1
|
Risk Allele Frequency Analysis and Risk Prediction of Single-Nucleotide Polymorphisms for Prostate Cancer. Genes (Basel) 2022; 13:genes13112039. [DOI: 10.3390/genes13112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The incidence of prostate cancer (PCa) varies by ethnicity. This study aimed to provide insights into the genetic cause of PCa, which can result in differences in incidence among individuals of diverse ancestry. We collected data on PCa-associated single-nucleotide polymorphisms (SNPs) from a genome-wide association study catalog. Fisher’s exact tests were used to analyze the significance of enrichment or depletion of the effect on the allele at a given SNP. A network analysis was performed based on PCa-related SNPs that showed significant differences among ethnicities. The SNP-based polygenic risk score (PRS) was calculated, and its correlation with PCa incidence was evaluated. European, African, and East Asian populations had different heatmap patterns. Calculated PRS from the allele frequencies of PCa was the highest among Africans, followed by Europeans, and was the lowest among East Asians. PRS was positively correlated with the incidence and mortality of PCa. Network analysis revealed that AR, CDKN1B, and MAD1L1 are genes related to ethnic differences in PCa. The incidence and mortality of PCa showed a strong correlation with PRS according to ethnicity, which may suggest the effect of genetic factors, such as the AR gene, on PCa pathogenesis.
Collapse
|
2
|
Variability in testosterone measurement between radioimmunoassay (RIA), chemiluminescence assay (CLIA) and liquid chromatography-tandem mass spectrometry (MS) among prostate cancer patients on androgen deprivation therapy (ADT). Urol Oncol 2022; 40:193.e15-193.e20. [DOI: 10.1016/j.urolonc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
|
3
|
Determination of Intraprostatic and Intratesticular Androgens. Int J Mol Sci 2021; 22:ijms22010466. [PMID: 33466491 PMCID: PMC7796479 DOI: 10.3390/ijms22010466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Androgens represent the main hormones responsible for maintaining hormonal balance and function in the prostate and testis. As they are involved in prostate and testicular carcinogenesis, more detailed information of their active concentration at the site of action is required. Since the introduction of the term intracrinology as the local formation of active steroid hormones from inactive precursors of the adrenal gland, mainly dehydroepiandrosterone (DHEA) and DHEA-S, it is evident that blood circulating levels of sex steroid hormones need not reflect their actual concentrations in the tissue. Here, we review and critically evaluate available methods for the analysis of human intraprostatic and intratesticular steroid concentrations. Since analytical approaches have much in common in both tissues, we discuss them together. Preanalytical steps, including various techniques for separation of the analytes, are compared, followed by the end-point measurement. Advantages and disadvantages of chromatography-mass spectrometry (LC-MS, GC-MS), immunoanalytical methods (IA), and hybrid (LC-IA) are discussed. Finally, the clinical information value of the determined steroid hormones is evaluated concerning differentiating between patients with cancer or benign hyperplasia and between patients with different degrees of infertility. Adrenal-derived 11-oxygenated androgens are mentioned as perspective prognostic markers for these purposes.
Collapse
|
4
|
Fang C, Huang H, Zhang Q, Wang N, Jing X, Guo J, Ferianc M, Xu Z. Relation between sex hormones and leucocyte telomere length in men with idiopathic pulmonary fibrosis. Respirology 2020; 25:1265-1273. [PMID: 32583532 PMCID: PMC7754418 DOI: 10.1111/resp.13871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Background and objective IPF is an ageing‐related lung disorder featuring progressive lung scarring. IPF patients are frequently identified with short telomeres but coding mutations in telomerase can only explain a minority of cases. Sex hormones regulate telomerase activity in vitro and levels of sex hormones are related to LTL. The objective of this study was to explore whether sex hormones were associated with LTL, whether they interacted with genetic variants in telomerase and whether polymorphisms in the exon of androgen metabolism genes were associated with plasma testosterone concentrations in male IPF patients. Methods A case–control study was performed on 101 male IPF subjects and 51 age‐matched healthy controls. Early morning plasma sex hormones were quantified, and whole‐exome sequencing was used to identify rare protein‐altering variants of telomerase and SNP in the exon of androgen metabolism genes. LTL was analysed by PCR and expressed as a T/S ratio. Results LTL, testosterone and DHT were decreased significantly in the IPF group. After adjustments for age and variant status in telomerase‐related genes, only testosterone was positively associated with LTL (P = 0.001). No significant interaction (P = 0.661) was observed between rare protein‐altering variants of telomerase and testosterone. No coding SNP in androgen metabolism genes were significantly associated with testosterone concentrations. Conclusion Plasma testosterone is associated with LTL independent of age or rare protein‐altering variants of telomerase. No genetic variations of androgen‐related pathway genes are associated with androgen concentrations. Further studies are warranted to examine whether hormonal interventions might retard telomere loss in male IPF patients.
