1
|
Zhu Y, Lin Y, Liu K, Zhu H. Mirvetuximab soravtansine in platinum-resistant recurrent ovarian cancer with high folate receptor-alpha expression: a cost-effectiveness analysis. J Gynecol Oncol 2024; 35:e71. [PMID: 38576343 PMCID: PMC11543259 DOI: 10.3802/jgo.2024.35.e71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE Mirvetuximab soravtansine (MIRV), a new antibody-drug conjugate, versus the investigator's choice of chemotherapy (IC) was the first treatment to demonstrate benefits for progression-free and overall survival in platinum-resistant recurrent ovarian cancer (PROC) with high folate receptor-alpha (high-FRα) expression. Efficacy, safety, and economic effectiveness make MIRV the new standard of care for these patients. METHODS Based on patients and clinical parameters from MIRASOL (GOG 3045/ENGOT-ov55) phase III randomized controlled trials, the Markov model with a 20-year time horizon was established to evaluate the cost and efficacy of MIRV and IC for PROC with high-FRα expression, considering the bevacizumab-pretreated situation from the American healthcare system. Total cost, life-years (LYs), quality-adjusted life-years (QALYs), incremental cost-effectiveness ratio (ICER), and incremental net health benefits were the main outcome indicators and compared with willingness-to-pay threshold of $100,000/QALY. Sensitivity and scenario analyses were conducted. RESULTS Compared with the IC, MIRV was associated with incremental costs of $538,251, $575,674, and $188,248 with the corresponding QALYs (LYs) increased by 0.90 (1.55), 1.09 (1.88), and 0.53 (0.79), leading to ICERs of $596,189/QALY ($347,995/LY), $530,061/QALY ($306,894/LY), and $1,011,310/QALY ($680,025/LY) in the overall, bevacizumab-naïve, and bevacizumab-pretreated patients, respectively. When MIRV is reduced by more than 75%, it may be a cost-effective treatment. CONCLUSION At the current price, MIRV for PROC with high-FRα expression is not the cost-effective strategy in the US. However, its treatment has higher health benefits in bevacizumab-naïve patients, which is likely to be an alternative.
Collapse
Affiliation(s)
- Youwen Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yinxin Lin
- Department of General Surgery, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Kun Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Huang Y, Lin W, Zheng X. Causal association between 637 human metabolites and ovarian cancer: a mendelian randomization study. BMC Genomics 2024; 25:97. [PMID: 38262941 PMCID: PMC10804684 DOI: 10.1186/s12864-024-09997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Current evidence suggests a significant association between metabolites and ovarian cancer (OC); however, the causal relationship between the two remains unclear. This study employs Mendelian randomization (MR) to investigate the causal effects between different metabolites and OC. METHODS In this study, a total of 637 metabolites were selected as the exposure variables from the Genome-wide Association Study (GWAS) database ( http://gwas.mrcieu.ac.uk/datasets/ ). The OC related GWAS dataset (ieu-b-4963) was chosen as the outcome variable. R software and the TwoSampleMR package were utilized for the analysis in this study. MR analysis employed the inverse variance-weighted method (IVW), MR-Egger and weighted median (WM) for regression fitting, taking into consideration potential biases caused by linkage disequilibrium and weak instrument variables. Metabolites that did not pass the tests for heterogeneity and horizontal pleiotropy were considered to have no significant causal effect on the outcome. Steiger's upstream test was used to determine the causal direction between the exposure and outcome variables. RESULTS The results from IVW analysis revealed that a total of 31 human metabolites showed a significant causal effect on OC (P < 0.05). Among them, 9 metabolites exhibited consistent and stable causal effects, which were confirmed by Steiger's upstream test (P < 0.05). Among these 9 metabolites, Androsterone sulfate, Propionylcarnitine, 5alpha-androstan-3beta,17beta-diol disulfate, Total lipids in medium VLDL and Concentration of medium VLDL particles demonstrated a significant positive causal effect on OC, indicating that these metabolites promote the occurrence of OC. On the other hand, X-12,093, Octanoylcarnitine, N2,N2-dimethylguanosine, and Cis-4-decenoyl carnitine showed a significant negative causal association with OC, suggesting that these metabolites can inhibit the occurrence of OC. CONCLUSIONS The study revealed the complex effect of metabolites on OC through Mendelian randomization. As promising biomarkers, these metabolites are worthy of further clinical validation.
Collapse
Affiliation(s)
- Yedong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Gynecology Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Province Key Clinical Specialty for Gynecology, Fujian Key Laboratory of Women and Children's Critical Disease Research, National Key Gynecology Clinical Specialty Construction Insititution of China, Fuzhou, China
| | - Wenyu Lin
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiangqin Zheng
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
- Department of Gynecology Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Fujian Province Key Clinical Specialty for Gynecology, Fujian Key Laboratory of Women and Children's Critical Disease Research, National Key Gynecology Clinical Specialty Construction Insititution of China, Fuzhou, China.
| |
Collapse
|
3
|
Duan Y, Xu X. A signature based on anoikis-related genes for the evaluation of prognosis, immunoinfiltration, mutation, and therapeutic response in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1193622. [PMID: 37383389 PMCID: PMC10295154 DOI: 10.3389/fendo.2023.1193622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Ovarian cancer (OC) is a highly lethal and aggressive gynecologic cancer, with an overall survival rate that has shown little improvement over the decades. Robust models are urgently needed to distinguish high-risk cases and predict reliable treatment options for OC. Although anoikis-related genes (ARGs) have been reported to contribute to tumor growth and metastasis, their prognostic value in OC remains unknown. The purpose of this study was to construct an ARG pair (ARGP)-based prognostic signature for patients with OC and elucidate the potential mechanism underlying the involvement of ARGs in OC progression. Methods The RNA-sequencing and clinical information data of OC patients were obtained from The Center Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A novel algorithm based on pairwise comparison was utilized to select ARGPs, followed by the Least Absolute Shrinkage and Selection Operator Cox analysis to construct a prognostic signature. The predictive ability of the model was validated using an external dataset, a receiver operating characteristic curve, and stratification analysis. The immune microenvironment and the proportion of immune cells were analyzed in high- and low-risk OC cases using seven algorithms. Gene set enrichment analysis and weighted gene co-expression network analysis were performed to investigate the potential mechanisms of ARGs in OC occurrence and prognosis. Results The 19-ARGP signature was identified as an important prognostic predictor for 1-, 2-, and 3-year overall survival of patients with OC. Gene function enrichment analysis showed that the high-risk group was characterized by the infiltration of immunosuppressive cells and the enrichment of adherence-related signaling pathway, suggesting that ARGs were involved in OC progression by mediating immune escape and tumor metastasis. Conclusion We constructed a reliable ARGP prognostic signature of OC, and our findings suggested that ARGs exerted a vital interplay in OC immune microenvironment and therapeutic response. These insights provided valuable information regarding the molecular mechanisms underlying this disease and potential targeted therapies.
Collapse
Affiliation(s)
- Yiqi Duan
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Feng J, Yu Y, Yin W, Qian S. Development and verification of a 7-lncRNA prognostic model based on tumor immunity for patients with ovarian cancer. J Ovarian Res 2023; 16:31. [PMID: 36739404 PMCID: PMC9898952 DOI: 10.1186/s13048-023-01099-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/11/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Both immune-reaction and lncRNAs play significant roles in the proliferation, invasion, and metastasis of ovarian cancer (OC). In this study, we aimed to construct an immune-related lncRNA risk model for patients with OC. METHOD Single sample GSEA (ssGSEA) algorithm was used to analyze the proportion of immune cells in The Cancer Genome Atlas (TCGA) and the hclust algorithm was used to conduct immune typing according to the proportion of immune cells for OC patients. The stromal and immune scores were computed utilizing the ESTIMATE algorithm. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) analyses were utilized to detect immune cluster-related lncRNAs. The least absolute shrinkage and selection operator (LASSO) regression was conducted for lncRNA selection. The selected lncRNAs were used to construct a prognosis-related risk model, which was then validated in Gene Expression Omnibus (GEO) database and in vitro validation. RESULTS We identify two subtypes based on the ssGSEA analysis, high immunity cluster (immunity_H) and low immunity cluster (immunity_L). The proportion of patients in immunity_H cluster was significantly higher than that in immunity_L cluster. The ESTIMATE related scores are relative high in immunity_H group. Through WGCNA and LASSO analyses, we identified 141 immune cluster-related lncRNAs and found that these genes were mainly enriched in autophagy. A signature consisting of 7 lncRNAs, including AL391832.3, LINC00892, LINC02207, LINC02416, PSMB8.AS1, AC078788.1 and AC104971.3, were selected as the basis for classifying patients into high- and low-risk groups. Survival analysis and area under the ROC curve (AUC) of the signature pointed out that this risk model had high accuracy in predicting the prognosis of patients with OC. We also conducted the drug sensitive prediction and found that rapamycin outperformed in patient with high risk score. In vitro experiments also confirmed our prediction. CONCLUSIONS We identified 7 immune-related prognostic lncRNAs that effectively predicted survival in OC patients. These findings may offer a valuable indicator for clinical stratification management and personalized therapeutic options for these patients.
Collapse
Affiliation(s)
- Jing Feng
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| | - Yiping Yu
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| | - Wen Yin
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| | - Sumin Qian
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| |
Collapse
|
5
|
Design, synthesis and anti-ovarian cancer activities of thieno[2,3-d]pyrimidine based chimeric BRD4 inhibitor/nitric oxide-donator. Eur J Med Chem 2023; 246:114970. [PMID: 36470106 DOI: 10.1016/j.ejmech.2022.114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Bromodomain protein 4 (BRD4) is an attractive epigenetic target that regulating diverse cellular processes, and the discovery of dual-target inhibitors including BRD4 is an effective approach in cancer treatment to increase potency and reduce drug resistance. Based on the multifunctional drug development strategy, a series of new derivatives of nitrooxy (ONO2) or furoxan (1,2,5-oxadiazole 2-oxide) with BRD4 inhibitor capable of inhibiting BRD4 and simultaneously releasing NO were designed and synthesized. When NO concentrations were measured with Griess reagent under physiological conditions, all compounds released NO at micromolar levels, reaching effective antitumor concentrations. Biological studies showed that the most potent BRD4/NO hybrid 11a exhibited good BRD4 inhibitory activity and selectivity. Further mechanistic studies revealed that 11a significantly decreased the expression of BRD4 and c-Myc, as well as induced cellular apoptosis and autophagic cell death both in vitro and in vivo. In summary, we optimized the chimeric BRD4-inhibitor/NO-donor based on our previous studies, and it should be a lead compound for targeted therapy of OC (ovarian cancer) in the future. This interesting strategy could expand the usage of BRDi in human malignancies and endogenous gastro-transmitters.
Collapse
|
6
|
Identification of Novel Hypoxia Subtypes for Prognosis Based on Machine Learning Algorithms. JOURNAL OF ONCOLOGY 2022; 2022:1508113. [PMID: 36131789 PMCID: PMC9484903 DOI: 10.1155/2022/1508113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/09/2022]
Abstract
Objective A reduced level or tension or the deprivation of oxygen is termed hypoxia. It is common for tumours to outgrow their natural source of nutrients, which causes hypoxia in some tumour regions. Hypoxia affects ovarian cancer (OC) in several ways. Methods In this study, the expression patterns of prognostic hypoxia-related genes were curated, and consensus clustering analyses were performed to determine hypoxia subtypes in OC included in The Cancer Genome Atlas cohort. Two hypoxia-related subtypes were observed and considered for further investigation. The analyses of differentially expressed genes (DEGs), gene ontology, mutation, and immune cell infraction were performed to explore the underlying molecular mechanisms. Results In total, 377 patients with OC were classified into two subgroups based on the subtype of hypoxia. The clinical outcome was considerably poor for patients with hypoxia subtype 2. DEG and protein-protein interaction analyses revealed that the expression levels of CLIP2 and SH3PXD2A were low in OC tissues. Immune cell infarction analysis revealed that the subtypes were associated with the tumour microenvironment (TME). Conclusion Our findings established the existence of two distinctive, complex, and varied hypoxia subtypes in OC. Findings from the quantitative analysis of hypoxia subtypes in patients improved our understanding of the characteristics of the TME and may facilitate the development of more efficient treatment regimens.
