1
|
Saini N, Tiwari AK, Leahy R, Thorat N, Kulkarni A. Transforming brain cancer biomarker research with patinformatics and SWOT analysis. Drug Discov Today 2025; 30:104314. [PMID: 39971181 DOI: 10.1016/j.drudis.2025.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Brain cancer heterogeneity imposes significant challenges in diagnosis, causing high mortality. The lack of timely diagnosis intensifies these challenges, underscoring the need for improved diagnostics. Recent advancements in biomarker discovery have led to biomarker detection at ultra-low concentrations via multiplexing with biosensors, offering a promising avenue for the timely detection of brain cancer. Serving as a comprehensive resource, this review highlights the crucial role of primary biomarkers in brain cancer diagnosis via integration of patinformatics and SWOT analysis, thereby facilitating timely diagnosis and informed decision making. Furthermore, we aim to outline recent advances in brain cancer prognostics and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Neha Saini
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed University), Pune 412115, India
| | - Amit Kumar Tiwari
- Symbiosis Centre for Research and Innovation, Symbiosis International (Deemed University), Pune 412115, India; Patent Department R.K. Dewan and Co., Pune 411016 Maharashtra, India
| | - Robert Leahy
- Department of Physics and Bernal Institute University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| | - Nanasaheb Thorat
- Department of Physics and Bernal Institute University of Limerick, Castletroy, Limerick V94T9PX, Ireland; Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland.
| | - Atul Kulkarni
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed University), Pune 412115, India.
| |
Collapse
|
2
|
Liu J, Wang P, Zhang H, Guo Y, Tang M, Wang J, Wu N. Current research status of Raman spectroscopy in glioma detection. Photodiagnosis Photodyn Ther 2024; 50:104388. [PMID: 39461488 DOI: 10.1016/j.pdpdt.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Glioma is the most common primary tumor of the nervous system. Conventional diagnostic methods for glioma often involve time-consuming or reliance on externally introduced materials. Consequently, there is an urgent need for rapid and reliable diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering rapid, accurate, and label-free analysis with high sensitivity and specificity in biomedical applications. In this review, the fundamental principles of Raman spectroscopy have been introduced, and then the progress of applying Raman spectroscopy in biomedical studies has been summarized, including the identification and typing of glioma. The challenges encountered in the clinical application of Raman spectroscopy for glioma have been discussed, and the prospects have also been envisioned.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Hua Zhang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Yuansen Guo
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China.
| |
Collapse
|
3
|
Li PC, Yun DB, Huang YX, Huang QY. Prognostic significance of oligodendrocyte transcription factor 2 expression in glioma patients: A systematic review and meta-analysis. World J Clin Cases 2024; 12:5739-5748. [PMID: 39247740 PMCID: PMC11263059 DOI: 10.12998/wjcc.v12.i25.5739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Gliomas are the most common primary central nervous system neoplasm. Despite recent advances in the diagnosis and treatment of gliomas, patient prognosis remains dismal. Therefore, it is imperative to identify novel diagnostic biomarkers and therapeutic targets of glioma to effectively improve treatment outcomes. AIM To investigate the association between oligodendrocyte transcription factor 2 (Olig2) expression and the outcomes of glioma patients. METHODS The PubMed, Embase, Cochrane Library, and China National Knowledge Infrastructure databases were searched for studies (published up to October 2023) that investigated the relationship between Olig2 expression and prognosis of glioma patients. The quality of the studies was assessed using the Newcastle Ottawa Scale. Data analyses were performed using Stata Version 12.0 software. RESULTS A total of 1205 glioma patients from six studies were included in the meta-analysis. High Olig2 expression was associated with better outcomes in glioma patients [hazard ratio (HR): 0.81; 95% (confidence interval) CI: 0.51-1.27; P = 0.000]. Furthermore, the results of subgroup meta-analysis showed that high expression of Olig2 was associated with poor overall survival in European patients (HR: 1.34; 95%CI: 0.79-2.27) and better prognosis in Asian patients (HR: 0.43; 95%CI: 0.22-0.84). The sensitivity analysis showed that no single study had a significant effect on pooled HR, and there was also no indication of publication bias according to the Egger's and Begger's P value test or funnel plot test. CONCLUSION High Olig2 expression may have a positive impact on the prognosis of glioma patients, and should be investigated further as a prognostic biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - De-Bo Yun
- Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Transfusion, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qian-Yi Huang
- Department of Transfusion, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
4
|
Hua W, Zhang W, Brown H, Wu J, Fang X, Shahi M, Chen R, Zhang H, Jiao B, Wang N, Xu H, Fu M, Wang X, Zhang J, Zhang X, Wang Q, Zhu W, Ye D, Garcia DM, Chaichana K, Cooks RG, Ouyang Z, Mao Y, Quinones-Hinojosa A. Rapid detection of IDH mutations in gliomas by intraoperative mass spectrometry. Proc Natl Acad Sci U S A 2024; 121:e2318843121. [PMID: 38805277 PMCID: PMC11161794 DOI: 10.1073/pnas.2318843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.
Collapse
Affiliation(s)
- Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Hannah Brown
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Junhan Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Xinqi Fang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Mahdiyeh Shahi
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Rong Chen
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Haoyue Zhang
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
| | - Bin Jiao
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
| | - Nan Wang
- PurSpecTechnologies, Beijing100084, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Xiaowen Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Qijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | - Dan Ye
- The Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200232, China
| | | | | | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
- National Center for Neurological Disorders, Shanghai200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200040, China
- Neurosurgical Institute of Fudan University, Shanghai200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai200040, China
| | | |
Collapse
|
5
|
Hatiboglu MA, Akdur K, Sakarcan A, Seyithanoglu MH, Turk HM, Sinclair G, Oztanir MN. Promising outcome of patients with recurrent glioblastoma after Gamma Knife-based hypofractionated radiotherapy. Neurochirurgie 2024; 70:101532. [PMID: 38215936 DOI: 10.1016/j.neuchi.2024.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The role of Gamma Knife radiosurgery (GKRS) in recurrent glioblastoma remains unclear. The purpose of this study is to evaluate the effects of GKRS in a group of patients with recurrent glioblastoma, focusing on survival and safety. METHODS Patients undergoing GKRS for recurrent glioblastoma between September 2014 and April 2019 were included in this study. Relevant clinical and radiosurgical data, including GKRS-related complications, were recorded and analyzed. Overall survival (OS), local progression free survival (LPFS) and prognostic factors for outcome were thoroughly evaluated. RESULTS Fifty-three patients were analyzed (24 female, 29 male). The median age was 50 years (range, 19-78 years). The median GKRS treatment volume was 35.01 cm3 (range, 2.38-115.57 cm3). Twenty patients (38%) were treated with single fraction GKRS, while 33 (62%) were treated with GKRS-based hypofractionated stereotactic radiotherapy (HSRT). The median prescription dose for single fraction GKRS, 3-fractions HSRT and 5-fractions HSRT were 16 Gy (range, 10-20 Gy), 27 Gy (range, 18-33 Gy) and 25 Gy (range, 25-30 Gy), respectively. The median LPFS and OS times were 8.1 months and 11.4 months after GKRS, respectively. HSRT and Bevacizumab were associated with improved LPFS, while HSRT alone was associated with longer OS. CONCLUSION Our findings suggested that HRST would likely improve LPFS and OS in definite settings; the addition of Bevacizumab to GKRS was associated with increased rates of local control. No major complications were reported. Further prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey; Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıkoy Mahallesi, Beykoz, Istanbul, Turkey.
| | - Kerime Akdur
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Ayten Sakarcan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Mehmet Hakan Seyithanoglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Georges Sinclair
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey; Department of Radiation Oncology, University Hospital Southampton, UK
| | - Mustafa Namik Oztanir
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| |
Collapse
|
6
|
Fan H, Zhang S, Yuan Y, Chen S, Li W, Wang Z, Xiang Y, Li J, Ma X, Liu Y. Glutamine metabolism-related genes predict prognosis and reshape tumor microenvironment immune characteristics in diffuse gliomas. Front Neurol 2023; 14:1104738. [PMID: 36970537 PMCID: PMC10036600 DOI: 10.3389/fneur.2023.1104738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundDiffuse gliomas possess a kind of malignant brain tumor with high mortality. Glutamine represents the most abundant and versatile amino acid in the body. Glutamine not only plays an important role in cell metabolism but also involves in cell survival and malignancies progression. Recent studies indicate that glutamine could also affect the metabolism of immune cells in the tumor microenvironment (TME).Materials and methodsThe transcriptome data and clinicopathological information of patients with glioma were acquired from TCGA, CGGA, and West China Hospital (WCH). The glutamine metabolism-related genes (GMRGs) were retrieved from the Molecular Signature Database. Consensus clustering analysis was used to discover expression patterns of GMRGs, and glutamine metabolism risk scores (GMRSs) were established to model tumor aggressiveness-related GMRG expression signature. ESTIMATE and CIBERSORTx were applied to depict the TME immune landscape. The tumor immunological phenotype analysis and TIDE were utilized for predicting the therapeutic response of immunotherapy.ResultsA total of 106 GMRGs were retrieved. Two distinct clusters were established by consensus clustering analysis, which showed a close association with the IDH mutational status of gliomas. In both IDH-mutant and IDH-wildtype gliomas, cluster 2 had significantly shorter overall survival compared with cluster 1, and the differentially expressed genes between the two clusters enriched in pathways related to malignant transformation as well as immunity. In silico TME analysis of the two IDH subtypes revealed not only significantly different immune cell infiltrations and immune phenotypes between the GMRG expression clusters but also different predicted responses to immunotherapy. After the screening, a total of 10 GMRGs were selected to build the GMRS. Survival analysis demonstrated the independent prognostic role of GMRS. Prognostic nomograms were established to predict 1-, 2-, and 3-year survival rates in the four cohorts.ConclusionDifferent subtypes of glutamine metabolism could affect the aggressiveness and TME immune features of diffuse glioma, despite their IDH mutational status. The expression signature of GMRGs could not only predict the outcome of patients with glioma but also be combined into an accurate prognostic nomogram.