Collapse
Affiliation(s)
- Chuling Fang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Wang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Guo
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Martin Ferianc
- Electronic and Electrical Engineering Department, University College London, London, UK
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Anh NH, Long NP, Kim SJ, Min JE, Yoon SJ, Kim HM, Yang E, Hwang ES, Park JH, Hong SS, Kwon SW. Steroidomics for the Prevention, Assessment, and Management of Cancers: A Systematic Review and Functional Analysis. Metabolites 2019; 9:E199. [PMID: 31546652 PMCID: PMC6835899 DOI: 10.3390/metabo9100199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Steroidomics, an analytical technique for steroid biomarker mining, has received much attention in recent years. This systematic review and functional analysis, following the PRISMA statement, aims to provide a comprehensive review and an appraisal of the developments and fundamental issues in steroid high-throughput analysis, with a focus on cancer research. We also discuss potential pitfalls and proposed recommendations for steroidomics-based clinical research. Forty-five studies met our inclusion criteria, with a focus on 12 types of cancer. Most studies focused on cancer risk prediction, followed by diagnosis, prognosis, and therapy monitoring. Prostate cancer was the most frequently studied cancer. Estradiol, dehydroepiandrosterone, and cortisol were mostly reported and altered in at least four types of cancer. Estrogen and estrogen metabolites were highly reported to associate with women-related cancers. Pathway enrichment analysis revealed that steroidogenesis; androgen and estrogen metabolism; and androstenedione metabolism were significantly altered in cancers. Our findings indicated that estradiol, dehydroepiandrosterone, cortisol, and estrogen metabolites, among others, could be considered oncosteroids. Despite noble achievements, significant shortcomings among the investigated studies were small sample sizes, cross-sectional designs, potential confounding factors, and problematic statistical approaches. More efforts are required to establish standardized procedures regarding study design, analytical procedures, and statistical inference.
Collapse
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Eugine Yang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Eun Sook Hwang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Jeong Hill Park
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Katharopoulos E, Sauter K, Pandey AV, Flück CE. In silico and functional studies reveal novel loss-of-function variants of SRD5A2, but no variants explaining excess 5α-reductase activity. J Steroid Biochem Mol Biol 2019; 190:263-272. [PMID: 30703436 DOI: 10.1016/j.jsbmb.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 12/16/2022]
Abstract
Androgens are steroid hormones essential for human male and female development. Steroid reductases 5α (SRD5As) are key enzymes in androgen biosynthesis. Mutations in the human SRD5A2 are known to cause loss-of-function and severe 46,XY undervirilization. Gain-of-function variants have been suggested in androgen excess syndromes, but have not been found so far. Therefore we searched for gain-of-function mutations in the human SRD5A2 gene which might explain hyperandrogenic disorders such as the polycystic ovary syndrome, premature adrenarche and prostate cancer. We screened databases for candidate variants and characterised them in silico with the help of a novel SRD5A2 model. We selected 9 coding SNPs (A49T, R50A, P106L, P106A, N122A, L167S, R168C, P173S, R227Q) that have not been described in manifesting individuals, and assessed their enzyme kinetic properties in HEK293 cells. SRD5A2 activity was assessed by conversion of testosterone (T), progesterone (Prog) and androstenedione (Δ4A) to their 5α-reduced metabolites. Variants R50A and P173S showed partial activity with substrates T (34% and 28%) and Δ4A (37% and 22%). With substrate Prog variants P106L, P106A, L167S and R168C in addition showed partial activity (15% to 64%). Functional testing of all other variants showed loss-of-function. As predicted in our in silico analysis, all coding SNPs affected enzyme activity, however none of them showed gain-of-function. Thus excess 5α-reductase activity might be rather regulated at the (post)-transcriptional and/or post-translational level. However through this work seven new coding SNPs were characterised which might be of clinical relevance. It is possible that individuals carrying these SNPs show a minor phenotype that is not yet identified.