Collapse
|
7
|
Xie B, Tan G, Ren J, Lu W, Pervaz S, Ren X, Otoo AA, Tang J, Li F, Wang Y, Wang M. RB1 Is an Immune-Related Prognostic Biomarker for Ovarian Cancer. Front Oncol 2022; 12:830908. [PMID: 35299734 PMCID: PMC8920998 DOI: 10.3389/fonc.2022.830908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023] Open
Abstract
Background Ovarian cancer (OC) is one of the most lethal gynecologic malignancies and a leading cause of death in the world. Thus, this necessitates identification of prognostic biomarkers which will be helpful in its treatment. Methods The gene expression profiles from The Cancer Genome Atlas (TCGA) and GSE31245 were selected as the training cohort and validation cohort, respectively. The Kaplan–Meier (KM) survival analysis was used to analyze the difference in overall survival (OS) between high and low RB transcriptional corepressor 1 (RB1) expression groups. To confirm whether RB1 was an independent risk factor for OC, we constructed a multivariate Cox regression model. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were conducted to identify the functions of differentially expressed genes (DEGs). The associations of RB1 with immune infiltration and immune checkpoints were studied by the Tumor Immune Estimation Resource (TIMER 2.0) and the Gene Expression Profiling Interactive Analysis (GEPIA). The immunohistochemistry (IHC) was performed to compare the expression level of RB1 in normal tissues and tumor samples, and to predict the prognosis of OC. Results The KM survival curve of the TCGA indicated that the OS in the high-risk group was lower than that in the low-risk group (HR = 1.61, 95% CI: 1.28-2.02, P = 3×10-5), which was validated in GSE31245 (HR = 4.08, 95% CI: 1.21–13.74, P = 0.01) and IHC. Multivariate Cox regression analysis revealed that RB1 was an independent prognostic biomarker (HR = 1.66, 95% CI: 1.31-2.10, P = 2.02×10-5). Enrichment analysis suggested that the DEGs were mainly involved in cell cycle, DNA replication, and mitochondrial transition. The infiltration levels of fibroblast, neutrophil, monocyte and macrophage were positively correlated with RB1. Furthermore, RB1 was associated with immune checkpoint molecules (CTLA4, LAG3, and CD274). The IHC staining revealed higher expression of RB1 in tumor tissues as compared to that in normal tissues (P = 0.019). Overexpression of RB1 was associated with poor prognosis of OC (P = 0.01). Conclusion These findings suggest that RB1 was a novel and immune-related prognostic biomarker for OC, which may be a promising target for OC treatment.
Collapse
Affiliation(s)
- Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jingyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Weiyu Lu
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Antonia Adwoa Otoo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Bioinformatics, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Meijiao Wang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Chen X, Yang Y, Sun J, Hu C, Ge X, Li R. LncRNA HCG11 represses ovarian cancer cell growth via AKT signaling pathway. J Obstet Gynaecol Res 2022; 48:796-805. [PMID: 35016264 DOI: 10.1111/jog.15083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023]
Abstract
AIM Ovarian cancer is a main contributor of cancer-relevant deaths among women worldwide due to high incidence and mortality. Mounting evidence has unveiled that lncRNAs play critical roles in malignancies, including ovarian cancer. Although the tumor suppressor function of HCG11 in prostate cancer and glioma has been proved, investigations on HCG11 role in ovarian cancer are still scarce. METHODS Gene or protein expression was quantified by RT-qPCR or western blot. HCG11 effects on ovarian cancer were assessed by functional assays. Bioinformatics analysis and mechanism experiments were implemented to identify the association among HCG11, miR-1270, and PTEN. RESULTS HCG11 was weakly expressed in ovarian cancer and functioned as a tumor suppressor in ovarian cancer by retarding cell proliferation, migration, and EMT. Besides, HCG11 could bind to miR-1270 and PTEN was a target gene of miR-1270. Mechanically, HCG11 competitively bound with miR-1270 to upregulate PTEN. From rescue experiments, HCG11 impeded AKT/mTOR pathway to retard ovarian cancer cell growth by miR-1270/PTEN. CONCLUSIONS HCG11 was a tumor suppressor in ovarian cancer cells and additionally, HCG11 regulated AKT/mTOR pathway to hinder ovarian cancer cell growth via modulating miR-1270/PTEN, indicating that HCG11 may represent a promising target for effective treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Gynecology and Obstetrics, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Yusheng Yang
- Department of Pathology, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Jie Sun
- Department of Gynecology and Obstetrics, Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Chaofeng Hu
- Department of Gynecology and Obstetrics, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Xiaohong Ge
- Department of Gynecology and Obstetrics, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Rong Li
- Department of Gynecology and Obstetrics, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Huang D, Chowdhury S, Wang H, Savage SR, Ivey RG, Kennedy JJ, Whiteaker JR, Lin C, Hou X, Oberg AL, Larson MC, Eskandari N, Delisi DA, Gentile S, Huntoon CJ, Voytovich UJ, Shire ZJ, Yu Q, Gygi SP, Hoofnagle AN, Herbert ZT, Lorentzen TD, Calinawan A, Karnitz LM, Weroha SJ, Kaufmann SH, Zhang B, Wang P, Birrer MJ, Paulovich AG. Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Rep Med 2021; 2:100471. [PMID: 35028612 PMCID: PMC8714940 DOI: 10.1016/j.xcrm.2021.100471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).
Collapse
Affiliation(s)
- Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hong Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Najmeh Eskandari
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Davide A Delisi
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Saverio Gentile
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | - Uliana J Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zahra J Shire
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N Hoofnagle
- Department of Lab Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Travis D Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Larry M Karnitz
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Birrer
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Liontos M, Timotheadou E, Papadopoulos EI, Zafeiriou Z, Lampropoulou DI, Aravantinos G, Mavroudis D, Christodoulou C, Nikolaidi A, Somarakis A, Papadimitriou C, Papandreou C, Bamias A. Real-World Data on Treatment Management and Outcomes of Patients with Newly Diagnosed Advanced Epithelial Ovarian Cancer in Greece (The EpOCa Study). Curr Oncol 2021; 28:5266-5277. [PMID: 34940079 PMCID: PMC8699844 DOI: 10.3390/curroncol28060440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
New treatment modalities have been recently introduced in the management of ovarian cancer (OC). Herein, we sought to investigate their implementation in routine clinical practice and examine the real-world management of OC in Greece. EpOCa was a non-interventional, multicenter, retrospective study in patients with advanced epithelial OC. The primary outcome was to estimate the proportions of the different treatment regimens used per line of therapy, while progression-free survival (PFS) and overall survival (OS) were the key secondary endpoints. A total of 154 patients were enrolled in the study, among whom, 40% were tested for BRCA mutations and 30% were found to be positive. Nearly 90% of patients underwent debulking surgery at diagnosis, with few operations being also recorded upon relapse. Platinum-based chemotherapy (CT) was predominantly used in the first line with half of patients also receiving angiogenesis inhibitor (AI), while non-platinum-based CT was preferred in later lines. The median PFS was 18.2 and 8.8 months in the first- and second-line setting, respectively, whereas the median OS was approximately 50 months. Our study adds to the available, but limited, real world data on the management of ovarian cancer providing evidence regarding the applied treatment strategies and outcomes of patients in Greece.
Collapse
Affiliation(s)
- Michalis Liontos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Eleni Timotheadou
- Department of Medical Oncology, Papageorgiou Hospital, School of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (E.T.); (C.P.)
| | | | - Zafeiris Zafeiriou
- Second Department of Medical Oncology, Theageneion Anticancer Hospital, 54007 Thessaloniki, Greece;
| | - Dimitra Ioanna Lampropoulou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, 14564 Athens, Greece; (D.I.L.); (G.A.)
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, 14564 Athens, Greece; (D.I.L.); (G.A.)
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion Crete, Greece;
- Laboratory of Translational Oncology, Medical School, University of Crete, 71110 Heraklion Crete, Greece
| | | | | | | | - Christos Papadimitriou
- Oncology Unit, 2nd Department of Surgery, ARETAIEIO University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Christos Papandreou
- Department of Medical Oncology, Papageorgiou Hospital, School of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (E.T.); (C.P.)
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
11
|
Moore KN, Chambers SK, Hamilton EP, Chen LM, Oza AM, Ghamande SA, Konecny GE, Plaxe SC, Spitz DL, Geenen JJJ, Troso-Sandoval TA, Cragun JM, Rodrigo Imedio E, Kumar S, Mugundu GM, Lai Z, Chmielecki J, Jones SF, Spigel DR, Cadoo KA. Adavosertib with Chemotherapy in Patients with Primary Platinum-Resistant Ovarian, Fallopian Tube, or Peritoneal Cancer: An Open-Label, Four-Arm, Phase II Study. Clin Cancer Res 2021; 28:36-44. [PMID: 34645648 DOI: 10.1158/1078-0432.ccr-21-0158] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This study assessed the efficacy, safety, and pharmacokinetics of adavosertib in combination with four chemotherapy agents commonly used in patients with primary platinum-resistant ovarian cancer. PATIENTS AND METHODS Women with histologically or cytologically confirmed epithelial ovarian, fallopian tube, or peritoneal cancer with measurable disease were enrolled between January 2015 and January 2018 in this open-label, four-arm, multicenter, phase II study. Patients received adavosertib (oral capsules, 2 days on/5 days off or 3 days on/4 days off) in six cohorts from 175 mg once daily to 225 mg twice daily combined with gemcitabine, paclitaxel, carboplatin, or pegylated liposomal doxorubicin. The primary outcome measurement was overall response rate. RESULTS Three percent of patients (3/94) had confirmed complete response and 29% (27/94) had confirmed partial response. The response rate was highest with carboplatin plus weekly adavosertib, at 66.7%, with 100% disease control rate, and median progression-free survival of 12.0 months. The longest median duration of response was in the paclitaxel cohort (12.0 months). The most common grade ≥3 adverse events across all cohorts were neutropenia [45/94 (47.9%) patients], anemia [31/94 (33.0%)], thrombocytopenia [30/94 (31.9%)], and diarrhea and vomiting [10/94 (10.6%) each]. CONCLUSIONS Adavosertib showed preliminary efficacy when combined with chemotherapy. The most promising treatment combination was adavosertib 225 mg twice daily on days 1-3, 8-10, and 15-17 plus carboplatin every 21 days. However, hematologic toxicity was more frequent than would be expected for carboplatin monotherapy, and the combination requires further study to optimize the dose, schedule, and supportive medications.
