithm for inference of subclonal structure in cancer. PLoS One 2019; 14:e0211213. [PMID: 30682127 PMCID: PMC6347199 DOI: 10.1371/journal.pone.0211213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
Tumors are heterogeneous in the sense that they consist of multiple subpopulations of cells, referred to as subclones, each of which is characterized by a distinct profile of genomic variations such as somatic mutations. Inferring the underlying clonal landscape has become an important topic in that it can help in understanding cancer development and progression, and thereby help in improving treatment. We describe a novel state-space model, based on the feature allocation framework and an efficient sequential Monte Carlo (SMC) algorithm, using the somatic mutation data obtained from tumor samples to estimate the number of subclones, as well as their characterization. Our approach, by design, is capable of handling any number of mutations. Via extensive simulations, our method exhibits high accuracy, in most cases, and compares favorably with existing methods. Moreover, we demonstrated the validity of our method through analyzing real tumor samples from patients from multiple cancer types (breast, prostate, and lung). Our results reveal driver mutation events specific to cancer types, and indicate clonal expansion by manual phylogenetic analysis. MATLAB code and datasets are available to download at: https://github.com/moyanre/tumor_clones.
Collapse
Affiliation(s)
- Oyetunji E. Ogundijo
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
| | - Kaiyi Zhu
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
- Department of Systems Biology, Columbia University, New York, NY, United States of America
| | - Xiaodong Wang
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
- * E-mail:
| | - Dimitris Anastassiou
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
- Department of Systems Biology, Columbia University, New York, NY, United States of America
| |
Collapse
|
40
|
Zhou Y, Xu Y, Gong Y, Zhang Y, Lu Y, Wang C, Yao R, Li P, Guan Y, Wang J, Xia X, Yang L, Yi X, Sun Q. Clinical factors associated with circulating tumor DNA (ctDNA) in primary breast cancer. Mol Oncol 2019. [PMID: 30672098 DOI: 10.1002/1878‐0261.12456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Noninvasive circulating tumor DNA (ctDNA) can be used to predict breast cancer recurrence and prognosis. In this study, we detected 226 and 114 somatic variants in tumor DNA from 70 primary breast cancer (PBC) patients (98.59%) and ctDNA from 48 patients (67.61%), respectively. Gene frequencies of tumor DNA and ctDNA significantly correlated (R2 = 0.9532, P < 0.0001), and tumor-derived variants were detectable in the blood of 43 patients. ctDNA was more often detected in locally advanced/metastatic and nonluminal patients. Multivariate analysis revealed that individual N stage (P < 0.001) and hormone receptor (HR) status (P = 0.001) could independently predict the detectability of tumor-derived mutations in blood. The maximal variant allele frequency of ctDNA was significantly higher in patients with stage IV/M1 (P = 0.0136) and stage T3/T4 (P = 0.0085) cancers. Finally, clonal variants in tumor DNA were more easily traced in ctDNA than subclonal variants (84.62% vs 48.75%). In conclusion, ctDNA fragments concordant with tumor DNA can be consistently detected in the majority of tested PBC patients, which may enable noninvasive genomic profiling of PBC, particularly for patients with advanced-stage tumors and positive HR status.