Collapse
Affiliation(s)
- Efstathios Katharopoulos
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; Graduate School of Bern, University of Bern, 3000 Bern, Switzerland
| | - Kay Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
7
|
Yeap BB, Knuiman MW, Handelsman DJ, Ho KKY, Hui J, Divitini ML, Arscott GM, McQuillan B, Hung J, Beilby JP. A 5α-reductase (SRD5A2) polymorphism is associated with serum testosterone and sex hormone-binding globulin in men, while aromatase (CYP19A1) polymorphisms are associated with oestradiol and luteinizing hormone reciprocally. Clin Endocrinol (Oxf) 2019; 90:301-311. [PMID: 30353958 DOI: 10.1111/cen.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023]
Abstract
CONTEXT Pituitary luteinizing hormone (LH) stimulates testicular production of testosterone (T) which is metabolized to dihydrotestosterone (DHT) by 5α-reductase and to oestradiol (E2) by aromatase. How the activity of population variants in these enzymes impacts on gonadal function is unclear. We examined whether polymorphisms in 5α-reductase (SRD5A2) and aromatase (CYP19A1) genes predict circulating sex hormone concentrations. DESIGN Cross-sectional analysis of 1865 community-dwelling men aged 50.4 ± 16.8 years. MEASUREMENTS Early morning sera assayed for T, DHT and E2 (mass spectrometry), and SHBG and LH (immunoassay). Two SRD5A2 and eleven CYP19A1 polymorphisms were analysed by PCR. Regression models were adjusted for age and cardiometabolic risk factors. RESULTS SRD5A2 polymorphism rs9282858 GA vs. GG was associated with higher serum T (+1.5 nmol/L, P < 0.001) and higher SHBG (+3.3 nmol/L, P = 0.001). CYP19A1 polymorphisms were associated with higher serum E2 and lower LH in reciprocal fashion, from which the two-copy haplotype rs10046 = T/rs2899470 = G/rs11575899 = I/rs700518 = G/rs17703883 = T was associated with higher E2 (63.4 vs. 56.5 pmol/L, P = 0.001) and lower LH (3.9 vs. 4.5 IU/L, P = 0.001) compared to null copies. Conversely, rs10046 = C/rs2899470 = T/rs11575899 = D/rs700518 = A/rs17703883 = C was associated with lower E2 (51.8 vs. 62.0 pmol/L, P = 0.001) and higher LH (5.7 vs. 3.9 IU/L, P < 0.001). These haplotypes were associated primarily with differences in E2 in men <65 years and LH in men ≥65 years. CONCLUSIONS A 5α-reductase polymorphism predicts circulating T and SHBG, while aromatase polymorphisms predict E2 and LH in reciprocal fashion. Age and aromatase polymorphisms interact to affect E2 and LH. How these functional polymorphisms impact on male reproductive and general health outcomes requires further study.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Matthew W Knuiman
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Ken K Y Ho
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Mark L Divitini
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Gillian M Arscott
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Brendan McQuillan
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiovascular Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Joseph Hung
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiovascular Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - John P Beilby
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Molecular Analysis of the SRD5A1 and SRD5A2 Genes in Patients with Benign Prostatic Hyperplasia with Regard to Metabolic Parameters and Selected Hormone Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14111318. [PMID: 29084161 PMCID: PMC5707957 DOI: 10.3390/ijerph14111318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Introduction: The etiology of benign prostatic hyperplasia (BPH) has not so far been fully explicated. However, it is assumed that changes in the levels of hormones associated with aging can contribute to the development of prostatic hyperplasia. Dihydrotestosterone combines with the androgen receptor (AR) proteins of the prostate gland. Enzyme activity is based on two isoenzymes: type 1 and type 2. 