Collapse
Affiliation(s)
- Kathleen N Moore
- Sarah Cannon Research Institute, Nashville, Tennessee. .,Stephenson Cancer Center at the University of Oklahoma HSC, Oklahoma City, Oklahoma
| | | | - Erika P Hamilton
- Sarah Cannon Research Institute, Nashville, Tennessee.,Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Lee-May Chen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Amit M Oza
- Bras Drug Development Program, Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | | | - Daniel L Spitz
- Sarah Cannon Research Institute, Nashville, Tennessee.,Florida Cancer Specialists & Research Institute, Wellington, Florida
| | | | | | | | | | - Sanjeev Kumar
- Oncology Global Medicines Development (GMD), AstraZeneca, Cambridge, United Kingdom
| | - Ganesh M Mugundu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts
| | - Zhongwu Lai
- Translational Medicine, Oncology Research and Development, AstraZeneca, Boston, Massachusetts
| | - Juliann Chmielecki
- Translational Medicine, Oncology Research and Development, AstraZeneca, Boston, Massachusetts
| | | | - David R Spigel
- Sarah Cannon Research Institute, Nashville, Tennessee.,Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Karen A Cadoo
- Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
12
|
Ma K, Wang K, Zhou Y, Liu N, Guo W, Qi J, Hu Z, Su S, Tang P, Zhou X. Purified Vitexin Compound 1 Serves as a Promising Antineoplastic Agent in Ovarian Cancer. Front Oncol 2021; 11:734708. [PMID: 34631567 PMCID: PMC8495212 DOI: 10.3389/fonc.2021.734708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is a common gynecologic aggressive neoplasm. The mortality of ovarian cancer is top among gynecologic malignancies due to the insidious onset, atypical early symptoms, and chemoresistance. Therefore, it is urgent to seek another promising treatment for ovarian cancer. Purified vitexin compound 1 (VB1) is a kind of neolignan from the seed of traditional Chinese herb vitex negundo that possessed diverse pharmacological effects. VB1 can exhibit anti-neoplastic activities against various cancers. However, the role of VB1 in ovarian cancer treatment has not been elaborated, and the mechanism is unknown. The aim of this study was to investigate the therapeutic effects of VB1 in ovarian cancer cells both in vitro and in vivo, along with the molecular mechanism of action. In vitro, VB-1 can effectively suppress the proliferation, induce apoptosis, and block cell cycle at G2/M phase with a concentration dependent manner in ovarian cancer cells. Western blot assay showed that VB1 induce apoptosis via upregulating expression of cleaved-caspase3 and block cell cycle at G2/M phase through upregulating expression of P21. Meanwhile, VB1 can effectively inhibit tumor growth in xenograft mouse model. Our research indicated that VB1 can significantly exert its anti-neoplastic effects and may represent a new class of agents in ovarian cancer therapy.
Collapse
Affiliation(s)
- Kewen Ma
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yingjun Zhou
- School of Pharmaceutical Science, Central South University, Changsha, China
| | - Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Guo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jialin Qi
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhenmin Hu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shitong Su
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Tang
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xunjian Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Kitamura S, Yamaguchi K, Murakami R, Furutake Y, Higasa K, Abiko K, Hamanishi J, Baba T, Matsumura N, Mandai M. PDK2 leads to cisplatin resistance through suppression of mitochondrial function in ovarian clear cell carcinoma. Cancer Sci 2021; 112:4627-4640. [PMID: 34464482 PMCID: PMC8586679 DOI: 10.1111/cas.15125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian clear cell carcinoma (CCC) exhibits an association with endometriosis, resistance to oxidative stress, and poor prognosis owing to its resistance to conventional platinum‐based chemotherapy. A greater understanding of the molecular characteristics and pathogenesis of ovarian cancer subtypes may facilitate the development of targeted therapeutic strategies, although the mechanism of drug resistance in ovarian CCC has yet to be determined. In this study, we assessed exome sequencing data to identify new therapeutic targets of mitochondrial function in ovarian CCC because of the central role of mitochondria in redox homeostasis. Copy number analyses revealed that chromosome 17q21‐24 (chr.17q21‐24) amplification was associated with recurrence in ovarian CCC. Cell viability assays identified an association between cisplatin resistance and chr.17q21‐24 amplification, and mitochondrion‐related genes were enriched in patients with chr.17q21‐24 amplification. Patients with high expression of pyruvate dehydrogenase kinase 2 (PDK2) had a worse prognosis than those with low PDK2 expression. Furthermore, inhibition of PDK2 synergistically enhanced cisplatin sensitivity by activating the electron transport chain and by increasing the production of mitochondrial reactive oxygen species. Mouse xenograft models showed that inhibition of PDK2 with cisplatin inhibited tumor growth. This evidence suggests that targeting mitochondrial metabolism and redox homeostasis is an attractive therapeutic strategy for improving drug sensitivity in ovarian CCC.
Collapse
Affiliation(s)
- Sachiko Kitamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Furutake
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Corey L, Valente A, Wade K. Personalized Medicine in Gynecologic Cancer: Fact or Fiction? Surg Oncol Clin N Am 2021; 29:105-113. [PMID: 31757307 DOI: 10.1016/j.soc.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Personalized medicine in gynecologic oncology is an evolving field. In recent years, tumor profiling and large databases such as TCGA and NCI-Match have provided us with enormous amounts of molecular data. Several therapies that capitalize on novel genetic and immune discoveries including VEGF inhibitors, PARP inhibitors, and cancer vaccinations are discussed in this article. Additionally, we have seen direct to consumer marketing play an important role in cancer care and prevention as patients have increased ability to access genetic testing. This presents a unique challenge to gynecologic oncology providers as we learn to navigate the world of personalized medicine.
Collapse
Affiliation(s)
- Logan Corey
- Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, 2700 Napoleon Avenue, New Orleans, LA 70115, USA.
| | - Ana Valente
- Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, 2700 Napoleon Avenue, New Orleans, LA 70115, USA
| | - Katrina Wade
- Department of Gynecologic Oncology, Ochsner Clinic Foundation, 2700 Napoleon Avenue, New Orleans, LA 70115, USA
| |
Collapse
|
15
|
Tian M, Chen XS, Li LY, Wu HZ, Zeng D, Wang XL, Zhang Y, Xiao SS, Cheng Y. Inhibition of AXL enhances chemosensitivity of human ovarian cancer cells to cisplatin via decreasing glycolysis. Acta Pharmacol Sin 2021; 42:1180-1189. [PMID: 33149145 PMCID: PMC8209001 DOI: 10.1038/s41401-020-00546-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022] Open
Abstract
Anexelekto (AXL), a member of the TYRO3-AXL-MER (TAM) family of receptor tyrosine kinases (RTK), is overexpressed in varieties of tumor tissues and promotes tumor development by regulating cell proliferation, migration and invasion. In this study, we investigated the role of AXL in regulating glycolysis in human ovarian cancer (OvCa) cells. We showed that the expression of AXL mRNA and protein was significantly higher in OvCa tissue than that in normal ovarian epithelial tissue. In human OvCa cell lines suppression of AXL significantly inhibited cell proliferation, and increased the sensitivity of OvCa cells to cisplatin, which also proved by nude mice tumor formation experiment. KEGG analysis showed that AXL was significantly enriched in the glycolysis pathways of cancer. Changes in AXL expression in OvCa cells affect tumor glycolysis. We demonstrated that the promotion effect of AXL on glycolysis was mediated by phosphorylating the M2 isoform of pyruvate kinase (PKM2) at Y105. AXL expression was significantly higher in cisplatin-resistant OvCa cells A2780/DDP compared with the parental A2780 cells. Inhibition of AXL decreased the level of glycolysis in A2780/DDP cells, and increased the cytotoxicity of cisplatin against A2780/DDP cells, suggesting that AXL-mediated glycolysis was associated with cisplatin resistance in OvCa. In conclusion, this study demonstrates for the first time that AXL is involved in the regulation of the Warburg effect. Our results not only highlight the clinical value of targeting AXL, but also provide theoretical basis for the combination of AXL inhibitor and cisplatin in the treatment of OvCa.
Collapse
Affiliation(s)
- Min Tian
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Hai-Zhou Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Da Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xin-Luan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
16
|
PARP inhibitors promote stromal fibroblast activation by enhancing CCL5 autocrine signaling in ovarian cancer. NPJ Precis Oncol 2021; 5:49. [PMID: 34108603 PMCID: PMC8190269 DOI: 10.1038/s41698-021-00189-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play significant roles in drug resistance through different ways. Antitumor therapies, including molecular targeted interventions, not only effect tumor cells but also modulate the phenotype and characteristics of CAFs, which can in turn blunt the therapeutic response. Little is known about how stromal fibroblasts respond to poly (ADP-ribose) polymerase inhibitors (PARPis) in ovarian cancer (OC) and subsequent effects on tumor cells. This is a study to evaluate how CAFs react to PARPis and their potential influence on PARPi resistance in OC. We discovered that OC stromal fibroblasts exhibited intrinsic resistance to PARPis and were further activated after the administration of PARPis. PARPi-challenged fibroblasts displayed a specific secretory profile characterized by increased secretion of CCL5, MIP-3α, MCP3, CCL11, and ENA-78. Mechanistically, increased secretion of CCL5 through activation of the NF-κB signaling pathway was required for PARPi-induced stromal fibroblast activation in an autocrine manner. Moreover, neutralizing CCL5 partly reversed PARPi-induced fibroblast activation and boosted the tumor inhibitory effect of PARPis in both BRCA1/2-mutant and BRCA1/2-wild type xenograft models. Our study revealed that PARPis could maintain and improve stromal fibroblast activation involving CCL5 autocrine upregulation. Targeting CCL5 might offer a new treatment modality in overcoming the reality of PARPi resistance in OC.
Collapse
|
17
|
Zhong Q, Xiong Y, Ling C, Qian Y, Zhao X, Yang H. Enhancing the sensitivity of ovarian cancer cells to olaparib via microRNA-20b-mediated cyclin D1 targeting. Exp Biol Med (Maywood) 2021; 246:1297-1306. [PMID: 34092127 PMCID: PMC8371305 DOI: 10.1177/1535370221994077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/21/2021] [Indexed: 02/05/2023] Open
Abstract
We previously reported that cyclin D1 silencing interferes with RAD51 accumulation and increases the sensitivity of BRCA1 wild-type ovarian cancer cells to olaparib. However, the mechanisms associated with cyclin D1 overexpression in ovarian cancer are not fully understood. TargetScan predicted the potential binding sites for microRNA-20b (miR-20b) and the 3'-untranslated region of cyclin D1 mRNA; thus, we used luciferase reporter assay to verify those binding sites. The Kaplan-Meier method and log-rank test were used to examine the relationship between miR-20b and progression-free survival of ovarian cancer patients in The Cancer Genome Atlas (n = 367) dataset. In vitro experiments were performed to evaluate the effects of miR-20b on cyclin D1 expression, cell cycle and response to olaparib. A peritoneal cavity metastasis model of ovarian cancer was established to determine the effect of miR-20b on the sensitivity of olaparib. Immunohistochemistry was performed to evaluate molecular mechanisms. In this work, we demonstrated that miR-20b down-regulates cyclin D1, increases the sensitivity of ovarian cancer cells to olaparib, reduces the expression of RAD51, and induces cell cycle arrest in G0/G1 phase. Ovarian cancer patients with higher expression of miR-20b had significantly longer progression-free survival. These results indicate that miR-20b may be a potential clinical indicator for the sensitivity of ovarian cancer to olaparib and the survival of ovarian cancer patients. Our findings suggest that miR-20b may have therapeutic value in combination with olaparib treatment for ovarian cancer.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Ying Xiong
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Chen Ling
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Yanping Qian
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| |
Collapse
|
18
|
Moore K, Oza A, Colombo N, Oaknin A, Scambia G, Lorusso D, Konecny G, Banerjee S, Murphy C, Tanyi J, Hirte H, Konner J, Lim P, Prasad-Hayes M, Monk B, Pautier P, Wang J, Berkenblit A, Vergote I, Birrer M. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol 2021; 32:757-765. [DOI: 10.1016/j.annonc.2021.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/26/2022] Open
|
19
|
Lin J, Xu X, Sun D, Li T. Development and Validation of an Immune-Related Gene-Pair Model of High-Grade Serous Ovarian Cancer After Platinum-Based Chemotherapy. Front Oncol 2021; 10:626555. [PMID: 33680950 PMCID: PMC7928280 DOI: 10.3389/fonc.2020.626555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022] Open
Abstract
Background High-grade serous ovarian cancer (HGSOC) is a common cause of death from gynecological cancer, with an overall survival rate that has not significantly improved in decades. Reliable bio-markers are needed to identify high-risk HGSOC to assist in the selection and development of treatment options. Method The study included ten HGSOC cohorts, which were merged into four separate cohorts including a total of 1,526 samples. We used the relative expression of immune genes to construct the gene-pair matrix, and the least absolute shrinkage and selection operator regression was performed to build the prognosis model using the training set. The prognosis of the model was verified in the training set (363 cases) and three validation sets (of 251, 354, and 558 cases). Finally, the differences in immune cell infiltration and gene enrichment pathways between high and low score groups were identified. Results A prognosis model of HGSOC overall survival rate was constructed in the training set, and included data for 35 immune gene-related gene pairs and the regression coefficients. The risk stratification of HGSOC patients was successfully performed using the training set, with a p-value of Kaplan-Meier of < 0.001. A score from this model is an independent prognostic factor of HGSOC, and prognosis was evaluated in different clinical subgroups. This model was also successful for the other three validation sets, and the results of Kaplan-Meier analysis were statistically significant (p < 0.05). The model can also predict patient progression-free survival with HGSOC to reflect tumor growth status. There was a lower infiltration level of M1 macrophages in the high-risk group compared to that in the low-risk group (p < 0.001). Finally, the immune-related pathways were enriched in the low-risk group. Conclusion The prognostic model based on immune-related gene pairs developed is a potential prognostic marker for high-grade serous ovarian cancer treated with platinum. The model has robust prognostic ability and wide applicability. More prospective studies will be needed to assess the practical application of this model for precision therapy.
