1
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
2
|
Sarwar S, Morozov VM, Newcomb MA, Yan B, Brant JO, Opavsky R, Guryanova OA, Ishov AM. Overcoming ABCB1 mediated multidrug resistance in castration resistant prostate cancer. Cell Death Dis 2024; 15:558. [PMID: 39090086 PMCID: PMC11294535 DOI: 10.1038/s41419-024-06949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. PCa that relapses after hormonal therapies, referred to as castration resistant PCa (CRPC), often presents with metastases (mCRPC) that are the major cause of mortality. The few available therapies for mCRPC patients include taxanes docetaxel (DTX) and cabazitaxel (CBZ). However, development of resistance limits their clinical use. Mechanistically, resistance arises through upregulation of multidrug resistance (MDR) proteins such as MDR1/ABCB1, making ABCB1 an attractive therapeutic target. Yet, ABCB1 inhibitors failed to be clinically useful due to low specificity and toxicity issues. To study taxanes resistance, we produced CBZ resistant C4-2B cells (RC4-2B) and documented resistance to both CBZ and DTX in cell culture and in 3D prostaspheres settings. RNAseq identified increased expression of ABCB1 in RC4-2B, that was confirmed by immunoblotting and immunofluorescent analysis. ABCB1-specific inhibitor elacridar reversed CBZ and DTX resistance in RC4-2B cells, confirming ABCB1-mediated resistance mechanism. In a cell-based screen using a curated library of cytotoxic drugs, we found that DNA damaging compounds Camptothecin (CPT) and Cytarabine (Ara-C) overcame resistance as seen by similar cytotoxicity in parental C4-2B and resistant RC4-2B. Further, these compounds were cytotoxic to multiple PC cells resistant to taxanes with high ABCB1 expression and, therefore, can be used to conquer the acquired resistance to taxanes in PCa. Finally, inhibition of cyclin-dependent kinases 4/6 (CDK4/6) with small molecule inhibitors (CDK4/6i) potentiated cytotoxic effect of CPT or Ara-C in both parental and resistant cells. Overall, our findings indicate that DNA damaging agents CPT and Ara-C alone or in combination with CDK4/6i can be suggested as a new treatment regimen in CRPC patients, including those that are resistant to taxanes.
Collapse
Affiliation(s)
- Sadia Sarwar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mallory A Newcomb
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jason O Brant
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
3
|
Liu S, Yu Y, Xu J, Wang Y, Li D. Single-cell and bulk RNA-sequencing reveals mitosis-involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD). Cell Biol Int 2024; 48:1169-1184. [PMID: 38818762 DOI: 10.1002/cbin.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/13/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (p < 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (p < 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (p < 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (p < 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Nursing Department, Wujiang Fifth People's Hospital, Suzhou, China
| | - Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592966. [PMID: 38766099 PMCID: PMC11100730 DOI: 10.1101/2024.05.07.592966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Christopher M. McNair
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Saswati N. Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K. Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J. Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johann S. de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Karen E. Knudsen
- The American Cancer Society, Philadelphia, Pennsylvania, 19103, USA
| | - Ayesha A. Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| |
Collapse
|
6
|
Ishov A, Sarwar S, Morozov V, Newcomb M, Guryanova O. Overcoming ABCB1 mediated multidrug resistance in castration resistant prostate cancer. RESEARCH SQUARE 2024:rs.3.rs-4238716. [PMID: 38746435 PMCID: PMC11092792 DOI: 10.21203/rs.3.rs-4238716/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. PCa that relapses after hormonal therapies, referred to as castration resistant PCa (CRPC), often presents with metastases (mCRPC) that are the major cause of mortality. The few available therapies for mCRPC patients include taxanes docetaxel (DTX) and cabazitaxel (CBZ). However, development of resistance limits their clinical use. Mechanistically, resistance arises through upregulation of multidrug resistance (MDR) proteins such as MDR1/ABCB1, making ABCB1 an attractive therapeutic target. Yet, ABCB1 inhibitors failed to be clinically useful due to low specificity and toxicity issues. To study taxanes resistance, we produced CBZ resistant C4-2B cells (RC4-2B) and documented resistance to both CBZ and DTX in cell culture and in 3D prostaspheres settings. RNAseq identified increased expression of ABCB1 in RC4-2B, that was confirmed by immunoblotting and immunofluorescent analysis. ABCB1-specific inhibitor elacridar reversed CBZ and DTX resistance in RC4-2B cells, confirming ABCB1-mediated resistance mechanism. In a cell-based screen using a curated library of FDA-approved cytotoxic drugs, we found that DNA damaging compounds Camptothecin (CPT) and Cytarabine (Ara-C) overcame resistance as seen by similar cytotoxicity in parental C4-2B and resistant RC4-2B. Further, these compounds were cytotoxic to multiple PC cells resistant to taxanes with high ABCB1 expression and, therefore, can be used to conquer the acquired resistance to taxanes in PCa. Finally, inhibition of CDK4/6 kinases with small molecule inhibitors (CDK4/6i) potentiated cytotoxic effect of CPT or Ara-C in both parental and resistant cells. Overall, our findings indicate that DNA damaging agents CPT and Ara-C alone or in combination with CDK4/6i can be suggested as a new treatment regimen in CRPC patients, including those that are resistant to taxanes.