Collapse
Affiliation(s)
- Huanhuan Fan
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Li
- Department of Neurosurgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Xiaohong Ma
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Yanhui Liu
| |
Collapse
|
7
|
Liu J, Yang X, Ji Q, Yang L, Li J, Long X, Ye M, Huang K, Zhu X. Immune Characteristics and Prognosis Analysis of the Proteasome 20S Subunit Beta 9 in Lower-Grade Gliomas. Front Oncol 2022; 12:875131. [PMID: 35928883 PMCID: PMC9343852 DOI: 10.3389/fonc.2022.875131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Glioma is a common intracranial malignancy in adults and has a high mortality due to its poor prognosis and high recurrence rate. Dysregulation of protein degradation is one of the main promoting factors in glioma development. As an indispensable unit of the proteasome, Proteasome 20S Subunit Beta 9 (PSMB9) is one of the major enzymes in ubiquitin-dependent protein degradation in cells. In addition, proteasomes also participate in a series of cellular processing, like immune regulation, nerve signal transduction, material transport through channels, cell adhesion, and various signaling pathways. However, the relationship between the PSMB9 expression and the occurrence of lower-grade glioma (LGG) is still unknown. First, we collected the RNA-seq and clinical information about LGG clinical samples from The Cancer Genome Atlas (TCGA) cohort, Chinese Glioma Genome Atlas (CGGA; including CGGAseq1 and CGGAseq2) cohort, and Gene Expression Omnibus (GEO; GSE16011, GSE61374, and Rembrandt) cohort. Then, these data were used for differential analysis, survival analysis, enrichment analysis, clinical model construction, etc. In addition, we combine immune-related data for immune-related analysis, including immune infiltration and immunotherapy. Through the above research, we have provided a new biomarker for LGG prognosis prediction and more comprehensively explained the role of PSMB9 in the development of LGG. This study determined that PSMB9 can be used as an immunotherapy target through the analysis of immune data, providing new ideas for the clinical treatment of LGG.
Collapse
Affiliation(s)
- Junzhe Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
| | - Xinyu Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
| | - Qiankun Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
| | - Lufei Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- *Correspondence: Minhua Ye, ; Kai Huang, ; Xingen Zhu,
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- *Correspondence: Minhua Ye, ; Kai Huang, ; Xingen Zhu,
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- *Correspondence: Minhua Ye, ; Kai Huang, ; Xingen Zhu,
| |
Collapse
|
8
|
Slow Off-Rate Modified Aptamer (SOMAmer) Proteomic Analysis of Patient-Derived Malignant Glioma Identifies Distinct Cellular Proteomes. Int J Mol Sci 2021; 22:ijms22179566. [PMID: 34502484 PMCID: PMC8431317 DOI: 10.3390/ijms22179566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Malignant gliomas derive from brain glial cells and represent >75% of primary brain tumors. This includes anaplastic astrocytoma (grade III; AS), the most common and fatal glioblastoma multiforme (grade IV; GBM), and oligodendroglioma (ODG). We have generated patient-derived AS, GBM, and ODG cell models to study disease mechanisms and test patient-centered therapeutic strategies. We have used an aptamer-based high-throughput SOMAscan® 1.3K assay to determine the proteomic profiles of 1307 different analytes. SOMAscan® proteomes of AS and GBM self-organized into closely adjacent proteomes which were clearly distinct from ODG proteomes. GBM self-organized into four proteomic clusters of which SOMAscan® cluster 4 proteome predicted a highly inter-connected proteomic network. Several up- and down-regulated proteins relevant to glioma were successfully validated in GBM cell isolates across different SOMAscan® clusters and in corresponding GBM tissues. Slow off-rate modified aptamer proteomics is an attractive analytical tool for rapid proteomic stratification of different malignant gliomas and identified cluster-specific SOMAscan® signatures and functionalities in patient GBM cells.
Collapse
|
9
|
Huang T, Chen Y, Zeng Y, Xu C, Huang J, Hu W, Chen X, Fu H. Long non-coding RNA PSMA3-AS1 promotes glioma progression through modulating the miR-411-3p/HOXA10 pathway. BMC Cancer 2021; 21:844. [PMID: 34294084 PMCID: PMC8296684 DOI: 10.1186/s12885-021-08465-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioma is a common type of brain tumor and is classified as low and high grades according to morphology and molecules. Growing evidence has proved that long non-coding RNAs (lncRNAs) play pivotal roles in numerous tumors or diseases including glioma. Proteasome 20S subunit alpha 3 antisense RNA 1 (PSMA3-AS1), as a member of lncRNAs, has been disclosed to play a tumor-promoting role in cancer progression. However, the role of PSMA3-AS1 in glioma remains unknown. Therefore, we concentrated on researching the regulatory mechanism of PSMA3-AS1 in glioma. METHODS PSMA3-AS1 expression was detected using RT-qPCR. Functional assays were performed to measure the effects of PSMA3-AS1 on glioma progression. After that, ENCORI ( http://starbase.sysu.edu.cn/ ) database was used to predict potential genes that could bind to PSMA3-AS1, and miR-411-3p was chosen for further studies. The interaction among PSMA3-AS1, miR-411-3p and homeobox A10 (HOXA10) were confirmed through mechanism assays. RESULTS PSMA3-AS1 was verified to be up-regulated in glioma cells and promote glioma progression. Furthermore, PSMA3-AS1 could act as a competitive endogenous RNA (ceRNA) for miR-411-3p to regulate HOXA10 and thus affecting glioma progression. CONCLUSION PSMA3-AS1 stimulated glioma progression via the miR-411-3p/HOXA10 pathway, which might offer a novel insight for the therapy and treatment of glioma.
Collapse
Affiliation(s)
- Tianzao Huang
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yingxian Chen
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Yile Zeng
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Chaoyang Xu
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jinzhong Huang
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Weipeng Hu
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiangrong Chen
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Huangde Fu
- Department of Neurosurgery, The Second Nanning People's Hospital, 13 Dancun Road, Jiangnan District, Nanning, 530031, Guangxi, China.
| |
Collapse
|
10
|
Mareike M, Franziska SB, Julia E, Daniel H, Michael S, Jörg F, Marion R. Does positive MGMT methylation outbalance the limitation of subtotal resection in glioblastoma IDH-wildtype patients? J Neurooncol 2021; 153:537-545. [PMID: 34185258 PMCID: PMC8279995 DOI: 10.1007/s11060-021-03794-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
Background The impact on survival of complete resection (CR) in patients with malignant glioma and MGMT promoter methylation on adjuvant therapy strategies has been proven in the past. However, it is not known whether a MGMT promoter methylation can compensate a subtotal resection. Therefore, we analyzed the progress of postoperative residual tumor tissue depending on the molecular tumor status. Methods We included all glioblastoma, IDH-wildtype (WHO grade IV) patients with postoperative residual tumor tissue, who were treated at our neurooncological department between 2010 and 2018. Correlation of molecular patterns with clinical data and survival times was performed. The results were compared to patients following CR. Results 267 patients with glioblastoma, IDH-wildtype (WHO grade IV) received surgery of whom 81 patients with residual tumor were included in the analysis. MGMT promoter was methylated in 31 patients (38.27%). Median OS and PFS were significantly increased in patients with methylated MGMT promoter (mOS: 16 M vs. 13 M, p = 0.009; mPFS: 13 M vs. 5 M, p = 0.003). In comparison to survival of patients following CR, OS was decreased in patients with residual tumor regardless MGMT methylation. Conclusion Our data confirm impact of MGMT promoter methylation in patients with glioblastoma, IDH-wildtype on OS and PFS. However, in comparison to patients after CR, a methylated MGMT promoter cannot compensate the disadvantage due to residual tumor volume. In terms of personalized medicine and quality of life as major goal in oncology, neuro-oncologists have to thoroughly discuss advantages and disadvantages of residual tumor volume versus possible neurological deficits in CR.
Collapse
Affiliation(s)
- Müller Mareike
- Department of Neurosurgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | | | - Ehrmann Julia
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Hänggi Daniel
- Department of Neurosurgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sabel Michael
- Department of Neurosurgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Felsberg Jörg
- Department of Neuropathology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Rapp Marion
- Department of Neurosurgery, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
11
|
Kumon M, Nakae S, Murayama K, Kato T, Ohba S, Inamasu J, Yamada S, Abe M, Sasaki H, Ohno Y, Hasegawa M, Kurahashi H, Hirose Y. Myoinositol to Total Choline Ratio in Glioblastomas as a Potential Prognostic Factor in Preoperative Magnetic Resonance Spectroscopy. Neurol Med Chir (Tokyo) 2021; 61:453-460. [PMID: 34078827 PMCID: PMC8365238 DOI: 10.2176/nmc.oa.2020-0312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) wild-type diffuse astrocytic tumors tend to be pathologically diagnosed as glioblastomas (GBMs). We previously reported that myoinositol to total choline (Ins/Cho) ratio in GBMs on magnetic resonance (MR) spectroscopy was significantly lower than that in IDH-mutant gliomas. We then hypothesized that a low Ins/Cho ratio is a poor prognosis factor in patients with GBMs, IDH-wild-type. In the present study, we calculated the Ins/Cho ratios of patients with GBMs and investigated their progression-free survival (PFS) and overall survival (OS) to determine their utility as prognostic marker. We classified patients with GBMs harboring wild-type IDH (n = 27) into two groups based on the Ins/Cho ratio, and compared patient backgrounds, pathological findings, PFS, OS, and copy number aberrations between the high and low Ins/Cho groups. Patients with GBMs in the low Ins/Cho ratio group indicated shorter PFS (P = 0.021) and OS (P = 0.048) than those in the high Ins/Cho group. Multivariate analysis demonstrated that the Ins/Cho ratio was significantly correlated with PFS (hazard ratio 0.24, P = 0.028). In conclusion, the preoperative Ins/Cho ratio can be used as a novel potential prognostic factor for GBM, IDH-wild-type.