Collapse
Affiliation(s)
- Jiaxing Lin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Xu
- Department of Pediatric Intensive Care Unit, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Sun
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Tianren Li
- Department of Gynaecology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Xu H, Wang L, Jiang X. Silencing of lncRNA DLEU1 inhibits tumorigenesis of ovarian cancer via regulating miR-429/TFAP2A axis. Mol Cell Biochem 2020; 476:1051-1061. [PMID: 33170430 DOI: 10.1007/s11010-020-03971-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/31/2020] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are known as crucial regulators in the development of OC. In the current study, we aim to explore the function and molecular mechanism of lncRNA DLEU1 in OC. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to determine the expression of DLEU1, miR-429, and TFAP2A in OC cells and tissues. The relationship among DLEU1, miR-429, and TFAP2A was tested by dual-luciferase reporter (DLR) assay. Besides, the proliferative, migratory and invasive abilities of OC cells were analyzed by MTT, wound healing, and transwell assays, respectively. Western blot was performed to determine the protein expression of TFAP2A. The expression of lncRNA DLEU1 and TFAP2A were upregulated, and miR-429 was downregulated in OC tissues. Silencing of DLEU1 inhibited the proliferation, migration, and invasion of OC cells. Bioinformation and DLR assay showed that DLEU1 acted as the sponge for miR-429. Moreover, miR-429 could directly target TFAP2A and inhibit the proliferation, migration, and invasion of OC cells. Moreover, we observed a negative correlation between miR-429 and DLEU1, and between miR-429 and TFAP2A in OC tissues. The transfection of miR-429 inhibitor or pcDNA-TFAP2A reversed the inhibitory effects of si-DLEU1 on the proliferation, migration, and invasion of OC cells. Silencing of DLEU1 inhibited the proliferation, migration, and invasion of OC cells by regulating miR-429/TFAP2A axis, indicating a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Huiying Xu
- Department of Gynaecology and Obstetrics, The First People's Hospital of Lanzhou City, No. 1, Wujiayuan West Street. Qilihe District, Lanzhou, Gansu, 730050, China
| | - Lingyan Wang
- Department of Gynecology, Binzhou Chinese Medicine Hospital, Bincheng District, No. 539, Bohai 8th Road, Binzhou, Shandong, 256600, China
| | - Xiuli Jiang
- Department of Gynecology, People's Hospital of Yucheng City, No. 753, Kaituo Road, Yucheng City, Shandong, 251200, China.
| |
Collapse
|
21
|
Ji Z, Shen Y, Feng X, Kong Y, Shao Y, Meng J, Zhang X, Yang G. Deregulation of Lipid Metabolism: The Critical Factors in Ovarian Cancer. Front Oncol 2020; 10:593017. [PMID: 33194756 PMCID: PMC7604390 DOI: 10.3389/fonc.2020.593017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is one of the most malignant gynecological cancers around the world. In spite of multiple treatment options, the five-year survival rate is still very low. Several metabolism alterations are described as a hallmark in cancers, but alterations of lipid metabolism in ovarian cancer have been paid less attention. To explore new markers/targets for accurate diagnosis, prognosis, and therapeutic treatments based on metabolic enzyme inhibitors, here, we reviewed available literature and summarized several key metabolic enzymes in lipid metabolism of ovarian cancer. In this review, the rate limiting enzymes associated with fatty acid synthesis (FASN, ACC, ACLY, SCD), the lipid degradation related enzymes (MAGL, CPT, 5-LO, COX2), and the receptors related to lipid uptake (FABP4, CD36, LDLR), which promote the development of ovarian cancer, were analyzed and evaluated. We also focused on the review of application of current metabolic enzyme inhibitors for the treatment of ovarian cancer through which the potential therapeutic agents may be developed for ovarian cancer therapy.
Collapse
Affiliation(s)
- Zhaodong Ji
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Shen
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, China
| | - Xu Feng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| |
Collapse
|
22
|
Pan Y, Jia LP, Liu Y, Han Y, Li Q, Zou Q, Zhang Z, Huang J, Deng Q. A novel signature of two long non-coding RNAs in BRCA mutant ovarian cancer to predict prognosis and efficiency of chemotherapy. J Ovarian Res 2020; 13:112. [PMID: 32950050 PMCID: PMC7502206 DOI: 10.1186/s13048-020-00712-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In this study we aimed to identify a prognostic signature in BRCA1/2 mutations to predict disease progression and the efficiency of chemotherapy ovarian cancer (OV), the second most common cause of death from gynecologic cancer in women worldwide. METHODS Univariate Cox proportional-hazards and multivariate Cox regression analyses were used to identifying prognostic factors from data obtained from The Cancer Genome Atlas (TCGA) database. The area under the curve of the receiver operating characteristic curve was assessed, and the sensitivity and specificity of the prediction model were determined. RESULTS A signature consisting of two long noncoding RNAs(lncRNAs), Z98885.2 and AC011601.1, was selected as the basis for classifying patients into high and low-risk groups (median survival: 7.2 years vs. 2.3 years). The three-year overall survival (OS) rates for the high- and low-risk group were approximately 38 and 100%, respectively. Chemotherapy treatment survival rates indicated that the high-risk group had significantly lower OS rates with adjuvant chemotherapy than the low-risk group. The one-, three-, and five-year OS were 100, 40, and 15% respectively in the high-risk group. The survival rate of the high-risk group declined rapidly after 2 years of OV chemotherapy treatment. Multivariate Cox regression associated with other traditional clinical factors showed that the 2-lncRNA model could be used as an independent OV prognostic factor. Analyses of data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) indicated that these signatures are pivotal to cancer development. CONCLUSION In conclusion, Z98885.2 and AC011601.1 comprise a novel prognostic signature for OV patients with BRCA1/2 mutations, and can be used to predict prognosis and the efficiency of chemotherapy.
Collapse
Affiliation(s)
- Yinglian Pan
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan, China
| | - Li Ping Jia
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuzhu Liu
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yiyu Han
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qian Li
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Wuhan, China
| | - Qin Zou
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Wuhan, China
| | - Zhongpei Zhang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Wuhan, China
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Wuhan, China.
| | - Qingchun Deng
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
23
|
Wen W, Han ES, Dellinger TH, Lu LX, Wu J, Jove R, Yim JH. Synergistic Anti-Tumor Activity by Targeting Multiple Signaling Pathways in Ovarian Cancer. Cancers (Basel) 2020; 12:E2586. [PMID: 32927828 PMCID: PMC7564386 DOI: 10.3390/cancers12092586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
More effective therapy is needed to improve the survival of patients with advanced and recurrent ovarian cancer. Preclinical and early clinical studies with single molecular targeted agents have shown limited antitumor activity in ovarian cancer, likely due to compensation by alternative growth/survival pathways. An emerging strategy in overcoming resistance is to combine inhibitors targeting multiple pathways. In this study, we used a novel strategy of combining several FDA-approved targeted drugs, including sunitinib, dasatinib, and everolimus, in human ovarian cancers. Combination of the tyrosine kinase inhibitor sunitinib with the SRC inhibitor dasatinib showed synergistic anti-tumor activity in human ovarian cancer cells. The increased activity was associated with inhibition of the STAT3, SRC, and MAPK signaling pathways, but not AKT signaling. To inhibit the PI3K/AKT/mTOR pathway, we added the mTOR inhibitor everolimus, which further increased anti-tumor activity in cells. Combined treatment with sunitinib, dasatinib, and everolimus also resulted in greater inhibition of human ovarian tumor growth in mice. Furthermore, the triple combination also synergistically increased the anti-tumor activity of paclitaxel, both in vitro and in vivo. Taken together, our results demonstrate that simultaneous inhibition of several signaling pathways results in better anti-tumor activity compared to inhibiting any of these signaling pathways alone.
Collapse
Affiliation(s)
- Wei Wen
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
- Department of Molecular Medicine, City of Hope National Med Center, Duarte, CA 91010, USA;
| | - Ernest S. Han
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| | - Thanh H. Dellinger
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| | - Leander X. Lu
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| | - Jun Wu
- Department of Comparative Medicine, City of Hope National Med Center, Duarte, CA 91010, USA;
| | - Richard Jove
- Department of Molecular Medicine, City of Hope National Med Center, Duarte, CA 91010, USA;
| | - John H. Yim
- Department of Surgery, City of Hope National Med Center, Duarte, CA 91010, USA; (E.S.H.); (T.H.D.); (L.X.L.)
| |
Collapse
|
24
|
Li Y, Wang D, Liu J, Li Y, Chen D, Zhou L, Lang T, Zhou Q. Baicalin Attenuates YAP Activity to Suppress Ovarian Cancer Stemness. Onco Targets Ther 2020; 13:7151-7163. [PMID: 32801747 PMCID: PMC7386807 DOI: 10.2147/ott.s254607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aims to reveal the mechanism underlying baicalin-suppressing ovarian cancer stemness. Methods OVCAR-3 and the primary ovarian cancer cells were used for cell model. The ovarian cancer stem cells were isolated by suspension culture. Cell viability and clonogenicity were examined by CCK-8 assay and colony formation assay. The self-renewal of the cells was evaluated by the determination of sphere-forming capacity and the frequency of in vitro sphere-forming and in vivo tumor-initiating cells. The mRNA and protein levels were relatively quantified by qRT-PCR and Western blot. The transcription regulation of target genes was tested by luciferase reporter assay and a modified nuclear rn-on qRT-PCR assay. Results Treatment with a non-toxic dose of baicalin significantly inhibited the spherogenicity of ovarian cancer cells. Moreover, a non-toxic dose of baicalin treatment suppressed the frequency of sphere-forming and tumor-initiating ovarian cancer cells. Furthermore, the expression of ovarian cancer stem cell markers (CD133 and ALDH1A1) was inhibited by a non-toxic dose of baicalin treatment. Baicalin inhibits YAP activity and suppresses RASSF6, a positive regulator of YAP, at the transcriptional level. Overexpression of both YAP and RASSF6 abolished the inhibitory effect of baicalin on the proliferation and stemness of ovarian cancer cells. Conclusion The results in this study demonstrated that baicalin suppresses the stemness of ovarian cancer cells by attenuating YAP activity via inhibiting RASSF6 at the transcriptional level. This finding revealed baicalin as a novel YAP inhibitor that could serve as an anti-cancer drug for eradicating ovarian cancer stem cells.