Collapse
|
7
|
Tu KJ, Roy SK, Keepers Z, Gartia MR, Shukla HD, Biswal NC. Docetaxel radiosensitizes castration-resistant prostate cancer by downregulating CAV-1. Int J Radiat Biol 2024; 100:256-267. [PMID: 37747697 DOI: 10.1080/09553002.2023.2263553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy. Here, we investigate the effectiveness and molecular characteristics of DXL and radiation combination therapy in vitro. MATERIALS AND METHODS We used live/dead assays to determine the IC50 of DXL for PC3, DU-145, and TRAMP-C1 cells. Colony formation assay was used to determine the radioresponse of the same cells treated with radiation with/without IC50 DXL (4, 8, and 12 Gy). We performed gene expression analysis on public transcriptomic data collected from human-derived prostate cancer cell lines (C4-2, PC3, DU-145, and LNCaP) treated with DXL for 8, 16, and 72 hours. Cell cycle arrest and protein expression were assessed using flow cytometry and western blot, respectively. RESULTS Compared to radiation alone, combination therapy with DXL significantly increased CRPC death in PC3 (1.48-fold, p < .0001), DU-145 (1.64-fold, p < .05), and TRAMP-C1 (1.13-fold, p < .05) at 4 Gy of radiation. Gene expression of CRPC treated with DXL revealed downregulated genes related to cell cycle regulation and upregulated genes related to immune activation and oxidative stress. Confirming the results, G2/M cell cycle arrest was significantly increased after treatment with DXL and radiation. CAV-1 protein expression was decreased after DXL treatment in a dose-dependent manner; furthermore, CAV-1 copy number was strongly associated with poor response to therapy in CRPC patients. CONCLUSIONS Our results suggest that DXL sensitizes CRPC cells to radiation by downregulating CAV-1. DXL + radiation combination therapy may be effective at treating CRPC, especially subtypes associated with high CAV-1 expression, and should be studied further.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Sanjit K Roy
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachery Keepers
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Manas R Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Hem D Shukla
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nrusingh C Biswal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Slovin SF, Knudsen K, Halabi S, de Leeuw R, Shafi A, Kang P, Wolf S, Luo B, Gopalan A, Curley T, Fleming M, Molina A, Fernandez C, Kelly K. Randomized Phase II Multicenter Trial of Abiraterone Acetate With or Without Cabazitaxel in the Treatment of Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol 2023; 41:5015-5024. [PMID: 37582240 DOI: 10.1200/jco.22.02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Improving clinical outcomes with novel drug combinations to treat metastatic castration-resistant prostate cancer (mCRPC) is challenging. Preclinical studies showed cabazitaxel had superior antitumor efficacy compared with docetaxel. Gene expression profiling revealed divergent effects of these taxanes in cycling cells. mCRPC are RB deficient rendering them hypersensitive to taxanes. These data suggested that upfront treatment with cabazitaxel with abiraterone may affect therapeutic response. We designed a phase II randomized noncomparative trial of abiraterone acetate/prednisone (AAP) or AAP and cabazitaxel (AAP + C) in men with mCRPC to address this hypothesis. METHODS This trial of 81 men with mCRPC determined the radiographic progression-free survival (rPFS), prostate-specific antigen (PSA) progression-free survival, overall objective response, and safety of AAP or AAP + C. Equally allocated patients received AAP followed by switching to cabazitaxel upon radiographic progression (arm 1) or upfront with AAP + C (arm 2). Patients were stratified into high-/low-risk groups by the Halabi nomogram. Real-time assessment of RB status and circulating tumor cell (CTC) analysis to correlate with clinical outcomes was exploratory. RESULTS Both treatment arms were well-tolerated. Median rPFS in AAP was 6.4 months (95% CI, 3.8 to 10.6) and median overall survival (OS) 18.3 months (95% CI, 14.4 to 37.6), respectively. Fifty-six percent of patients showed ≥50% decline in PSA. Median rPFS in AAP + C was 14.8 months (95% CI, 10.6 to 16.4), and median OS 24.5 months (95% CI, 20.4 to 35.0). There was a ≥50% decline in PSA in 92.1% of men. Neither RB expression in pretherapy tumor biopsy, CTC, or tissue explants identified those who may benefit from AAP + C. CONCLUSION AAP + C was safe with improved rPFS, OS duration, and a higher proportion of PSA declines. This suggests that AAP + C given earlier rather than sequentially may benefit some men. Further work is needed to identify this population.
Collapse
Affiliation(s)
- Susan F Slovin
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Renee de Leeuw
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Ayesha Shafi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Praneet Kang
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Bin Luo
- Duke University Medical Center, Durham, NC
| | - Anuradha Gopalan
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tracy Curley
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Fleming
- Virginia Oncology Associates, US Oncology Research, Norfolk, VA
| | | | - Celina Fernandez
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin Kelly
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
9
|
Chen QH. Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer. Cancers (Basel) 2023; 15:3308. [PMID: 37444418 DOI: 10.3390/cancers15133308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
A variety of microtubule-stabilizing cytotoxic agents (MSA) with diverse chemical scaffolds have been discovered from marine sponges, microorganisms, and plants. Two MSAs, docetaxel and cabazitaxel, are the exclusive chemotherapeutics that convey a survival benefit in patients with castration-resistant prostate cancer (CRPC). Additional MSAs have been investigated for their potential in treating prostate cancer in both clinical and preclinical settings. Independent of promoting mitotic arrest, MSAs can suppress the nuclear accumulation of androgen receptor (AR), which is the driving force for prostate cancer cell growth and progression. The alternative mechanism not only helps to better understand the clinical efficacy of docetaxel and cabazitaxel for AR-driven CRPC but also provides an avenue to seek better treatments for various forms of prostate cancer. The dual mechanisms of action enable MSAs to suppress AR-null prostate cancer cell proliferation by cell mitosis pathway and to interfere with the AR signaling pathway in AR positive cells. MSA chemotherapeutics, being administered alone or in combination with other therapeutics, may serve as the optimal therapeutic option for patients with either castration-sensitive or castration-resistant prostate cancer. This review provides an overview of the anti-prostate cancer profiles (including preclinical and clinical studies, and clinical use) of diverse MSAs, as well as the mechanism of action.
