1
|
Zhang J, Liu R, Sutaria D, Sane R, Fan M, Wang R, Song G, Chen K, Arzumanova K, Hu X. A Phase I Study of the Pharmacokinetics and Safety of Ipatasertib, an Akt Inhibitor in Chinese Patients With Locally Advanced or Metastatic Solid Tumors. Clin Ther 2025; 47:128-134. [PMID: 39721851 DOI: 10.1016/j.clinthera.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE Ipatasertib is a selective inhibitor of Akt, a frequently activated protein kinase that plays a critical role in human cancers. The current clinical trial aimed to assess the pharmacokinetic properties, safety, and tolerability of ipatasertib administered to Chinese patients with locally advanced or metastatic solid tumors. METHODS A Phase I, single-arm, open-label study was performed in Chinese patients with locally advanced or metastatic solid tumors for whom standard therapy either does not exist or has proven ineffective. Four hundred milligrams of ipatasertib was administered to patients as a single agent, starting with a single dose for 7 days and continuous daily dosing for 21 days, followed by 7 days off schedule. The pharmacokinetic properties of ipatasertib and its major metabolite M1 (GO37220) after single and multiple dose administration were assessed using a validated liquid chromatography-tandem mass spectrometry assay method. Safety was assessed throughout the study, and adverse events were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0. Tumor response was assessed by the investigator using Response Evaluation Criteria in Solid Tumors version 1.1. FINDINGS Fourteen patients were enrolled, and all enrolled patients received at least 1 dose of the study treatment. Ipatasertib and M1 exposures were slightly higher than previously reported but comparable with exposures observed within the Asian population. Ipatasertib as a single agent demonstrated a manageable safety profile in Chinese patients, which is aligned with prior observation in global studies. Limited efficacy was observed in these patients with heavily pretreated diverse solid tumors. IMPLICATIONS This study of the pharmacokinetic properties, safety, and efficacy of ipatasertib in Chinese patients eventually contributed toward the development of Akt inhibitors in China. CLINICALTRIALS gov identifier: NCT04341259.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Rujiao Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Dhruvit Sutaria
- Department of Clinical Pharmacology, Genentech Inc, South San Francisco, California
| | - Rucha Sane
- Department of Clinical Pharmacology, Genentech Inc, South San Francisco, California
| | - Minhao Fan
- Department of Product Development, Roche Holding Ltd, Shanghai, PR China
| | - Rui Wang
- Department of Product Development, Roche Holding Ltd, Shanghai, PR China
| | - Grace Song
- Department of Biostatistics, Hangzhou Tigermed Consulting Co, Ltd, Shanghai, PR China
| | - Kui Chen
- Department of Product Development, Roche Holding Ltd, Shanghai, PR China
| | - Ksenia Arzumanova
- Department of Clinical Pharmacology, Genentech Inc, South San Francisco, California
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
2
|
Stevenson L, Cairns L, Li X, Jammula S, Taylor H, Douglas R, McCabe N, Gavory G, Jacq X, Fitzgerald RC, Kennedy RD, Harrison T, Turkington RC. Inhibition of AKT enhances chemotherapy efficacy and synergistically interacts with targeting of the Inhibitor of apoptosis proteins in oesophageal adenocarcinoma. Sci Rep 2024; 14:32121. [PMID: 39739112 DOI: 10.1038/s41598-024-83912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
The incidence of oesophageal adenocarcinoma (OAC) has risen six-fold in western countries over the last forty years but survival rates have only marginally improved. Hyperactivation of the PI3K-AKT-mTOR pathway is a common occurrence in OAC, driving cell survival, proliferation and resistance to chemotherapeutic agents. Inhibition of AKT has been explored as a treatment strategy with limited success and current inhibitors have failed to progress through clinical trials. Our study, describes a novel allosteric AKT inhibitor, ALM301, and demonstrates an enhancement of the efficacy of conventional chemotherapy when combined with ALM301 in OAC. Reduced sensitivity to ALM301 is associated with high expression of the Inhibitor of Apoptosis (IAP) family of proteins, particularly XIAP. Combined AKT and IAP inhibition synergistically enhanced OAC cell death and successfully re-sensitized ALM301 and chemotherapy resistant cell lines. A high degree of synergism was also observed in patient-derived OAC organoids indicating the potential clinical relevance of the combination. This study demonstrates the role for dual AKT/IAP inhibition in OAC and provides a strong rationale for the further investigation of this highly efficacious combination strategy.
Collapse
Affiliation(s)
- Leanne Stevenson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Lauren Cairns
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Xiaodun Li
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sriganesh Jammula
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Harriet Taylor
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Rosalie Douglas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Niamh McCabe
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Xavier Jacq
- Almac Discovery Ltd, Craigavon, Northern Ireland
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - Richard C Turkington
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
3
|
Arner EN, Alzhanova D, Westcott JM, Hinz S, Tiron CE, Blø M, Mai A, Virtakoivu R, Phinney N, Nord S, Aguilera KY, Rizvi A, Toombs JE, Reese TC, Fey V, Micklem D, Gausdal G, Ivaska J, Lorens JB, Brekken RA. AXL-TBK1 driven AKT3 activation promotes metastasis. Sci Signal 2024; 17:eado6057. [PMID: 39689180 DOI: 10.1126/scisignal.ado6057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The receptor tyrosine kinase AXL promotes tumor progression, metastasis, and therapy resistance through the induction of epithelial-mesenchymal transition (EMT). Here, we found that activation of AXL resulted in the phosphorylation of TANK-binding kinase 1 (TBK1) and the downstream activation of AKT3 and Snail, a transcription factor critical for EMT. Mechanistically, we showed that TBK1 directly bound to and phosphorylated AKT3 in a manner dependent on the multiprotein complex mTORC1. Upon activation, AKT3 interacted with and promoted the nuclear accumulation of Snail, which led to increased EMT as assessed by marker abundance. In human pancreatic ductal adenocarcinoma tissue, nuclear AKT3 colocalized with Snail and correlated with worse clinical outcomes. Primary mouse pancreatic cancer cells deficient in AKT3 showed reduced metastatic spread in vivo, suggesting selective AKT3 inhibition as a potential therapeutic avenue for targeting EMT in aggressive cancers.
Collapse
Affiliation(s)
- Emily N Arner
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dina Alzhanova
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill M Westcott
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stefan Hinz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Crina Elena Tiron
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Regional Institute of Oncology, Iasi, Romania
| | | | | | - Reetta Virtakoivu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Natalie Phinney
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Ali Rizvi
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason E Toombs
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tanner C Reese
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vidal Fey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | | | | | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - James B Lorens
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Rolf A Brekken
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
5
|
Jain AB, Lai V. Medication-Induced Hyperglycemia and Diabetes Mellitus: A Review of Current Literature and Practical Management Strategies. Diabetes Ther 2024; 15:2001-2025. [PMID: 39085746 PMCID: PMC11330434 DOI: 10.1007/s13300-024-01628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
With the increasing global incidence of diabetes mellitus, physicians may encounter more patients with acute and chronic complications of medication-induced hyperglycemia and diabetes. Moreover, medication-induced diabetes may be an important contributing factor to the high rates of diabetes, and recognizing its impact and risk is a critical step in curtailing its effect on the global population. It has long been recognized that multiple classes of medications are associated with hyperglycemia through various mechanisms, and the ability to foresee this and implement adequate management strategies are important. Moreover, different antihyperglycemic medications are better suited to combat the hyperglycemia encountered with different classes of medications, so it is critical that physicians can recognize which agents should be used, and which medications to avoid in certain types of medication-induced hyperglycemia. In this review, we will discuss the evidence behind the main classes of medications that cause hyperglycemia, their mechanism of action, specific agents that are associated with worsened glycemic control, and, most importantly, management strategies that are tailored to each specific class.
Collapse
Affiliation(s)
- Akshay B Jain
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Valerie Lai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Stamou MI, Chen C, Wander SA, Supko JG, Juric D, Bardia A, Wexler DJ. Severe Lactic Acidosis Complicated by Insulin-Resistant Hyperosmolar Hyperglycemic Syndrome in a Patient With Metastatic Breast Cancer Undergoing AKT-Inhibitor Therapy. JCO Precis Oncol 2022; 6:e2100428. [PMID: 35700410 PMCID: PMC9384915 DOI: 10.1200/po.21.00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maria I. Stamou
- Endocrine Division, Massachusetts General Hospital, Boston, MA
| | - Christopher Chen
- Department of Medicine, Stanford University School of Medicine,Palo Alto, CA
| | - Seth A. Wander
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Jeffrey G. Supko
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA
| | - Aditya Bardia
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Deborah J. Wexler
- Harvard Medical School, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
7
|
Skolariki A, D’Costa J, Little M, Lord S. Role of PI3K/Akt/mTOR pathway in mediating endocrine resistance: concept to clinic. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:172-199. [PMID: 36046843 PMCID: PMC9400772 DOI: 10.37349/etat.2022.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/11/2022] [Indexed: 01/06/2023] Open
Abstract
The majority of breast cancers express the estrogen receptor (ER) and for this group of patients, endocrine therapy is the cornerstone of systemic treatment. However, drug resistance is common and a focus for breast cancer preclinical and clinical research. Over the past 2 decades, the PI3K/Akt/mTOR axis has emerged as an important driver of treatment failure, and inhibitors of mTOR and PI3K are now licensed for the treatment of women with advanced ER-positive breast cancer who have relapsed on first-line hormonal therapy. This review presents the preclinical and clinical data that led to this new treatment paradigm and discusses future directions.
Collapse
Affiliation(s)
- Aglaia Skolariki
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Jamie D’Costa
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Martin Little
- Department of Oncology, Churchill Hospital, OX3 7LE Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| |
Collapse
|
8
|
Coleman N, Moyers JT, Harbery A, Vivanco I, Yap TA. Clinical Development of AKT Inhibitors and Associated Predictive Biomarkers to Guide Patient Treatment in Cancer Medicine. Pharmgenomics Pers Med 2021; 14:1517-1535. [PMID: 34858045 PMCID: PMC8630372 DOI: 10.2147/pgpm.s305068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The serine/threonine kinase AKT is a critical effector of the phosphoinositide 3-kinase (PI3K) signaling cascade and has a pivotal role in cell growth, proliferation, survival, and metabolism. AKT is one of the most commonly activated pathways in human cancer and dysregulation of AKT-dependent pathways is associated with the development and maintenance of a range of solid tumors. There are multiple small-molecule inhibitors targeting different components of the PI3K/AKT pathway currently at various stages of clinical development, in addition to new combination strategies aiming to boost the therapeutic efficacy of these drugs. Correlative and translational studies have been undertaken in the context of clinical trials investigating AKT inhibitors, however the identification of predictive biomarkers of response and resistance to AKT inhibition remains an unmet need. In this review, we discuss the biological function and activation of AKT, discuss its contribution to tumor development and progression, and review the efficacy and toxicity data from clinical trials, including both AKT inhibitor monotherapy and combination strategies with other agents. We also discuss the promise and challenges associated with the development of AKT inhibitors and associated predictive biomarkers of response and resistance.