Collapse
Affiliation(s)
- Yucong Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Dong Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Jingshu Liu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Yunzhe Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Duke Chen
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Qi Zhou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| |
Collapse
|
25
|
Wang Z, Sun X, Huang T, Song J, Wang Y. A Sandwich Nanostructure of Gold Nanoparticle Coated Reduced Graphene Oxide for Photoacoustic Imaging-Guided Photothermal Therapy in the Second NIR Window. Front Bioeng Biotechnol 2020; 8:655. [PMID: 32695755 PMCID: PMC7338568 DOI: 10.3389/fbioe.2020.00655] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
We explore a sandwich-type gold nanoparticle coated reduced graphene oxide (rGO-AuNP) as an effective nanotheranostic platform for the second near-infrared (NIR-II) window photoacoustic (PA) imaging-guided photothermal therapy (PTT) in ovarian cancer. The PEG was loaded onto the AuNPs surface to increase the stability of nanostructure. The forming rGO-AuNPs- PEG revealed very strong SERS signal, NIR-II PA signal and high photothermal efficiency against tumor upon 1,061 nm laser irradiation. The prominent performance was attributed to the plasmonic coupling of AuNPs, and the enhanced response of rGO and the plasmonic AuNP. Thus, our study demonstrates that the rGO-AuNP nanocomposite could promise to be a potential photothermal agent and pave the way for the diagnosis and therapy of ovarian cancer in the future.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Ting Huang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
26
|
Zhou J, Dong ZN, Qiu BQ, Hu M, Liang XQ, Dai X, Hong D, Sun YF. CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging (Albany NY) 2020; 12:14080-14091. [PMID: 32668414 PMCID: PMC7425466 DOI: 10.18632/aging.103388] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that regulate gene expression after transcription. However, the specific function of circRNAs in ovarian cancer remains undetermined. Previous studies have demonstrated abnormal expression of circFGFR3 in several cancers. The present study was designed to reveal the roles of circFGFR3 in ovarian cancer (OC). CircFGFR3 expression in OC tissues and cells was detected by RT-qPCR. The effects of CircFGFR3 on OC cells were evaluated by transwell assay and CCK-8 assay. Finally, the underlying mechanism was further revealed by luciferase reporter assay and western blotting. Our results showed that circFGFR3 expression was higher in OC cells and tissues than in normal ovarian cells and adjacent normal tissues; in addition, in OC patients, a high level of CircFGFR3 was related to lower survival rates and higher recurrence rates than a low level of circFGFR3. CircFGFR3 overexpression promotes OC progression by inducing epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, circFGFR3 upregulates E2F1 expression by sponging miR-29a-3p, and the overexpression of E2F1 or the suppression of miR-29a-3p induces OC cell EMT. Therefore, circFGFR3 serves as a promoter of OC by inducing OC cell EMT via the miR-29a-3p/E2F1 axis and circFGFR3 may be a prognostic biomarker for OC patients.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Obstetrics and Gynecology, The Forth Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, P.R. China
| | - Ze-Ning Dong
- Xiangya Medical College, Central South University, Hunan 410008, P.R. China
| | - Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, P.R. China
| | - Ming Hu
- Department of Obstetrics and Gynecology, The Forth Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, P.R. China
| | - Xiao-Qing Liang
- Department of Obstetrics and Gynecology, The Forth Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, P.R. China
| | - Xing Dai
- Department of Obstetrics and Gynecology, The Forth Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, P.R. China
| | - Dan Hong
- Department of Obstetrics and Gynecology, The Forth Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, P.R. China
| | - Yu-Fang Sun
- Department of Obstetrics and Gynecology, The Forth Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, P.R. China
| |
Collapse
|
27
|
Li Q, Shi J, Xu X. MicroRNA-1271-5p inhibits the tumorigenesis of ovarian cancer through targeting E2F5 and negatively regulates the mTOR signaling pathway. Panminerva Med 2020; 63:336-342. [PMID: 32414231 DOI: 10.23736/s0031-0808.20.03939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND MicroRNA-1271-5p (miR-1271-5p) has been reported to participate in the progression of many human cancers. However, the role of miR-1271-5p still remains unclear in ovarian cancer (OC). Therefore, we explored the effect of miR-1271-5p on the development of OC in present study. METHODS We measured the miR-1271-5p expression via the qRT-PCR assay. Then the function of miR-1271-5p was analyzed through MTT and Transwell assays. The relationship among miR-1271-5p and E2F5 was verified by dual luciferase assay. The protein expression levels were examined through western blot. RESULTS MiR-1271-5p was downregulated in OC tissues which predicted poor prognosis of OC patients. Moreover, E2F5 was a direct target of miR-1271-5p in OC. And miR-1271-5p suppressed cell proliferation, migration and invasion in OC through targeting E2F5. Furthermore, E2F5 was upregulated in OC tissues which predicted poor prognosis of OC patients. Besides that, miR-1271-5p suppressed EMT and mTOR pathway in OC. CONCLUSIONS MiR-1271-5p inhibited the tumorigenesis of OC through targeting E2F5 and negatively regulated the mTOR signaling pathway.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Junyu Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xiaoli Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China -
| |
Collapse
|
28
|
Phase Ib study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol 2020; 157:379-385. [DOI: 10.1016/j.ygyno.2020.01.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 11/20/2022]
|
29
|
Expression of HER2 and EGFR Proteins in Advanced Stage High-grade Serous Ovarian Tumors Show Mutual Exclusivity. Int J Gynecol Pathol 2020; 40:49-55. [DOI: 10.1097/pgp.0000000000000678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Duan M, Fang M, Wang C, Wang H, Li M. LncRNA EMX2OS Induces Proliferation, Invasion and Sphere Formation of Ovarian Cancer Cells via Regulating the miR-654-3p/AKT3/PD-L1 Axis. Cancer Manag Res 2020; 12:2141-2154. [PMID: 32273754 PMCID: PMC7102881 DOI: 10.2147/cmar.s229013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Long noncoding RNA (lncRNA) deregulation is frequent in human ovarian cancers (OCs), but the role of specific miRNAs involved in this disease remains elusive. LncRNA EMX2OS was previously reported to act as an oncogene in human cancers. However, their accurate expression, function and underlying mechanisms in OC are largely unclear. MATERIALS AND METHODS The levels of EMX2OS in OC tissues and cell lines were determined by quantitative real-time PCR, and the function of EMX2OS was then analyzed both in vitro and in vivo. Luciferase assays and immunoprecipitation assays were performed to analyze the association between EMX2OS and miR-654 expression in OC cells. RESULTS EMX2OS is overexpressed in human ovarian cancer tissues. Knockdown of EMX2OS reduced, while overexpression of EMX2OS enhanced the proliferation, invasion and sphere formation of OC cells. In addition, EMX2OS enhanced tumor growth in an in vivo xenograft model of human OC. We discovered that EMX2OS directly binds to miR-654 and suppresses its expression, thus leading to the upregulation of AKT3, which served as a direct target of miR-654. Moreover, miR-654 inhibited cell proliferation, invasion and sphere formation, and restoration of AKT3 reversed the effects of EMX2OS silencing or miR-654 overexpression. Furthermore, PD-L1 was identified as the key oncogenic component acting downstream of AKT3 in OC cells. Ectopic expression of PD-L1 reversed the anti-cancer functions by EMX2OS knockdown, AKT3 silencing or miR-654 upregulation in OC cells. CONCLUSION These results demonstrated that the EMX2OS/miR-654/AKT3/PD-L1 axis confers aggressiveness in ovarian cancer and may represent a therapeutic target for OC metastasis.
Collapse
Affiliation(s)
- Meng Duan
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Meixia Fang
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Changhe Wang
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Hongyan Wang
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Meng Li
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| |
Collapse
|
31
|
Sabini C, Sorbi F, Cunnea P, Fotopoulou C. Ovarian cancer stem cells: ready for prime time? Arch Gynecol Obstet 2020; 301:895-899. [PMID: 32200419 DOI: 10.1007/s00404-020-05510-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The role of cancer stem cells (CSC) remains controversial and increasingly subject of investigation as a potential oncogenetic platform with promising therapeutic implications. Understanding the role of CSCs in a highly heterogeneous disease like epithelial ovarian cancer (EOC) may potentially lead to the better understanding of the oncogenetic and metastatic pathways of the disease, but also to develop novel strategies against its progression and platinum resistance. METHODS We have performed a review of all relevant literature that addresses the oncogenetic potential of stem cells in EOC, their mechanisms, and the associated therapeutic targets. RESULTS Cancer stem cells (CSCs) have been reported to be implicated not only in the development and pathways of intratumoral heterogeneity (ITH), but also potentially modulating the tumor microenvironment, leading to the selection of sub-clones resistant to chemotherapy. Furthermore, it appears that the enhanced DNA repair abilities of CSCs are connected with their endurance and resistance maintaining their genomic integrity during novel targeted treatments such as PARP inhibitors, allowing them to survive and causing disease relapse functioning as a tumor seeds. CONCLUSIONS It appears that CSCs play a major role in the underlying mechanisms of oncogenesis and development of relapse in EOC. Part of promising future plans would be to not only use them as therapeutic targets, but also extent their value on a preventative level through engineering mechanisms and prevention of EOC in its origin.