Collapse
Affiliation(s)
- Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, China
| | - Jiayin Wang
- Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, China
| | | | | | - Xin Yi
- Geneplus-Beijing Institute, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Al-Blewi FF, Rezki N, Al-Sodies SA, Bardaweel SK, Sabbah DA, Messali M, Aouad MR. Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: ultrasound assisted synthesis, molecular docking and anticancer evaluation. Chem Cent J 2018; 12:118. [PMID: 30467608 PMCID: PMC6768046 DOI: 10.1186/s13065-018-0489-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/13/2018] [Indexed: 11/15/2022] Open
Abstract
Background Pyridinium Schiff bases and ionic liquids have attracted increasing interest in medicinal chemistry. Results A library of 32 cationic fluorinated pyridinium hydrazone-based amphiphiles tethering fluorinated counteranions was synthesized by alkylation of 4-fluoropyridine hydrazone with various long alkyl iodide exploiting lead quaternization and metathesis strategies. All compounds were assessed for their anticancer inhibition activity towards different cancer cell lines and the results revealed that increasing the length of the hydrophobic chain of the synthesized analogues appears to significantly enhance their anticancer activities. Substantial increase in caspase-3 activity was demonstrated upon treatment with the most potent compounds, namely 8, 28, 29 and 32 suggesting an apoptotic cellular death pathway. Conclusions Quantum-polarized ligand docking studies against phosphoinositide 3-kinase α displayed that compounds 2–6 bind to the kinase site and form H-bond with S774, K802, H917 and D933. ![]() Electronic supplementary material The online version of this article (10.1186/s13065-018-0489-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fawzia Faleh Al-Blewi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia. .,Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M'nouar, 31000, Oran, Algeria.
| | - Salsabeel Abdullah Al-Sodies
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Dima A Sabbah
- Faculty of Pharmacy, Al-Zaytoonah University, Amman, 11733, Jordan
| | - Mouslim Messali
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia.
| |
Collapse
|
42
|
Feng C, Song C, Ning Z, Ai B, Wang Q, Xu Y, Li M, Bai X, Zhao J, Liu Y, Li X, Zhang J, Li C. ce-Subpathway: Identification of ceRNA-mediated subpathways via joint power of ceRNAs and pathway topologies. J Cell Mol Med 2018; 23:967-984. [PMID: 30421585 PMCID: PMC6349186 DOI: 10.1111/jcmm.13997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs) represent a novel mechanism of gene regulation that may mediate key subpathway regions and contribute to the altered activities of pathways. However, the classical methods used to identify pathways fail to specifically consider ceRNAs within the pathways and key regions impacted by them. We proposed a powerful strategy named ce-Subpathway for the identification of ceRNA-mediated functional subpathways. It provided an effective level of pathway analysis via integrating ceRNAs, differentially expressed (DE) genes and their key regions within the given pathways. We respectively analysed one pulmonary arterial hypertension (PAH) and one myocardial infarction (MI) data sets and demonstrated that ce-Subpathway could identify many subpathways whose corresponding entire pathways were ignored by those non-ceRNA-mediated pathway identification methods. And these pathways have been well reported to be associated with PAH/MI-related cardiovascular diseases. Further evidence showed reliability of ceRNA interactions and robustness/reproducibility of the ce-Subpathway strategy by several data sets of different cancers, including breast cancer, oesophageal cancer and colon cancer. Survival analysis was finally applied to illustrate the clinical application value of the ceRNA-mediated functional subpathways using another data sets of pancreatic cancer. Comprehensive analyses have shown the power of a joint ceRNAs/DE genes and subpathway strategy based on their topologies.