Collapse
Affiliation(s)
- Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| |
Collapse
|
10
|
Inhibition of Mps1 kinase enhances taxanes efficacy in castration resistant prostate cancer. Cell Death Dis 2022; 13:868. [PMID: 36229449 PMCID: PMC9561175 DOI: 10.1038/s41419-022-05312-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/23/2023]
Abstract
Androgen ablation therapy is the standard of care for newly diagnosed prostate cancer (PC) patients. PC that relapsed after hormonal therapy, referred to as castration-resistant PC (CRPC), often presents with metastasis (mCRPC) and is the major cause of disease lethality. The few available therapies for mCRPC include the Taxanes Docetaxel (DTX) and Cabazitaxel (CBZ). Alas, clinical success of Taxanes in mCRPC is limited by high intrinsic and acquired resistance. Therefore, it remains essential to develop rationally designed treatments for managing therapy-resistant mCRPC disease. The major effect of Taxanes on microtubule hyper-polymerization is a prolonged mitotic block due to activation of the Spindle Assembly Checkpoint (SAC). Taxane-sensitive cells eventually inactivate SAC and exit mitosis by mitotic catastrophe, resulting in genome instability and blockade of proliferation. Resistant cells remain in mitotic block, and, upon drug decay, resume mitosis and proliferation, underlying one resistance mechanism. In our study we explored the possibility of forced mitotic exit to elevate Taxane efficacy. Inactivation of the SAC component, mitotic checkpoint kinase Mps1/TTK with a small molecule inhibitor (Msp1i), potentiated efficacy of Taxanes treatment in both 2D cell culture and 3D prostasphere settings. Mechanistically, Mps1 inhibition forced mitotic catastrophe in cells blocked in mitosis by Taxanes. Androgen receptor (AR), the main driver of PC, is often mutated or truncated in mCRPC. Remarkably, Mps1i significantly potentiated CBZ cytotoxicity regardless of AR status, in both AR-WT and in AR-truncated CRPC cells. Overall, our data demonstrate that forced mitotic exit by Mps1 inhibition potentiates Taxanes efficacy. Given that several Mps1i's are currently in different stages of clinical trials, our results point to Mps1 as a new therapeutic target to potentiate efficacy of Taxanes in mCRPC patients.
Collapse
|
11
|
Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in Inhibition of Prostate Cancer: Evidence from Molecular Mechanisms Studies. Biomolecules 2022; 12:1306. [PMID: 36139145 PMCID: PMC9496067 DOI: 10.3390/biom12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of death for men worldwide. The development of resistance, toxicity, and side effects of conventional therapies have made prostate cancer treatment become more intensive and aggressive. Many phytochemicals isolated from plants have shown to be tumor cytotoxic. In vitro laboratory studies have revealed that natural compounds can affect cancer cell proliferation by modulating many crucial cellular signaling pathways frequently dysregulated in prostate cancer. A multitude of natural compounds have been found to induce cell cycle arrest, promote apoptosis, inhibit cancer cell growth, and suppress angiogenesis. In addition, combinatorial use of natural compounds with hormone and/or chemotherapeutic drugs seems to be a promising strategy to enhance the therapeutic effect in a less toxic manner, as suggested by pre-clinical studies. In this context, we systematically reviewed the currently available literature of naturally occurring compounds isolated from vegetables, fruits, teas, and herbs, with their relevant mechanisms of action in prostate cancer. As there is increasing data on how phytochemicals interfere with diverse molecular pathways in prostate cancer, this review discusses and emphasizes the implicated molecular pathways of cell proliferation, cell cycle control, apoptosis, and autophagy as important processes that control tumor angiogenesis, invasion, and metastasis. In conclusion, the elucidation of the natural compounds' chemical structure-based anti-cancer mechanisms will facilitate drug development and the optimization of drug combinations. Phytochemicals, as anti-cancer agents in the treatment of prostate cancer, can have significant health benefits for humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
12
|
Boopathi E, Birbe R, Shoyele SA, Den RB, Thangavel C. Bone Health Management in the Continuum of Prostate Cancer Disease. Cancers (Basel) 2022; 14:4305. [PMID: 36077840 PMCID: PMC9455007 DOI: 10.3390/cancers14174305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related deaths in men. PCa cells require androgen receptor (AR) signaling for their growth and survival. Androgen deprivation therapy (ADT) is the preferred treatment for patients with locally advanced and metastatic PCa disease. Despite their initial response to androgen blockade, most patients eventually will develop metastatic castration-resistant prostate cancer (mCRPC). Bone metastases are common in men with mCRPC, occurring in 30% of patients within 2 years of castration resistance and in >90% of patients over the course of the disease. Patients with mCRPC-induced bone metastasis develop lesions throughout their skeleton; the 5-year survival rate for these patients is 47%. Bone-metastasis-induced early changes in the bone that proceed the osteoblastic response in the bone matrix are monitored and detected via modern magnetic resonance and PET/CT imaging technologies. Various treatment options, such as targeting osteolytic metastasis with bisphosphonates, prednisone, dexamethasone, denosumab, immunotherapy, external beam radiation therapy, radiopharmaceuticals, surgery, and pain medications are employed to treat prostate-cancer-induced bone metastasis and manage bone health. However, these diagnostics and treatment options are not very accurate nor efficient enough to treat bone metastases and manage bone health. In this review, we present the pathogenesis of PCa-induced bone metastasis, its deleterious impacts on vital organs, the impact of metastatic PCa on bone health, treatment interventions for bone metastasis and management of bone- and skeletal-related events, and possible current and future therapeutic options for bone management in the continuum of prostate cancer disease.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruth Birbe