Collapse
Affiliation(s)
- Carlotta Sabini
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Flavia Sorbi
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Paula Cunnea
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK.,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Christina Fotopoulou
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK. .,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
32
|
Zhang LQ, Yang HQ, Yang SQ, Wang Y, Chen XJ, Lu HS, Zhao LP. CNDP2 Acts as an Activator for Human Ovarian Cancer Growth and Metastasis via the PI3K/AKT Pathway. Technol Cancer Res Treat 2020; 18:1533033819874773. [PMID: 31537175 PMCID: PMC6755628 DOI: 10.1177/1533033819874773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: The mechanism of tumorigenesis and metastasis of ovarian cancer has not yet been
elucidated. This study aimed to investigate the role and molecular mechanism of
cytosolic nonspecific dipeptidase 2 in tumorigenesis and metastasis. Methods: Cytosolic nonspecific dipeptidase 2 expression in human ovarian cancer tissues and cell
lines was assessed with methyl thiazolyl tetrazolium (MTT), clone formation, and
transwell assays performed to evaluate the ability of ovarian cancer cells to
proliferate and migrate. Nude mice tumor formation experiments were also performed by
subcutaneously injecting cells with stable cytosolic nonspecific dipeptidase 2 knockdown
and control SKOV3 cells into BALB/c female nude mice to detect changes in PI3K/AKT
pathway-related proteins by Western blotting. Results: Cytosolic nonspecific dipeptidase 2 was highly expressed in human ovarian cancer
tissues, with its expression associated with pathological data, including ovarian cancer
metastasis. A cytosolic nonspecific dipeptidase 2 stable knockdown or ectopic expression
ovarian cancer cell model was established and demonstrated that cytosolic nonspecific
dipeptidase 2 could promote the proliferation of ovarian cancer cells. Transwell cell
migration and invasion assays confirmed that cytosolic nonspecific dipeptidase 2
enhanced cell metastasis in ovarian cancer. Furthermore, in vivo
xenograft experiments demonstrated that cytosolic nonspecific dipeptidase 2 can promote
the development and progression of ovarian cancer, increasing the expression of
phosphorylated PI3K and AKT. Conclusions: Cytosolic nonspecific dipeptidase 2 promotes the occurrence and development of ovarian
cancer through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Li Q Zhang
- Department of Gynecology, Taizhou Central Hospital, Taizhou, China
| | - Hua Q Yang
- Department of Gynecology, Taizhou Central Hospital, Taizhou, China
| | - Su Q Yang
- Department of Gynecology, Taizhou Central Hospital, Taizhou, China
| | - Ying Wang
- Department of Gynecology, Taizhou Central Hospital, Taizhou, China
| | - Xian J Chen
- Department of Clinical Laboratory, Taizhou Central Hospital, Taizhou, China
| | - Hong S Lu
- Department of Pathology, Taizhou Central Hospital, Taizhou, China
| | - Ling P Zhao
- Department of Gynecology, Taizhou Central Hospital, Taizhou, China
| |
Collapse
|
33
|
Kim J, Cho YJ, Ryu JY, Hwang I, Han HD, Ahn HJ, Kim WY, Cho H, Chung JY, Hewitt SM, Kim JH, Kim BG, Bae DS, Choi CH, Lee JW. CDK7 is a reliable prognostic factor and novel therapeutic target in epithelial ovarian cancer. Gynecol Oncol 2019; 156:211-221. [PMID: 31776040 DOI: 10.1016/j.ygyno.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Cyclin-dependent kinase 7 (CDK7) engages tumor growth by acting as a direct link between the regulation of transcription and the cell cycle. Here, we investigated the clinical significance of CDK7 expression and its potential as a therapeutic target in epithelial ovarian cancer (EOC). METHODS CDK7 expression was examined in 436 ovarian tissues including normal to metastatic ovarian tumors using immunohistochemistry, and its clinical implications were analyzed. Furthermore, we performed in vitro and in vivo experiments using CDK7 siRNA or a covalent CDK7 inhibitor (THZ1) to elucidate the effect of CDK7 inhibition on tumorigenesis in EOC cells. RESULTS The patient incidence of high CDK7 expression (CDK7High) gradually increased from normal ovarian epithelium to EOC (P < 0.001). Moreover, CDK7High was associated with an advanced stage and high-grade histology (P = 0.035 and P = 0.011, respectively) in EOC patients and had an independent prognostic significance in EOC recurrence (P = 0.034). CDK7 inhibition with siRNA or THZ1 decreased cell proliferation and migration, and increased apoptosis in EOC cells, and this anti-cancer mechanism is caused by G0/G1 cell cycle arrest. In in vivo therapeutic experiments using cell-line xenograft and PDX models, CDK7 inhibition significantly decreased the tumor weight, which was mediated by cell proliferation and apoptosis. CONCLUSION Mechanistic interrogation of CDK7 revealed that it is significantly associated with an aggressive phenotype of EOC, and it has independent prognostic power for EOC recurrence. Furthermore, CDK7 may be a potential therapeutic target for patients with EOC, whether platinum sensitive or resistant.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Obstetrics and Gynecology, Dankook University Hospital, Cheonan, Republic of Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yoon Ryu
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ilseon Hwang
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA; Department of Pathology, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 136-791, South Korea
| | - Woo Young Kim
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Zhang Q, Li H, Mao Y, Wang X, Zhang X, Yu X, Tian J, Lei Z, Li C, Han Q, Suo L, Gao Y, Guo H, Irwin DM, Niu G, Tan H. Apoptotic SKOV3 cells stimulate M0 macrophages to differentiate into M2 macrophages and promote the proliferation and migration of ovarian cancer cells by activating the ERK signaling pathway. Int J Mol Med 2019; 45:10-22. [PMID: 31746376 PMCID: PMC6889918 DOI: 10.3892/ijmm.2019.4408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/27/2019] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer has a high rate of recurrence, with M2 macrophages having been found to be involved in its progression and metastasis. To examine the relationship between macrophages and ovarian cancer in the present study, M0 macrophages were stimulated with apoptotic SKOV3 cells and it was found that these macrophages promoted tumor proliferation and migration. Subsequently, the mRNAs and proteins expressed at high levels in these M2 macrophages were examined by RNA-Seq and quantitative proteomics, respectively, which revealed that M0 macrophages stimulated by apoptotic SKOV3 cells also expressed M2 markers, including CD206, interleukin-10, C-C motif chemokine ligand 22, aminopeptidase-N, disabled homolog 2, matrix metalloproteinase 1 and 5′-nucleotidase. The abundance of phosphorylated Erk1/2 in these macrophages was increased. The results indicate that apoptotic SKOV3 cells stimulate M0 macrophages to differentiate into M2 macrophages by activating the ERK pathway. These results suggest possible treatments for patients with ovarian cancer who undergo chemotherapy; inhibiting M2 macrophage differentiation during chemotherapy may reduce the rate of tumor recurrence.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yiqing Mao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xuehui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiuyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Junrui Tian
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Zhen Lei
- Beijing N&N Genetech Company, Beijing 100082, P.R. China
| | - Chang Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Qing Han
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Liping Suo
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing 100082, P.R. China
| | - Huanran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
35
|
Niu Y, Sun W, Chen K, Fu Z, Chen Y, Zhu J, Chen H, Shi Y, Zhang H, Wang L, Shen HM, Xia D, Wu Y. A Novel Scoring System for Pivotal Autophagy-Related Genes Predicts Outcomes after Chemotherapy in Advanced Ovarian Cancer Patients. Cancer Epidemiol Biomarkers Prev 2019; 28:2106-2114. [PMID: 31533939 DOI: 10.1158/1055-9965.epi-19-0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/30/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In the clinical practice of ovarian cancer, the application of autophagy, an important regulator of carcinogenesis and chemoresistance, is still limited. This study aimed to establish a scoring system based on expression profiles of pivotal autophagy-related (ATG) genes in patients with stage III/IV ovarian cancer who received chemotherapy. METHODS Data of ovarian serous cystadenocarcinoma in The Cancer Genome Atlas (TCGA-OV) were used as training dataset. Two validation datasets comprised patients in a Chinese local database and a dataset from the Gene Expression Omnibus (GEO). ATG genes significantly (P < 0.1) associated with overall survival (OS) were selected and aggregated into an ATG scoring scale, of which the abilities to predict OS and recurrence-free survival (RFS) were examined. RESULTS Forty-three ATG genes were selected to develop the ATG score. In TCGA-OV, patients with lower ATG scores had better OS [HR = 0.41; 95% confidence interval (CI), 0.26-0.65; P < 0.001] and RFS [HR = 0.47; 95% CI, 0.27-0.82; P = 0.007]. After complete or partial remission to primary therapy, the rate of recurrence was 47.2% in the low-score group and 68.3% in the high-score group (odds ratio = 0.42; 95% CI, 0.18-0.92; P = 0.03). Such findings were verified in the two validation datasets. CONCLUSIONS We established a novel scoring system based on pivotal ATG genes, which accurately predicts the outcomes of patients with advanced ovarian cancer after chemotherapy. IMPACT The present ATG scoring system may provide a novel perspective and a promising tool for the development of personalized therapy in the future.
Collapse
Affiliation(s)
- Yuequn Niu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Sun
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yaqing Chen
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jianqing Zhu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanwen Chen
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
36
|
Straight C, Bradford L, Zweizig S. GYN ONCOLOGY. Cancer 2019. [DOI: 10.1002/9781119645214.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Zheng H, Tie Y, Fang Z, Wu X, Yi T, Huang S, Liang X, Qian Y, Wang X, Pi R, Chen S, Peng Y, Yang S, Zhao X, Wei X. Jumonji domain-containing 6 (JMJD6) identified as a potential therapeutic target in ovarian cancer. Signal Transduct Target Ther 2019; 4:24. [PMID: 31637004 PMCID: PMC6799828 DOI: 10.1038/s41392-019-0055-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023] Open
Abstract
Jumonji domain-containing 6 (JMJD6) is a candidate gene associated with tumorigenesis, and JMJD6 overexpression predicts poor differentiation and unfavorable survival in some cancers. However, there are no studies reporting the expression of JMJD6 in ovarian cancer, and no JMJD6 inhibitors have been developed and applied to targeted cancer therapy research. In the present study, we found that the high expression of JMJD6 in ovarian cancer was correlated with poor prognosis in ovarian cancer. A potential inhibitor (SKLB325) was designed based on the crystal structure of the jmjC domain of JMJD6. This molecule significantly suppressed proliferation and induced apoptosis in a dose-dependent manner in SKOV3 cell lines as detected by CCK-8 cell proliferation assays and flow cytometry. A Matrigel endothelial tube formation assay showed that SKLB325 inhibited capillary tube organization and migration in HUVECs in vitro. We also observed that JMJD6 colocalized with p53 protein in the nucleus, with mRNA and protein expression of p53 as well as its downstream effectors significantly increasing both in vitro and in intraperitoneal tumor tissues treated with SKLB325. In addition, SKLB325 significantly reduced the intraperitoneal tumor weight and markedly prolonged the survival of tumor-bearing mice. Taken together, our findings suggest that JMJD6 may be a marker of poor prognosis in ovarian cancer and that SKLB325 may be a potential candidate drug for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Heng Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Yan Tie
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Zhen Fang
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Xiaoai Wu
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Shuang Huang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Yanping Qian
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Xi Wang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Siyuan Chen
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Yong Peng
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Shengyong Yang
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | - Xiawei Wei
- Lab of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan P. R. China
| |
Collapse
|
38
|
Zhou L, Ye M, Xue F, Lu E, Sun LZ, Zhu X. Effects of dynein light chain Tctex-type 3 on the biological behavior of ovarian cancer. Cancer Manag Res 2019; 11:5925-5938. [PMID: 31308737 PMCID: PMC6612992 DOI: 10.2147/cmar.s205158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/27/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To investigate dynein light chain Tctex-type 3 (DYNLT3) protein expression in ovarian epithelial lesions and explore the effects and related mechanisms of DYNLT3 in terms of the biological behavior of ovarian cancer. MATERIALS AND METHODS Initially, expression of the DYNLT3 protein in ovarian epithelial lesions was detected by immunohistochemical staining, and the prognostic value of DYNLT3 mRNA expression in ovarian cancer patients was assessed using the Kaplan-Meier plotter database. Then, the mRNA and protein expression of DYNLT3 in IOSE80 normal ovarian epithelial cells and SKOV3 ovarian cancer cells was evaluated by quantitative real-time polymerase chain reaction and Western blotting respectively, and the proliferation, apoptosis, migration and invasion of SKOV3 cells after DYNLT3 over-expression and under-expression were investigated by CCK-8 assays and immunofluorescence staining, flow cytometry, wound healing assays and Transwell invasion assays, respectively. Furthermore, the expression of the proliferation-related proteins PCNA and Ki-67 and the invasion- and migration-related proteins Ezrin, Fascin, MMP2 and MMP9 in cells was examined by Western blotting. RESULTS The protein expression of DYNLT3 gradually increased during the progression of ovarian epithelial lesions, and was related to the development of ovarian cancer. High expression of DYNLT3 mRNA was related to poor overall survival and progression free survival, especially in serous ovarian cancer patients. In addition, overexpression of DYNLT3 promoted SKOV3 cell proliferation, invasion and migration. The corresponding results were also verified by a DYNLT3 knockdown assay. Moreover, DYNLT3 increased cell proliferation, which was related to Ki-67 expression. Besides, DYNLT3 enhanced cell invasion and migration through regulating Ezrin, but not Fascin, MMP2 or MMP9. CONCLUSION DYNLT3 exerts pro-tumoral effects on ovarian cancer through promoting cell proliferation, migration and invasion, possibly via regulating the protein expression of Ki-67 and Ezrin. DYNLT3 may be a potential prognostic predictor in ovarian cancer.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Ermei Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Lu-Zhe Sun
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| |
Collapse
|
39
|
Chang RX, Cui AL, Dong L, Guan SP, Jiang LY, Miao CX. Overexpression of RASAL1 Indicates Poor Prognosis and Promotes Invasion of Ovarian Cancer. Open Life Sci 2019; 14:133-140. [PMID: 33817145 PMCID: PMC7874762 DOI: 10.1515/biol-2019-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/13/2019] [Indexed: 01/22/2023] Open
Abstract
RAS protein activator like-1 (RASAL1) exists in numerous human tissues and has been commonly demonstrated to act as a tumor suppressor in several cancers. This study aimed to identify the functional characteristics of RASAL1 in ovarian adenocarcinoma and a potential mechanism of action. We analyzed RASAL1 gene expression in ovarian adenocarcinoma samples and normal samples gained from the GEO and Oncomine databases respectively. Then the relationship between RASAL1 expression and overall survival (OS) was assessed using the Kaplan-Meier method. Furthermore, the biological effect of RASAL1 in ovarian adenocarcinoma cell lines was assessed by Quantitative real time-PCR (qRT-PCR), Cell Counting Kit-8 (CCK-8), western blot, wound healing and transwell assay. The statistical analysis showed patients with higher RASAL1 expression correlated with worse OS. The in vitro assays suggested knockdown of RASAL1 could inhibit cell proliferation, cell invasion and migration of ovarian adenocarcinoma. Moreover, the key proteins in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathway were also decreased in ovarian adenocarcinoma cells with RASAL1 silencing. These findings provide promising evidence that RASAL1 may be not only a powerful biomarker but also an effective therapeutic target of ovarian adenocarcinoma.