5α-reductase type 1 is encoded by the SRD5A1 gene, and type 2 is encoded by the SRD5A2 gene. The aim of our study was to determine the frequency of the SRD5A1 (rs6884552, rs3797177) and SRD5A2 (rs523349, rs12470143) genes’ polymorphisms, and to assess the relationships between the genotypes of the tested mutations, and the levels of biochemical and hormonal parameters in patients with BPH. Material and Methods: The study involved 299 men with benign prostatic hyperplasia. We determined the serum levels of particular biochemical parameters—fasting plasma glucose (FPG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglycerides (TG)—by the spectrophotometric method, using ready reagent kits. The ELISA method was used to determine the levels of the following hormonal parameters and proteins: total testosterone (TT), free testosterone (FT), insulin (I), luteinizing hormone (LH), and sex hormone binding protein (SHBG). Metabolic syndrome was diagnosed. Genotyping was performed by real-time PCR. Results: We analyzed the relationships between the incidence of particular diseases and the genotypes of the SRD5A1 and SRD5A2 polymorphisms among patients with BPH. The BPH patients with the CC genotype of the SRD5A2 rs523349 and rs12470143 polymorphisms were considerably less frequently diagnosed with metabolic syndrome (MetS) (p = 0.022 and p = 0.023 respectively). Our analysis revealed that homozygotes with the CC of the SDR5A2 rs12470143 polymorphism had visibly higher HDL levels than those with the TT and CT genotypes (p = 0.001). Additionally, we found that the patients with the CC genotype of the SDR5A2 rs12470143 polymorphism had considerably higher FT levels (p = 0.001) than the heterozygotes with the CT and the homozygotes with the TT of the genetic variant analyzed in our study. Furthermore, the patients with at least one G allele of the SRD5A2 rs523349 polymorphism had significantly lower SGBG levels (p = 0.022) compared with the homozygotes with the CC genotype. The presence of at least one A allele (AA + AG genotypes) of the SRD5A1 rs3797177 polymorphism entailed notably lower serum insulin levels than those observed in homozygotes with the GG genotype (p = 0.033). Conclusions: The study described in this article shows that selected SRD5A1 and SRD5A2 polymorphisms can alter the levels of metabolic and hormonal parameters in patients with BPH. Special attention should be paid to the SDR5A2 rs12470143 polymorphism, which is associated with a change in lipid profile, as well as with the inheritance and incidence rate of MetS among these patients. An analysis of the frequency of this polymorphism among BPH patients could be useful in estimating the risk of getting ill, and planning therapies of concomitant diseases for BPH patients.
Collapse
|
9
|
Grant DJ, Chen Z, Howard LE, Wiggins E, De Hoedt A, Vidal AC, Carney ST, Squires J, Magyar CE, Huang J, Freedland SJ. UDP-glucuronosyltransferases and biochemical recurrence in prostate cancer progression. BMC Cancer 2017; 17:463. [PMID: 28673330 PMCID: PMC5496250 DOI: 10.1186/s12885-017-3463-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
Background Uridine 5′-diphosphate-glucuronosyltransferase 2B (UGT2B) genes code for enzymes that catalyze the clearance of testosterone, dihydrotestosterone (DHT), and DHT metabolites in the prostate basal and luminal tissue. The expression of the UGT2B15, UGT2B17, and UGT2B28 enzymes has not been evaluated in prostate tissue samples from hormone therapy-naïve patients. Methods We determined the expression of UGT2B15, UGT2B17, and UGT2B28 enzymes in 190 prostate tissue samples from surgical specimens of a multiethnic cohort of patients undergoing radical prostatectomy at the Durham Veterans Affairs Medical Center. The association between each protein’s percent positive and H-score, a weighted score of staining intensity, and the risk of biochemical recurrence (BCR) was tested using separate Cox proportional hazards models. In an exploratory analysis, UGT2B17 total positive and H-score were divided at the median and we tested the association between UGT2B17 group and risk of BCR. Results The median follow-up for all patients was 118 months (IQR: 85-144). Of 190, 83 (44%) patients developed BCR. We found no association between UGT2B15 or UGT2B28 and risk of BCR. However, there was a trend for an association between UGT2B17 and BCR (HR = 1.01, 95% CI 1.00-1.02, p = 0.11), though not statistically significant. Upon further investigation, we found that patients with UGT2B17 higher levels of expression had a significant increased risk of BCR on univariable analysis (HR = 1.57, 95% CI 1.02-2.43, p = 0.041), although this association was attenuated in the multivariable model (HR = 1.50, 95% CI 0.94-2.40, p = 0.088). Conclusions Our findings suggest that UGT2B17 overexpression may be associated with a significant increased risk of BCR. These results are consistent with previous reports which showed UGT2B17 significantly expressed in advanced prostate cancer including prostate tumor metastases.