Collapse
Affiliation(s)
- Niamh Coleman
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin T Moyers
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | - Alice Harbery
- Division of Cancer Therapeutics, Institute of Cancer Research, London, SM2 5NG, UK
| | - Igor Vivanco
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
10
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Pascual J, Lim JSJ, Macpherson IR, Armstrong AC, Ring A, Okines AFC, Cutts RJ, Herrera-Abreu MT, Garcia-Murillas I, Pearson A, Hrebien S, Gevensleben H, Proszek PZ, Hubank M, Hills M, King J, Parmar M, Prout T, Finneran L, Malia J, Swales KE, Ruddle R, Raynaud FI, Turner A, Hall E, Yap TA, Lopez JS, Turner NC. Triplet Therapy with Palbociclib, Taselisib, and Fulvestrant in PIK3CA-Mutant Breast Cancer and Doublet Palbociclib and Taselisib in Pathway-Mutant Solid Cancers. Cancer Discov 2021; 11:92-107. [PMID: 32958578 DOI: 10.1158/2159-8290.cd-20-0553] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) and PI3K inhibitors synergize in PIK3CA-mutant ER-positive HER2-negative breast cancer models. We conducted a phase Ib trial investigating the safety and efficacy of doublet CDK4/6 inhibitor palbociclib plus selective PI3K inhibitor taselisib in advanced solid tumors, and triplet palbociclib plus taselisib plus fulvestrant in 25 patients with PIK3CA-mutant, ER-positive HER2-negative advanced breast cancer. The triplet therapy response rate in PIK3CA-mutant, ER-positive HER2-negative cancer was 37.5% [95% confidence interval (CI), 18.8-59.4]. Durable disease control was observed in PIK3CA-mutant ER-negative breast cancer and other solid tumors with doublet therapy. Both combinations were well tolerated at pharmacodynamically active doses. In the triplet group, high baseline cyclin E1 expression associated with shorter progression-free survival (PFS; HR = 4.2; 95% CI, 1.3-13.1; P = 0.02). Early circulating tumor DNA (ctDNA) dynamics demonstrated high on-treatment ctDNA association with shorter PFS (HR = 5.2; 95% CI, 1.4-19.4; P = 0.04). Longitudinal plasma ctDNA sequencing provided genomic evolution evidence during triplet therapy. SIGNIFICANCE: The triplet of palbociclib, taselisib, and fulvestrant has promising efficacy in patients with heavily pretreated PIK3CA-mutant ER-positive HER2-negative advanced breast cancer. A subset of patients with PIK3CA-mutant triple-negative breast cancer derived clinical benefit from palbociclib and taselisib doublet, suggesting a potential nonchemotherapy targeted approach for this population.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Javier Pascual
- Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Joline S J Lim
- National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore
| | - Iain R Macpherson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne C Armstrong
- Department of Medical Oncology, Christie Hospital NHS Foundation Trust and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alistair Ring
- Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Alicia F C Okines
- Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Rosalind J Cutts
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Maria Teresa Herrera-Abreu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Isaac Garcia-Murillas
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alex Pearson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sarah Hrebien
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Paula Z Proszek
- Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Michael Hubank
- Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Margaret Hills
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Jenny King
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Mona Parmar
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Toby Prout
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Laura Finneran
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Jason Malia
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Karen E Swales
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Florence I Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Alison Turner
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Emma Hall
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juanita S Lopez
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Nicholas C Turner
- Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom.
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Tolcher AW. The Evolution of Antibody-Drug Conjugates: A Positive Inflexion Point. Am Soc Clin Oncol Educ Book 2020; 40:1-8. [PMID: 32223669 DOI: 10.1200/edbk_281103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2019, an important inflection point occurred when the U.S. Food and Drug Administration approved three new antibody-drug conjugates (ADCs) for the treatment of malignancies, including urothelial cancer (enfortumab vedotin-ejfv), diffuse large B-cell lymphoma (polatuzumab vedotin-piiq), and HER2 breast cancer (fam-trastuzumab deruxtecan-nxki), and expanded the indication for ado-trastuzumab emtansine to early breast cancer. This near doubling in the number of approved ADCs within 1 year validates the ADC platform and represents a successful evolution over the past 30 years. ADCs were born in an era when systemic therapy for cancer was largely cytotoxic chemotherapy. Many of the investigational cytotoxic agents were determined to be too toxic for oral and intravenous use. The agents were especially potent, with inhibitory concentrations that inhibited 50% of cells in the nanomolar and picomolar range but had poor therapeutic indexes when administered systemically. Now, over the last 30 years, we have seen an evolution of the many aspects of this complex platform with better antigen target selection, more sophisticated chemistry for the linkers, a growing diversity of payloads from cytotoxic chemotherapy to targeted therapies and immunostimulants, and, with the recent series of regulatory approvals, a buoyed sense of optimism for the technology. Nonetheless, we have not fully realized the full potential of this platform. In this review, the many components of ADCs will be discussed, the difficulties encountered will be highlighted, the innovative strategies that are being used to improve them will be assessed, and the direction that the field is going will be considered.
Collapse
Affiliation(s)
- Anthony W Tolcher
- New Experimental Therapeutics (NEXT), San Antonio, TX.,Texas Oncology, San Antonio, TX
| |
Collapse
|
13
|
McLeod R, Kumar R, Papadatos-Pastos D, Mateo J, Brown JS, Garces AHI, Ruddle R, Decordova S, Jueliger S, Ferraldeschi R, Maiques O, Sanz-Moreno V, Jones P, Traub S, Halbert G, Mellor S, Swales KE, Raynaud FI, Garrett MD, Banerji U. First-in-Human Study of AT13148, a Dual ROCK-AKT Inhibitor in Patients with Solid Tumors. Clin Cancer Res 2020; 26:4777-4784. [PMID: 32616501 PMCID: PMC7611345 DOI: 10.1158/1078-0432.ccr-20-0700] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE AT13148 is an oral AGC kinase inhibitor, which potently inhibits ROCK and AKT kinases. In preclinical models, AT13148 has been shown to have antimetastatic and antiproliferative activity. PATIENTS AND METHODS The trial followed a rolling six design during dose escalation. An intrapatient dose escalation arm to evaluate tolerability and a biopsy cohort to study pharmacodynamic effects were later added. AT13148 was administered orally three days a week (Mon-Wed-Fri) in 28-day cycles. Pharmacokinetic profiles were assessed using mass spectrometry and pharmacodynamic studies included quantifying p-GSK3β levels in platelet-rich plasma (PRP) and p-cofilin and p-MLC2 levels in tumor biopsies. RESULTS Fifty-one patients were treated on study. The safety of 5-300 mg of AT13148 was studied. Further, the doses of 120-180-240 mg were studied in an intrapatient dose escalation cohort. The dose-limiting toxicities included hypotension (300 mg), pneumonitis, and elevated liver enzymes (240 mg), and skin rash (180 mg). The most common side effects were fatigue, nausea, headaches, and hypotension. On the basis of tolerability, 180 mg was considered the maximally tolerated dose. At 180 mg, mean C max and AUC were 400 nmol/L and 13,000 nmol/L/hour, respectively. At 180 mg, ≥50% reduction of p-cofilin was observed in 3 of 8 posttreatment biopsies. CONCLUSIONS AT13148 was the first dual potent ROCK-AKT inhibitor to be investigated for the treatment of solid tumors. The narrow therapeutic index and the pharmacokinetic profile led to recommend not developing this compound further. There are significant lessons learned in designing and testing agents that simultaneously inhibit multiple kinases including AGC kinases in cancer.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Joaquin Mateo
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jessica S Brown
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Ruth Ruddle
- The Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Oscar Maiques
- Bart's Cancer Centre, Queen Mary University of London, London, United Kingdom
| | | | - Paul Jones
- Cancer Research UK, London, United Kingdom
| | | | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | | | - Karen E Swales
- The Institute of Cancer Research, London, United Kingdom
| | | | - Michelle D Garrett
- The Institute of Cancer Research, London, United Kingdom
- University of Kent, Canterbury, United Kingdom
| | - Udai Banerji
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
14
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Murphy AG, Zahurak M, Shah M, Weekes CD, Hansen A, Siu LL, Spreafico A, LoConte N, Anders NM, Miles T, Rudek MA, Doyle LA, Nelkin B, Maitra A, Azad NS. A Phase I Study of Dinaciclib in Combination With MK-2206 in Patients With Advanced Pancreatic Cancer. Clin Transl Sci 2020; 13:1178-1188. [PMID: 32738099 PMCID: PMC7719383 DOI: 10.1111/cts.12802] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
The combination of drugs targeting Ral and PI3K/AKT signaling has antitumor efficacy in preclinical models of pancreatic cancer. We combined dinaciclib (small molecule cyclin dependent kinase inhibitor with MK-2206 (Akt inhibitor) in patients with previously treated/metastatic pancreatic cancer. Patients were treated with dinaciclib (6-12 mg/m2 i.v.) and MK-2206 (60-135 mg p.o.) weekly. Tumor biopsies were performed to measure pAKT, pERK, and Ki67 at baseline and after one completed cycle (dose level 2 and beyond). Thirty-nine patients participated in the study. The maximum tolerated doses were dinaciclib 9 mg/m2 and MK-2206 135 mg. Treatment-related grade 3 and 4 toxicities included neutropenia, lymphopenia, anemia, hyperglycemia, hyponatremia, and leukopenia. No objectives responses were observed. Four patients (10%) had stable disease as their best response. At the recommended dose, median survival was 2.2 months. Survival rates at 6 and 12 months were 11% and 5%, respectively. There was a nonsignificant reduction in pAKT composite scores between pretreatment and post-treatment biopsies (mean 0.76 vs. 0.63; P = 0.635). The combination of dinaciclib and MK-2206 was a safe regimen in patients with metastatic pancreatic cancer, although without clinical benefit, possibly due to not attaining biologically effective doses. Given the strong preclinical evidence of Ral and AKT inhibition, further studies with better tolerated agents should be considered.