Collapse
Affiliation(s)
- Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chao Song
- Department of Pharmacology, Daqing Campus, Harbin Medical University, Daqing, China
| | - Ziyu Ning
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Qiuyu Wang
- School of Nursing, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yong Xu
- The fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Meng Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Xuefeng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jianmei Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yuejuan Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| |
Collapse
|
43
|
Teo K, Gómez-Cuadrado L, Tenhagen M, Byron A, Rätze M, van Amersfoort M, Renes J, Strengman E, Mandoli A, Singh AA, Martens JH, Stunnenberg HG, van Diest PJ, Brunton VG, Derksen PWB. E-cadherin loss induces targetable autocrine activation of growth factor signalling in lobular breast cancer. Sci Rep 2018; 8:15454. [PMID: 30337563 PMCID: PMC6193986 DOI: 10.1038/s41598-018-33525-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the fact that loss of E-cadherin is causal to the development and progression of invasive lobular carcinoma (ILC), options to treat this major breast cancer subtype are limited if tumours develop resistance to anti-oestrogen treatment regimens. This study aimed to identify clinically targetable pathways that are aberrantly active downstream of E-cadherin loss in ILC. Using a combination of reverse-phase protein array (RPPA) analyses, mRNA sequencing, conditioned medium growth assays and CRISPR/Cas9-based knock-out experiments, we demonstrate that E-cadherin loss causes increased responsiveness to autocrine growth factor receptor (GFR)-dependent activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signalling. Autocrine activation of GFR signalling and its downstream PI3K/Akt hub was independent of oncogenic mutations in PIK3CA, AKT1 or PTEN. Analyses of human ILC samples confirmed growth factor production and pathway activity. Pharmacological inhibition of Akt using AZD5363 or MK2206 resulted in robust inhibition of cell growth and survival of ILC cells, and impeded tumour growth in a mouse ILC model. Because E-cadherin loss evokes hypersensitisation of PI3K/Akt activation independent of oncogenic mutations in this pathway, we propose clinical intervention of PI3K/Akt in ILC based on functional E-cadherin inactivation, irrespective of activating pathway mutations.
Collapse
Affiliation(s)
- Katy Teo
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Gómez-Cuadrado
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Milou Tenhagen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Max Rätze
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jojanneke Renes
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric Strengman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amit Mandoli
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Abhishek A Singh
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Joost H Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Choi J, Park S, Yoon Y, Ahn J. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers. Bioinformatics 2018; 33:3619-3626. [PMID: 28961949 DOI: 10.1093/bioinformatics/btx487] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Motivation Identification of genes that can be used to predict prognosis in patients with cancer is important in that it can lead to improved therapy, and can also promote our understanding of tumor progression on the molecular level. One of the common but fundamental problems that render identification of prognostic genes and prediction of cancer outcomes difficult is the heterogeneity of patient samples. Results To reduce the effect of sample heterogeneity, we clustered data samples using K-means algorithm and applied modified PageRank to functional interaction (FI) networks weighted using gene expression values of samples in each cluster. Hub genes among resulting prioritized genes were selected as biomarkers to predict the prognosis of samples. This process outperformed traditional feature selection methods as well as several network-based prognostic gene selection methods when applied to Random Forest. We were able to find many cluster-specific prognostic genes for each dataset. Functional study showed that distinct biological processes were enriched in each cluster, which seems to reflect different aspect of tumor progression or oncogenesis among distinct patient groups. Taken together, these results provide support for the hypothesis that our approach can effectively identify heterogeneous prognostic genes, and these are complementary to each other, improving prediction accuracy. Availability and implementation https://github.com/mathcom/CPR. Contact jgahn@inu.ac.kr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jonghwan Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, The Republic of Korea
| | - Sanghyun Park
- Department of Computer Science, Yonsei University, Seoul, The Republic of Korea
| | - Youngmi Yoon
- Department of Computer Engineering, Gachon University, Seongnam-si, Gyeonggi-do, The Republic of Korea
| | - Jaegyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon, The Republic of Korea
| |
Collapse
|
45
|
Nigim F, Wakimoto H, Kasper EM, Ackermans L, Temel Y. Emerging Medical Treatments for Meningioma in the Molecular Era. Biomedicines 2018; 6:biomedicines6030086. [PMID: 30082628 PMCID: PMC6165537 DOI: 10.3390/biomedicines6030086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Meningiomas are the most common type of primary central nervous system tumors. Approximately, 80% of meningiomas are classified by the World Health Organization (WHO) as grade I, and 20% of these tumors are grade II and III, considered high-grade meningiomas (HGMs). Clinical control of HGMs, as well as meningiomas that relapse after surgery, and radiation therapy is difficult, and novel therapeutic approaches are necessary. However, traditional chemotherapies, interferons, hormonal therapies, and other targeted therapies have so far failed to provide clinical benefit. During the last several years, next generation sequencing has dissected the genetic heterogeneity of meningioma and enriched our knowledge about distinct oncogenic pathways driving different subtypes of meningiomas, opening up a door to new personalized targeted therapies. Molecular classification of meningioma allows a new design of clinical trials that assign patients to corresponding targeted agents based on the tumor genetic subtypes. In this review, we will shed light on emerging medical treatments of meningiomas with a particular focus on the new targets identified with genomic sequencing that have led to clinical trials testing novel compounds. Moreover, we present recent development of patient-derived preclinical models that provide platforms for assessing targeted therapies as well as strategies with novel mechanism of action such as oncolytic viruses.