- Laboratory Medicine, Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chellappagounder Thangavel
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Interdisciplinary Oncology, Department of Biochemistry & Molecular Biology, LSUHSC Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Pilling A, Kim S, Hwang C. Androgen receptor negatively regulates mitotic checkpoint signaling to induce docetaxel resistance in castration-resistant prostate cancer. Prostate 2022; 82:182-192. [PMID: 34672379 PMCID: PMC9298324 DOI: 10.1002/pros.24257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite multiple treatment advances for castration-resistant prostate cancer (CRPC), there are currently no curative therapies and patients ultimately to succumb to the disease. Docetaxel (DTX) is the standard first-line chemotherapy for patients with metastatic CRPC; however, drug resistance is inevitable and often develops rapidly, leading to disease progression in nearly all patients. In contrast, when DTX is deployed with androgen deprivation therapy in castration-sensitive disease, more durable responses and improved outcomes are observed, suggesting that aberrant androgen receptor (AR) signaling accelerates DTX resistance in CRPC. In this study, we demonstrate that AR dysregulates the mitotic checkpoint, a critical pathway involved in the anticancer action of DTX. METHODS Androgen-dependent and independent cell lines were used to evaluate the role of AR in DTX resistance. Impact of drug treatment on cell viability, survival, and cell-cycle distribution were determined by plate-based viability assay, clonogenic assay, and cell-cycle analysis by flow cytometry, respectively. Mitotic checkpoint kinase signal transduction and apoptosis activation was evaluated by Western blotting. Pathway gene expression analysis was evaluated by RT-PCR. A Bliss independence model was used to calculate synergy scores for drug combination studies. RESULTS Activation of AR in hormone-sensitive cells induces a rescue phenotype by increasing cell viability and survival and attenuating G2/M arrest in response to DTX. Analysis of mitotic checkpoint signaling shows that AR negatively regulates spindle checkpoint signaling, resulting in premature mitotic progression and evasion of apoptosis. This phenotype is characteristic of mitotic slippage and is also observed in CRPC cell lines where we demonstrate involvement of AR splice variant AR-v7 in dysregulation of checkpoint signaling. Our findings suggest that DTX resistance is mediated through mechanisms that drive premature mitotic exit. Using pharmacologic inhibitors of anaphase-promoting complex/cyclosome and polo-like kinase 1, we show that blocking mitotic exit induces mitotic arrest, apoptosis, and synergistically inhibits cell survival in combination with DTX. CONCLUSION Our results suggest that targeting the mechanisms of dysregulated mitotic checkpoint signaling in AR-reactivated tumors has significant clinical potential to extend treatment benefit with DTX and improve outcomes in patients with lethal prostate cancer.
Collapse
Affiliation(s)
- Amanda Pilling
- Department of Internal MedicineHenry Ford Health System, Henry Ford Cancer InstituteDetroitMichiganUSA
| | - Sahn‐Ho Kim
- Department of UrologyHenry Ford Health SystemDetroitMichiganUSA
| | - Clara Hwang
- Department of Internal MedicineHenry Ford Health System, Henry Ford Cancer InstituteDetroitMichiganUSA
| |
Collapse
|
14
|
Ruiz de Porras V, Font A, Aytes A. Chemotherapy in metastatic castration-resistant prostate cancer: Current scenario and future perspectives. Cancer Lett 2021; 523:162-169. [PMID: 34517086 DOI: 10.1016/j.canlet.2021.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Taxanes - docetaxel and cabazitaxel - are the most active chemotherapy drugs currently used for the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, despite a good initial response and survival benefit, nearly all patients eventually develop resistance, which is an important barrier to long-term survival. Resistance to taxanes is also associated with cross-resistance to androgen receptor signaling inhibitors (ARSIs). Unfortunately, other than platinum-based treatments, which have demonstrated some benefit in a subset of patients with Aggressive Variant Prostate Cancer (AVPC), few therapeutic options are available to patients progressing to taxanes. Hence, more research is required to determine whether platinum-based chemotherapy will confer a survival benefit in mCRPC, and the identification of predictive biomarkers and the clinical evaluation of platinum compounds in molecularly selected patients is an urgent but unmet clinical need. The present review focuses on the current status of chemotherapy treatments in mCRPC, interactions with androgen deprivation therapy (ADT) and novel ARSIs, and the main mechanisms of resistance. We will examine the impact of platinum-based treatments in mCRPC and summarize the known predictive biomarkers of platinum response. Finally, future approaches and avenues will be discussed.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (BARGO), Badalona, Spain.