Collapse
Affiliation(s)
- Adrian G Murphy
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marianna Zahurak
- Department of Oncology, Biostatistics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mirat Shah
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aaron Hansen
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Noelle LoConte
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Nicole M Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Analytical Pharmacology Core, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tearra Miles
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michelle A Rudek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Analytical Pharmacology Core, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - L Austin Doyle
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Barry Nelkin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anirban Maitra
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nilofer S Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
16
|
Showalter L, Czerniecki BJ, Koski GK. Th1 cytokines in conjunction with pharmacological Akt inhibition potentiate apoptosis of breast cancer cells in vitro and suppress tumor growth in vivo. Oncotarget 2020; 11:2873-2888. [PMID: 32774769 PMCID: PMC7392628 DOI: 10.18632/oncotarget.27556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/19/2020] [Indexed: 11/25/2022] Open
Abstract
Targeted drug approaches have been a major focus for developing new anticancer therapies. Although many such agents approved in the last 20 years have improved outcomes, almost all have underperformed expectations. The full potential of such agents may yet be obtained through novel combinations. Previously, we showed that anti-estrogen drugs combined with a dendritic cell-based anti-HER-2 vaccine known to induce strong Th1-polarized immunity dramatically improved clinical response rates in patients with HER-2pos/ERpos early breast cancer. Here, we show that the small molecule Akt antagonist MK-2206, when combined with the Th1 cytokines IFN-gamma and TNF-alpha, maximize indicators of apoptotic cell death in a panel of phenotypically-diverse human breast cancer lines. These findings were mirrored by other, structurally-unrelated Akt-targeting drugs that work through different mechanisms. Interestingly, we found that MK-2206, as well as the other Akt antagonist drugs, also had a tendency to suppress Th1 cytokine expression in stimulated human and murine lymphocytes, potentially complicating their use in conjunction with active immunotherapy. After verifying that MK-2206 plus IFN-gamma could show similar combined effects against breast cancer lines, even in the absence of TNF-alpha, we tested in a rodent HER-2pos breast cancer model either a HER-2-based DC vaccine, or recombinant IFN-gamma with or without MK-2206 administration. We found that for MK-2206, co-administration of recombinant IFN-gamma outperformed co-administration of DC vaccination for slowing tumor growth kinetics. These findings suggest a combined therapy approach for Akt-targeting drugs that incorporates recombinant Interferon-gamma and is potentially translatable to humans.
Collapse
Affiliation(s)
- Loral Showalter
- Department of Biological Sciences, University Esplanade, Kent State University, Kent, Ohio, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gary K Koski
- Department of Biological Sciences, University Esplanade, Kent State University, Kent, Ohio, USA
| |
Collapse
|
17
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Pal A, Asad Y, Ruddle R, Henley AT, Swales K, Decordova S, Eccles SA, Collins I, Garrett MD, De Bono J, Banerji U, Raynaud FI. Metabolomic changes of the multi (-AGC-) kinase inhibitor AT13148 in cells, mice and patients are associated with NOS regulation. Metabolomics 2020; 16:50. [PMID: 32285223 PMCID: PMC7154022 DOI: 10.1007/s11306-020-01676-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION To generate biomarkers of target engagement or predictive response for multi-target drugs is challenging. One such compound is the multi-AGC kinase inhibitor AT13148. Metabolic signatures of selective signal transduction inhibitors identified in preclinical models have previously been confirmed in early clinical studies. This study explores whether metabolic signatures could be used as biomarkers for the multi-AGC kinase inhibitor AT13148. OBJECTIVES To identify metabolomic changes of biomarkers of multi-AGC kinase inhibitor AT13148 in cells, xenograft / mouse models and in patients in a Phase I clinical study. METHODS HILIC LC-MS/MS methods and Biocrates AbsoluteIDQ™ p180 kit were used for targeted metabolomics; followed by multivariate data analysis in SIMCA and statistical analysis in Graphpad. Metaboanalyst and String were used for network analysis. RESULTS BT474 and PC3 cells treated with AT13148 affected metabolites which are in a gene protein metabolite network associated with Nitric oxide synthases (NOS). In mice bearing the human tumour xenografts BT474 and PC3, AT13148 treatment did not produce a common robust tumour specific metabolite change. However, AT13148 treatment of non-tumour bearing mice revealed 45 metabolites that were different from non-treated mice. These changes were also observed in patients at doses where biomarker modulation was observed. Further network analysis of these metabolites indicated enrichment for genes associated with the NOS pathway. The impact of AT13148 on the metabolite changes and the involvement of NOS-AT13148- Asymmetric dimethylarginine (ADMA) interaction were consistent with hypotension observed in patients in higher dose cohorts (160-300 mg). CONCLUSION AT13148 affects metabolites associated with NOS in cells, mice and patients which is consistent with the clinical dose-limiting hypotension.
Collapse
Affiliation(s)
- Akos Pal
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Yasmin Asad
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alan T Henley
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Karen Swales
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Shaun Decordova
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Suzanne A Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Johann De Bono
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Udai Banerji
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Florence I Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
19
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
20
|
Qin J, Fu M, Wang J, Huang F, Liu H, Huangfu M, Yu D, Liu H, Li X, Guan X, Chen X. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin‑3‑gallate in ovarian cancer. Oncol Rep 2020; 43:1885-1896. [PMID: 32236585 PMCID: PMC7160558 DOI: 10.3892/or.2020.7571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG), a polyphenol present in green tea, exhibits anticancer effects in various types of cancer. A number of studies have focused on the effects of EGCG on lung cancer, but not ovarian cancer. Previous reports have implicated that EGCG suppressed ovarian cancer cell proliferation and induced apoptosis, but its potential anticancer mechanisms and signaling pathways remain unclear. Thus, it is necessary to determine the anti‑ovarian cancer effects of EGCG and explore the underlying mechanisms. In the present study, EGCG exerted stronger proliferation inhibition on SKOV3 cells compared with A549 cells and induced apoptosis in SKOV3 cells, as well as upregulated PTEN expression and downregulated the expression of phosphoinositide‑dependent kinase‑1 (PDK1), phosphor (p)‑AKT and p‑mTOR. These effects were reversed by the PTEN inhibitor VO‑Ohpic trihydrate. The results of the mouse xenograft experiment demonstrated that 50 mg/kg EGCG exhibited increased tumor growth inhibition compared with 5 mg/kg paclitaxel. In addition, PTEN expression was upregulated, whereas the expression levels of PDK1, p‑AKT and p‑mTOR were downregulated in the EGCG treatment group compared with those in untreated mice in vivo. In conclusion, the results of the present study provided a new underlying mechanism of the effect of EGCG on ovarian cancer and may lead to the development of EGCG as a candidate drug for ovarian cancer therapy.
Collapse
Affiliation(s)
- Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Minglei Fu
- Dispensary, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Juan Wang
- Research Center for Science, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Fengxiang Huang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Haiping Liu
- Science and Technology Department, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Mengjie Huangfu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Dan Yu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiao Guan
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
21
|
Results of an abbreviated phase II study of AKT inhibitor MK-2206 in the treatment of recurrent platinum-resistant high grade serous ovarian, fallopian tube, or primary peritoneal carcinoma (NCT 01283035). Gynecol Oncol Rep 2020; 32:100546. [PMID: 32083163 PMCID: PMC7021536 DOI: 10.1016/j.gore.2020.100546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
PI3K/AKT pathway alterations are frequently seen in ovarian cancer, providing rationale for targeted AKT inhibition. AKT inhibitor MK-2206 in platinum resistant high grade serous ovarian cancer was notable for dermatologic toxicity. Best response of stable disease was seen, with one patient experiencing a prolonged SD of 19 weeks.
Platinum-resistant, recurrent, high grade epithelial ovarian carcinoma remains challenging to treat. Chemotherapy produces limited responses with modest survival benefits in the treatment of recurrent disease. In this context, targeted therapies may improve upon conventional therapies. PI3K/AKT pathway alterations are frequently found in several cancer types, including ovarian cancer, and thus AKT inhibition is a rational targeted therapy. Here we report the results of an abbreviated trial of AKT inhibitor MK-2206 in platinum resistant high grade serous ovarian, fallopian tube, and primary peritoneal cancer with PTEN loss.
Collapse
|
22
|
Myers AP, Konstantinopoulos PA, Barry WT, Luo W, Broaddus RR, Makker V, Drapkin R, Liu J, Doyle A, Horowitz NS, Meric-Bernstam F, Birrer M, Aghajanian C, Coleman RL, Mills GB, Cantley LC, Matulonis UA, Westin SN. Phase II, 2-stage, 2-arm, PIK3CA mutation stratified trial of MK-2206 in recurrent endometrial cancer. Int J Cancer 2019; 147:413-422. [PMID: 31714586 DOI: 10.1002/ijc.32783] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Abstract
Endometrial cancers have high rates of phosphoinositide 3-kinase (PI3K) pathway alterations. MK-2206 is an allosteric inhibitor of AKT, an effector kinase of PI3K signals. We hypothesized patients with tumors harboring PIK3CA mutations would be more likely to benefit from MK-2206 than those without PIK3CA mutation. A Phase II study was performed in patients with recurrent endometrial cancer; all histologies except carcinosarcoma were eligible. Up to two prior chemotherapy lines were permitted, excluding prior treatment with PI3K pathway inhibitors. The first 18 patients were treated with MK-2206 200 mg weekly. Due to unacceptable toxicity, dose was reduced to 135 mg. Co-primary endpoints were objective response rate (ORR) and progression-free survival at 6 months (6moPFS). Thirty-seven patients were enrolled (one ineligible). By somatic PIK3CA mutation analysis, nine patients were mutant (MT) [one with partial response (PR)/6moPFS, two with 6moPFS]. Twenty-seven patients were wild-type (WT) (one PR and four 6moPFS). Most common toxicities were rash (44%), fatigue (41%), nausea (42%) and hyperglycemia (31%). Grade 3 and 4 toxicities occurred in 25 and 17% of patients, respectively. Exploratory analysis found serous histology had greater 6moPFS as compared to all other histologies (5/8 vs. 2/28, p = 0.003). PTEN expression was associated with median time to progression (p = 0.04). No other significant associations with PI3K pathway alterations were identified. There is limited single agent activity of MK-2206 in PIK3CA MT and PIK3CA WT endometrial cancer populations. Activity was detected in patients with serous histology and due to their poor outcomes warrants further study (NCT01307631).
Collapse
Affiliation(s)
- Andrea P Myers
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Weixiu Luo
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Russell R Broaddus
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA
| | - Joyce Liu
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Austin Doyle
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Neil S Horowitz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dana Farber Cancer Institute, Boston, MA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Michael Birrer
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ursula A Matulonis
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
23
|
Phase 1 Dose Escalation Study of the Allosteric AKT Inhibitor BAY 1125976 in Advanced Solid Cancer-Lack of Association between Activating AKT Mutation and AKT Inhibition-Derived Efficacy. Cancers (Basel) 2019; 11:cancers11121987. [PMID: 31835495 PMCID: PMC6966663 DOI: 10.3390/cancers11121987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 11/17/2022] Open
Abstract
This open-label, phase I first-in-human study (NCT01915576) of BAY 1125976, a highly specific and potent allosteric inhibitor of AKT1/2, aimed to evaluate the safety, pharmacokinetics, and maximum tolerated dose of BAY 1125976 in patients with advanced solid tumors. Oral dose escalation was investigated with a continuous once daily (QD) treatment (21 days/cycle) and a twice daily (BID) schedule. A dose expansion in 28 patients with hormone receptor-positive metastatic breast cancer, including nine patients harboring the AKT1E17K mutation, was performed at the recommended phase 2 dose (R2D) of 60 mg BID. Dose-limiting toxicities (Grades 3-4) were increased in transaminases, γ-glutamyltransferase (γ-GT), and alkaline phosphatase in four patients in both schedules and stomach pain in one patient. Of the 78 patients enrolled, one patient had a partial response, 30 had stable disease, and 38 had progressive disease. The clinical benefit rate was 27.9% among 43 patients treated at the R2D. AKT1E17K mutation status was not associated with tumor response. Genetic analyses revealed additional mutations that could promote tumor cell growth despite the inhibition of AKT1/2. BAY 1125976 was well tolerated and inhibited AKT1/2 signaling but did not lead to radiologic or clinical tumor responses. Thus, the refinement of a selection of biomarkers for AKT inhibitors is needed to improve their monotherapy activity.