Collapse
Affiliation(s)
- Rui-Xia Chang
- Department of gynecology, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ai-Ling Cui
- Central Laboratory, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Lu Dong
- Department of Hematological, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Su-Ping Guan
- Department of gynecology, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ling-Yan Jiang
- Department of Information, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Cong-Xiu Miao
- Department of Reproductive heredity, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
- E-mail:
| |
Collapse
|
40
|
Kim BI, Kim JH, Sim DY, Nam M, Jung JH, Shim B, Lee J, Kim SH. Inhibition of JAK2/STAT3 and activation of caspase‑9/3 are involved in KYS05090S‑induced apoptosis in ovarian cancer cells. Int J Oncol 2019; 55:203-210. [PMID: 31059018 DOI: 10.3892/ijo.2019.4795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
To overcome the poor prognosis of patients with ovarian cancer, attempting to target ovarian cancer with effective antitumor compounds has been conducted for numerous years. Although the 3,4‑dihydroquinazoline derivative KYS05090S was known to exert antitumor effects in A549 and ovarian cancer cells by inhibition of T‑type Ca2+ channels, the complete underlying antitumor mechanism of this compound remains unclear. Thus, in the present study, the potential apoptotic mechanism of KYS05090S was elucidated in SKOV3 and OVCAR3 ovarian cancer cells. KYS05090S exerted significant cytotoxicity in SKOV3 and OVCAR3 ovarian cancer cells, and also increased the number of apoptotic bodies, and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells and the sub‑G1 population as a feature of apoptosis. Consistently, KYS05090S induced cleavage of poly(ADP‑ribose) polymerase and caspase‑9/3 in ovarian cancer cells. Notably, KYS05090S attenuated the expression of anti‑apoptotic proteins, including cyclin D1 and B‑cell lymphoma‑2 (Bcl‑2), and reduced the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) in ovarian cancer cells. Additionally, KYS05090S blocked the nuclear translocation of STAT3 and suppressed the signaling of JAK2/STAT3 in interleukin‑6‑treated SKOV3 cells, as a STAT3 activator. Overall, these observations indicated that inhibition of JAK2/STAT3 signaling and activation of caspase‑9/3 are critically involved in the effects of KYS05090S on apoptosis in ovarian cancer types, and the compound may be beneficial as a potent antitumor agent.
Collapse
Affiliation(s)
- Bo-Im Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju-Ha Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minho Nam
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Hoon Jung
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bumsang Shim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaeyeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
41
|
Kim SY, Choi KU, Hwang C, Lee HJ, Lee JH, Shin DH, Kim JY, Sol MY, Kim JH, Kim KH, Suh DS, Kwon BS. Prognostic Significance of CD109 Expression in Patients with Ovarian Epithelial Cancer. J Pathol Transl Med 2019; 53:244-252. [PMID: 31316041 PMCID: PMC6639710 DOI: 10.4132/jptm.2019.04.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/16/2019] [Indexed: 01/25/2023] Open
Abstract
Background Ovarian epithelial cancer (OEC) is the second-most common gynecologic malignancy. CD109 expression is elevated in human tumor cell lines and carcinomas. A previous study showed that CD109 expression is elevated in human tumor cell lines and CD109 plays a role in cancer progression. Therefore, this study aimed to determine whether CD109 is expressed in OEC and can be useful in predicting the prognosis. Methods Immunohistochemical staining for CD109 and reverse transcription-quantitative polymerase chain reaction was performed. Then we compared CD109 expression and chemoresistance, overall survival, and recurrence-free survival of OEC patients. Chemoresistance was evaluated by dividing into good-response group and poor-response group by the time to recurrence after chemotherapy. Results CD109 expression was associated with overall survival (p = .020), but not recurrence-free survival (p = .290). CD109 expression was not an independent risk factor for overall survival due to its reliability (hazard ratio, 1.58; p = .160; 95% confidence interval, 0.82 to 3.05), although we found that CD109 positivity was related to chemoresistance. The poor-response group showed higher rates of CD109 expression than the good-response group (93.8% vs 66.7%, p = .047). Also, the CD109 mRNA expression level was 2.88 times higher in the poor-response group as compared to the good-response group (p = .001). Conclusions Examining the CD109 expression in patients with OEC may be helpful in predicting survival and chemotherapeutic effect.
Collapse
Affiliation(s)
- So Young Kim
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kyung Un Choi
- Department of Pathology, Pusan National University Hospital, Busan, Korea
| | - Chungsu Hwang
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyung Jung Lee
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jung Hee Lee
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dong Hoon Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jee Yeon Kim
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Mee Young Sol
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Busan, Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, Korea
| | - Dong Soo Suh
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
42
|
Poly (ADP-ribose) polymerase inhibitors combined with other small-molecular compounds for the treatment of ovarian cancer. Anticancer Drugs 2019; 30:554-561. [PMID: 30998513 DOI: 10.1097/cad.0000000000000793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ovarian cancer is a heterogeneous disease with complex molecular and genetic hallmarks. Benefitting from profound understanding of molecular mechanisms in ovarian cancer pathogenesis, novel targeted drugs have been actively explored in preclinical studies and clinical trials. Considered as one of the most potent and effective targeted therapies for the treatment of ovarian cancer, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) take advantages of synthetic lethality mechanisms to prevent DNA damage repair in cancer cells and cause their death, especially in cancers with BRCA mutations. Mounting evidence has indicated that the combination of PARPis with cytotoxic drugs or other targeted drugs has shown favorable synergistic effects. Excitingly, the antitumor activity of combination therapy of PARPis has been actively tested in multiple clinical trials and in-vitro or in-vivo experiments. In this review, we will briefly discuss the molecular mechanisms of PARPis combined with other therapeutic small-molecular compounds for the treatment of ovarian cancer.
Collapse
|
43
|
Liu J, Li S, Liang J, Jiang Y, Wan Y, Zhou S, Cheng W. ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer. Cancer Manag Res 2019; 11:2379-2392. [PMID: 30988639 PMCID: PMC6438265 DOI: 10.2147/cmar.s189784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is a female malignant tumor. Bioinformatics has been widely utilized to analyze genes related to cancer progression. Targeted therapy for specific biological factors has become more valuable. Materials and methods Gene expression profiles of GSE18520 and GSE27651 were downloaded from Gene Expression Omnibus. We used the “limma” package to screen differentially expressed genes (DEGs) between EOC and normal ovarian tissue samples and then used Clusterprofiler to do functional and pathway enrichment analyses. We utilized Search Tool for the Retrieval of Interacting Genes Database to assess protein–protein interaction (PPI) information and the plug-in Molecular Complex Detection to screen hub modules of PPI network in Cytoscape, and then performed functional analysis on the genes in the hub module. Next, we utilized the Weighted Gene Expression Network Analysis package to establish a co-expression network. Validation of the key genes in databases and Gene Expression Profiling Interactive Analysis (GEPIA) were completed. Finally, we used quantitative real-time PCR to validate hub gene expression in clinical tissue samples. Results We analyzed the DEGs (96 samples of EOC tissue and 16 samples of normal ovarian tissue) for functional analysis, which showed that upregulated DEGs were strikingly enriched in phosphate ion binding and the downregulated DEGs were significantly enriched in glycosaminoglycan binding. In the PPI network, CDK1 was screened as the most relevant protein. In the co-expression network, one EOC-related module was identified. For survival analysis, database and clinical sample validation of genes in the turquoise module, we found that ITLN1 was positively correlated with EOC prognosis and had lower level in EOC than in normal tissues, which was consistent with the results predicted in GEPIA. Conclusion In this study, we exhibited the key genes and pathways involved in EOC and speculated that ITLN1 was a tumor suppressor which could be used as a potential biomarker for treating EOC, Gene Expression Omnibus, prognosis.
Collapse
Affiliation(s)
- JinHui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,
| | - SiYue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,
| | - JunYa Liang
- Hypertension Research Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,
| | - YiCong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,
| | - ShuLin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,
| | - WenJun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,
| |
Collapse
|
44
|
Corey L, Valente A, Wade K. Personalized Medicine in Gynecologic Cancer: Fact or Fiction? Obstet Gynecol Clin North Am 2019; 46:155-163. [PMID: 30683261 DOI: 10.1016/j.ogc.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Personalized medicine in gynecologic oncology is an evolving field. In recent years, tumor profiling and large databases such as TCGA and NCI-Match have provided us with enormous amounts of molecular data. Several therapies that capitalize on novel genetic and immune discoveries including VEGF inhibitors, PARP inhibitors, and cancer vaccinations are discussed in this article. Additionally, we have seen direct to consumer marketing play an important role in cancer care and prevention as patients have increased ability to access genetic testing. This presents a unique challenge to gynecologic oncology providers as we learn to navigate the world of personalized medicine.