Collapse
Affiliation(s)
| | | | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University
| | - Joji Inamasu
- Department of Neurosurgery, Fujita Health University
| | - Seiji Yamada
- Department of Pathology, Fujita Health University
| | - Masato Abe
- Department of Pathology, Fujita Health University
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine
| | | | | | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University
| |
Collapse
|
12
|
Cai X, Qiu W, Qian M, Feng S, Peng C, Zhang J, Wang Y, Wang Y. A Candidate Prognostic Biomarker Complement Factor I Promotes Malignant Progression in Glioma. Front Cell Dev Biol 2021; 8:615970. [PMID: 33614625 PMCID: PMC7889977 DOI: 10.3389/fcell.2020.615970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Objectives: Glioma is the most common and aggressive type of primary central nervous system (CNS) tumor in adults and is associated with substantial mortality rates. The aim of our study was to evaluate the prognostic significance and function of the complement factor I (CFI) in glioma. Materials and Methods: The expression levels of CFI in glioma tissues and the survival of the CFIhigh and CFIlow patient groups were analyzed using The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx). The correlation between CFI expression and clinicopathological features of glioma was determined by univariate and multivariate Cox regression analyses in the Chinese Glioma Genome Atlas (CGGA) database. The functional role of CFI in glioma was established through routine in vitro and in vivo assays. Results: CFI is overexpressed in glioma and its high levels correlated with poor outcomes in both TCGA and CGGA datasets. Furthermore, CFI was identified as an independent prognostic factor of glioma in the CGGA database. CFI knockdown in glioma cell lines inhibited growth in vitro and in vivo, whereas its ectopic expression increased glioma cell proliferation, migration, and invasion in vitro. CFI protein levels were also significantly higher in the glioma tissues resected from patients and correlated to worse prognosis. Conclusions: CFI is a potential prognostic biomarker in glioma and drives malignant progression.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of People's Liberation Army (PLA), Clinical Medical College of Anhui Medical University, Wuxi, China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Mengshu Qian
- Department of Emergency, The 904th Hospital of Joint Logistic Support Force of People's Liberation Army (PLA), Clinical Medical College of Anhui Medical University, Wuxi, China
| | - Shuang Feng
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenghao Peng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Jiale Zhang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of People's Liberation Army (PLA), Clinical Medical College of Anhui Medical University, Wuxi, China
| |
Collapse
|
13
|
Liu J, Gao L, Liao J, Yang J, Yuan F, Chen Q. Kiaa0101 serves as a prognostic marker and promotes invasion by regulating p38/snail1 pathway in glioma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:260. [PMID: 33708887 PMCID: PMC7940917 DOI: 10.21037/atm-20-3219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Kiaa0101, a regulator of cell proliferation, is overexpressed in many malignant tumors. However, its role in promoting invasion of glioma is poorly understood. Here, we investigated the effects of Kiaa0101 on glioma invasion and elucidated the underlying mechanisms of action. Methods We analyzed Kiaa0101 expression using datasets from four public databases, namely TCGA, CGGA, Gravendeel and Rembrandt as well as experimentally on 123 glioma samples via western blot (WB), RT-PCR and immunohistochemistry (IHC). We further quantified migration and invasion using wound healing and transwell assays. WB, IHC and immunofluorescence (IF) were used to detect expression of invasion related markers. Moreover, we detected tumor invasion of glioma cells in vivo in 5-week-old Balb/c nude mice. Results Kiaa0101 was upregulated in glioma, relative to non-tumor brain tissues, with the expression increasing with increase in glioma grade. Kiaa0101 mRNA expression was especially enriched in isocitrate dehydrogenase (IDH)1 wild-type glioma. Kaplan-Meier analysis, based on the aforementioned datasets, revealed that high Kiaa0101 levels were significantly associated with worse overall survival. Besides, shRNA-mediated Kiaa0101 knockdown inhibited migration and invasion of glioma cells by reducing snail1 expression both in vitro and in vivo, whereas its upregulation enhanced malignant behaviors of these cells. Furthermore, Kiaa0101 regulated snail1 expression by activating the p38MAPK signaling pathway. Conclusions Our findings strongly indicate that Kiaa0101 is a prognostic biomarker for malignant tumors, and its inhibition may be an effective strategy for treating glioma.
Collapse
Affiliation(s)
- Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
BATF2 prevents glioblastoma multiforme progression by inhibiting recruitment of myeloid-derived suppressor cells. Oncogene 2021; 40:1516-1530. [PMID: 33452462 PMCID: PMC7906906 DOI: 10.1038/s41388-020-01627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
The basic leucine zipper ATF-like transcription factor 2 (BATF2) has been implicated in inflammatory responses and anti-tumour effects. Little, however, is known regarding its extracellular role in maintaining a non-supportive cancer microenvironment. Here, we show that BATF2 inhibits glioma growth and myeloid-derived suppressor cells (MDSCs) recruitment. Interestingly, extracellular vesicles (EVs) from BATF2-overexpressing glioma cell lines (BATF2-EVs) inhibited MDSCs chemotaxis in vitro. Moreover, BATF2 inhibited intracellular SDF-1α and contributes to decreased SDF-1α in EVs. In addition, BATF2 downregulation-induced MDSCs recruitment were reversed by blocking SDF-1α/CXCR4 signalling upon AMD3100 treatment. Specifically, detection of EVs in 24 pairs of gliomas and healthy donors at different stages revealed that the abundance of BATF2-positive EVs in plasma (BATF2+ plEVs) can distinguish stage III-IV glioma from stage I-II glioma and healthy donors. Taken together, our study identified novel regulatory functions of BATF2 in regulating MDSCs recruitment, providing a prognostic value in terms of the number of BATF2+ plEVs in glioma stage.
Collapse
|
15
|
Haque W, Verma V, Barber S, Tremont IW, Brian Butler E, Teh BS. Management, outcomes, and prognostic factors of adult primary spinal cord gliomas. J Clin Neurosci 2020; 84:8-14. [PMID: 33485604 DOI: 10.1016/j.jocn.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/27/2020] [Accepted: 12/10/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE Primary spinal cord tumors are rare, particularly in the adult population, and national guidelines remain ambiguous with regard to management approaches. To address this knowledge gap, we evaluated management, outcomes, and prognostic factors of these neoplasms. METHODS The National Cancer Database was queried (2004-2016) for newly-diagnosed, histologically-confirmed WHO grades I-III astrocytomas and glioblastoma. Statistics included Kaplan-Meier overall survival (OS) analysis, along with Cox proportional hazards modeling. RESULTS Of 1,033 subjects, 196 (19%) were pilocytic astrocytomas (PAs), 539 (52%) were grade II/III astrocytomas, and 298 (29%) were glioblastomas (GBMs). Respectively, 11%, 30%, and 27% did not undergo resection (biopsy only). RT was delivered to 27%, 54%, and 73%; chemotherapy was given to 5%, 21%, and 37%, respectively. The median OS was not reached for PAs, but was 101.2 months for grade II/III astrocytomas, and 23.9 months for GBMs (p < 0.001). Neither chemotherapy nor RT (or dose thereof) was associated with increased OS for grade II/III astrocytomas (p > 0.05 for all), though there was a trend toward improved OS with the use of chemotherapy for patients with GBM. Surgical resection was associated with improved OS for grade II/III astrocytomas and GBM (p < 0.05). Independent prognostic factors for survival in this cohort included histologic classification and resection (compared to biopsy only) (p < 0.05 for both). CONCLUSIONS This study sheds light onto the management of these rare tumors; surgery was associated with OS benefit for patients with GBM and Grade II/III astrocytomas. Neither RT nor chemotherapy were associated with OS benefit. Although not implying causation, these data can be used to guide patient counseling and therapeutic approaches.
Collapse
Affiliation(s)
- Waqar Haque
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, United States.
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Sean Barber
- Department of Radiation Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | - Ivo W Tremont
- Department of Nuerooncology, Houston Methodist Hospital, TX, United States
| | - E Brian Butler
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, United States
| | - Bin S Teh
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
16
|
Bi Y, Mao Y, Su Z, Du J, Ye L, Xu F. Long noncoding RNA HNF1A-AS1 regulates proliferation and apoptosis of glioma through activation of the JNK signaling pathway via miR-363-3p/MAP2K4. J Cell Physiol 2020; 236:1068-1082. [PMID: 32779194 DOI: 10.1002/jcp.29916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been proven to exert important functions in the various biological processes of human cancers. It has been reported that lncRNA HNF1 homeobox A antisense RNA 1 (HNF1A-AS1) was abnormally expressed and played a role in the initiation and development of various human cancers. In this study, we confirmed that the expression level of HNF1A-AS1 was increased in glioma tissues and cells. Knockdown of HNF1A-AS1 inhibited cell proliferation and promoted cell apoptosis in glioma. Then, we disclosed the downregulation of miR-363-3p in glioma tissues and cell lines. The interaction between HNF1A-AS1 and miR-363-3p was identified in glioma cells. Furthermore, an inverse correlation between HNF1A-AS1 and miR-363-3p was observed in glioma tissues. Afterwards, we recognized that MAP2K4 was a direct target of miR-363-3p. The expression of MAP2K4 was negatively correlated with miR-363-3p while positively related to HNF1A-AS1 in glioma tissues. We also found the regulatory effect of HNF1A-AS1 on the MAP2K4-dependent JNK signaling pathway. All findings indicated that HNF1A-AS1 induces the upregulation of MAP2K4 to activate the JNK signaling pathway to promote glioma cell growth by acting as a miR-363-3p sponge.
Collapse
Affiliation(s)
- Yongyan Bi
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuhang Mao
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Zuopeng Su
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiarui Du
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Liping Ye
- Department of Nursing, Minhang Hospital, Fudan University, Shanghai, China
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Wu X, Hou P, Qiu Y, Wang Q, Lu X. Large-Scale Analysis Reveals the Specific Clinical and Immune Features of DGCR5 in Glioma. Onco Targets Ther 2020; 13:7531-7543. [PMID: 32801772 PMCID: PMC7402863 DOI: 10.2147/ott.s257050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Long non-coding RNA DGCR5 plays different roles in different types of cancer. The purpose of this study was to investigate the clinicopathological features, potential biological functions and prognostic significance of DGCR5 in glioma in a large-scale study. Materials and Methods A total of 697 RNA-seq data from The Cancer Genome Atlas (TCGA) and 301 mRNA microarray data from Chinese Glioma Genome Atlas (CGGA) were enrolled in this study. R language was used as the main tool for statistical analysis and graphical work. Results DGCR5 showed a negative correlation with the WHO grade of malignancy in glioma. Specifically, DGCR5 expression was significantly decreased in GBM and IDH wild-type glioma. Gene ontology analysis showed that DGCR5 was predominantly enriched in immune-related biological processes. Additionally, DGCR5 showed a significant correlation with stromal and immune cell populations, inflammatory activities and immune checkpoints. Clinically, patients with low-expression level of DGCR5 exhibited a worse overall survival. Conclusion DGCR5 expression is downregulated in glioma, and low DGCR5 independently predicts worse prognosis in glioma patients. Moreover, DGCR5 is significantly associated with immune response and immune infiltration. These findings suggest that DGCR5 is a promising immunotherapy target and a novel prognostic biomarker for glioma.
Collapse
Affiliation(s)
- Xuechao Wu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Peng Hou
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Yun Qiu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Xiaojie Lu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| |
Collapse
|
18
|
Konovalov NA, Asyutin DS, Shayhaev EG, Kaprovoy SV, Timonin SY. Rare Cases of IDH1 Mutations in Spinal Cord Astrocytomas. Acta Naturae 2020; 12:70-73. [PMID: 32742729 PMCID: PMC7385089 DOI: 10.32607/actanaturae.10915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A low occurrence rate of spinal cord gliomas (4.3% of primary and glial CNS
tumors) and the associated difficulties in building statistically significant
cohorts of patients considerably slow down the development of effective
approaches to the treatment of spinal cord tumors compared to brain tumors.
Despite our extensive knowledge regarding IDH mutations in
intracranial tumors, mutations of this gene in spinal cord astrocytomas remain
poorly understood. In this study, we report on five cases of identified
mutations in the IDH1 gene in spinal cord astrocytoma cells,
two of which are unique, as they have never been previously described in CNS
gliomas.