| | - Albert Font
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (BARGO), Badalona, Spain; Department of Medical Oncology, Catalan Institute of Oncology, Badalona, Spain
| | - Alvaro Aytes
- Program of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBELL), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, Barcelona, Spain; Program Against Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Gran Via de L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
15
|
Gjyrezi A, Xie F, Voznesensky O, Khanna P, Calagua C, Bai Y, Kung J, Wu J, Corey E, Montgomery B, Mace S, Gianolio DA, Bubley GJ, Balk SP, Giannakakou P, Bhatt RS. Taxane resistance in prostate cancer is mediated by decreased drug-target engagement. J Clin Invest 2021; 130:3287-3298. [PMID: 32478682 DOI: 10.1172/jci132184] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/11/2020] [Indexed: 01/03/2023] Open
Abstract
Despite widespread use of taxanes, mechanisms of action and resistance in vivo remain to be established, and there is no way of predicting who will respond to therapy. This study examined prostate cancer (PCa) xenografts and patient samples to identify in vivo mechanisms of taxane action and resistance. Docetaxel drug-target engagement was assessed by confocal anti-tubulin immunofluorescence to quantify microtubule bundling in interphase cells and aberrant mitoses. Tumor biopsies from metastatic PCa patients obtained 2 to 5 days after their first dose of docetaxel or cabazitaxel were processed to assess microtubule bundling, which correlated with clinical response. Microtubule bundling was evident in PCa xenografts 2 to 3 days after docetaxel treatment but was decreased or lost with acquired resistance. Biopsies after treatment with leuprolide plus docetaxel showed extensive microtubule bundling as did biopsies obtained 2 to 3 days after initiation of docetaxel or cabazitaxel in 2 patients with castration-resistant PCa with clinical responses. In contrast, microtubule bundling in biopsies 2 to 3 days after the first dose of docetaxel was markedly lower in 4 nonresponding patients. These findings indicate that taxanes target both mitotic and interphase cells in vivo and that resistance is through mechanisms that impair drug-target engagement. Moreover, the findings suggest that microtubule bundling after initial taxane treatment may be a predictive biomarker for clinical response.
Collapse
Affiliation(s)
- Ada Gjyrezi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Fang Xie
- Division of Hematology and Oncology, Department of Medicine, and
| | - Olga Voznesensky
- Division of Hematology and Oncology, Department of Medicine, and
| | - Prateek Khanna
- Division of Hematology and Oncology, Department of Medicine, and
| | - Carla Calagua
- Division of Hematology and Oncology, Department of Medicine, and
| | - Yang Bai
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Justin Kung
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Bruce Montgomery
- Department of Medicine and Oncology, University of Washington, Seattle Cancer Care Alliance, Seattle, Washington, USA
| | - Sandrine Mace
- Research and Development, Sanofi, Vitry-sur-Seine, France
| | | | - Glenn J Bubley
- Division of Hematology and Oncology, Department of Medicine, and
| | - Steven P Balk
- Division of Hematology and Oncology, Department of Medicine, and
| | - Paraskevi Giannakakou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical Center, New York, New York, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, New York, USA
| | - Rupal S Bhatt
- Division of Hematology and Oncology, Department of Medicine, and
| |
Collapse
|
16
|
The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair. Nat Commun 2021; 12:401. [PMID: 33452241 PMCID: PMC7810852 DOI: 10.1038/s41467-020-20513-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required for homologous recombination. Collectively, these findings reveal that CRY1 is hormone-induced in tumors, is further stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation. These studies identify the circadian factor CRY1 as pro-tumorigenic and nominate CRY1 as a new therapeutic target. Cryptochrome 1 (CRY1) is a transcriptional coregulator associated with the circadian clock. Here the authors reveal that CRY1 is hormone-regulated, stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation.
Collapse
|
17
|
Hofmann MR, Hussain M, Dehm SM, Beltran H, Wyatt AW, Halabi S, Sweeney C, Scher HI, Ryan CJ, Feng FY, Attard G, Klein E, Miyahira AK, Soule HR, Sharifi N. Prostate Cancer Foundation Hormone-Sensitive Prostate Cancer Biomarker Working Group Meeting Summary. Urology 2020; 155:165-171. [PMID: 33373705 DOI: 10.1016/j.urology.2020.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Androgen deprivation therapy remains the backbone therapy for the treatment of metastatic hormone-sensitive prostate cancer (mHSPC). In recent years, several treatments, including docetaxel, abiraterone + prednisone, enzalutamide, and apalutamide, have each been shown to demonstrate survival benefit when used upfront along with androgen deprivation therapy. However, treatment selection for an individual patient remains a challenge. There is no high level clinical evidence for treatment selection among these choices based on biological drivers of clinical disease. In August 2020, the Prostate Cancer Foundation convened a working group to meet and discuss biomarkers for hormone-sensitive prostate cancer, the proceedings of which are summarized here. This meeting covered the state of clinical and biological evidence for systemic therapies in the mHSPC space, with emphasis on charting a course for the generation, interrogation, and clinical implementation of biomarkers for treatment selection.