Collapse
Affiliation(s)
- Fares Nigim
- Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Ekkehard M Kasper
- Department of Neurosurgery, McMaster University, Hamilton, ON 8L8 2X2, Canada.
| | - Linda Ackermans
- Department of Neurosurgery and Neuroscience, Maastricht University Medical Center, 6229 HY Maastricht, The Netherlands.
| | - Yasin Temel
- Department of Neurosurgery and Neuroscience, Maastricht University Medical Center, 6229 HY Maastricht, The Netherlands.
| |
Collapse
|
46
|
Wang J, Zhao W, Guo H, Fang Y, Stockman SE, Bai S, Ng PKS, Li Y, Yu Q, Lu Y, Jeong KJ, Chen X, Gao M, Liang J, Li W, Tian X, Jonasch E, Mills GB, Ding Z. AKT isoform-specific expression and activation across cancer lineages. BMC Cancer 2018; 18:742. [PMID: 30012111 PMCID: PMC6048698 DOI: 10.1186/s12885-018-4654-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/01/2018] [Indexed: 01/22/2023] Open
Abstract
Background Aberrant AKT activation is prevalent across human cancer lineages, providing an important therapeutic target. AKT comprises three isoforms that mediate critical non-redundant, even opposing functions in cancer pathophysiology. Therefore, targeting specific AKT isoforms in particular cancers may be more effective than pan-AKT inhibition while avoiding disadvantages of pan-AKT inhibition. Currently, AKT isoform-specific expression and activation in cancer are not clearly characterized. Methods We systematically characterized AKT isoform-specific expression and activation in 211 cancer cell lines derived from different lineages and genetic backgrounds using a reverse-phase protein array platform. Results We found that phosphorylation, but not expression, of AKT1 and AKT2 was coordinated in most but not all cells. Different cancer lineages displayed differential AKT1 and AKT2 expression and phosphorylation. A PIK3CA hotspot mutation H1047R but not E545K was associated with selective activation of AKT2 but not AKT1. Conclusions Our study identified and validated AKT isoform-specific expression and phosphorylation in certain cell lines and demonstrated that genetic changes can affect AKT isoform-specific activation. These results provide a more precise understanding of AKT isoform-specific signaling and, in addition, facilitate AKT isoform targeting for personalized cancer therapies. Electronic supplementary material The online version of this article (10.1186/s12885-018-4654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jue Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Wei Zhao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Huifang Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yong Fang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sarah Elizabeth Stockman
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shanshan Bai
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Qinghua Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Xiaohua Chen
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Meng Gao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Wentao Li
- Department of Interventional Radiology, Cancer Hospital, Fudan University, Shanghai, 200032, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Eric Jonasch
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Zhiyong Ding
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Liu S, Tang Y, Yan M, Jiang W. PIK3CA mutation sensitizes breast cancer cells to synergistic therapy of PI3K inhibition and AMPK activation. Invest New Drugs 2018; 36:763-772. [PMID: 29504069 DOI: 10.1007/s10637-018-0563-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