Collapse
Affiliation(s)
- N. A. Konovalov
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, Moscow, 125047 Russia
| | - D. S. Asyutin
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, Moscow, 125047 Russia
| | - E. G. Shayhaev
- FGBU Russian Research Center for X-ray Radiology of the Ministry of Health of the Russian Federation, Moscow, 117485 Russia
| | - S. V. Kaprovoy
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, Moscow, 125047 Russia
| | - S. Yu. Timonin
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, Moscow, 125047 Russia
| |
Collapse
|
19
|
Yang F, Zou Y, Gong Q, Chen J, Li WD, Huang Q. From astrocytoma to glioblastoma: a clonal evolution study. FEBS Open Bio 2020; 10:744-751. [PMID: 32069381 PMCID: PMC7193157 DOI: 10.1002/2211-5463.12815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/02/2019] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Astrocytomas often recur after surgical resection, but the underlying mechanism remains enigmatic. Elucidation of clonal evolution in primary and relapse tumors may provide important information on tumor progression. Here, we examined genetic factors underlying recurrence in a patient with astrocytoma initially diagnosed with World Health Organization (WHO) grade II astrocytoma, who then relapsed with glioblastoma (WHO grade IV) complicated with local anaplastic astrocytoma (WHO grade III). We performed genomic DNA sequencing and data analysis of paired tumor tissue specimens and a peripheral blood sample (control), and used expands software for subclone analysis. A germline NOTCH1 missense mutation was identified in the peripheral blood sample, the primary tumor and the relapse tumor; in addition, we identified a tumor protein p53 (TP53) heterozygous nonsense mutation in the primary tumor and a TP53 homozygous nonsense mutation and an IDH1 heterozygous missense mutation in the relapse tumor. Clonal evolution trees indicated higher heterogeneity in the relapse tumor. Although germline mutations might contribute to the driving force of the primary tumor, aggressive chemotherapy and radiation may apply selective pressure for tumor clonal evolution; furthermore, a total loss of function of gatekeeping genes (TP53) may result in impaired DNA repair and catastrophic chromosomal aberrations.
Collapse
Affiliation(s)
- Fuhua Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China.,Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, China
| | - Yunding Zou
- Department of Hematology, Southwest Hospital, The Army Medical University, Chongqing, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, The Army Medical University, Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, The Army Medical University, Chongqing, China
| | - Wei-Dong Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Qilin Huang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Konovalov NA, Asyutin DS, Shayhaev EG, Kaprovoy SV, Timonin SY. Molecular Biomarkers of Brain and Spinal Cord Astrocytomas. Acta Naturae 2019; 11:17-27. [PMID: 31413876 PMCID: PMC6643348 DOI: 10.32607/20758251-2019-11-2-17-27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 12/24/2022] Open
Abstract
Spinal cord astrocytomas are rare diseases of the central nervous system. The localization of these tumors and their infiltrative growth complicate their surgical resection, increase the risk of postoperative complications, and require more careful use of radio- and chemotherapy. The information on the genetic mutations associated with the onset and development of astrocytomas provides a more accurate neoplasm diagnosis and classification. In some cases, it also allows one to determine the optimal methods for treating the neoplasm, as well as to predict the treatment outcomes and the risks of relapse. To date, a number of molecular markers that are associated with brain astrocytomas and possess prognostic value have been identified and described. Due to the significantly lower incidence of spinal cord astrocytomas, the data on similar markers are much more sparse and are presented with a lesser degree of systematization. However, due to the retrospective studies of clinical material that have been actively conducted abroad in recent years, the formation of statistically significant genetic landscapes for various types of tumors, including intradural spinal cord tumors, has begun. In this regard, the purpose of this review is to analyze and systematize the information on the most significant genetic mutations associated with various types of astrocytomas, as well as discuss the prospects for using the corresponding molecular markers for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- N. A. Konovalov
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - D. S. Asyutin
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - E. G. Shayhaev
- FGBU Russian Research Center for X-ray Radiology of the Ministry of Health of the Russian Federation Profsouznaya Str. 86, Moscow, 117485, Russia
| | - S. V. Kaprovoy
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - S. Yu. Timonin
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| |
Collapse
|
21
|
Na K, Kim HS, Shim HS, Chang JH, Kang SG, Kim SH. Targeted next-generation sequencing panel (TruSight Tumor 170) in diffuse glioma: a single institutional experience of 135 cases. J Neurooncol 2019; 142:445-454. [PMID: 30710203 DOI: 10.1007/s11060-019-03114-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The TruSight Tumor 170 (TST-170) panel consists of a DNA workflow for the identification of single-nucleotide variants, small insertions and deletions, and copy number variation, as well as a panel of 55 genes for a RNA workflow for the identification of splice variants and gene fusions. To date, the application of TST-170 in diffuse gliomas (DGs) has not been described. METHODS We analyzed 135 samples of DG, which were diagnosed by WHO criteria based on histological features and conventional molecular tests including immunostaining, 1p/19q FISH, and analysis of MGMT methylation and TERT promoter mutation. RESULTS A total of 135 cases consisted of 38 IDH-mutant [17 astrocytoma (AC), 13 oligodendroglioma (OD) and eight glioblastoma (GBM)], 87 IDH-wildtype (six AC, three OD and 78 GBM), and 10 diffuse midline glioma, H3K27M-mutant. DNA analysis enabled the detection of all mutations identified in these samples by conventional techniques, and the results were highly comparable to the known mutations in each subtype. RNA analysis detected four fusion genes including PTPRZ1-MET, FGFR3-TACC3, FAM131B-BRAF, and RET-CCDC6 and one splicing variant (EGFR vIII mutant). Clustered copy number loss in 1p and 19q loci genes were detected in 1p/19q-codeleted OD. CONCLUSIONS The application of TST-170 panel based NGS in clinical and laboratory setting is expected to improve diagnostic accuracy and prognostication. Most benefits are expected in IDH-wildtype DG, a group of genetically heterogenous tumors harboring DNA sequence changes, copy number alterations, and fusions in a large number of oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Kiyong Na
- Department of Pathology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.,Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Wang L, Zhang C, Zhang Z, Han B, Shen Z, Li L, Liu S, Zhao X, Ye F, Zhang Y. Specific clinical and immune features of CD68 in glioma via 1,024 samples. Cancer Manag Res 2018; 10:6409-6419. [PMID: 30568502 PMCID: PMC6267768 DOI: 10.2147/cmar.s183293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background There is a growing recognition that tumor-associated macrophages (TAMs) are recruited to the glioma environment, facilitating tumor proliferation and migration by creating an immunosuppressive microenvironment. CD68 has been widely reported as a specific marker of TAMs in cancer. Purpose To clarify the role of CD68 in glioma, we investigated its function at the transcriptome level and relationship with clinical practice. Patients and methods In total, 325 RNA-seq data from Chinese Glioma Genome Atlas (CGGA) and 697 RNA-seq data from The Cancer Genome Atlas (TCGA) network were enrolled in this study. CD68-specific findings were further analyzed with R language, and the prognostic impacts were validated through analyzing the overall survival (OS). Results CD68 showed a positive correlation with the WHO grade of malignancy in glioma. Meanwhile, CD68 was predominantly expressed in IDH wide type and mesenchymal subtype. Gene ontology (GO) analysis revealed that CD68-related genes were closely related to inflammatory response and immune response. Moreover, seven cultures of metagenes further confirmed that CD68 was a specific marker for macrophages in inflammatory response and played an important role in suppressing T-cell-mediated immunity. The Pearson correlation test suggested that CD68 showed robust correlation with other markers of macrophages and immune checkpoints, including PD-1 and TIM-3. Clinically, a high expression level of CD68 in tumors exhibited a poor survival in glioma patients. Conclusion Our results demonstrated that CD68 acted as an immune suppressor and contributed to glioma progression in the tumor microenvironment. These findings may expand our understanding of CD68-specific clinical and immune features in glioma.
Collapse
Affiliation(s)
- Le Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China, .,Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China, .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Bing Han
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhibo Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China, .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China, .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China, .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China,
| |
Collapse
|
23
|
Wang K, Huang R, Li G, Zeng F, Zhao Z, Liu Y, Hu H, Jiang T. CKAP2 expression is associated with glioma tumor growth and acts as a prognostic factor in high‑grade glioma. Oncol Rep 2018; 40:2036-2046. [PMID: 30066946 PMCID: PMC6111633 DOI: 10.3892/or.2018.6611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
Cytoskeletal‑associated protein 2 (CKAP2), which is also known as tumor‑associated microtubule‑associated protein, has been reported to be dysregulated in various types of human cancer. However, the role of CKAP2 in glioma has not been fully elucidated. The present study evaluated the expression pattern of CKAP2 using the Chinese Glioma Genome Atlas microarray database, which included 301 patients, and validated the findings using The Cancer Genome Atlas RNA sequencing database. Kaplan‑Meier survival analysis, and univariate and multivariate Cox analyses, were used to estimate survival distributions. Furthermore, the biological implication of aberrant CKAP2 expression in high‑grade glioma (HGG) was investigated using Gene Ontology analysis, gene set enrichment analysis, gene set variation analysis and STRING. The results indicated that patients with HGG exhibited significantly higher CKAP2 expression levels compared with patients with low‑grade glioma in both databases. Higher expression levels of CKAP2 were significantly associated with shorter overall survival and progression‑free survival of patients with HGG. Furthermore, CKAP2 was also positively correlated with known malignant factors, including high Ki67 expression and phosphatase and tensin homolog mutations. The univariate and multivariate Cox regression analyses demonstrated that CKAP2 may be a novel independent prognostic biomarker for patients with HGG. Functional assays also indicated that CKAP2 was closely associated with the cell cycle, mitosis and cell proliferation. These results suggested that CKAP2 may be associated with tumor growth and could serve as an independent prognostic factor, particularly in patients with HGG.
Collapse
Affiliation(s)
- Kuanyu Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
| | - Fan Zeng
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Zheng Zhao
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Yanwei Liu
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Huimin Hu
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
24
|
Jin P, Huang Y, Zhu P, Zou Y, Shao T, Wang O. CircRNA circHIPK3 serves as a prognostic marker to promote glioma progression by regulating miR-654/IGF2BP3 signaling. Biochem Biophys Res Commun 2018; 503:1570-1574. [DOI: 10.1016/j.bbrc.2018.07.081] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
|
25
|
Li J, Zhou L. Overexpression of lncRNA DANCR positively affects progression of glioma via activating Wnt/β-catenin signaling. Biomed Pharmacother 2018; 102:602-607. [DOI: 10.1016/j.biopha.2018.03.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
|
26
|
Li X, Pu J, Liu J, Chen Y, Li Y, Hou P, Shi B, Yang Q. The prognostic value of DAPK1 hypermethylation in gliomas: A site-specific analysis. Pathol Res Pract 2018; 214:940-948. [PMID: 29807777 DOI: 10.1016/j.prp.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The gene of death associated protein kinase 1 (DAPK1) has been reported to be methylated in various cancers including gliomas. However, its prognostic value for gliomas is still controversy, and the methylation at specific CpG sites of DAPK1 has not been investigated. The aim of this study was to prognostically evaluate the methylation level of different CpG sites within DAPK1 promoter region in gliomas. METHODS Based on sodium bisulfite treated DNA products, we made use of DNA pyrosequencing method to evaluate overall and site-specific methylation of DAPK1 in 143 gliomas and 26 benign tumors (meningeomas) or normal brain tissues. We both statistically analyzed the association between methylation levels of each CpG site and the clinicopathological characteristics, and estimated the prognosis predictive value of site-specific methylation for glioma patients. RESULTS Methylation status of DAPK1 site -1527, -1543, and the overall five sites concerned was higher in gliomas than controlled subjects (p < 0.001). Hypermethylation at site -1527 or together with site -1543 associated with better survival in patients taken postoperative therapies (-1527: p = 0.002; -1527 & -1543: p = 0.023), as well as in patients just underwent radiotherapy after surgery (-1527: p = 0.015; -1527 & -1543: p = 0.030). However, Cox regression analysis indicated the site-specific methylation was not independent contributor for gliomas prognosis. CONCLUSION Analysis of DAPK1 gene promoter by quantitative pyrosequencing provided more detailed information of methylation status of CpG sites. DAPK1 methylation level is associated with gliomas clinical features and outcomes. Interestingly, the hypermethylation at site -1527 or together with site -1543 indicated good sensitivity of postoperative therapies, especially radiotherapy. Thus, site specifically analysis of DAPK1 methylation may be a valuable diagnostic and prognostic estimation for gliomas.