Collapse
Affiliation(s)
- Martin R Hofmann
- Genitourinary Malignancies Research Center, Cleveland Clinic, Cleveland, OH; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Maha Hussain
- Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Scott M Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN; Department of Urology, University of Minnesota, Minneapolis, MN; Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Himisha Beltran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke Medical Center and Duke Cancer Institute, Durham, NC
| | - Christopher Sweeney
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Charles J Ryan
- Division of Hematology and Oncology, University of Minnesota School of Medicine, Minneapolis, MN
| | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine University of California, San Francisco, San Francisco, California
| | | | - Eric Klein
- Genitourinary Malignancies Research Center, Cleveland Clinic, Cleveland, OH; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | | | | | - Nima Sharifi
- Genitourinary Malignancies Research Center, Cleveland Clinic, Cleveland, OH; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
18
|
Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, Buttigliero C. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit Rev Oncol Hematol 2020; 157:103185. [PMID: 33341506 DOI: 10.1016/j.critrevonc.2020.103185] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/09/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
In last years several improvements have been made in the management of prostate cancer (PCa). Androgen receptor (AR) is considered the main driver in PCa growth and progression and most drugs are directed against AR pathway. Once PCa spreads outside the prostate, androgen deprivation therapy (ADT) represents the cornerstone of treatment in hormone-sensitive prostate cancer (HSPC). Unfortunately, the response is only transient and most patients eventually develop castration-resistant prostate cancer (CRPC). Most resistance mechanisms depend on maintenance of AR signalling in castration environment. Recent discoveries of multiple growth-promoting and survival pathways in PCa suggest the importance of alternative mechanisms involved in disease progression, such as DNA damage response pathway, PTEN/PI3K/AKT/mTOR pathway, cell cycle pathway, WNT pathway, TMPRSS2/ETS fusion, neuroendocrine pattern and immune system response. In this review, we discuss the interplay between AR signaling and other molecular pathways involved in PCa pathogenesis and their therapeutic implication in advanced disease.
Collapse
Affiliation(s)
- Chiara Pisano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Marcello Tucci
- Medical Oncology, Cardinal Massaia Hospital, Corso Dante Alighieri 202, 14100, Asti, Italy.
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Fabio Turco
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, at Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10028, Turin, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| |
Collapse
|
19
|
Sennoune SR, Nelius T, Jarvis C, Pruitt K, Kottapalli KR, Filleur S. The Wnt non-canonical signaling modulates cabazitaxel sensitivity in prostate cancer cells. PLoS One 2020; 15:e0234078. [PMID: 32484838 PMCID: PMC7266300 DOI: 10.1371/journal.pone.0234078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 12/01/2022] Open
Abstract
Background Despite new drugs, metastatic prostate cancer remains fatal. Growing interest in the latest approved cabazitaxel taxane drug has markedly increased due to the survival benefits conferred when used at an earlier stage of the disease, its promising new therapeutic combination and formulation, and its differential toxicity. Still cabazitaxel’s mechanisms of resistance are poorly characterized. The goal of this study was thus to generate a new model of acquired resistance against cabazitaxel in order to unravel cabazitaxel’s resistance mechanisms. Methods Du145 cells were cultured with increasing concentrations of cabazitaxel, docetaxel/ taxane control or placebo/age-matched control. Once resistance was reached, Epithelial-to-Mesenchymal Translation (EMT) was tested by cell morphology, cell migration, and E/M markers expression profile. Cell transcriptomics were determined by RNA sequencing; related pathways were identified using IPA, PANTHER or KEGG software. The Wnt pathway was analyzed by western blotting, pharmacological and knock-down studies. Results While age-matched Du145 cells were sensitive to both taxane drugs, docetaxel-resistant cells were only resistant to docetaxel and cabazitaxel-resistant cells showed a partial cross-resistance to both drugs concomitant to EMT. Using RNA-sequencing, the Wnt non-canonical pathway was identified as exclusively activated in cabazitaxel resistant cells while the Wnt canonical pathway was restricted to docetaxel-resistant cells. Cabazitaxel-resistant cells showed a minimal crossover in the Wnt-pathway-related genes linked to docetaxel resistance validating our unique model of acquired resistance to cabazitaxel. Pharmacological and western blot studies confirmed these findings and suggest the implication of the Tyrosine kinase Ror2 receptor in cabazitaxel resistant cells. Variation in Ror2 expression level altered the sensitivity of prostate cancer cells to both drugs identifying a possible new target for taxane resistance. Conclusion Our study represents the first demonstration that while Wnt pathway seems to play an important role in taxanes resistance, Wnt effectors responsible for taxane specificity remain un-identified prompting the need for more studies.
Collapse
Affiliation(s)
- Souad R. Sennoune
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Thomas Nelius
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Courtney Jarvis
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | | | - Stéphanie Filleur
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
The development and progression of metastatic castration-resistant prostate cancer is the major challenge in the treatment of advanced prostate cancer. The androgen receptor signaling pathway remains active in metastatic castration-resistant prostate cancer. Docetaxel and cabazitaxel are the first- and second-line chemotherapy, respectively, for patients with metastatic castration-resistant prostate cancer. These two taxanes, in general, function by (i) inhibiting mitosis and inducing apoptosis and (ii) preventing microtubule-dependent cargo trafficking. In prostate cancer, taxanes have been reported to inhibit the nuclear translocation and activity of the androgen receptor. However, whether this is attainable or not clinically remains controversial. In this review, we will provide a comprehensive view of the effects of taxanes on androgen receptor signaling in prostate cancer.