Collapse
Affiliation(s)
- Delores J Grant
- Department of Biological and Biomedical Science, Cancer Research Program, North Carolina Central University, Julius L. Chambers Biomedical/Biotechnology Research Institute, 1801 Fayetteville Street, Durham, NC, 27707, USA.
| | - Zinan Chen
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, 2424 Erwin Road, Suite 1102 Hock Plaza, Box 2721, Durham, NC, 27710, USA
| | - Lauren E Howard
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, 2424 Erwin Road, Suite 1102 Hock Plaza, Box 2721, Durham, NC, 27710, USA
| | - Emily Wiggins
- Durham Veterans Administration Medical Center, 508 Fulton St, Durham, NC, 27705, USA
| | - Amanda De Hoedt
- Durham Veterans Administration Medical Center, 508 Fulton St, Durham, NC, 27705, USA
| | - Adriana C Vidal
- Cedars-Sinai Health System, Center for Integrated Research on Cancer and Lifestyle, Cancer Genetics and Prevention Program, Surgery, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Skyla T Carney
- Department of Biological and Biomedical Science, Cancer Research Program, North Carolina Central University, Julius L. Chambers Biomedical/Biotechnology Research Institute, 1801 Fayetteville Street, Durham, NC, 27707, USA
| | - Jill Squires
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, The David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 14-112, Los Angeles, CA, 90095, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, The David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 14-112, Los Angeles, CA, 90095, USA
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, The David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 14-112, Los Angeles, CA, 90095, USA
| | - Stephen J Freedland
- Cedars-Sinai Health System, Center for Integrated Research on Cancer and Lifestyle, Cancer Genetics and Prevention Program, Surgery, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| |
Collapse
|
10
|
Scaglione A, Montemiglio LC, Parisi G, Asteriti IA, Bruni R, Cerutti G, Testi C, Savino C, Mancia F, Lavia P, Vallone B. Subcellular localization of the five members of the human steroid 5α-reductase family. BIOCHIMIE OPEN 2017; 4:99-106. [PMID: 29082129 PMCID: PMC5656259 DOI: 10.1016/j.biopen.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In humans the steroid 5α-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in lipidic substrates: Δ4-3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum localization. We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates. All members of human testosterone 5α-reductase family were expressed in HeLa cells. Subcellular localization of SRD5A proteins in the endoplasmic reticulum is reported. The effect of GFP tagging at N- or C-term on SRD5A proteins expression was assessed. The TECRL gene is expressed for the first time and its product localizes in the ER.
Collapse
Affiliation(s)
- Antonella Scaglione
- Dept. of Biochemical Sciences, Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Linda Celeste Montemiglio
- Dept. of Biochemical Sciences, Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti Dept. of Biochemical Sciences, Sapienza University of Rome
| | - Giacomo Parisi
- Dept. of Biochemical Sciences, Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | | | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York, NY 10027, USA
| | - Gabriele Cerutti
- Dept. of Biochemical Sciences, Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Claudia Testi
- Center for Life Nano Science@Sapienza, IIT, V.le Regina Elena 291, Rome I-00185, Italy
| | | | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | - Beatrice Vallone
- Dept. of Biochemical Sciences, Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti Dept. of Biochemical Sciences, Sapienza University of Rome.,Schaefer Research Scholar at Columbia University and Fellow of the Italian Academy for Advanced Studies in America at Columbia University
| |
Collapse
|
11
|
Price DK, Chau CH, Till C, Goodman PJ, Leach RJ, Johnson-Pais TL, Hsing AW, Hoque A, Parnes HL, Schenk JM, Tangen CM, Thompson IM, Reichardt JK, Figg WD. Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: Results from the Prostate Cancer Prevention Trial. Cancer 2016; 122:2332-40. [PMID: 27164191 PMCID: PMC4956504 DOI: 10.1002/cncr.30071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer is highly influenced by androgens and genes. The authors investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or with the risk of prostate cancer or high-grade disease from finasteride treatment. METHODS A nested case-control study from the Prostate Cancer Prevention Trial using data from men who had biopsy-proven prostate cancer (cases) and a group of biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with overall (total), low-grade, and high-grade prostate cancer incidence and serum hormone concentrations. RESULTS There were significant associations of genetic polymorphisms in steroid 5α-reductase 1 (SRD5A1) (reference SNPs: rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with the risk of high-grade prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial; 2 SNPs were significantly associated with an increased risk (SRD5A1 rs472402 [odds ratio, 1.70; 95% confidence interval, 1.05-2.75; Ptrend = .03] and SRD5A2 rs2300700 [odds ratio, 1.94; 95% confidence interval, 1.19-3.18; Ptrend = .01]). Eleven SNPs in SRD5A1, SRD5A2, cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), and CYP3A4 were associated with modifying the mean concentrations of serum androgen and sex hormone-binding globulin; and 2 SNPs (SRD5A1 rs824811 and CYP1B1 rs10012; Ptrend < .05) consistently and significantly altered all androgen concentrations. Several SNPs (SRD5A1 rs3822430, SRD5A2 rs2300700, CYP3A43 rs800672, and CYP19 rs700519; Ptrend < .05) were significantly associated with both circulating hormone levels and prostate cancer risk. CONCLUSIONS Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and the risk of prostate cancer. Further studies to examine the functional consequence of novel causal variants are warranted. Cancer 2016;122:2332-2340. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Douglas K. Price