Collapse
Affiliation(s)
- Xinru Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jun Pu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jiaxin Liu
- Department of Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yijun Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yu Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
27
|
Fan X, Li Y, Shan X, You G, Wu Z, Li Z, Qiao H, Jiang T. Seizures at presentation are correlated with better survival outcomes in adult diffuse glioma: A systematic review and meta-analysis. Seizure 2018; 59:16-23. [PMID: 29727741 DOI: 10.1016/j.seizure.2018.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Seizures are the most common presenting sign of patients with diffuse glioma. In the current study, we performed a meta-analysis to determine the correlation of seizures at presentation to survival outcomes in adult diffuse glioma, and the possible mechanisms were also discussed. METHODS A comprehensive literature search was performed in PUBMED, EMBASE, Web of Science and the Cochrane Central Register of Controlled Trials. The pooled hazard ratio (HR) and corresponding 95% confidence interval (CI) were used to estimate effects. Heterogeneity among studies and publication bias were also evaluated. RESULTS 11 studies with 2088 patients were finally included for the current meta-analysis. Seizure-free preoperatively was significantly associated with a poor overall survival in patients with diffuse glioma, the pooled HR was 1.73 (95% CI 1.43-2.08, Z = 5.71, p < 0.001). Subgroup analysis was also performed by tumor grade, the same association was identified in both low-grade glioma (pooled HR 2.49, 95% CI 1.47-4.20, Z = 3.40, p < 0.001) and glioblastoma (pooled HR 1.46, 95% CI 1.27-1.68, Z = 5.24, p < 0.001). A significant correlation of seizure-free with a poor progression-free survival was also identified (pooled HR 1.42, 95% CI 1.06-1.92, Z = 2.33, p = 0.02), although only 3 studies comprising 368 patients were included. CONCLUSION The current study determined that seizures at presentation were an independent predictor of better survival outcomes in adult diffuse glioma. It is the first study which provides a comprehensive standardized assessment of the association between seizures at presentation with long-term survival outcomes in patients with diffuse glioma.
Collapse
Affiliation(s)
- Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Yucai Li
- People's Hospital of Rizhao, Rizhao 276800, China
| | - Xia Shan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Gan You
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhifeng Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Zhibao Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Hui Qiao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Oncology, Beijing Academy of Critical Illness in Brain, Beijing 100069, China.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW In this review, we seek to summarize the literature concerning the use of single-cell RNA-sequencing for CNS gliomas. RECENT FINDINGS Single-cell analysis has revealed complex tumor heterogeneity, subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment influence in the disease process. Although bulk RNA-sequencing has guided our initial understanding of glioma genetics, this method does not accurately define the heterogeneous subpopulations found within these tumors. Single-cell techniques have appealing applications in cancer research, as diverse cell types and the tumor microenvironment have important implications in therapy. High cost and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued innovation will improve accessibility and expand our of knowledge gliomas.
Collapse
|
29
|
Li Y, Shan X, Wu Z, Wang Y, Ling M, Fan X. IDH1 mutation is associated with a higher preoperative seizure incidence in low-grade glioma: A systematic review and meta-analysis. Seizure 2018; 55:76-82. [PMID: 29414139 DOI: 10.1016/j.seizure.2018.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Gliomas, particularly low-grade gliomas (LGGs), are highly epileptogenic. Seizure is the most common presenting sign of LGG patients and significantly decreases their quality of life. Accordingly, there is a need for a better understanding of the mechanisms and risk factors of glioma-related epilepsy. The current study aimed to perform a comprehensive meta-analysis to investigate the correlation of isocitrate-dehydrogenase 1 (IDH1), an important molecular biomarker for glioma classification and prognosis, to preoperative seizure incidence in LGG. METHODS PUBMED, EMBASE, and Web of Science databases were searched for relevant studies. The odds ratio (OR) and corresponding 95% confidence interval (CI) were used as the primary measures to assess the correlation between IDH1 mutation and preoperative seizure incidence. RESULTS A total of 722 LGG patients, including 555 patients with IDH1 mutation and 167 patients with wild-type IDH1 were enrolled in the current meta-analysis. The pooled OR was 2.47 (95% CI 1.70-3.57, Z = 4.78, p < 0.01). No significant heterogeneity was observed among all included studies and no publication bias was identified. CONCLUSION The current meta-analysis identified that IDH1 mutation was correlated to a higher preoperative seizure incidence in LGG. This result would generate impetus for research on the mechanisms behind this correlation, and provide a new idea for the individualized treatment of glioma-related epilepsy.
Collapse
Affiliation(s)
- Yucai Li
- People's Hospital of Rizhao, Rizhao, 276800, China
| | - Xia Shan
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Zhifeng Wu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Yinyan Wang
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Miao Ling
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Xing Fan
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
30
|
Porkholm M, Raunio A, Vainionpää R, Salonen T, Hernesniemi J, Valanne L, Satopää J, Karppinen A, Oinas M, Tynninen O, Pentikäinen V, Kivivuori SM. Molecular alterations in pediatric brainstem gliomas. Pediatr Blood Cancer 2018; 65. [PMID: 28792659 DOI: 10.1002/pbc.26751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPGs) have a dismal prognosis. Previously, diagnosis was based on a typical clinical presentation and magnetic resonance imaging findings. After the start of the era of biopsies, DIPGs bearing H3 K27 mutations have been reclassified into a novel entity, diffuse midline glioma, based on the presence of this molecular alteration. However, it is not well established how clinically diagnosed DIPG overlap with H3 K27-mutated diffuse midline gliomas, and whether rare long-term survivors also belong to this group. METHODS We studied tumor samples obtained at diagnosis or upon autopsy from 23 children, including two long-term survivors. Based on clinical, radiological, and histological findings, all tumors were previously diagnosed as DIPGs. All samples were analyzed for genetic alterations by next-generation sequencing (NGS) and for protein expression by immunohistochemistry (IHC). RESULTS H3 K27 was mutated in NGS or IHC in 20 patients, excluding both long-term survivors. One of these long-term survivors harbored a mutation in IDH1, formerly considered to be an alteration absent in pediatric diffuse brainstem gliomas. Other altered genes in NGS included TP53 (10 patients), MET and PDGFRA (3 patients each), VEGFR and SMARCA4 (2 patients each), and PPARγ, PTEN and EGFR in 1 patient, respectively. IHC revealed cMYC expression in 15 of 24 (63%) of all samples, exclusively in the biopsies. CONCLUSIONS Eighty-seven percent of the tumors formerly diagnosed as DIPGs could be reclassified as H3 K27-mutated diffuse midline gliomas. Both long-term survivors lacked this alteration. Contrary to former conceptions, IDH1 mutations may occur also in pediatric brainstem gliomas.
Collapse
Affiliation(s)
- Mikaela Porkholm
- Department of Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anna Raunio
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | | | - Tarja Salonen
- Laboratory of Pathology and Genetics, HUSLAB, Helsinki, Finland
| | - Juha Hernesniemi
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Valanne
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jarno Satopää
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Atte Karppinen
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Minna Oinas
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Virve Pentikäinen
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Sanna-Maria Kivivuori
- Department of Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Zhang B, Liu Y, Li Y, Zhe X, Zhang S, Zhang L. Neuroglobin promotes the proliferation and suppresses the apoptosis of glioma cells by activating the PI3K/AKT pathway. Mol Med Rep 2017; 17:2757-2763. [PMID: 29207186 DOI: 10.3892/mmr.2017.8132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Our previous study demonstrated that neuroglobin (Ngb) functions as an independent predictive indicator of the prognosis of patients with glioma and promotes cancer cell growth by suppressing apoptosis. However, the understanding of the mechanisms underlying the survival‑enhancing function of Ngb in glioma is limited. In the present study, KEGG PathwayFinder by gene correlation analysis was performed on the R2: Genomics Analysis and Visualization Platform, which revealed a high association between Ngb and the phosphatidylinositol 3‑kinase (PI3K)/AKT pathway using glioma data (GSE4290) from the Gene Expression Omnibus database. Furthermore, western blotting experiments were performed in U251 and U87 glioma cells, and Ngb knockdown using short hairpin RNA reduced the protein levels of phosphorylated (p)‑AKT, p‑mammalian target of rapamycin (mTOR) and antiapoptotic factor Bcl‑2, and increased the expression of the proapoptotic protein Bcl‑2‑associated X, in U251 cells. In addition, Ngb overexpression promoted the activation of the PI3K/AKT pathway in U87 cells. MK2206, a PI3K/AKT signaling inhibitor, reduced the expression of p‑AKT and increased the levels of apoptosis‑associated proteins, including cleaved poly(ADP‑ribose) polymerase 1 and cleaved caspase‑3/7/8, in Ngb‑overexpressing U87 cells. Furthermore, MK2206 treatment reduced the proliferation and induced the apoptosis of Ngb‑overexpressing U87 cells, as indicated by the results of MTT, colony formation and flow cytometry assays. In addition, insulin‑like growth factor‑1, a PI3K/AKT signaling activator, reversed Ngb knockdown‑induced growth arrest and apoptosis in U251 cells. In conclusion, the results of the present study indicate that Ngb may facilitate a malignant phenotype of glioma cells by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yajun Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Xiao Zhe
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Shijun Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
32
|
Gao T, Gu G, Tian J, Zhang R, Zheng X, Wang Y, Pang Q, Liu Q. LncRNA HSP90AA1-IT1 promotes gliomas by targeting miR-885-5p-CDK2 pathway. Oncotarget 2017; 8:75284-75297. [PMID: 29088865 PMCID: PMC5650420 DOI: 10.18632/oncotarget.20777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/30/2017] [Indexed: 01/16/2023] Open
Abstract
It is well established that ncRNAs are emerging as important regulators in various types of cancers, however, their functions and contributions in cancers remain insufficiently defined. In this study, we reported the expression levels of a long noncoding RNA (lncRNA), named HSP90AA1-IT1 (HSP90AA1 intronic transcript 1), appeared to correlate with the pathological grades of gliomas and high level of HSP90AA1-IT1 indicated poor prognosis. Downregulation of HSP90AA1-IT1 in the glioma cell lines significantly suppressed cell viability, proliferation, EMT, invasion and migration in addition to an increase in apoptosis and aberrant cell cycle progression. The tumorigenic capacity of these cells in vivo were also inhibited. We further demonstrated that the oncogenic effects of HSP90AA1-IT1 could be mediated by a direct binding to miR-885-5p. Sharing the same binding sites with CDK2, a key regulator in gliomagenesis, HSP90AA1-IT1 competitively bound to miR-885-5p, thereby prevented CDK2 from miR-885-5p mediated post-transcriptional repression. Taken together, it is concluded that HSP90AA1-IT1, performs its function via regulating the development of gliomas through miR-885-5p-CDK2 signaling axis, and this has added new perspective to its role in tumorigenesis, thus providing potential therapeutic targets for glioma treatment.