Collapse
Affiliation(s)
- Shanshan Bai
- College of Life Sciences, Jilin University, Changchun 130012, China.,Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | | | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| |
Collapse
|
21
|
Sullivan SA, Nawarathne IN, Walker KD. CoA recycling by a benzoate coenzyme A ligase in cascade reactions with aroyltransferases to biocatalyze paclitaxel analogs. Arch Biochem Biophys 2020; 683:108276. [PMID: 31978400 DOI: 10.1016/j.abb.2020.108276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
A Pseudomonas CoA ligase (BadA) biocatalyzed aroyl CoA thioesters used by a downstream N-benzoyltransferase (NDTNBT) in a cascade reaction made aroyl analogs of the anticancer drug paclitaxel. BadA kept the high-cost aroyl CoA substrates at saturation for the downstream NDTNBT by recycling CoA when it was added as the limiting reactant. A deacylated taxane substrate N-debenzoyl-2'-deoxypaclitaxel was converted to its benzoylated product at a higher yield, compared to the converted yield in assays in which the BadA ligase chemistry was omitted, and benzoyl CoA was added as a cosubstrate. The resulting benzoylated product 2'-deoxypaclitaxel was made at 196% over the theoretical yield of product that could be made from the CoA added at 50 μM, and the cosubstrates benzoic acid (100 μM), and N-debenzoyl-2'-deoxypaclitaxel (500 μM) added in excess. In addition, a 2-O-benzoyltransferase (mTBT) was incubated with BadA, aroyl acids, CoA, a 2-O-debenzoylated taxane substrate, and cofactors under the CoA-recycling conditions established for the NDTNBT/BadA cascade. The mTBT/BadA combination also made various 2-O-aroylated products that could potentially function as next-generation baccatin III compounds. These ligase/benzoyltransferase cascade reactions show the feasibility of recycling aroyl CoA thioesters in vitro to make bioactive acyl analogs of paclitaxel precursors.
Collapse
Affiliation(s)
- Sean A Sullivan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kevin D Walker
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Circulating cell-free DNA: Translating prostate cancer genomics into clinical care. Mol Aspects Med 2020; 72:100837. [PMID: 31954523 DOI: 10.1016/j.mam.2019.100837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Only in the past decade tremendous advances have been made in understanding prostate cancer genomics and consequently in applying new treatment strategies. As options regarding treatments are increasing so are the challenges in selecting the right treatment option for each patient and not the least, understanding the optimal time-point and sequence of applying available treatments. Critically, without reliable methods that enable sequential monitoring of evolving genotypes in individual patients, we will never reach effective personalised driven treatment approaches. This review focuses on the clinical implications of prostate cancer genomics and the potential of cfDNA in facilitating treatment management.
Collapse
|
23
|
Melo ALA, Kitada S. Selection of the Bacillus thuringiensis Berliner strain to produce a parasporin with cytotoxic activity against MCF-7 breast cancer cells. Breast Dis 2020; 39:37-42. [PMID: 32065785 DOI: 10.3233/bd-190405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) is a Gram-positive bacterium that is known worldwide for its entomopathogenic properties. Recent studies indicate that bacteria produces protein inclusions called parasporins (PSs) that have anti-cancer activity against several types of tumor cells. OBJECTIVE The present work aimed to select a Bt strain that produces an active PS against MCF-7 breast cancer cells, and to provide an initial quantification of its toxicity and protein concentration. METHODS Two batches of Bt strains were fermented, and the parasporins were produced and isolated. In vitro tests were performed in 96-well plates and analyzed by a spectrophotometer. RESULTS Most peptides did not have any cytopathic effect, but the A14d2 strain produces a PS with high toxicity to cancer cells. In the MTT test, the A14d2 strain PS was efficient with an LD50 of 14.83 μg/mL and a protein concentration of 520 μg/mL. At the end of the experiments, this PS was added to bacterial cells that produce other biologically active bacterial toxins against MCF-7 cells, which allowed it to be produced by a safe and inert microorganism to humans. CONCLUSION PSs represent a potential tool to treat this form of breast cancer by providing peptides that may be useful in therapy.
Collapse
Affiliation(s)
- André L A Melo
- Kyushu Institute of Technology (KIT), Iizuka, Fukuoka, Japan
| | - Sakae Kitada
- Department of Bioscience and Bioinfomatics, Kyushu Institute of Technology (KIT), Iizuka, Fukuoka, Japan
| |
Collapse
|
24
|
Gdowski AS, Lampe JB, Lin VJT, Joshi R, Wang YC, Mukerjee A, Vishwanatha JK, Ranjan AP. Bioinspired Nanoparticles Engineered for Enhanced Delivery to the Bone. ACS APPLIED NANO MATERIALS 2019; 2:6249-6257. [PMID: 33585803 PMCID: PMC7880042 DOI: 10.1021/acsanm.9b01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Targeting therapeutic agents to specific organs in the body remains a challenge despite advances in the science of systemic drug delivery. We have engineered a programmable-bioinspired nanoparticle (P-BiNP) delivery system to simultaneously target the bone and increase uptake in homotypic tumor cells by coating polymeric nanoparticles with programmed cancer cell membranes. This approach is unique in that we have incorporated relevant clinical bioinformatics data to guide the design and enhancement of biological processes that these nanoparticles are engineered to mimic. To achieve this, an analysis of RNA expression from metastatic prostate cancer patients identified ITGB3 (a subunit of integrin α V β 3) as overexpressed in patients with bone metastasis. Cancer cells were stimulated to increase this integrin expression on the cell surface, and these membranes were subsequently used to coat cargo carrying polymeric nanoparticles. Physicochemical optimization and characterization of the P-BiNPs showed desirable qualities regarding size, ζ potential, and stability. In vitro testing confirmed enhanced homotypic binding and uptake in cancer cells. P-BiNPs also demonstrated improved bone localization in vivo with a murine model. This novel approach of identifying clinically relevant targets for dual homotypic and bone targeting has potential as a strategy for treatment and imaging modalities in diseases that affect the bone as well as broader implications for delivering nanoparticles to other organs of interest.