Breast cancer has been emerging as a most common threat among women, thus many efforts were made to find drugs for fighting breast cancer. So far, PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) inhibitors have been believed to be effective drugs until frequent resistance emerged. Recently, PI3K H1047R mutation has been reported to sensitize breast cancer cells to PI3K inhibition by aspirin. Considering aspirin activates AMPK (AMP-activated protein kinase) simultaneously, it is possible that AMPK activators and PI3K inhibitors can synergistically inhibit breast cancers. Here we clearly observed synergistic suppression of cell growth in all three breast cancer cell lines (MCF-7, MDA-MB-361 and HCC38) when co-treating cells with PI3K inhibitor GDC-0941 and AMPK activator AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide). What is more, it is rather remarkable that the synergistic effect was much more dramatic in PIK3CA (PI3K catalytic subunit alpha) mutated (E545K) cells (MCF-7 and MDA-MB-361) than in PIK3CA wild-type cells (HCC38), which implied there is a relationship between PI3K genetic status and the efficacy of combination therapy. By using PIK3CA wild-type isogenic MCF-7 cell line, which exhibited attenuated cell proliferation compared with the parental MCF-7 cell line, we found endogenous reverse mutation of PIK3CA E545K alleles to wild-type sequence in MCF-7 cells dramatically impaired the synergy of PI3Ki&Ka (combinatorial PI3K inhibition and AMPK activation). Furthermore, PI3Ki&Ka significantly attenuated tumorigenesis of parental MCF-7 cells but not PIK3CA wild-type isogenic MCF-7 cells in tumor xenograft models. Taken together, our results suggest a promising precision therapy of PI3Ki&Ka in PIK3CA mutant breast cancers.
Collapse
Affiliation(s)
- Songlin Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Yunhong Tang
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Maomao Yan
- Department of Pharmacology, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
48
|
Synthesis, characterization, and bioactivity of new bisamidrazone derivatives as possible anticancer agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2158-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Matissek KJ, Onozato ML, Sun S, Zheng Z, Schultz A, Lee J, Patel K, Jerevall PL, Saladi SV, Macleay A, Tavallai M, Badovinac-Crnjevic T, Barrios C, Beşe N, Chan A, Chavarri-Guerra Y, Debiasi M, Demirdögen E, Egeli Ü, Gökgöz S, Gomez H, Liedke P, Tasdelen I, Tolunay S, Werutsky G, St Louis J, Horick N, Finkelstein DM, Le LP, Bardia A, Goss PE, Sgroi DC, Iafrate AJ, Ellisen LW. Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor-Positive Breast Cancer. Cancer Discov 2017; 8:336-353. [PMID: 29242214 DOI: 10.1158/2159-8290.cd-17-0535] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 11/16/2022]
Abstract
We sought to uncover genetic drivers of hormone receptor-positive (HR+) breast cancer, using a targeted next-generation sequencing approach for detecting expressed gene rearrangements without prior knowledge of the fusion partners. We identified intergenic fusions involving driver genes, including PIK3CA, AKT3, RAF1, and ESR1, in 14% (24/173) of unselected patients with advanced HR+ breast cancer. FISH confirmed the corresponding chromosomal rearrangements in both primary and metastatic tumors. Expression of novel kinase fusions in nontransformed cells deregulates phosphoprotein signaling, cell proliferation, and survival in three-dimensional culture, whereas expression in HR+ breast cancer models modulates estrogen-dependent growth and confers hormonal therapy resistance in vitro and in vivo Strikingly, shorter overall survival was observed in patients with rearrangement-positive versus rearrangement-negative tumors. Correspondingly, fusions were uncommon (<5%) among 300 patients presenting with primary HR+ breast cancer. Collectively, our findings identify expressed gene fusions as frequent and potentially actionable drivers in HR+ breast cancer.Significance: By using a powerful clinical molecular diagnostic assay, we identified expressed intergenic fusions as frequent contributors to treatment resistance and poor survival in advanced HR+ breast cancer. The prevalence and biological and prognostic significance of these alterations suggests that their detection may alter clinical management and bring to light new therapeutic opportunities. Cancer Discov; 8(3); 336-53. ©2017 AACR.See related commentary by Natrajan et al., p. 272See related article by Liu et al., p. 354This article is highlighted in the In This Issue feature, p. 253.