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Cindy H. Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Cathee Till
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Phyllis J. Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Robin J. Leach
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Ann W. Hsing
- Cancer Prevention Institute of California, Fremont, CA and Stanford Cancer Institute, Palo Alto, CA
| | - Ashraful Hoque
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Howard L. Parnes
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| | - Jeannette M. Schenk
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Catherine M. Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ian M. Thompson
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Juergen K.V. Reichardt
- Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
12
|
Zhang A, Zhang J, Plymate S, Mostaghel EA. Classical and Non-Classical Roles for Pre-Receptor Control of DHT Metabolism in Prostate Cancer Progression. Discov Oncol 2016; 7:104-13. [PMID: 26797685 DOI: 10.1007/s12672-016-0250-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Androgens play an important role in prostate cancer (PCa) development and progression. Accordingly, androgen deprivation therapy remains the front-line treatment for locally recurrent or advanced PCa, but patients eventually relapse with the lethal form of the disease termed castration resistant PCa (CRPC). Importantly, castration does not eliminate androgens from the prostate tumor microenvironment which is characterized by elevated tissue androgens that are well within the range capable of activating the androgen receptor (AR). In this mini-review, we discuss emerging data that suggest a role for the enzymes mediating pre-receptor control of dihydrotestosterone (DHT) metabolism, including AKR1C2, HSD17B6, HSD17B10, and the UGT family members UGT2B15 and UGT2B17, in controlling intratumoral androgen levels, and thereby influencing PCa progression. We review the expression of steroidogenic enzymes involved in this pathway in primary PCa and CRPC, the activity and regulation of these enzymes in PCa experimental models, and the impact of genetic variation in genes mediating pre-receptor DHT metabolism on PCa risk. Finally, we discuss recent data that suggests several of these enzymes may also play an unrecognized role in CRPC progression separate from their role in androgen inactivation.
Collapse
Affiliation(s)
- Ailin Zhang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, MS D5-380, Seattle, WA, 98109, USA
| | - Jiawei Zhang
- School of Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Stephen Plymate
- Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Elahe A Mostaghel
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, MS D5-380, Seattle, WA, 98109, USA.
| |
Collapse
|
13
|
Trabert B, Xu X, Falk RT, Guillemette C, Stanczyk FZ, McGlynn KA. Assay reproducibility of serum androgen measurements using liquid chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol 2016; 155:56-62. [PMID: 26416142 PMCID: PMC4663146 DOI: 10.1016/j.jsbmb.2015.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Valid and precise measures of androgen concentrations are needed for etiologic studies of hormonally-related cancers. We developed a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with two sample preparations to measure 11 androgens, including adrenal and gonadal androgenic precursors and their 5α-reduced metabolites. METHODS Androgen levels were measured in serum from 20 healthy volunteers (5 men, 10 premenopausal women, 5 postmenopausal women). Two blinded, randomized aliquots per individual were assayed in each of three batches. A fourth batch of samples was measured at an external laboratory using comparable methodology to measure 9 of the 11 androgens. Coefficients of variation (CV) and intraclass correlation coefficients (ICC) were calculated from the individual components of variance. Comparability of 9 androgens across laboratories was assessed using Spearman ranked correlations, Deming regression and bias plots. RESULTS The laboratory CVs were <5% and ICCs were uniformly high (>95%) for all androgens measured across sex/menopausal status groups. Spearman ranked correlations for 9 hormones measured in the comparison laboratory were high (>0.85), suggesting good agreement. CONCLUSION Our high-performance LC-MS/MS assays of 11 androgens, including adrenal and gonadal androgenic precursors and their 5α-reduced metabolites demonstrated excellent laboratory reproducibility, and good comparability with an established method that measured 9 of the 11 hormones tested. The serum androgen metabolite assays are suitable for use in epidemiologic research.