Collapse
|
24
|
Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J, Li X, Lu B, Cheng X, Liu P, Lu W, Lu Y. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer 2019; 18:144. [PMID: 31623606 PMCID: PMC6796346 DOI: 10.1186/s12943-019-1080-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Emerging evidence has shown that circular RNAs (circRNAs) play essential roles in cancer biology and are potential biomarkers and targets for cancer therapy. However, the expression and function of circRNAs in ovarian carcinogenesis and its progression remain elusive. METHODS RNA sequencing was performed to reveal circRNA expression profiles in ovarian cancerous and normal tissues. Single-molecule RNA in-situ hybridization was used to quantify circPLEKHM3 expression in tumor tissues. Cell-based in-vitro and in-vivo assays were subsequently conducted to support the clinical findings. RESULTS CircPLEKHM3 was identified as one of the most significantly down-regulated circRNAs in ovarian cancer tissues compared with normal tissues. Its expression was further decreased in peritoneal metastatic ovarian carcinomas compared to primary ovarian carcinomas. Patients with lower circPLEKHM3 tend to have a worse prognosis. Functionally, circPLEKHM3 overexpression inhibited cell growth, migration and epithelial-mesenchymal transition, whereas its knockdown exerted an opposite role. Further analyses showed that circPLEKHM3 sponged miR-9 to regulate the endogenous expression of BRCA1, DNAJB6 and KLF4, and consequently inactivate AKT1 signaling. In addition, AKT inhibitor MK-2206 could block the tumor-promoting effect of circPLEKHM3 depletion, and potentiate Taxol-induced growth inhibition of ovarian cancer cells. CONCLUSIONS Our findings demonstrated that circPLEKHM3 functions as a tumor suppressor in ovarian cancer cells by targeting the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis and may be used as a prognostic indicator and therapeutic target in ovarian cancer patients. The new strategy for treating ovarian cancer by a combination therapy of Taxol with MK-2206 is worth further investigation, especially in ovarian cancer patients with loss of circPLEKHM3 expression.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongzi Qiu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Hou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Mengting Wu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xufan Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingjian Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Xiaodong Cheng
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Pengyuan Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
25
|
A phase I trial of MK-2206 and hydroxychloroquine in patients with advanced solid tumors. Cancer Chemother Pharmacol 2019; 84:899-907. [PMID: 31463691 DOI: 10.1007/s00280-019-03919-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Given the evidence that coordinate inhibition of AKT induces autophagy, we studied the combination of the AKT inhibitor, MK-2206 with hydroxychloroquine (HCQ) in patients with advanced solid tumors. METHODS Patients were treated with weekly MK-2206 (135 mg or 200 mg) plus HCQ (200 mg, 400 mg or 600 mg BID). RESULTS Thirty-five patients were enrolled across 5 dose levels. Two DLTs of grade 3 maculo-papular rash were observed at dose level 2 (MK-2206 200 mg weekly plus HCQ at 400 mg BID) and 1 DLT of grade 3 fatigue at dose level 2B (MK-2206 135 mg weekly plus HCQ 600 mg BID). The maximum tolerated dose (MTD) was declared as dose level 2B. The most common adverse events attributed to MK-2206 were hyperglycemia (N = 18; 51%), fatigue (N = 17; 49%), maculo-papular rash (N = 16; 46%), diarrhea (N = 12; 34%), anorexia (N = 11; 31%), and nausea (N = 11; 31%). Patients experiencing adverse events attributed to HCQ were small in number (N = 13) and primarily included fatigue (N = 5; 14%) and maculo-papular rashes (N = 3; 9%). Statistically significant effects on the pharmacokinetic properties of MK-2206 were observed in combination with HCQ. In addition, the plasma concentrations of HCQ in the combination with MK-2206 were significantly higher than the plasma levels of HCQ as monotherapy in prior studies. The best overall response of stable disease was observed in 5/34 (15%) patients. CONCLUSION The combination of MK-2206 and hydroxychloroquine was tolerable, but with substantial number of drug-related AEs and minimal evidence of antitumor activity.
Collapse
|
26
|
Xing Y, Lin NU, Maurer MA, Chen H, Mahvash A, Sahin A, Akcakanat A, Li Y, Abramson V, Litton J, Chavez-MacGregor M, Valero V, Piha-Paul SA, Hong D, Do KA, Tarco E, Riall D, Eterovic AK, Wulf GM, Cantley LC, Mills GB, Doyle LA, Winer E, Hortobagyi GN, Gonzalez-Angulo AM, Meric-Bernstam F. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res 2019; 21:78. [PMID: 31277699 PMCID: PMC6612080 DOI: 10.1186/s13058-019-1154-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The PI3K/AKT pathway is activated through PIK3CA or AKT1 mutations and PTEN loss in breast cancer. We conducted a phase II trial with an allosteric AKT inhibitor MK-2206 in patients with advanced breast cancer who had tumors with PIK3CA/AKT1 mutations and/or PTEN loss/mutation. METHODS The primary endpoint was objective response rate (ORR). Secondary endpoints were 6-month progression-free survival (6 m PFS), predictive and pharmacodynamic markers, safety, and tolerability. Patients had pre-treatment and on-treatment biopsies as well as collection of peripheral blood mononuclear cells (PBMC) and platelet-rich plasma (PRP). Next-generation sequencing, immunohistochemistry, and reverse phase protein arrays (RPPA) were performed. RESULTS Twenty-seven patients received MK-2206. Eighteen patients were enrolled into the PIK3CA/AKT1 mutation arm (cohort A): 13 had PIK3CA mutations, four had AKT1 mutations, and one had a PIK3CA mutation as well as PTEN loss. ORR and 6 m PFS were both 5.6% (1/18), with one patient with HR+ breast cancer and a PIK3CA E542K mutation experiencing a partial response (on treatment for 36 weeks). Nine patients were enrolled on the PTEN loss/mutation arm (cohort B). ORR was 0% and 6 m PFS was 11% (1/9), observed in a patient with triple-negative breast cancer and PTEN loss. The study was stopped early due to futility. The most common adverse events were fatigue (48%) and rash (44%). On pre-treatment biopsy, PIK3CA and AKT1 mutation status was concordant with archival tissue testing. However, two patients with PTEN loss based on archival testing had PTEN expression on the pre-treatment biopsy. MK-2206 treatment was associated with a significant decline in pAKT S473 and pAKT T308 and PI3K activation score in PBMC and PRPs, but not in tumor biopsies. By IHC, there was no significant decrease in median pAKT S473 or Ki-67 staining, but a drop was observed in both responders. CONCLUSIONS MK-2206 monotherapy had limited clinical activity in advanced breast cancer patients selected for PIK3CA/AKT1 or PTEN mutations or PTEN loss. This may, in part, be due to inadequate target inhibition at tolerable doses in heavily pre-treated patients with pathway activation, as well as tumor heterogeneity and evolution in markers such as PTEN conferring challenges in patient selection. TRIAL REGISTRATION ClinicalTrials.gov, NCT01277757 . Registered 13 January 2011.
Collapse
Affiliation(s)
- Yan Xing
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Matthew A Maurer
- Columbia University, New York, NY, 10027, USA
- Present address: Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Huiqin Chen
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Armeen Mahvash
- Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Sahin
- Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Argun Akcakanat
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yisheng Li
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Jennifer Litton
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mariana Chavez-MacGregor
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vicente Valero
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarina A Piha-Paul
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Hong
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kim-Anh Do
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emily Tarco
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dianna Riall
- IND Office, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Agda Karina Eterovic
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gerburg M Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center and Dana Farber Harvard Cancer Center, Boston, MA, 02215, USA
| | | | - Gordon B Mills
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Eric Winer
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Gabriel N Hortobagyi
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Bjune K, Wierød L, Naderi S. Inhibitors of AKT kinase increase LDL receptor mRNA expression by two different mechanisms. PLoS One 2019; 14:e0218537. [PMID: 31216345 PMCID: PMC6583949 DOI: 10.1371/journal.pone.0218537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/04/2019] [Indexed: 11/19/2022] Open
Abstract
Protein kinase B (AKT) is a serine/threonine kinase that functions as an important downstream effector of phosphoinositide 3-kinase. We have recently shown that MK-2206 and triciribine, two highly selective AKT inhibitors increase the level of low density lipoprotein receptor (LDLR) mRNA which leads to increased amount of cell-surface LDLRs. However, whereas MK-2206 induces transcription of the LDLR gene, triciribine stabilizes LDLR mRNA, raising the possibility that the two inhibitors may actually affect other kinases than AKT. In this study, we aimed to ascertain the role of AKT in regulation of LDLR mRNA expression by examining the effect of five additional AKT inhibitors on LDLR mRNA levels. Here we show that in cultured HepG2 cells, AKT inhibitors ARQ-092, AKT inhibitor VIII, perifosine, AT7867 and CCT128930 increase LDLR mRNA levels by inducing the activity of LDLR promoter. CCT128930 also increased the stability of LDLR mRNA. To study the role of AKT isoforms on LDLR mRNA levels, we examined the effect of siRNA-mediated knockdown of AKT1 or AKT2 on LDLR promoter activity and LDLR mRNA stability. Whereas knockdown of either AKT1 or AKT2 led to upregulation of LDLR promoter activity, only knockdown of AKT2 had a stabilizing effect on LDLR mRNA. Taken together, these results provide strong evidence for involvement of AKT in regulation of LDLR mRNA expression, and point towards the AKT isoform specificity for upregulation of LDLR mRNA expression.
Collapse
Affiliation(s)
- Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- * E-mail:
| | - Lene Wierød
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Soheil Naderi
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Conway JRW, Herrmann D, Evans TRJ, Morton JP, Timpson P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2019; 68:742-758. [PMID: 30396902 PMCID: PMC6580874 DOI: 10.1136/gutjnl-2018-316822] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly solid tumours. This is due to a generally late-stage diagnosis of a primarily treatment-refractory disease. Several large-scale sequencing and mass spectrometry approaches have identified key drivers of this disease and in doing so highlighted the vast heterogeneity of lower frequency mutations that make clinical trials of targeted agents in unselected patients increasingly futile. There is a clear need for improved biomarkers to guide effective targeted therapies, with biomarker-driven clinical trials for personalised medicine becoming increasingly common in several cancers. Interestingly, many of the aberrant signalling pathways in PDAC rely on downstream signal transduction through the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways, which has led to the development of several approaches to target these key regulators, primarily as combination therapies. The following review discusses the trend of PDAC therapy towards molecular subtyping for biomarker-driven personalised therapies, highlighting the key pathways under investigation and their relationship to the PI3K pathway.