Collapse
Affiliation(s)
- Taihong Gao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Guangyan Gu
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Jingxia Tian
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Xiangrong Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Yanan Wang
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Qian Liu
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| |
Collapse
|
33
|
Sharma V, Malgulwar PB, Purkait S, Patil V, Pathak P, Agrawal R, Kulshreshtha R, Mallick S, Julka PK, Suri A, Sharma BS, Suri V, Sharma MC, Sarkar C. Genome-wide ChIP-seq analysis of EZH2-mediated H3K27me3 target gene profile highlights differences between low- and high-grade astrocytic tumors. Carcinogenesis 2017; 38:152-161. [PMID: 27993893 DOI: 10.1093/carcin/bgw126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023] Open
Abstract
Enhancer of zeste homolog-2(EZH2) is a key epigenetic regulator that functions as oncogene and also known for inducing altered trimethylation of histone at lysine-27 (H3K27me3) mark in various tumors. However, H3K27me3 targets and their precise relationship with gene expression are largely unknown in astrocytic tumors. In this study, we checked EZH2 messenger RNA and protein expression in 90 astrocytic tumors of different grades using quantitative PCR and immunohistochemistry, respectively. Further, genome-wide ChIP-seq analysis for H3K27me3 modification was also performed on 11 glioblastomas (GBMs) and 2 diffuse astrocytoma (DA) samples. Our results showed EZH2 to be highly overexpressed in astrocytic tumors with a significant positive correlation with grade. Interestingly, ChIP-seq mapping revealed distinct differences in genes and pathways targeted by these H3K27me3 modifications between GBM versus DA. Neuroactive ligand receptor pathway was found most enriched in GBM (P = 9.4 × 10-25), whereas DA were found to be enriched in metabolic pathways. Also, GBM showed a higher enrichment of H3K27me3 targets reported in embryonic stem cells and glioma stem cells as compared with DAs. Our results show majority of these H3K27me3 target genes were downregulated, not only due to H3K27me3 modification but also due to concomitant DNA methylation. Further, H3K27me3 modification-associated gene silencing was not restricted to promoter but also present in gene body and transcription start site regions. To the best of our knowledge, this is the first high-resolution genome-wide mapping of H3K27me3 modification in adult astrocytic primary tissue samples of human, highlighting the differences between grades. Interestingly, we identified SLC25A23 as important target of H3K27me3 modification, which was downregulated in GBM and its low expression was associated with poor prognosis in GBMs.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prit Benny Malgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Pankaj Pathak
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rahul Agrawal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | | | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhawani Shankar Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
34
|
Li Y, Ma X, Wang Y, Li G. miR-489 inhibits proliferation, cell cycle progression and induces apoptosis of glioma cells via targeting SPIN1-mediated PI3K/AKT pathway. Biomed Pharmacother 2017; 93:435-443. [PMID: 28666210 DOI: 10.1016/j.biopha.2017.06.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 01/06/2023] Open
Abstract
microRNA-489 (miR-489), a newly identified tumor-related miRNA, functions as an oncogene or tumor suppressor via regulating growth and metastasis of human cancers. But, the clinical significance, biological function and underlying mechanisms of miR-489 in glioma remain rarely known. Here, we showed that the levels of miR-489 in glioma tissues were notably underexpressed compared to corresponding non-tumor tissues. In accordance, the relative levels of miR-489 were decreased in glioma cell lines compared with NHA cells. Kaplan-Meier plots indicated that miR-489 low expressing glioma patients showed a prominent shorter overall survival. In addition, miR-489 overexpression prohibited proliferation and cell cycle progression, and promoted apoptosis in U251 cells. While, miR-489 knockdown showed opposite effects on these cellular processes of U87 cells. In vivo experiments demonstrated that miR-489 restoration reduced the tumor volume and weight of subcutaneous glioma xenografts in nude mice. Notably, Spindlin 1 (SPIN1) was inversely and directly regulated by miR-489 in glioma cells. A negative correlation between the expression of miR-489 and SPIN1 mRNA was confirmed in glioma tissues. Interestingly, miR-489 inversely modulated activation of PI3K/AKT pathway and expression of downstream targets including p-mTOR, Cyclin D1 and BCL-XL. SPIN1 re-expression abolished the effects of miR-489 on U251 cells with enhanced activation of PI3K/AKT pathway and malignant phenotype. Meanwhile, AKT inhibitor MK-2206 blocked activation of PI3K/AKT pathway and resulted in reduced proliferation, cell cycle arrest and increased apoptosis in miR-489 down-regulating U87 cells. Altogether, our data support that miR-489 loss facilitates malignant phenotype of glioma cells probably via SPIN1-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The Third Hospital of Jinan, Jinan, Shandong Province 250132, China.
| | - Xiaolin Ma
- Department of Neurology, The Third Hospital of Jinan, Jinan, Shandong Province 250132, China
| | - Yanpeng Wang
- Department of Pharmacy, The Third Hospital of Jinan, Jinan, Shandong Province 250132, China
| | - Guohua Li
- Department of Neurology, The Third Hospital of Jinan, Jinan, Shandong Province 250132, China
| |
Collapse
|
35
|
Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8013575. [PMID: 28316990 PMCID: PMC5337853 DOI: 10.1155/2017/8013575] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) is a primary neuroepithelial tumor of the central nervous system, characterized by an extremely aggressive clinical phenotype. Patients with GBM have a poor prognosis and only 3–5% of them survive for more than 5 years. The current GBM treatment standards include maximal resection followed by radiotherapy with concomitant and adjuvant therapies. Despite these aggressive therapeutic regimens, the majority of patients suffer recurrence due to molecular heterogeneity of GBM. Consequently, a number of potential diagnostic, prognostic, and predictive biomarkers have been investigated. Some of them, such as IDH mutations, 1p19q deletion, MGMT promoter methylation, and EGFRvIII amplification are frequently tested in routine clinical practice. With the development of sequencing technology, detailed characterization of GBM molecular signatures has facilitated a more personalized therapeutic approach and contributed to the development of a new generation of anti-GBM therapies such as molecular inhibitors targeting growth factor receptors, vaccines, antibody-based drug conjugates, and more recently inhibitors blocking the immune checkpoints. In this article, we review the exciting progress towards elucidating the potential of current and novel GBM biomarkers and discuss their implications for clinical practice.
Collapse
|
36
|
Puduvalli VK, Chaudhary R, McClugage SG, Markert J. Beyond Alkylating Agents for Gliomas: Quo Vadimus? Am Soc Clin Oncol Educ Book 2017; 37:175-186. [PMID: 28561663 PMCID: PMC5803081 DOI: 10.1200/edbk_175003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.
Collapse
Affiliation(s)
- Vinay K Puduvalli
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - Rekha Chaudhary
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - Samuel G McClugage
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - James Markert
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
37
|
Wu J, Li L, Jiang G, Zhan H, Wang N. B-cell CLL/lymphoma 3 promotes glioma cell proliferation and inhibits apoptosis through the oncogenic STAT3 pathway. Int J Oncol 2016; 49:2471-2479. [PMID: 27748795 DOI: 10.3892/ijo.2016.3729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of oncogenes and/or tumor suppressors play fundamental roles in the pathogenesis of glioma. B-cell CLL/lymphoma 3 (BCL3) was previously found to be a putative proto-oncogene in human cancers and the decoy receptor DcR1 is induced in a p50/Bcl3-dependent manner and attenuates the efficacy of temozolomide in glioblastoma cells. However, its expression status, clinical significance and biological functions in glioma remain largely unknown. In the present study, the levels of BCL3 were overexpressed in glioma compared to normal brain tissues. Furthermore, high expression of BCL3 protein was confirmed by immunoblotting in glioma cells as compared with normal human astrocyte cell line. The positive expression of BCL3 was correlated with adverse prognostic features and reduced overall survival rate of glioma patients. BCL3 silencing resulted in prominent decreased proliferation, cell cycle arrest in G1 phase and increased apoptosis in U251 cells. In contrast, BCL3 overexpression in U87 cells remarkably facilitated proliferative ability and cell cycle progression and induced apoptosis. In vivo studies showed that BCL3 knockdown inhibited the tumor growth of U251 cells in a mouse xenograft model. Mechanistically, BCL3 positively regulated the abundance of STAT3, p-STAT3 and the downstream targets of STAT3 pathway including BCL2, MCL-1 and cyclin D1 in glioma cells. Furthermore, a positive correlation between BCL3 and STAT3 expression was observed in glioma specimens. Notably, we confirmed that STAT3 knockdown abolished the oncogenic roles of BCL3 in glioma. In conclusion, we suggest that BCL3 serves as an oncogene in glioma by modulating proliferation, cell cycle progression and apoptosis, and its oncogenic effects are mediated by the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jianheng Wu
- Department of Neurosurgery, The People's Hospital of Gaozhou, Gaozhou, Guangdong 525200, P.R. China
| | - Linfan Li
- Department of Neurosurgery, The People's Hospital of Gaozhou, Gaozhou, Guangdong 525200, P.R. China
| | - Guangyuan Jiang
- Department of Neurosurgery, The Second People's Hospital of Guangxi Zhuang Autonomous Region, Guilin 541000, P.R. China
| | - Hui Zhan
- Department of Neurosurgery, The People's Hospital of Gaozhou, Gaozhou, Guangdong 525200, P.R. China
| | - Nannan Wang
- Department of Gastroenterology, The People's Hospital of Gaozhou, Gaozhou, Guangdong 525200, P.R. China
| |
Collapse
|
38
|
Li J, An G, Zhang M, Ma Q. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun 2016; 477:743-748. [PMID: 27363339 DOI: 10.1016/j.bbrc.2016.06.129] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Long non-coding RNA taurine upregulated gene 1 (TUG1) acts as an important regulator in cancer pathogenesis; however, its functional mechanism in glioma development remains unclear. This study aims to explore the potential function of TUG1 in glioma by sponging miR-26a. METHODS The expression of TUG1, miR-26a, and phosphatase and tensin homolog (PTEN) in 20 paired glioma tissues was detected by quantitative real-time PCR and subjected to correlation analysis. Bioinformatics analysis was performed by using DIANA Tools. Abnormal TUG1 expression was conducted in two glioma cells to analyze its regulation on miR-26a and PTEN using real-time PCR, western blot, and luciferase reporter assay. RESULTS TUG1 expression was confirmed to be upregulated in glioma tissues, and showed an inverse correlation with downregulated miR-26a. TUG1 could negatively regulate the expression of miR-26a in glioma cells. The bioinformatics prediction revealed putative miR-26a binding sites within TUG1 transcripts. Further experiments demonstrated the positive regulation of TUG1 on the miR-26a target, PTEN, wherein TUG1 could inhibit the negative regulation of miR-26a on PTEN by binding its 3'UTR. Additionally, the expression of PTEN was also upregulated in glioma tissues, showing a positive or negative correlation with TUG1 or miR-26a, respectively. CONCLUSION TUG1 could serve as a miR-26a sponge in human glioma cells, contributing to the upregulation of PTEN. This study revealed a new TUG1/miR-26a/PTEN regulatory mechanism and provided a further understanding of the tumor-suppressive role of TUG1 in glioma development.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China.