Collapse
Affiliation(s)
- Karina J Matissek
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Maristela L Onozato
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sheng Sun
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Zongli Zheng
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Schultz
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jesse Lee
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kristofer Patel
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Piiha-Lotta Jerevall
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Srinivas Vinod Saladi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Allison Macleay
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mehrad Tavallai
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Carlos Barrios
- Latin America Cooperative Oncology Group (LACOG) and Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Nuran Beşe
- Department of Radiation Oncology, Acibadem Breast Research Institute, Istanbul, Turkey
| | | | - Yanin Chavarri-Guerra
- Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubiran, México City D.F., México
| | - Marcio Debiasi
- Latin America Cooperative Oncology Group (LACOG) and Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Elif Demirdögen
- Departments of Medical Biology, General Surgery, Pathology of Medical Faculty of Uludag University, Bursa, Turkey
| | - Ünal Egeli
- Departments of Medical Biology, General Surgery, Pathology of Medical Faculty of Uludag University, Bursa, Turkey
| | - Sahsuvar Gökgöz
- Departments of Medical Biology, General Surgery, Pathology of Medical Faculty of Uludag University, Bursa, Turkey
| | - Henry Gomez
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Perú
| | - Pedro Liedke
- Latin America Cooperative Oncology Group (LACOG) and Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Ismet Tasdelen
- Departments of Medical Biology, General Surgery, Pathology of Medical Faculty of Uludag University, Bursa, Turkey
| | - Sahsine Tolunay
- Departments of Medical Biology, General Surgery, Pathology of Medical Faculty of Uludag University, Bursa, Turkey
| | - Gustavo Werutsky
- Latin America Cooperative Oncology Group (LACOG) and Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jessica St Louis
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Nora Horick
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Dianne M Finkelstein
- Harvard Medical School, Boston, Massachusetts
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Long Phi Le
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Paul E Goss
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Dennis C Sgroi
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - A John Iafrate
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Gustin JP, Miller J, Farag M, Rosen DM, Thomas M, Scharpf RB, Lauring J. GATA3 frameshift mutation promotes tumor growth in human luminal breast cancer cells and induces transcriptional changes seen in primary GATA3 mutant breast cancers. Oncotarget 2017; 8:103415-103427. [PMID: 29262572 PMCID: PMC5732738 DOI: 10.18632/oncotarget.21910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/29/2022] Open
Abstract
The GATA3 transcription factor is one of the most frequently mutated genes in breast cancer. Heterozygous mutations, mostly frameshifts, are seen in 15% of estrogen receptor positive breast cancers, the subtype in which these mutations are almost exclusively found. Mouse studies have shown that Gata3 is critical for breast development and that GATA3 gene dosage affects breast tumor progression. Human patient data have shown that high Gata3 expression, a feature of luminal subtype breast cancers, is associated with a better prognosis. Although the frequency of GATA3 mutation suggests an important role in breast cancer development or progression, there is little understanding of how mutations in GATA3 affect its function in luminal breast epithelial cells and what gene expression changes result as a consequence of the mutations. Here, using gene editing, we have created two sets of isogenic human luminal breast cancer cell lines with and without a hotspot truncating GATA3 mutation. GATA3 mutation enhanced tumor growth in vivo but did not affect sensitivity to clinically used hormonal therapies or chemotherapeutic agents. We identified genes with upregulated and downregulated expression in GATA3 mutant cells, a subset of which was concordantly differentially expressed in GATA3 mutant primary luminal breast cancers. Addback of mutant GATA3 recapitulated mutation-specific gene expression changes and enhanced soft agar colony formation, suggesting a gain of function for the mutant protein.
Collapse
Affiliation(s)
- John P Gustin
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Jernelle Miller
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Mina Farag
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - D Marc Rosen
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Matthew Thomas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Josh Lauring
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|