Collapse
Affiliation(s)
- James RW Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - TR Jeffry Evans
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Koyama FC, Lopes Ramos CM, Ledesma F, Alves VAF, Fernandes JM, Vailati BB, São Julião GP, Habr-Gama A, Gama-Rodrigues J, Perez RO, Camargo AA. Effect of Akt activation and experimental pharmacological inhibition on responses to neoadjuvant chemoradiotherapy in rectal cancer. Br J Surg 2018; 105:e192-e203. [PMID: 29341150 DOI: 10.1002/bjs.10695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (CRT) is one of the preferred initial treatment strategies for locally advanced rectal cancer. Responses are variable, and most patients still require surgery. The aim of this study was to identify molecular mechanisms determining poor response to CRT. METHODS Global gene expression and pathway enrichment were assessed in pretreatment biopsies from patients with non-metastatic cT2-4 N0-2 rectal cancer within 7 cm of the anal verge. Downstream Akt activation was assessed in an independent set of pretreatment biopsies and in colorectal cancer cell lines using immunohistochemistry and western blot respectively. The radiosensitizing effects of the Akt inhibitor MK2206 were assessed using clonogenic assays and xenografts in immunodeficient mice. RESULTS A total of 350 differentially expressed genes were identified, of which 123 were upregulated and 199 downregulated in tumours from poor responders. Mitochondrial oxidative phosphorylation (P < 0·001) and phosphatidylinositol signalling pathways (P < 0·050) were identified as significantly enriched pathways among the set of differentially expressed genes. Deregulation of both pathways is known to result in Akt activation, and high immunoexpression of phosphorylated Akt S473 was observed among patients with a poor histological response (tumour regression grade 0-2) to CRT (75 per cent versus 48 per cent in those with a good or complete response; P = 0·016). Akt activation was also confirmed in the radioresistant cell line SW480, and a 50 per cent improvement in sensitivity to CRT was observed in vitro and in vivo when SW480 cells were exposed to the Akt inhibitor MK2206 in combination with radiation and 5-fluorouracil. CONCLUSION Akt activation is a key event in the response to CRT. Pharmacological inhibition of Akt activation may enhance the effects of CRT. Surgical relevance Organ preservation is an attractive alternative in rectal cancer management following neoadjuvant chemoradiotherapy (CRT) to avoid the morbidity of radical surgery. Molecular steps associated with tumour response to CRT may provide a useful tool for the identification of patients who are candidates for no immediate surgery. In this study, tumours resistant to CRT were more likely to have activation of specific genetic pathways that result in phosphorylated Akt (pAkt) activation. Pretreatment biopsy tissues with high immunoexpression of pAkt were more likely to exhibit a poor histological response to CRT. In addition, the introduction of a pAkt inhibitor to cancer cell lines in vitro and in vivo led to a significant improvement in sensitivity to CRT. Identification of pAkt-activated tumours may thus allow the identification of poor responders to CRT. In addition, the concomitant use of pAkt inhibitors to increase sensitivity to CRT in patients with rectal cancer may constitute an interesting strategy for increasing the chance of a complete response to treatment and organ preservation.
Collapse
Affiliation(s)
- F C Koyama
- Molecular Oncology Centre, Hospital Sírio Libanês, São Paulo, Brazil.,Ludwig Institute for Cancer Research, São Paulo, Brazil
| | - C M Lopes Ramos
- Molecular Oncology Centre, Hospital Sírio Libanês, São Paulo, Brazil
| | - F Ledesma
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - V A F Alves
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - J M Fernandes
- Molecular Oncology Centre, Hospital Sírio Libanês, São Paulo, Brazil
| | - B B Vailati
- Instituto Angelita and Joaquim Gama, São Paulo, Brazil
| | | | - A Habr-Gama
- Instituto Angelita and Joaquim Gama, São Paulo, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - J Gama-Rodrigues
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - R O Perez
- Ludwig Institute for Cancer Research, São Paulo, Brazil.,Instituto Angelita and Joaquim Gama, São Paulo, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Digestive Surgical Oncology Division, BP - A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - A A Camargo
- Molecular Oncology Centre, Hospital Sírio Libanês, São Paulo, Brazil.,Ludwig Institute for Cancer Research, São Paulo, Brazil
| |
Collapse
|
30
|
Kalinsky K, Sparano JA, Zhong X, Andreopoulou E, Taback B, Wiechmann L, Feldman SM, Ananthakrishnan P, Ahmad A, Cremers S, Sireci AN, Cross JR, Marks DK, Mundi P, Connolly E, Crew KD, Maurer MA, Hibshoosh H, Lee S, Hershman DL. Pre-surgical trial of the AKT inhibitor MK-2206 in patients with operable invasive breast cancer: a New York Cancer Consortium trial. Clin Transl Oncol 2018; 20:1474-1483. [PMID: 29736694 PMCID: PMC6222014 DOI: 10.1007/s12094-018-1888-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The PI3K/AKT/mTOR pathway is an oncogenic driver in breast cancer (BC). In this multi-center, pre-surgical study, we evaluated the tissue effects of the AKT inhibitor MK-2206 in women with stage I-III BC. MATERIALS AND METHODS Two doses of weekly oral MK2206 were administered at days - 9 and - 2 before surgery. The primary endpoint was reduction of pAktSer473 in breast tumor tissue from diagnostic biopsy to surgery. Secondary endpoints included changes in PI3K/AKT pathway tumor markers, tumor proliferation (ki-67), insulin growth factor pathway blood markers, pharmacokinetics (PK), genomics, and MK-2206 tolerability. Paired t tests were used to compare biomarker changes in pre- and post-MK-2206, and two-sample t tests to compare with prospectively accrued untreated controls. RESULTS Despite dose reductions, the trial was discontinued after 12 patients due to grade III rash, mucositis, and pruritus. While there was a trend to reduction in pAKT after MK-2206 (p = 0.06), there was no significant change compared to controls (n = 5, p = 0.65). After MK-2206, no significant changes in ki-67, pS6, PTEN, or stathmin were observed. There was no significant association between dose level and PK (p = 0.11). Compared to controls, MK-2206 significantly increased serum glucose (p = 0.02), insulin (p < 0.01), C-peptide (p < 0.01), and a trend in IGFBP-3 (p = 0.06). CONCLUSION While a trend to pAKT reduction after MK-2206 was observed, there was no significant change compared to controls. However, the accrued population was limited, due to toxicity being greater than expected. Pre-surgical trials can identify in vivo activity in the early drug development, but side effects must be considered in this healthy population.
Collapse
Affiliation(s)
- K Kalinsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA.
| | - J A Sparano
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, New York, USA
| | - X Zhong
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | | | - B Taback
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, USA
| | - L Wiechmann
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, USA
| | - S M Feldman
- Department of Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, New York, USA
| | | | - A Ahmad
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - S Cremers
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - A N Sireci
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - J R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - D K Marks
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - P Mundi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
| | - E Connolly
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - K D Crew
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - M A Maurer
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
| | - H Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - S Lee
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - D L Hershman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, Room 1069, New York, NY, 10032, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| |
Collapse
|
31
|
Akcakanat A, Meric-Bernstam F. MK-2206 window of opportunity study in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S57. [PMID: 30613632 DOI: 10.21037/atm.2018.10.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Al-Saffar NMS, Troy H, Wong Te Fong AC, Paravati R, Jackson LE, Gowan S, Boult JKR, Robinson SP, Eccles SA, Yap TA, Leach MO, Chung YL. Metabolic biomarkers of response to the AKT inhibitor MK-2206 in pre-clinical models of human colorectal and prostate carcinoma. Br J Cancer 2018; 119:1118-1128. [PMID: 30377337 PMCID: PMC6219501 DOI: 10.1038/s41416-018-0242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AKT is commonly overexpressed in tumours and plays an important role in the metabolic reprogramming of cancer. We have used magnetic resonance spectroscopy (MRS) to assess whether inhibition of AKT signalling would result in metabolic changes that could potentially be used as biomarkers to monitor response to AKT inhibition. METHODS Cellular and metabolic effects of the allosteric AKT inhibitor MK-2206 were investigated in HT29 colon and PC3 prostate cancer cells and xenografts using flow cytometry, immunoblotting, immunohistology and MRS. RESULTS In vitro treatment with MK-2206 inhibited AKT signalling and resulted in time-dependent alterations in glucose, glutamine and phospholipid metabolism. In vivo, MK-2206 resulted in inhibition of AKT signalling and tumour growth compared with vehicle-treated controls. In vivo MRS analysis of HT29 subcutaneous xenografts showed similar metabolic changes to those seen in vitro including decreases in the tCho/water ratio, tumour bioenergetic metabolites and changes in glutamine and glutathione metabolism. Similar phosphocholine changes compared to in vitro were confirmed in the clinically relevant orthotopic PC3 model. CONCLUSION This MRS study suggests that choline metabolites detected in response to AKT inhibition are time and microenvironment-dependent, and may have potential as non-invasive biomarkers for monitoring response to AKT inhibitors in selected cancer types.
Collapse
Affiliation(s)
- Nada M S Al-Saffar
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Helen Troy
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Abbott Ireland Diagnostics Division, Pregnancy and Fertility Team, Lisnamuck, Longford, Ireland
| | - Anne-Christine Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Roberta Paravati
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - L Elizabeth Jackson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Jessica K R Boult
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| |
Collapse
|
33
|
Jiang B, Guan Y, Shen HJ, Zhang LH, Jiang JX, Dong XW, Shen HH, Xie QM. Akt/PKB signaling regulates cigarette smoke-induced pulmonary epithelial-mesenchymal transition. Lung Cancer 2018; 122:44-53. [DOI: 10.1016/j.lungcan.2018.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 01/31/2023]
|
34
|
Bjune K, Sundvold H, Leren TP, Naderi S. MK-2206, an allosteric inhibitor of AKT, stimulates LDLR expression and LDL uptake: A potential hypocholesterolemic agent. Atherosclerosis 2018; 276:28-38. [PMID: 30025252 DOI: 10.1016/j.atherosclerosis.2018.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/01/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Induction of low-density lipoprotein receptor (LDLR) plays a significant role in reduction of plasma LDL-cholesterol (LDL-C) levels. Therefore, strategies that enhance the protein level of LDLR provide an attractive therapeutic target for the treatment of hypercholesterolemia. With this aim in mind, we concentrated our effort on studying the role of AKT kinase in regulation of LDLR levels and proceeded to examine the effect of MK-2206, an allosteric and highly selective AKT inhibitor, on LDLR expression. METHODS Cultured human hepatoma cells were used to examine the effect of MK-2206 on the proteolytic processing of sterol regulatory element-binding protein-2 (SREBP-2), the expression of LDLR and cellular internalization of LDL. We also examined the effect of MK-2206 on LDLR levels in primary human hepatocytes. RESULTS MK-2206 induced the proteolytic processing of SREBP-2, upregulated LDLR expression and stimulated LDL uptake. In contrast to statins, induction of LDLR levels by MK-2206 did not rely on 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibition. As a result, cotreatment of cells with MK-2206 and mevastatin potentiated the impact of mevastatin on LDLR. Importantly, MK-2206 stimulated the expression of LDLR by primary human hepatocytes. CONCLUSIONS MK-2206 is a novel LDLR-inducing agent that, either alone or in combination with statins, exerts a stimulating effect on cellular LDL uptake.