| | - Gang An
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| | - Meng Zhang
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| | - Qingfang Ma
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
39
|
Abstract
Background IDH (Isocitrate dehydrogenase) mutations occur frequently in gliomas, but their prognostic impact has not been fully assessed. We performed a meta-analysis of the association between IDH mutations and survival in gliomas. Methods Pubmed and EMBASE databases were searched for studies reporting IDH mutations (IHD1/2 and IDH1) and survival in gliomas. The primary outcome was overall survival (OS); the secondary outcome was progression-free survival (PFS). Hazard ratios (HR) with 95% confidence interval (CI) were determined using the Mantel-Haenszel random-effect modeling. Funnel plot and Egger's test were conducted to examine the risk of publication bias. Results Fifty-five studies (9487 patients) were included in the analysis. Fifty-four and twenty-seven studies investigated the association between IDH1/2 mutations and OS/PFS respectively in patients with glioma. The results showed that patients possessing an IDH1/2 mutation had significant advantages in OS (HR = 0.39, 95%CI: 0.34–0.45; P < 0.001) and PFS (HR = 0.42, 95% CI: 0.35–0.51; P < 0.001). Subgroup analysis showed a consistent result with pooled analysis, and patients with glioma of WHO grade III or II-III had better outcomes. Conclusions These findings provide further indication that patients with glioma harboring IDH mutations have improved OS and PFS, especially for patients with WHO grade III and grade II-III.
Collapse
|
40
|
Barth RF, Wu G, Meisen WH, Nakkula RJ, Yang W, Huo T, Kellough DA, Kaumaya P, Turro C, Agius LM, Kaur B. Design, synthesis, and evaluation of cisplatin-containing EGFR targeting bioconjugates as potential therapeutic agents for brain tumors. Onco Targets Ther 2016; 9:2769-81. [PMID: 27274273 PMCID: PMC4869632 DOI: 10.2147/ott.s99242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux®) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents. The second bioconjugate (C225-PG-Pt) employed the same methodology except that polyglutamic acid was used as the carrier. The third and fourth bioconjugates used two different EGF peptides, PEP382 and PEP455, with direct coordination to the Pt center of the cis-DDP fragment. In vivo studies with C225-G5-Pt failed to demonstrate therapeutic activity following intracerebral (ic) convection-enhanced delivery (CED) to F98EGFR glioma-bearing rats. The second bioconjugate, C225-PG-Pt, failed to show in vitro cytotoxicity. Furthermore, because of its high molecular weight, we decided that lower molecular weight peptides might provide better targeting and microdistribution within the tumor. Both PEP382-Pt and PEP455-Pt bioconjugates were cytotoxic in vitro and, based on this, a pilot study was initiated using PEP455-Pt. The end point for this study was tumor size at 6 weeks following tumor cell implantation and 4 weeks following ic CED of PEP455-Pt to F98 glioma-bearing rats. Neuropathologic examination revealed that five of seven rats were either tumor-free or only had microscopic tumors at 42 days following tumor implantation compared to a mean survival time of 20.5 and 26.3 days for untreated controls. In conclusion, we have succeeded in reformatting the toxicity profile of cis-DDP and demonstrated the therapeutic efficacy of the PEP455-Pt bioconjugate in F98 glioma-bearing rats.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Gong Wu
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - W Hans Meisen
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Robin J Nakkula
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Weilian Yang
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Tianyao Huo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - David A Kellough
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Pravin Kaumaya
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Lawrence M Agius
- Department of Pathology, Mater Dei Hospital, University of Malta Medical School, Msida, Malta
| | - Balveen Kaur
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Nikiforova MN, Wald AI, Melan MA, Roy S, Zhong S, Hamilton RL, Lieberman FS, Drappatz J, Amankulor NM, Pollack IF, Nikiforov YE, Horbinski C. Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro Oncol 2016; 18:379-87. [PMID: 26681766 PMCID: PMC4767245 DOI: 10.1093/neuonc/nov289] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Identification of genetic changes in CNS tumors is important for the appropriate clinical management of patients. Our objective was to develop a next-generation sequencing (NGS) assay for simultaneously detecting the various types of genetic alterations characteristic for adult and pediatric CNS tumors that can be applied to small brain biopsies. METHODS We report an amplification-based targeted NGS assay (GlioSeq) that analyzes 30 genes for single nucleotide variants (SNVs) and indels, 24 genes for copy number variations (CNVs), and 14 types of structural alterations in BRAF, EGFR, and FGFR3 genes in a single workflow. GlioSeq performance was evaluated in 54 adult and pediatric CNS tumors, and the results were compared with fluorescence in-situ hybridization, Sanger sequencing, and reverse transcription PCR. RESULTS GlioSeq correctly identified 71/71 (100%) genetic alterations known to be present by conventional techniques, including 56 SNVs/indels, 9 CNVs, 3 EGFRvIII, and 3 KIAA1549-BRAF fusions. Only 20 ng of DNA and 10 ng of RNA were required for successful sequencing of 100% frozen and 96% formalin-fixed, paraffin-embedded tissue specimens. The assay sensitivity was 3%-5% of mutant alleles for SNVs and 1%-5% for gene fusions. The most commonly detected alterations were IDH1, TP53, TERT, ATRX. CDKN2A, and PTEN in high-grade gliomas, followed by BRAF fusions in low-grade gliomas and H3F3A mutations in pediatric gliomas. CONCLUSIONS GlioSeq NGS assay offers accurate and sensitive detection of a wide range of genetic alterations in a single workflow. It allows rapid and cost-effective profiling of brain tumor specimens and thus provides valuable information for patient management.
Collapse
Affiliation(s)
- Marina N Nikiforova
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Abigail I Wald
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Melissa A Melan
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Somak Roy
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Shan Zhong
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Ronald L Hamilton
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Frank S Lieberman
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Jan Drappatz
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Nduka M Amankulor
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Ian F Pollack
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Yuri E Nikiforov
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| | - Craig Horbinski
- Department of Pathology, Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.N.N, A.I.W., M.A.M., S.R., S.Z., Y.E.N.); Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania (R.L.H.); Division of Hematology/Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (F.S.L., J.D.); Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (N.M.A., I.F.P.); Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois (C.H.)
| |
Collapse
|
42
|
Liu J, Zhao Z, Sun M, Chen K, Yuan W, Jiang G. The Sensitive Detection of Telomerase Reverse Transcriptase Promoter Mutation by Amplification Refractory Mutation System-PCR. Genet Test Mol Biomarkers 2016; 20:90-3. [PMID: 26741813 DOI: 10.1089/gtmb.2015.0229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM In gliomas, mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been associated with specific subtypes and are inversely correlated with IDH1 mutation status, predicting poor prognosis. Thus, TERT promoter mutation status might be a candidate for development as a prognostic biomarker. However, current IDH1 mutation detection methods using conventional polymerase chain reaction (PCR), followed by Sanger sequencing, have low sensitivity and are time-consuming. To improve test efficacy, we developed a more efficient detection protocol based on an amplification refractory mutation system-PCR (ARMS-PCR), which is based on the principle that DNA extension only happens when the 3'-terminal nucleotide of a primer matches its target sequence. MATERIALS AND METHODS We generated plasmids containing TERT promoter sequences and optimized this new protocol for the identification of the two most common TERT promoter mutations, C250T and C228T. RESULTS The enhanced sensitivity and efficiency of this protocol were validated using 124 human glioma samples. CONCLUSION We have described an ARMS-PCR methodology with improved sensitivities that could replace current commonly used methods for the detection of TERT promoter mutations in gliomas.
Collapse
Affiliation(s)
- Jinbo Liu
- 1 Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China .,2 Department of Pathology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Zhihua Zhao
- 2 Department of Pathology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Miaomiao Sun
- 3 Department of Pathology, Henan Tumor Hospital , Zhengzhou, China
| | - Kuisheng Chen
- 2 Department of Pathology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Weitang Yuan
- 1 Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Guozhong Jiang
- 2 Department of Pathology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
43
|
Caino MC, Altieri DC. Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin Cancer Res 2015; 22:540-5. [PMID: 26660517 DOI: 10.1158/1078-0432.ccr-15-0460] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/19/2015] [Indexed: 01/22/2023]
Abstract
Small-molecule inhibitors of the phosphoinositide 3-kinase (PI3K), Akt, and mTOR pathway currently in the clinic produce a paradoxical reactivation of the pathway they are intended to suppress. Furthermore, fresh experimental evidence with PI3K antagonists in melanoma, glioblastoma, and prostate cancer shows that mitochondrial metabolism drives an elaborate process of tumor adaptation culminating with drug resistance and metastatic competency. This is centered on reprogramming of mitochondrial functions to promote improved cell survival and to fuel the machinery of cell motility and invasion. Key players in these responses are molecular chaperones of the Hsp90 family compartmentalized in mitochondria, which suppress apoptosis via phosphorylation of the pore component, Cyclophilin D, and enable the subcellular repositioning of active mitochondria to membrane protrusions implicated in cell motility. An inhibitor of mitochondrial Hsp90s in preclinical development (gamitrinib) prevents adaptive mitochondrial reprogramming and shows potent antitumor activity in vitro and in vivo. Other therapeutic strategies to target mitochondria for cancer therapy include small-molecule inhibitors of mutant isocitrate dehydrogenase (IDH) IDH1 (AG-120) and IDH2 (AG-221), which opened new therapeutic prospects for patients with high-risk acute myelogenous leukemia (AML). A second approach of mitochondrial therapeutics focuses on agents that elevate toxic ROS levels from a leaky electron transport chain; nevertheless, the clinical experience with these compounds, including a quinone derivative, ARQ 501, and a copper chelator, elesclomol (STA-4783) is limited. In light of this evidence, we discuss how best to target a resurgence of mitochondrial bioenergetics for cancer therapy.