Collapse
Affiliation(s)
- Logan Corey
- Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, 2700 Napoleon Avenue, New Orleans, LA 70115, USA.
| | - Ana Valente
- Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, 2700 Napoleon Avenue, New Orleans, LA 70115, USA
| | - Katrina Wade
- Department of Gynecologic Oncology, Ochsner Clinic Foundation, 2700 Napoleon Avenue, New Orleans, LA 70115, USA
| |
Collapse
|
45
|
Dong S, Wang R, Wang H, Ding Q, Zhou X, Wang J, Zhang K, Long Y, Lu S, Hong T, Ren H, Wong K, Sheng X, Wang Y, Zeng Y. HOXD-AS1 promotes the epithelial to mesenchymal transition of ovarian cancer cells by regulating miR-186-5p and PIK3R3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:110. [PMID: 30823895 PMCID: PMC6397490 DOI: 10.1186/s13046-019-1103-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
Abstract
Background Epithelial ovarian cancer (EOC) is one of the most malignant gynecological tumors worldwide. Deregulation of long non-coding RNAs (lncRNAs) has been implicated in various oncogenic processes in multiple cancers. In this study, we aim to identify and characterize clinically relevant lncRNA deregulation in EOC. Methods LncRNAs, mRNAs and miRNAs were profiled using expression microarrays and validated using reverse transcription quantitative PCR in EOC cells and tissues. siRNAs targeting either HOXD-AS1 or PIK3R3 together with miR-186-5p inhibitors were used to modulate endogenous target expression in EOC cell lines in vitro. In vitro wound healing assay, trans-well assay, Western-blot assay,and Dual-luciferase reporter assay were used to explore the biological roles and molecular function underlying HOXD-AS1 in the EOC cells. Progression-free survival (PFS) and overall survival (OS) were statistically analyzed by Kaplan-Meier method test. Results HOXD-AS1 was found to be significantly over-expressed in EOC tumors. High HOXD-AS1 expression significantly correlated with poorer PFS and OS of EOC patients. Multivariate Cox proportional hazards modeling indicated that HOXD-AS1 was an independent risk predictor of EOC patients (HR = 1.92, p = 0.004). SiRNA inhibition of HOXD-AS1 reduced cell migration, invasion, and epithelial-mesenchymal transition (EMT) in EOC cells in vitro by preventing HOXD-AS1 directly binding to miR-186-5p, and resulting in down-regulating of PIK3R3. The novel HOXD-AS1/miR-186-5p/PIK3R3 pathway was clinically relevant as we observed a significantly inverse correlation between HOXD-AS1/miR-186-5p and between miR-186-5p/PIK3R3 in an independent cohort of 200 EOC tissues. Conclusions HOXD-AS1/miR-186-5p/PIK3R3 is a novel pathway to promote cell migration, invasion, and EMT in EOC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1103-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Dong
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for diagnosis-treatment and application of tumor liquid biopsy, Changsha, China
| | - Ranran Wang
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for diagnosis-treatment and application of tumor liquid biopsy, Changsha, China
| | - Hui Wang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qi Ding
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for diagnosis-treatment and application of tumor liquid biopsy, Changsha, China
| | - Xiao Zhou
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for diagnosis-treatment and application of tumor liquid biopsy, Changsha, China
| | - Jing Wang
- The fifth department of gynecological oncology The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Keqiang Zhang
- The fifth department of gynecological oncology The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Ying Long
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Shan Lu
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Changsha, China
| | - Ting Hong
- The fifth department of gynecological oncology The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Huayi Ren
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Kee Wong
- Engineering Technology Research Center for diagnosis-treatment and application of tumor liquid biopsy, Changsha, China
| | - Xiaowu Sheng
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for diagnosis-treatment and application of tumor liquid biopsy, Changsha, China
| | - Yu Wang
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore.
| | - Yong Zeng
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China. .,Engineering Technology Research Center for diagnosis-treatment and application of tumor liquid biopsy, Changsha, China.
| |
Collapse
|
46
|
Doll S, Gnad F, Mann M. The Case for Proteomics and Phospho-Proteomics in Personalized Cancer Medicine. Proteomics Clin Appl 2019; 13:e1800113. [PMID: 30790462 PMCID: PMC6519247 DOI: 10.1002/prca.201800113] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Indexed: 02/06/2023]
Abstract
The concept of personalized medicine is predominantly been pursued through genomic and transcriptomic technologies, leading to the identification of multiple mutations in a large variety of cancers. However, it has proven challenging to distinguish driver and passenger mutations and to deal with tumor heterogeneity and resistant clonal populations. More generally, these heterogeneous mutation patterns do not in themselves predict the tumor phenotype. Analysis of the expressed proteins in a tumor and their modification states reveals if and how these mutations are translated to the functional level. It is already known that proteomic changes including posttranslational modifications are crucial drivers of oncogenesis, but proteomics technology has only recently become comparable in depth and accuracy to RNAseq. These advances also allow the rapid and highly sensitive analysis of formalin-fixed and paraffin-embedded biobank tissues, on both the proteome and phosphoproteome levels. In this perspective, pioneering mass spectrometry-based proteomic studies are highlighted that pave the way toward clinical implementation. It is argued that proteomics and phosphoproteomics could provide the missing link to make omics analysis actionable in the clinic.
Collapse
Affiliation(s)
- Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of Biochemistry82152MartinsriedGermany
- NNF Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Florian Gnad
- Department of Bioinformatics and Computational BiologyCell Signaling Technology Inc01923DanversMAUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of Biochemistry82152MartinsriedGermany
- NNF Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
47
|
Iavarone C, Zervantonakis IK, Selfors LM, Palakurthi S, Liu JF, Drapkin R, Matulonis UA, Hallberg D, Velculescu VE, Leverson JD, Sampath D, Mills GB, Brugge JS. Combined MEK and BCL-2/X L Inhibition Is Effective in High-Grade Serous Ovarian Cancer Patient-Derived Xenograft Models and BIM Levels Are Predictive of Responsiveness. Mol Cancer Ther 2019; 18:642-655. [PMID: 30679390 PMCID: PMC6399746 DOI: 10.1158/1535-7163.mct-18-0413] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
Most patients with late-stage high-grade serous ovarian cancer (HGSOC) initially respond to chemotherapy but inevitably relapse and develop resistance, highlighting the need for novel therapies to improve patient outcomes. The MEK/ERK pathway is activated in a large subset of HGSOC, making it an attractive therapeutic target. Here, we systematically evaluated the extent of MEK/ERK pathway activation and efficacy of pathway inhibition in a large panel of well-annotated HGSOC patient-derived xenograft models. The vast majority of models were nonresponsive to the MEK inhibitor cobimetinib (GDC-0973) despite effective pathway inhibition. Proteomic analyses of adaptive responses to GDC-0973 revealed that GDC-0973 upregulated the proapoptotic protein BIM, thus priming the cells for apoptosis regulated by BCL2-family proteins. Indeed, combination of both MEK inhibitor and dual BCL-2/XL inhibitor (ABT-263) significantly reduced cell number, increased cell death, and displayed synergy in vitro in most models. In vivo, GDC-0973 and ABT-263 combination was well tolerated and resulted in greater tumor growth inhibition than single agents. Detailed proteomic and correlation analyses identified two subsets of responsive models-those with high BIM at baseline that was increased with MEK inhibition and those with low basal BIM and high pERK levels. Models with low BIM and low pERK were nonresponsive. Our findings demonstrate that combined MEK and BCL-2/XL inhibition has therapeutic activity in HGSOC models and provide a mechanistic rationale for the clinical evaluation of this drug combination as well as the assessment of the extent to which BIM and/or pERK levels predict drug combination effectiveness in chemoresistant HGSOC.
Collapse
Affiliation(s)
- Claudia Iavarone
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Ioannis K Zervantonakis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Laura M Selfors
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Sangeetha Palakurthi
- Belfer Institute for Applied Cancer Res, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ronny Drapkin
- Penn Ovarian Cancer Res Center, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Deepak Sampath
- Translational Oncology, Genentech, South San Francisco, California
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
48
|
An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 2018; 38:2885-2898. [PMID: 30568223 PMCID: PMC6755962 DOI: 10.1038/s41388-018-0637-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a complex multistep process that involves critical interactions between cancer cells and a variety of stromal components in the tumor microenvironment, which profoundly influence the different aspects of the metastatic cascade and organ tropism of disseminating cancer cells. Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Evidence has demonstrated that ovarian cancer possesses specific metastatic tropism for the adipose-rich omentum, which has a pivotal role in the creation of the metastatic tumor microenvironment in the intraperitoneal cavity. Considering the distinct biology of ovarian cancer metastasis, the elucidation of the cellular and molecular mechanisms underlying the reciprocal interplay between ovarian cancer cells and surrounding stromal cell types in the adipose-rich metastatic microenvironment will provide further insights into the development of novel therapeutic approaches for patients with advanced ovarian cancer. Herein, we review the biological mechanisms that regulate the highly orchestrated crosstalk between ovarian cancer cells and various cancer-associated stromal cells in the metastatic tumor microenvironment with regard to the omentum by illustrating how different stromal cells concertedly contribute to the development of ovarian cancer metastasis and metastatic tropism for the omentum.
Collapse
|
49
|
Zhou L, Xu X, Liu H, Hu X, Zhang W, Ye M, Zhu X. Prognosis Analysis of Histone Deacetylases mRNA Expression in Ovarian Cancer Patients. J Cancer 2018; 9:4547-4555. [PMID: 30519361 PMCID: PMC6277648 DOI: 10.7150/jca.26780] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases modulate the dynamic balance of histone acetylation and deacetylation in cells, which participate in epigenetic regulations. Accumulated evidence has demonstrated that histone deacetylases are associated with angiogenesis, cell proliferation and survival in a variety of human cancers. However, the expression and distinct prognostic value of histone deacetylases in ovarian cancer have not been well elucidated. In the present study, we collected the overall survival (OS), progress free survival (PFS), and histone deacetylases (HDAC1-11) mRNA expression in ovarian cancer from the Kaplan-Meier plotter online database. We investigated the relationship between histone deacetylases mRNA level and the clinicopathological parameters of the ovarian cancer patients, such as histology subtypes, clinical stages, grades and TP53 mutation. Our analysis data showed that over-expression of HDAC1, HDAC2, HDAC4, HDAC5 and HDAC11 were correlated to poor overall survival and unfavorable progress free survival in all ovarian cancer patients. Notably, the higher level of HDAC11 was associated with the worse OS and PFS for serous/ stage III+IV/ grade III/ TP53 mutation ovarian cancer patients. In conclusion, HDACs may play a crucial role in the prognosis of ovarian cancer, but it is worth noting that HDAC11 may be a biomarker for poor prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaohui Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hailing Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
50
|
Zhong Q, Hu Z, Li Q, Yi T, Li J, Yang H. Cyclin D1 silencing impairs DNA double strand break repair, sensitizes BRCA1 wildtype ovarian cancer cells to olaparib. Gynecol Oncol 2018; 152:157-165. [PMID: 30414739 DOI: 10.1016/j.ygyno.2018.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Poly(ADP-ribose) polymerase inhibitors (PARPi) are active in cancer cells that have impaired repair of DNA by the homologous recombination (HR) pathway. Strategies that disrupt HR may sensitize HR-proficient tumors to PARP inhibition. As a component of the core cell cycle machinery, cyclin D1 has unexpected function in DNA repair, suggesting that targeting cyclin D1 may represent a plausible strategy for expanding the utility of PARPi in ovarian cancer. METHODS BRCA1 wildtype ovarian cancer cells (A2780 and SKOV3) were treated with a combination of CCND1 siRNA and olaparib in vitro. Cell viability was assessed by MTT. The effects of the combined treatment on DNA damage repair and cell cycle progression were examined to dissect molecular mechanisms. In vivo studies were performed in an orthotopic ovarian cancer mouse model. Animals were treated with a combination of lentivirus-mediated CCND1 shRNA and olaparib or olaparib plus scrambled shRNA. Molecular downstream effects were examined by immunohistochemistry. RESULTS Silencing of cyclin D1 sensitized ovarian cancer cells to olaparib through interfering with RAD51 accumulation and inducing cell cycle G0/G1 arrest. Treatment of lentivirus-mediated CCND1-shRNA in nude mice statistically significantly augmented the olaparib response (mean tumor weight ± SD, CCND1-shRNA plus olaparib vs scrambled shRNA plus olaparib: 0.172 ± 0.070 g vs 0.324 ± 0.044 g, P< 0.05). CONCLUSIONS Silencing of cyclin D1 combined with olaparib may lead to substantial benefit for ovarian cancer management by mimicking a BRCAness phenotype, and induction of G0/G1 cell cycle arrest.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, PR China.
| | - Zhongyi Hu
- Center for Research on Reproduction & Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qiao Li
- Physical Examination Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Yi
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, PR China
| | - Jinke Li
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, PR China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| |
Collapse
|