Collapse
Affiliation(s)
- Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Hilde Sundvold
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Soheil Naderi
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
35
|
Aghajanian C, Bell-McGuinn KM, Burris HA, Siu LL, Stayner LA, Wheler JJ, Hong DS, Kurkjian C, Pant S, Santiago-Walker A, Gauvin JL, Antal JM, Opalinska JB, Morris SR, Infante JR. A phase I, open-label, two-stage study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral AKT inhibitor GSK2141795 in patients with solid tumors. Invest New Drugs 2018; 36:1016-1025. [PMID: 29611022 DOI: 10.1007/s10637-018-0591-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Background We sought to determine the recommended phase II dose (RP2D) and schedule of GSK2141795, an oral pan-AKT kinase inhibitor. Patients and Methods Patients with solid tumors were enrolled in the dose-escalation phase. Pharmacokinetic (PK) analysis after a single dose (Cycle 0) informed dose escalation using accelerated dose titration. Once one grade 2 toxicity or dose-limiting toxicity was observed in Cycle 1, the accelerated dose titration was terminated and a 3 + 3 dose escalation was started. Continuous daily dosing was evaluated along with two intermittent regimens (7 days on/7 days off and 3 times per week). In the expansion phase at RP2D, patients with endometrial or prostate cancer, as well as those with select tumor types with a PIK3CA mutation, AKT mutation or PTEN loss, were enrolled. Patients were evaluated for adverse events (AEs), PK parameters, blood glucose and insulin levels, and tumor response. Results The RP2D of GSK2141795 for once-daily dosing is 75 mg. The most common (>10%) treatment-related AEs included diarrhea, fatigue, vomiting, and decreased appetite. Most AEs were low grade. The frequency of hyperglycemia increased with dose; however, at the RP2D, grade 3 hyperglycemia was only reported in 4% of patients and no grade 4 events were observed. PK characteristics were favorable, with a prolonged half-life and low peak-to-trough ratio. There were two partial responses at the RP2D in patients with either a PIK3CA mutation or PTEN loss. Conclusion GSK2141795 was safe and well-tolerated, with clinical activity seen as monotherapy at the RP2D of 75 mg daily. NCT00920257.
Collapse
Affiliation(s)
- Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSK), 300 East 66th Street, New York, NY, 10065, USA. .,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Katherine M Bell-McGuinn
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSK), 300 East 66th Street, New York, NY, 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Eli Lilly and Company, Indianapolis, IN, USA
| | - Howard A Burris
- Sarah Cannon Research Institute, Nashville, TN, USA.,Tennessee Oncology, Nashville, TN, USA
| | | | | | | | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carla Kurkjian
- Sarah Cannon Research Institute, Nashville, TN, USA.,Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shubham Pant
- Sarah Cannon Research Institute, Nashville, TN, USA.,Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | | | - Jennifer L Gauvin
- GlaxoSmithKline, Collegeville, PA, USA.,Novartis Pharmaceuticals, Orlanda, Florida, USA
| | - Joyce M Antal
- GlaxoSmithKline, Collegeville, PA, USA.,MedImmune, Gaithersburg, MD, USA
| | - Joanna B Opalinska
- GlaxoSmithKline, Collegeville, PA, USA.,Boehringer-Ingelheim, Ridgefield, CT, USA
| | - Shannon R Morris
- GlaxoSmithKline, Collegeville, PA, USA.,MedImmune, Gaithersburg, MD, USA
| | - Jeffrey R Infante
- Sarah Cannon Research Institute, Nashville, TN, USA.,Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
36
|
Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 2018; 15:273-291. [PMID: 29508857 DOI: 10.1038/nrclinonc.2018.28] [Citation(s) in RCA: 743] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The PI3K-AKT-mTOR pathway is one of the most frequently dysregulated pathways in cancer and, consequently, more than 40 compounds that target key components of this signalling network have been tested in clinical trials involving patients with a range of different cancers. The clinical development of many of these agents, however, has not advanced to late-phase randomized trials, and the antitumour activity of those that have been evaluated in comparative prospective studies has typically been limited, or toxicities were found to be prohibitive. Nevertheless, the mTOR inhibitors temsirolimus and everolimus and the PI3K inhibitors idelalisib and copanlisib have been approved by the FDA for clinical use in the treatment of a number of different cancers. Novel compounds with greater potency and selectivity, as well as improved therapeutic indices owing to reduced risks of toxicity, are clearly required. In addition, biomarkers that are predictive of a response, such as PIK3CA mutations for inhibitors of the PI3K catalytic subunit α isoform, must be identified and analytically and clinically validated. Finally, considering that oncogenic activation of the PI3K-AKT-mTOR pathway often occurs alongside pro-tumorigenic aberrations in other signalling networks, rational combinations are also needed to optimize the effectiveness of treatment. Herein, we review the current experience with anticancer therapies that target the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
deSouza NM, Winfield JM, Waterton JC, Weller A, Papoutsaki MV, Doran SJ, Collins DJ, Fournier L, Sullivan D, Chenevert T, Jackson A, Boss M, Trattnig S, Liu Y. Implementing diffusion-weighted MRI for body imaging in prospective multicentre trials: current considerations and future perspectives. Eur Radiol 2018; 28:1118-1131. [PMID: 28956113 PMCID: PMC5811587 DOI: 10.1007/s00330-017-4972-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
For body imaging, diffusion-weighted MRI may be used for tumour detection, staging, prognostic information, assessing response and follow-up. Disease detection and staging involve qualitative, subjective assessment of images, whereas for prognosis, progression or response, quantitative evaluation of the apparent diffusion coefficient (ADC) is required. Validation and qualification of ADC in multicentre trials involves examination of i) technical performance to determine biomarker bias and reproducibility and ii) biological performance to interrogate a specific aspect of biology or to forecast outcome. Unfortunately, the variety of acquisition and analysis methodologies employed at different centres make ADC values non-comparable between them. This invalidates implementation in multicentre trials and limits utility of ADC as a biomarker. This article reviews the factors contributing to ADC variability in terms of data acquisition and analysis. Hardware and software considerations are discussed when implementing standardised protocols across multi-vendor platforms together with methods for quality assurance and quality control. Processes of data collection, archiving, curation, analysis, central reading and handling incidental findings are considered in the conduct of multicentre trials. Data protection and good clinical practice are essential prerequisites. Developing international consensus of procedures is critical to successful validation if ADC is to become a useful biomarker in oncology. KEY POINTS • Standardised acquisition/analysis allows quantification of imaging biomarkers in multicentre trials. • Establishing "precision" of the measurement in the multicentre context is essential. • A repository with traceable data of known provenance promotes further research.
Collapse
Affiliation(s)
- N. M. deSouza
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT UK
| | - J. M. Winfield
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT UK
| | - J. C. Waterton
- Manchester Academic Health Sciences Institute, University of Manchester, Manchester, UK
| | - A. Weller
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT UK
| | - M.-V. Papoutsaki
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT UK
| | - S. J. Doran
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT UK
| | - D. J. Collins
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT UK
| | - L. Fournier
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Radiology Department, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - D. Sullivan
- Duke Comprehensive Cancer Institute, Durham, NC USA
| | - T. Chenevert
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI USA
| | - A. Jackson
- Manchester Academic Health Sciences Institute, University of Manchester, Manchester, UK
| | - M. Boss
- Applied Physics Division, National Institute of Standards and Technology (NIST), Boulder, CO USA
| | - S. Trattnig
- Department of Biomedical Imaging and Image guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Y. Liu
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium
| |
Collapse
|
38
|
Use of Targeted Therapeutics in Epithelial Ovarian Cancer: A Review of Current Literature and Future Directions. Clin Ther 2018; 40:361-371. [DOI: 10.1016/j.clinthera.2018.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/12/2022]
|
39
|
Concomitant inhibition of receptor tyrosine kinases and downstream AKT synergistically inhibited growth of KRAS/BRAF mutant colorectal cancer cells. Oncotarget 2018; 8:5003-5015. [PMID: 28002807 PMCID: PMC5354887 DOI: 10.18632/oncotarget.14009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling pathways are frequently activated in cancer cells due to mutations of RTKs and/or their downstream signaling proteins such as KRAS and BRAF. About 40% colorectal cancers (CRCs) contain KRAS or BRAF mutant genes and are resistant to treatments with individual inhibitors of RTKs, AKT, MEK, or BRAF. Therefore, an understanding of the molecular mechanisms of the drug resistance is necessary for developing effective strategies to treat the diseases. Here we report the discovery of an AKT/ERK reactivation mechanism that account for the cancer cell resistance to the AKT and MEK inhibitors treatments. The reactivations of AKT and ERK after the AKT or MEK inhibitor treatment were caused by a relief of an AKT or ERK-mediated feedback inhibition of the RTKs and/or their downstream pathways. A combination of RTK inhibitors, based on the RTK activation/phosphorylation profile, synergized with the AKT inhibitor, but not the MEK inhibitor, to completely inhibit the AKT phosphorylation and to block the growth of KRAS/BRAF mutant CRC cells. These results underscored the importance of AKT and the AKT feedback signaling to cancer cell growth and offered a novel therapeutic approach for the treatment of KRAS/BRAF mutant CRC cells.