Collapse
Affiliation(s)
- M Cecilia Caino
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
44
|
PCR-Based Simple Subgrouping Is Validated for Classification of Gliomas and Defines Negative Prognostic Copy Number Aberrations in IDH Mutant Gliomas. PLoS One 2015; 10:e0142750. [PMID: 26558387 PMCID: PMC4641694 DOI: 10.1371/journal.pone.0142750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022] Open
Abstract
Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, −9p, and −11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.
Collapse
|
45
|
Yushan R, Wenjie C, Suning H, Yiwu D, Tengfei Z, Madushi WM, Feifei L, Changwen Z, Xin W, Roodrajeetsing G, Zuyun L, Gang C. Insights into the clinical value of cyclin-dependent kinase 5 in glioma: a retrospective study. World J Surg Oncol 2015. [PMID: 26205145 PMCID: PMC4513965 DOI: 10.1186/s12957-015-0629-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies suggested that expression of cyclin-dependent kinase 5 (CDK5) may promote the migration and invasion of human glioma cells. In this study, we aimed to evaluate the clinical value of CDK5 in different grades of glioma in relation to Ki-67 labeling index (LI). Methods We firstly assessed by immunohistochemistry the expression of CDK5 in 152 glioma tissues and 16 normal brain tissues and further explored the relationship between CDK5 expression and other clinical features. Results The positive ratio of CDK5 in gliomas (57.2 %) was higher than that in normal brain tissues (12.5 %, P = 0.001). Difference of CDK5 expression among four World Health Organization (WHO) grades was statistically significant (P = 0.001). The significant differences of CDK5 expression were also observed between WHO I glioma (34.8 %) and WHO III glioma (62.5 %), as well as WHO IV glioma (82.8 %; P = 0.026, P < 0.001, respectively). Furthermore, Spearman’s rank correlation confirmed that CDK5 was positively correlated with the pathological grade of glioma (r = 0.831, P < 0.001). The CDK5 expression was also positively correlated with Ki-67 LI (r = 0.347, P < 0.001). Conclusions The current result suggests that CDK5 may play an essential role in the tumorigenesis and aggressiveness of gliomas.
Collapse
Affiliation(s)
- Ruan Yushan
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Chen Wenjie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Huang Suning
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Dang Yiwu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Zhong Tengfei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Wickramaarachchi Mihiranganee Madushi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Luo Feifei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Zhang Changwen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Wen Xin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Gopaul Roodrajeetsing
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Li Zuyun
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China.
| | - Chen Gang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China.
| |
Collapse
|
46
|
Gilbert MR, Armstrong TS, Pope WB, van den Bent MJ, Wen PY. Facing the future of brain tumor clinical research. Clin Cancer Res 2015; 20:5591-600. [PMID: 25398842 DOI: 10.1158/1078-0432.ccr-14-0835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This edition of CCR Focus provides critical reviews of several important areas in the field, including the application of findings from genomic investigations of brain tumors to improve diagnosis, clinical trial design, and ultimately optimizing individual patient treatment. Another article is a critical review provided by experts in the field that discusses the recent clinical trials using angiogenesis inhibitors, possible explanations for the results, and how to move forward. There is a concise discussion of the application of immunotherapy to brain tumors by key investigators in this field, reflecting the potential opportunities as well as the disease-specific challenges. Finally, leading pediatric brain tumor investigators provide an overview of the field and insights about the recent seminal discoveries in two pediatric brain tumors, supporting the paradigm that laboratory investigations lead to more precise diagnosis, prognosis, and ultimately better treatment. Herein, an overview of the recent advances and challenges in the area of clinical and translational brain tumor research is provided to set the stage for the contributions that follow.
Collapse
Affiliation(s)
- Mark R Gilbert
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Terri S Armstrong
- University of Texas Health Science Center School of Nursing and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whitney B Pope
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | |
Collapse
|
47
|
Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res 2015; 20:5630-40. [PMID: 25398846 DOI: 10.1158/1078-0432.ccr-14-0833] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-throughput genomic technologies have shed light on the biologic heterogeneity of several pediatric brain tumors. The biology of the four common pediatric brain tumors-namely medulloblastoma; ependymoma; high-grade glioma (HGG), including diffuse intrinsic pontine glioma; and low-grade glioma-is highlighted in this CCR Focus article. The discovery that medulloblastoma consists of four different subgroups, namely WNT, SHH, Group 3, and Group 4, each with distinct clinical and molecular features, has affected the treatment of children with medulloblastoma. Prospective studies have documented the efficacy of SMO inhibitors in a subgroup of patients with SHH medulloblastoma. Efforts are ongoing to develop specific therapies for each of the subgroups of medulloblastoma. Similar efforts are being pursued for ependymoma, HGG, and diffuse intrinsic pontine glioma where the disease outcome for the latter two tumors has not changed over the past three decades despite several prospective clinical trials. Developing and testing targeted therapies based on this new understanding remains a major challenge to the pediatric neuro-oncology community. The focus of this review is to summarize the rapidly evolving understanding of the common pediatric brain tumors based on genome-wide analysis. These novel insights will add impetus to translating these laboratory-based discoveries to newer therapies for children diagnosed with these tumors.
Collapse
Affiliation(s)
- Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Stefan M Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Division of Pediatric Neuro Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Gilbertson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
48
|
Do relevant markers of cancer stem cells CD133 and Nestin indicate a poor prognosis in glioma patients? A systematic review and meta-analysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:44. [PMID: 25967234 PMCID: PMC4436020 DOI: 10.1186/s13046-015-0163-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/06/2015] [Indexed: 01/21/2023]
Abstract
Background CD133 and Nestin, as the markers of cancer stem cells, have recently been reported frequently in the pathogenesis and development of human gliomas. However, the prognostic role of CD133 and Nestin in gliomas still remains controversial. In this study, we aimed to evaluate the association between the expression of CD133 and Nestin and the outcome of glioma patients by conducting a systematic review and meta-analysis. Methods We performed systematically electronic and manual searches through the database of Pubmed and embase (until to December 25, 2014) for titles and abstracts which investigated the relationships between CD133 and Nestin expression and outcome of glioma patients. A systematic review and meta-analysis was executed to generate Pooled hazard ratios (HRs) with 95 % confidence intervals (CIs) for overall survival (OS) and progression-free survival (PFS). Results A total of 1,490 patients from 32 studies (13 articles) were included in the analysis. 19 studies and 13 studies investigated correlation between CD133 expression or Nestin and survival in gliomas, respectively. Our results showed that high CD133 expression in patients with glioma was associated with poor prognosis in terms of OS (HR 1.69; 95 % CI, 1.16–2.47; P =0.0060) and PFS (HR, 1.64; 95 % CI, 1.12–2.39; P = 0.010). In addition, high Nestin expression were associated with worse OS (HR 1.751; 95 % CI, 1.19–2.58, p = 0.004) but has no significant association with PFS (HR 1.55; 95 % CI, 0.96–2.51, p = 0.074). Even more important, the results of the subgroup meta-analyses show that that high CD133 expression was associated with worse prognosis in terms of OS and PFS in patients with WHO IV glioma but not WHO II-III. On the other hand, Nestin high expression was associated with worse prognosis in terms of OS and PFS in patients with WHO II-III glioma but not WHO IV. Conclusion High level of CD133 expression trends to correlate with a worse OS and PFS in glioma patients, especially WHO IV gliomas and Nestin high expression trends to correlate with a worse OS in glioma patients especially WHO II–III, revealing both the markers of cancer stem cells may as the potential pathological prognostic markers for glioma patients.
Collapse
|
49
|
Cimino PJ, Bredemeyer A, Abel HJ, Duncavage EJ. A wide spectrum of EGFR mutations in glioblastoma is detected by a single clinical oncology targeted next-generation sequencing panel. Exp Mol Pathol 2015; 98:568-73. [PMID: 25910966 DOI: 10.1016/j.yexmp.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/18/2015] [Indexed: 01/07/2023]
Abstract
With the advent of large-scale genomic analysis, the genetic landscape of glioblastoma (GBM) has become more clear, including characteristic genetic alterations in EGFR. In routine clinical practice, genetic alterations in GBMs are identified using several disparate techniques that consume already limited amounts of tissue and add to overall testing costs. In this study, we sought to determine if the full spectrum of EGFR mutations in GBMs could be detected using a single next generation sequencing (NGS) based oncology assay in 34 consecutive cases. Using a battery of informatics tools to identify single nucleotide variants, insertions and deletions, and amplification (including variants EGFRvIII and EGFRvV), twenty-one of the 34 (62%) individuals had at least one alteration in EGFR by sequencing, consistent with published datasets. Mutations detected include several single nucleotide variants, amplification (confirmed by fluorescence in situ hybridization), and the variants EGFRvIII and EGFRvV (confirmed by multiplex ligation-dependent probe amplification). Here we show that a single NGS assay can identify the full spectrum of relevant EGFR mutations. Overall, sequencing based diagnostics have the potential to maximize the amount of genetic information obtained from GBMs and simultaneously reduce the total time, required specimen material, and costs associated with current multimodality studies.
Collapse
Affiliation(s)
- Patrick J Cimino
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Andy Bredemeyer
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Haley J Abel
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, United States
| | - Eric J Duncavage
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
50
|
Farrar CE, Jarrett JT. Protein residues that control the reaction trajectory in S-adenosylmethionine radical enzymes: mutagenesis of asparagine 153 and aspartate 155 in Escherichia coli biotin synthase. Biochemistry 2010; 48:2448-58. [PMID: 19199517 DOI: 10.1021/bi8022569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biotin synthase catalyzes the oxidative addition of a sulfur atom to dethiobiotin (DTB) to generate the biotin thiophane ring. This reaction is initiated by the reductive cleavage of the sulfonium center of S-adenosyl-L-methionine (AdoMet), generating methionine and a transient 5'-deoxyadenosyl radical that functions as an oxidant by abstracting hydrogen atoms from DTB. Biotin synthase contains a highly conserved sequence motif, YNHNLD, in which Asn153 and Asp155 form hydrogen bonds with the ribose hydroxyl groups of AdoMet. In the present work, we constructed four individual site-directed mutations to change each of these two residues in order to probe their role in the active site. We used molecular weight filtration assays to show that for most of the mutant enzymes binding of the substrates was only slightly affected. In vitro assays demonstrate that several of the mutant enzymes were able to reductively cleave AdoMet, but none were able to produce a significant amount of biotin. Several of the mutants, especially Asn153Ser, were able to produce high levels of the stable intermediate 9-mercaptodethiobiotin. Some of the mutants, such as Asp155Asn and Asn153Ala, produced instead an alternate product tentatively identified by mass spectrometry as 5'-mercapto-5'-deoxyadenosine, generated by direct attack of the 5'-deoxyadenosyl radical on the [4Fe-4S](2+) cluster. Collectively, these results suggest that the protein residues that form hydrogen bonds to AdoMet and DTB are important for retaining intermediates during the catalytic cycle and for targeting the reactivity of the 5'-deoxyadenosyl radical.
Collapse
Affiliation(s)
- Christine E Farrar
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | |
Collapse
|