Collapse
Affiliation(s)
- Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | - Xia Xu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHUQ) Research Center, Laval University, Québec, Canada
| | - Frank Z Stanczyk
- Departments of Obstetrics and Gynecology, and Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Caron P, Turcotte V, Guillemette C. A chromatography/tandem mass spectrometry method for the simultaneous profiling of ten endogenous steroids, including progesterone, adrenal precursors, androgens and estrogens, using low serum volume. Steroids 2015; 104:16-24. [PMID: 26254607 DOI: 10.1016/j.steroids.2015.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Measurement of a large set of sex steroids in clinical epidemiology and laboratory research with reliable methods providing low quantification limits and using a limited volume of blood sample represents a significant challenge. We report a new validated gas chromatography selected reaction monitoring - tandem mass spectrometry assay (GC-MS/MS) for the simultaneous quantification of ten endogenous steroids including progesterone (PROG), dehydroepiandrosterone (DHEA), androstenediol (5-diol), androstenedione (4-dione), testosterone (T), dihydrotestosterone (DHT), androsterone (ADT), 5alpha-androstan-3beta-17beta-diol (3β-diol), estrone (E1) and estradiol (E2). After addition of stable isotope internal standards, the approach involved the combination of liquid-liquid extraction, derivatization and solid-phase extraction for injection into the GC system and multiple reaction monitoring (MRM). The method presents high reproducibility for all analytical parameters in 250 μl serum samples. The lower limit of quantification (LLOQ) were of 100 pg/ml for DHEA, 50 pg/ml for PROG, 5-diol, 4-dione and ADT, 30 pg/ml for T, 10 pg/ml for 3β-diol and DHT, 5 pg/ml for E1, and 1 pg/ml for E2. The applicability of the validated method to determine the concentrations of these 10 steroids was successfully tested on serum from men (n=15), premenopausal (n=10) and postmenopausal women (n=20), and is currently used for larger cancer-related epidemiology studies. One of the most considerable advantages over existing methods is the simultaneous determination of ten steroids in a limited volume of serum that will help conserve important clinical samples from existing biobanks.
Collapse
Affiliation(s)
- Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada.
| |
Collapse
|
15
|
|
16
|
Shiota M, Fujimoto N, Yokomizo A, Takeuchi A, Itsumi M, Inokuchi J, Tatsugami K, Uchiumi T, Naito S. SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy. Eur J Cancer 2015; 51:1962-9. [DOI: 10.1016/j.ejca.2015.06.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/24/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
|
17
|
Tourancheau A, Margaillan G, Rouleau M, Gilbert I, Villeneuve L, Lévesque E, Droit A, Guillemette C. Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing. THE PHARMACOGENOMICS JOURNAL 2015; 16:60-70. [PMID: 25869014 DOI: 10.1038/tpj.2015.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
Abstract
A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual's UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the 10 human UGT gene loci in normal and tumoral metabolic tissues by targeted RNA next-generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon-exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases.
Collapse
Affiliation(s)
- A Tourancheau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - G Margaillan
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - M Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - I Gilbert
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - L Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - E Lévesque
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - A Droit
- Faculty of Medicine, Laval University, Québec, QC, Canada
| | - C Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada.,Canada Research Chair in Pharmacogenomics, Pharmacogenomics Laboratory, CHU de Quebec Research Center, Quebec, QC, Canada
| |
Collapse
|
18
|
Kuuranne T, Saugy M, Baume N. Confounding factors and genetic polymorphism in the evaluation of individual steroid profiling. Br J Sports Med 2015; 48:848-55. [PMID: 24764553 PMCID: PMC4033181 DOI: 10.1136/bjsports-2014-093510] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the fight against doping, steroid profiling is a powerful tool to detect drug misuse with endogenous anabolic androgenic steroids. To establish sensitive and reliable models, the factors influencing profiling should be recognised. We performed an extensive literature review of the multiple factors that could influence the quantitative levels and ratios of endogenous steroids in urine matrix. For a comprehensive and scientific evaluation of the urinary steroid profile, it is necessary to define the target analytes as well as testosterone metabolism. The two main confounding factors, that is, endogenous and exogenous factors, are detailed to show the complex process of quantifying the steroid profile within WADA-accredited laboratories. Technical aspects are also discussed as they could have a significant impact on the steroid profile, and thus the steroid module of the athlete biological passport (ABP). The different factors impacting the major components of the steroid profile must be understood to ensure scientifically sound interpretation through the Bayesian model of the ABP. Not only should the statistical data be considered but also the experts in the field must be consulted for successful implementation of the steroidal module.