Collapse
|
40
|
Jeong SH, Kim HB, Kim MC, Lee JM, Lee JH, Kim JH, Kim JW, Park WY, Kim SY, Kim JB, Kim H, Kim JM, Choi HS, Lim DS. Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J Clin Invest 2018; 128:1010-1025. [PMID: 29400692 DOI: 10.1172/jci95802] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for liver cancer; therefore, its prevention is an important clinical goal. Ablation of phosphatase and tensin homolog (PTEN) or the protein kinase Hippo signaling pathway induces liver cancer via activation of AKT or the transcriptional regulators YAP/TAZ, respectively; however, the potential for crosstalk between the PTEN/AKT and Hippo/YAP/TAZ pathways in liver tumorigenesis has thus far remained unclear. Here, we have shown that deletion of both PTEN and SAV1 in the liver accelerates the development of NAFLD and liver cancer in mice. At the molecular level, activation of YAP/TAZ in the liver of Pten-/- Sav1-/- mice amplified AKT signaling through the upregulation of insulin receptor substrate 2 (IRS2) expression. Both ablation of YAP/TAZ and activation of the Hippo pathway could rescue these phenotypes. A high level of YAP/ TAZ expression was associated with a high level of IRS2 expression in human hepatocellular carcinoma (HCC). Moreover, treatment with the AKT inhibitor MK-2206 or knockout of IRS2 by AAV-Cas9 successfully repressed liver tumorigenesis in Pten-/- Sav1-/- mice. Thus, our findings suggest that Hippo signaling interacts with AKT signaling by regulating IRS2 expression to prevent NAFLD and liver cancer progression and provide evidence that impaired crosstalk between these 2 pathways accelerates NAFLD and liver cancer.
Collapse
Affiliation(s)
- Sun-Hye Jeong
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Han-Byul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Min-Chul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae Ho Lee
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin-Woo Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Woong-Yang Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
41
|
Cairns J, Fridley BL, Jenkins GD, Zhuang Y, Yu J, Wang L. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation. EMBO Rep 2018; 19:embr.201744767. [PMID: 29335246 PMCID: PMC5835844 DOI: 10.15252/embr.201744767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
AKT signaling is modulated by a complex network of regulatory proteins and is commonly deregulated in cancer. Here, we present a dual mechanism of AKT regulation by the ERBB receptor feedback inhibitor 1 (ERRFI1). We show that in cells expressing high levels of EGFR, ERRF1 inhibits growth and enhances responses to chemotherapy. This is mediated in part through the negative regulation of AKT signaling by direct ERRFI1-dependent inhibition of EGFR In cells expressing low levels of EGFR, ERRFI1 positively modulates AKT signaling by interfering with the interaction of the inactivating phosphatase PHLPP with AKT, thereby promoting cell growth and chemotherapy desensitization. These observations broaden our understanding of chemotherapy response and have important implications for the selection of targeted therapies in a cell context-dependent manner. EGFR inhibition can only sensitize EGFR-high cells for chemotherapy, while AKT inhibition increases chemosensitivity in EGFR-low cells. By understanding these mechanisms, we can take advantage of the cellular context to individualize antineoplastic therapy. Finally, our data also suggest targeting of EFFRI1 in EGFR-low cancer as a promising therapeutic approach.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yongxian Zhuang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Wong Te Fong AC, Thavasu P, Gagrica S, Swales KE, Leach MO, Cosulich SC, Chung YL, Banerji U. Evaluation of the combination of the dual m-TORC1/2 inhibitor vistusertib (AZD2014) and paclitaxel in ovarian cancer models. Oncotarget 2017; 8:113874-113884. [PMID: 29371953 PMCID: PMC5768370 DOI: 10.18632/oncotarget.23022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/14/2017] [Indexed: 01/02/2023] Open
Abstract
Activation of the PI3K/mTOR pathway has been shown to be correlated with resistance to chemotherapy in ovarian cancer. We aimed to investigate the effects of combining inhibition of mTORC1 and 2 using the mTOR kinase inhibitor vistusertib (AZD2014) with paclitaxel in in vitro and in vivo ovarian cancer models. The combination of vistusertib and paclitaxel on cell growth was additive in a majority of cell lines in the panel (n = 12) studied. A cisplatin- resistant model (A2780Cis) was studied in vitro and in vivo. We demonstrated inhibition of mTORC1 and mTORC2 by vistusertib and the combination by showing reduction in p-S6 and p-AKT levels, respectively. In the A2780CisR xenograft model compared to control, there was a significant reduction in tumor volumes (p = 0.03) caused by the combination and not paclitaxel or vistusertib alone. In vivo, we observed a significant increase in apoptosis (cleaved PARP measured by immunohistochemistry; p = 0.0003). Decreases in phospholipid and bioenergetic metabolites were studied using magnetic resonance spectroscopy and significant changes in phosphocholine (p = 0.01), and ATP (p = 0.04) were seen in tumors treated with the combination when compared to vehicle-control. Based on this data, a clinical trial evaluating the combination of paclitaxel and vistusertib has been initiated (NCT02193633). Interestingly, treatment of ovarian cancer patients with paclitaxel caused an increase in p-AKT levels in platelet-rich plasma and it was possible to abrogate this increase with the co-treatment with vistusertib in 4/5 patients: we believe this combination will benefit patients with ovarian cancer.
Collapse
Affiliation(s)
- Anne-Christine Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Parames Thavasu
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Sladjana Gagrica
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Karen E. Swales
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Martin O. Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Sabina C. Cosulich
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Udai Banerji
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| |
Collapse
|
43
|
Ma CX, Suman V, Goetz MP, Northfelt D, Burkard ME, Ademuyiwa F, Naughton M, Margenthaler J, Aft R, Gray R, Tevaarwerk A, Wilke L, Haddad T, Moynihan T, Loprinzi C, Hieken T, Barnell EK, Skidmore ZL, Feng YY, Krysiak K, Hoog J, Guo Z, Nehring L, Wisinski KB, Mardis E, Hagemann IS, Vij K, Sanati S, Al-Kateb H, Griffith OL, Griffith M, Doyle L, Erlichman C, Ellis MJ. A Phase II Trial of Neoadjuvant MK-2206, an AKT Inhibitor, with Anastrozole in Clinical Stage II or III PIK3CA-Mutant ER-Positive and HER2-Negative Breast Cancer. Clin Cancer Res 2017; 23:6823-6832. [PMID: 28874413 PMCID: PMC6392430 DOI: 10.1158/1078-0432.ccr-17-1260] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023]
Abstract
Purpose: Hyperactivation of AKT is common and associated with endocrine resistance in estrogen receptor-positive (ER+) breast cancer. The allosteric pan-AKT inhibitor MK-2206 induced apoptosis in PIK3CA-mutant ER+ breast cancer under estrogen-deprived condition in preclinical studies. This neoadjuvant phase II trial was therefore conducted to test the hypothesis that adding MK-2206 to anastrozole induces pathologic complete response (pCR) in PIK3CA mutant ER+ breast cancer.Experimental Design: Potential eligible patients with clinical stage II/III ER+/HER2- breast cancer were preregistered and received anastrozole (goserelin if premenopausal) for 28 days in cycle 0 pending tumor PIK3CA sequencing. Patients positive for PIK3CA mutation in the tumor were eligible to start MK-2206 (150 mg orally weekly, with prophylactic prednisone) on cycle 1 day 2 (C1D2) and to receive a maximum of four 28-day cycles of combination therapy before surgery. Serial biopsies were collected at preregistration, C1D1 and C1D17.Results: Fifty-one patients preregistered and 16 of 22 with PIK3CA-mutant tumors received study drug. Three patients went off study due to C1D17 Ki67 >10% (n = 2) and toxicity (n = 1). Thirteen patients completed neoadjuvant therapy followed by surgery. No pCRs were observed. Rash was common. MK-2206 did not further suppress cell proliferation and did not induce apoptosis on C1D17 biopsies. Although AKT phosphorylation was reduced, PRAS40 phosphorylation at C1D17 after MK-2206 persisted. One patient acquired an ESR1 mutation at surgery.Conclusions: MK-2206 is unlikely to add to the efficacy of anastrozole alone in PIK3CA-mutant ER+ breast cancer and should not be studied further in the target patient population. Clin Cancer Res; 23(22); 6823-32. ©2017 AACR.
Collapse
Affiliation(s)
- Cynthia X Ma
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Vera Suman
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Donald Northfelt
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Mark E Burkard
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Foluso Ademuyiwa
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Naughton
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie Margenthaler
- Section of Endocrine and Oncologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Rebecca Aft
- Section of Endocrine and Oncologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Richard Gray
- Department of General Surgery, Mayo Clinic, Phoenix, Arizona
| | - Amye Tevaarwerk
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lee Wilke
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tufia Haddad
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Tina Hieken
- Department of General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erica K Barnell
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Zachary L Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Yan-Yang Feng
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jeremy Hoog
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Zhanfang Guo
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Leslie Nehring
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elaine Mardis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kiran Vij
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Souzan Sanati
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Hussam Al-Kateb
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Obi L Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Laurence Doyle
- Cancer Therapy Evaluation Program, NCI, Bethesda, Maryland
| | | | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
44
|
Wang Q, Chen X, Hay N. Akt as a target for cancer therapy: more is not always better (lessons from studies in mice). Br J Cancer 2017; 117:159-163. [PMID: 28557977 PMCID: PMC5520506 DOI: 10.1038/bjc.2017.153] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/27/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
The PI3K/Akt signalling pathway is one of the most frequently altered signalling networks in human cancers and has become an attractive target in anticancer therapy. Several drugs targeting this pathway are currently in different phases of clinical trials. However, accumulating reports suggest that adverse effects such as hyperglycaemia and hyperinsulinaemia accompany treatment with pan-PI3K and pan-Akt inhibitors. Thus, understanding the consequences of the systemic deletion or inhibition of Akt activity in vivo is imperative. Three Akt isoforms may individually affect different cancer cells in culture to varying degrees that could suggest specific targeting of different Akt isoforms for different types of cancer. However, the results obtained in cell culture do not address the consequences of Akt isoform inhibition at the organismal level and consequently fail to predict the feasibility of targeting these isoforms for cancer therapy. This review summarises and discusses the consequences of genetic deletions of Akt isoforms in adult mice and their implications for cancer therapy. Whereas combined Akt1 and Akt2 rapidly induced mortality, hepatic Akt inhibition induced liver injury that promotes hepatocellular carcinoma. These findings may explain some of the side effects exerted by pan-PI3K and pan-Akt inhibitors and suggest that close attention must be paid when targeting all Akt isoforms as a therapeutic intervention.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinyu Chen
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
- Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
45
|
Winfield JM, Tunariu N, Rata M, Miyazaki K, Jerome NP, Germuska M, Blackledge MD, Collins DJ, de Bono JS, Yap TA, deSouza NM, Doran SJ, Koh DM, Leach MO, Messiou C, Orton MR. Extracranial Soft-Tissue Tumors: Repeatability of Apparent Diffusion Coefficient Estimates from Diffusion-weighted MR Imaging. Radiology 2017; 284:88-99. [PMID: 28301311 PMCID: PMC6063352 DOI: 10.1148/radiol.2017161965] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Purpose To assess the repeatability of apparent diffusion coefficient (ADC) estimates in extracranial soft-tissue diffusion-weighted magnetic resonance imaging across a wide range of imaging protocols and patient populations. Materials and Methods Nine prospective patient studies and one prospective volunteer study, performed between 2006 and 2016 with research ethics committee approval and written informed consent from each subject, were included in this single-institution study. A total of 141 tumors and healthy organs were imaged twice (interval between repeated examinations, 45 minutes to 10 days, depending the on study) to assess the repeatability of median and mean ADC estimates. The Levene test was used to determine whether ADC repeatability differed between studies. The Pearson linear correlation coefficient was used to assess correlation between coefficient of variation (CoV) and the year the study started, study size, and volumes of tumors and healthy organs. The repeatability of ADC estimates from small, medium, and large tumors and healthy organs was assessed irrespective of study, and the Levene test was used to determine whether ADC repeatability differed between these groups. Results CoV aggregated across all studies was 4.1% (range for each study, 1.7%-6.5%). No correlation was observed between CoV and the year the study started or study size. CoV was weakly correlated with volume (r = -0.5, P = .1). Repeatability was significantly different between small, medium, and large tumors (P < .05), with the lowest CoV (2.6%) for large tumors. There was a significant difference in repeatability between studies-a difference that did not persist after the study with the largest tumors was excluded. Conclusion ADC is a robust imaging metric with excellent repeatability in extracranial soft tissues across a wide range of tumor sites, sizes, patient populations, and imaging protocol variations. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Jessica M Winfield