Collapse
Affiliation(s)
- Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories Ltd., , Helsinki, Finland
| | | | | |
Collapse
|
19
|
Laverdière I, Flageole C, Audet-Walsh É, Caron P, Fradet Y, Lacombe L, Lévesque É, Guillemette C. The UGT1 locus is a determinant of prostate cancer recurrence after prostatectomy. Endocr Relat Cancer 2015; 22:77-85. [PMID: 25452636 DOI: 10.1530/erc-14-0423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The prognostic significance of common deletions in uridine diphospho-glucuronosyltransferase 2B (UGT2B) genes encoding sex steroid metabolic enzymes has been recently recognized in localized prostate cancer (PCa) after radical prostatectomy (RP). However, the role of germline variations at the UGT1 locus, encoding half of all human UGTs and primarily involved in estrogen metabolism, remains unexplored. We investigated whether variants of UGT1 are potential prognostic markers. We studied 526 Caucasian men who underwent RP for clinically localized PCa. Genotypes of patients for 34 haplotype-tagged single-nucleotide polymorphisms (htSNPs) and 11 additional SNPs across the UGT1 locus previously reported to mark common variants including functional polymorphisms were determined. The risk of biochemical recurrence (BCR) was estimated using adjusted Cox proportional hazards regression and Kaplan-Meier analysis. We further investigated whether variants are associated with plasma hormone levels by mass spectrometry. In multivariable models, seven htSNPs were found to be significantly associated with BCR. A greater risk was revealed for four UGT1 intronic variants with hazard ratios (HRs) of 1.59-1.88 (P<0.002) for htSNPs in UGT1A10, UGT1A9, and UGT1A6. Conversely, decreased BCR was associated with three htSNPs in introns of UGT1A10 and UGT1A9 (HR=0.56-058; P≤0.01). An unfavorable UGT1 haplotype comprising all risk alleles, with a frequency of 14%, had a HR of 1.68 (95% CI=1.13-2.50; P=0.011). Significant alteration in circulating androsterone levels was associated with this haplotype, consistent with changes in hormonal exposure. This study provides the first evidence, to our knowledge, that germline polymorphisms of UGT1 are potential predictors of recurrence of PCa after prostatectomy.
Collapse
Affiliation(s)
- Isabelle Laverdière
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Christine Flageole
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Étienne Audet-Walsh
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Patrick Caron
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Yves Fradet
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Louis Lacombe
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Éric Lévesque
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| |
Collapse
|
20
|
Kozminski MA, Morgan TM. Reply: To PMID 24958478. Urology 2014; 84:379. [PMID: 24958482 DOI: 10.1016/j.urology.2014.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
KCTD11 tumor suppressor gene expression is reduced in prostate adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:380398. [PMID: 25045667 PMCID: PMC4090506 DOI: 10.1155/2014/380398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 01/18/2023]
Abstract
Prostate cancer is the most common noncutaneous cancer among men in the United States. A genetic contribution to prostate cancer risk has been documented, but knowledge of the molecular mechanisms involved in prostate cancer initiation is still not well understood. Loss of heterozygosity (LOH) of chromosomal regions is crucial in tumor progression. In human prostate cancer, several chromosomal regions demonstrating a high frequency of LOH have been previously identified. KCTD11 (REN) is a tumor suppressor gene mapping on human chromosome 17p13.2, whose expression is frequently lost in human medulloblastoma and in several other cancer types. KCTD11 acts as a negative regulator of the Hedgehog (Hh) signaling. Here, we demonstrated that KCTD11 LOH is a common genetic lesion in human prostate adenocarcinoma. Indeed, nuclear KCTD11 protein expression is strongly reduced in primary prostate cancer, and this event correlated with overexpression of proteins acting into the Hedgehog pathway. Low levels of KCTD11 mRNA have been also observed in prostatic cancer cells, and ectopic overexpression of KCTD11 led to growth arrest. Our study demonstrates and supports that KCTD11, as well as negatively regulated downstream effectors belonging to Hh signaling, plays a role in prostate cancer pathogenesis. This could be suitable to characterize new diagnostic and therapeutic markers.
Collapse
|
22
|
Lévesque É, Laverdière I, Audet-Walsh É, Caron P, Rouleau M, Fradet Y, Lacombe L, Guillemette C. Steroidogenic Germline Polymorphism Predictors of Prostate Cancer Progression in the Estradiol Pathway. Clin Cancer Res 2014; 20:2971-83. [DOI: 10.1158/1078-0432.ccr-13-2567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|