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Nina Tunariu
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Mihaela Rata
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Keiko Miyazaki
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Neil P Jerome
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Michael Germuska
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Matthew D Blackledge
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - David J Collins
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Johann S de Bono
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Timothy A Yap
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Nandita M deSouza
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Simon J Doran
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Dow-Mu Koh
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Martin O Leach
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Christina Messiou
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| | - Matthew R Orton
- From the Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Division of Clinical Studies (J.S.d.B., T.A.Y.), the Institute of Cancer Research and Royal Marsden Hospital, London, England; MRI Unit (J.M.W., N.T., M.R., K.M., N.P.J., M.G., M.D.B., D.J.C., N.M.d.S., S.J.D., D.M.K., M.O.L., C.M., M.R.O.) and Drug Development Unit (J.S.d.B., T.A.Y.), the Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, England
| |
Collapse
|
46
|
Wang J, Xu-Monette ZY, Jabbar KJ, Shen Q, Manyam GC, Tzankov A, Visco C, Wang J, Montes-Moreno S, Dybkær K, Tam W, Bhagat G, Hsi ED, van Krieken JH, Ponzoni M, Ferreri AJM, Wang S, Møller MB, Piris MA, Medeiros LJ, Li Y, Pham LV, Young KH. AKT Hyperactivation and the Potential of AKT-Targeted Therapy in Diffuse Large B-Cell Lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28627414 DOI: 10.1016/j.ajpath.2017.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AKT signaling is important for proliferation and survival of tumor cells. The clinical significance of AKT activation in diffuse large B-cell lymphoma (DLBCL) is not well analyzed. Here, we assessed expression of phosphorylated AKT (p-AKT) in 522 DLBCL patients. We found that high levels of p-AKT nuclear expression, observed in 24.3% of the study cohort, were associated with significantly worse progression-free survival and Myc and Bcl-2 overexpression. However, multivariate analysis indicated that AKT hyperactivation was not an independent factor. miRNA profiling analysis demonstrated that 63 miRNAs directly or indirectly related to the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin pathway were differentially expressed between DLBCLs with high and low p-AKT nuclear expression. We further targeted AKT signaling using a highly selective AKT inhibitor MK-2206 in 26 representative DLBCL cell lines and delineated signaling alterations using a reverse-phase protein array. MK-2206 treatment inhibited lymphoma cell viability, and MK-2206 sensitivity correlated with AKT activation status in DLBCL cells. On MK-2206 treatment, p-AKT levels and downstream targets of AKT signaling were significantly decreased, likely because of the decreased feedback repression; Rictor and phosphatidylinositol 3-kinase expression and other compensatory pathways were also induced. This study demonstrates the clinical and therapeutic implications of AKT hyperactivation in DLBCL and suggests that AKT inhibitors need to be combined with other targeted agents for DLBCL to achieve optimal clinical efficacy.
Collapse
Affiliation(s)
- Jinfen Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, Shanxi Cancer Hospital, Shanxi, China
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kausar J Jabbar
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Shen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Carlo Visco
- Department of Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Wayne Tam
- Department of Pathology, Weill Medical College of Cornell University, New York, New York
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Eric D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - J Han van Krieken
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | - Shi Wang
- Department of Pathology, National University Hospital, Singapore
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Miguel A Piris
- Department of Pathology, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yong Li
- Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
47
|
Waldenstrom macroglobulinemia cells devoid of BTK C481S or CXCR4 WHIM-like mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J 2017; 7:e565. [PMID: 28548645 PMCID: PMC5518884 DOI: 10.1038/bcj.2017.40] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 02/09/2017] [Accepted: 02/23/2017] [Indexed: 12/27/2022] Open
Abstract
Although ibrutinib is highly effective in Waldenstrom macroglobulinemia (WM), no complete remissions in WM patients treated with ibrutinib have been reported to date. Moreover, ibrutinib-resistant disease is being steadily reported and is associated with dismal clinical outcome (overall survival of 2.9–3.1 months). To understand mechanisms of ibrutinib resistance in WM, we established ibrutinib-resistant in vitro models using validated WM cell lines. Characterization of these models revealed the absence of BTKC481S and CXCR4WHIM-like mutations. BTK-mediated signaling was found to be highly attenuated accompanied by a shift in PI3K/AKT and apoptosis regulation-associated genes/proteins. Cytotoxicity studies using the AKT inhibitor, MK2206±ibrutinib, and the Bcl-2-specific inhibitor, venetoclax±ibrutinib, demonstrated synergistic loss of cell viability when either MK22016 or venetoclax were used in combination with ibrutinib. Our findings demonstrate that induction of ibrutinib resistance in WM cells can arise independent of BTKC481S and CXCR4WHIM-like mutations and sustained pressure from ibrutinib appears to activate compensatory AKT signaling as well as reshuffling of Bcl-2 family proteins for maintenance of cell survival. Combination treatment demonstrated greater (and synergistic) antitumor effect and provides rationale for development of therapeutic strategies encompassing venetoclax+ibrutinib or PI3K/AKT inhibitors+ibrutinib in ibrutinib-resistant WM.
Collapse
|
48
|
Jonasch E, Hasanov E, Corn PG, Moss T, Shaw KR, Stovall S, Marcott V, Gan B, Bird S, Wang X, Do KA, Altamirano PF, Zurita AJ, Doyle LA, Lara PN, Tannir NM. A randomized phase 2 study of MK-2206 versus everolimus in refractory renal cell carcinoma. Ann Oncol 2017; 28:804-808. [PMID: 28049139 DOI: 10.1093/annonc/mdw676] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 01/28/2023] Open
Abstract
Background Activation of the phosphoinisitide-3 kinase (PI3K) pathway through mutation and constitutive upregulation has been described in renal cell carcinoma (RCC), making it an attractive target for therapeutic intervention. We performed a randomized phase II study in vascular endothelial growth factor (VEGF) therapy refractory patients to determine whether MK-2206, an allosteric inhibitor of AKT, was more efficacious than the mammalian target of rapamycin inhibitor everolimus. Patients and methods A total of 43 patients were randomized in a 2:1 distribution, with 29 patients assigned to the MK-2206 arm and 14 to the everolimus arm. Progression-free survival (PFS) was the primary endpoint. Results The trial was closed at the first futility analysis with an observed PFS of 3.68 months in the MK-2206 arm and 5.98 months in the everolimus arm. Dichotomous response rate profiles were seen in the MK-2206 arm with one complete response and three partial responses in the MK-2206 arm versus none in the everolimus arm. On the other hand, progressive disease was best response in 44.8% of MK2206 versus 14.3% of everolimus-treated patients. MK-2206 induced significantly more rash and pruritis than everolimus, and dose reduction occurred in 37.9% of MK-2206 versus 21.4% of everolimus-treated patients. Genomic analysis revealed that 57.1% of the patients in the PD group had either deleterious TP53 mutations or ATM mutations or deletions. In contrast, none of the patients in the non-PD group had TP53 or ATM defects. No predictive marker for response was observed in this small dataset. Conclusions Dichotomous outcomes are observed when VEGF therapy refractory patients are treated with MK-2206, and MK-2206 does not demonstrate superiority to everolimus. Additionally, mutations in DNA repair genes are associated with early disease progression, indicating that dysregulation of DNA repair is associated with a more aggressive tumor phenotype in RCC.
Collapse
Affiliation(s)
- E Jonasch
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - E Hasanov
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - P G Corn
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - T Moss
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - K R Shaw
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - S Stovall
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - V Marcott
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - B Gan
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - S Bird
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - X Wang
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - K A Do
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - P F Altamirano
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - A J Zurita
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| | - L A Doyle
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | - P N Lara
- UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - N M Tannir
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, TX, USA
| |
Collapse
|
49
|
Prêtre V, Wicki A. Inhibition of Akt and other AGC kinases: A target for clinical cancer therapy? Semin Cancer Biol 2017; 48:70-77. [PMID: 28473255 DOI: 10.1016/j.semcancer.2017.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 01/27/2023]
Abstract
AGC kinases have been identified to contribute to cancer development and progression. Currently, most AGC inhibitors in clinical development are Akt inhibitors such as MK-2206 or GDC-0068, which are known to promote cell growth arrest and to sensitize cancer cells to radiotherapy. Response rates in clinical trials with single agent Akt inhibitors are typically low. The observed adverse events are within the expected limits for compounds inhibiting the PI3K-mTOR axis. Preclinical and early clinical data for combination therapies are accumulating. Based on these data, several Akt inhibitors are about to enter phase 3 trials. Besides drugs that target Akt, p70S6K inhibitors have entered clinical development. Again, the response rates were rather low. In addition, relevant toxicities were identified, including a risk for coagulopathies with these compounds. Multi-AGC kinase inhibitors are also in early clinical development but the data is not sufficient yet to draw conclusions regarding their efficacy and side-effect profile. PKC inhibitors have been tested in the phase 3 setting but were found to lack efficacy. More trials with isoform-specific PKC inhibitors are expected. Taken together, therapies with AGC kinase inhibitors as single agents are unlikely to meet success. However, combination therapies and a precise stratification of patients according to the activation of signaling axes may increase the probability to see relevant efficacy with these compounds. The emergence of onco-immunotherapies holds some new challenges for these agents.
Collapse
Affiliation(s)
- Vincent Prêtre
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Andreas Wicki
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Department of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland.
| |
Collapse
|
50
|
Abstract
PI3K/AKT signalling is commonly disrupted in human cancers, with AKT being a central component of the pathway, influencing multiple processes that are directly involved in tumourigenesis. Targeting AKT is therefore a highly attractive anti-cancer strategy with multiple AKT inhibitors now in various stages of clinical development. In this review, we summarise the role and regulation of AKT signalling in normal cellular physiology. We highlight the mechanisms by which AKT signalling can be hyperactivated in cancers and discuss the past, present and future clinical strategies for AKT inhibition in oncology.
Collapse
Affiliation(s)
| | - Udai Banerji
- Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|