Collapse
|
25
|
Lang SJ, Schmiech M, Hafner S, Paetz C, Steinborn C, Huber R, Gaafary ME, Werner K, Schmidt CQ, Syrovets T, Simmet T. Antitumor activity of an Artemisia annua herbal preparation and identification of active ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152962. [PMID: 31132755 DOI: 10.1016/j.phymed.2019.152962] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Artemisia annua L. has gained increasing attention for its anticancer activity. However, beside artemisinin, less is known about the possible bioactive ingredients of Artemisia annua and respective herbal preparations. We hypothesized that, in addition to artemisinin, Artemisia annua preparations might contain multiple ingredients with potential anticancer activity. METHODS MDA-MB-231 triple negative human breast cancer (TNBC) cells along with other treatment resistant, metastatic cancer cell lines were used to investigate in vitro and in vivo the anticancer efficacy of an Artemisia annua extract marketed as a herbal preparation, which contained no detectable artemisinin (limit of detection = 0.2 ng/mg). The extract was characterized by HPLC-DAD and the most abundant compounds were identified by 1H- and 13C NMR spectroscopy and quantified by UHPLC-MS/MS. Cell viability and various apoptotic parameters were quantified by flow cytometry. In vitro data were validated in two in vivo cancer models, the chick chorioallantoic membrane (CAM) assay and in orthotopic breast cancer xenografts in nude mice. RESULTS The Artemisia annua extract, the activity of which could be enhanced by acetonitrile maceration, inhibited the viability of breast (MDA-MB-231 and MCF-7), pancreas (MIA PaCa-2), prostate (PC-3), non-small cell lung cancer (A459) cells, whereas normal mammary epithelial cells, lymphocytes, and PBMC were relatively resistant to extract treatment. Likewise, the extract's most abundant ingredients, chrysosplenol D, arteannuin B, and casticin, but not arteannuic acid or 6,7-dimethoxycoumarin, inhibited the viability of MDA-MB-231 breast cancer cells. The extract induced accumulation of multinucleated cancer cells within 24 h of treatment, increased the number of cells in the S and G2/M phases of the cell cycle, followed by loss of mitochondrial membrane potential, caspase 3 activation, and formation of an apoptotic hypodiploid cell population. Further, the extract inhibited cancer cell proliferation, decreased tumor growth, and induced apoptosis in vivo in TNBC MDA-MB-231 xenografts grown on CAM as well as in nude mice. CONCLUSION An extract of an artemisinin-deficient Artemisia annua herbal preparation exhibits potent anticancer activity against triple negative human breast cancer. New active ingredients of Artemisia annua extract with potential anticancer activity have been identified.
Collapse
Affiliation(s)
- Sophia J Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Carmen Steinborn
- Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Menna El Gaafary
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Katharina Werner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
26
|
Molecular Mechanisms of Antitumor Activity of PAMAM Dendrimer Conjugates with Anticancer Drugs and a Monoclonal Antibody. Polymers (Basel) 2019; 11:polym11091422. [PMID: 31470686 PMCID: PMC6780640 DOI: 10.3390/polym11091422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
Taxanes are considered fundamental drugs in the treatment of breast cancer, but despite the similarities, docetaxel (doc) and paclitaxel (ptx) work differently. For this reason, it is interesting to identify mechanisms of antitumor activity of PAMAM dendrimer conjugates that carry docetaxel or paclitaxel and monoclonal antibody trastuzumab, specifically targeted to cells which overexpressed HER-2. For this purpose, the impact on the level of reactive oxygen species, the mitochondrial membrane potential, cell cycle distribution and the activity of caspases-3/7, -8 and -9 of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined and compared with free docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. Moreover, apoptosis and necrosis were studied using flow cytometry and confocal microscopy, respectively. Our studies show the complexity of the potential mechanism of cytotoxic action of PAMAM-drug-trastuzumab conjugates that should be sought as a resultant of oxidative stress, mitochondrial activation of the caspase cascade and the HER-2 receptor blockade.
Collapse
|
27
|
Saffari_Chaleshtori J, Heidari-Sureshjani E, Moradi F, Heidarian E. The Effects of Thymoquinone on Viability, and Anti-apoptotic Factors (BCL-XL, BCL-2, MCL-1) in Prostate Cancer (PC3) Cells: An In Vitro and Computer-Simulated Environment Study. Adv Pharm Bull 2019; 9:490-496. [PMID: 31592099 PMCID: PMC6773927 DOI: 10.15171/apb.2019.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Since active plant ingredients can induce apoptosis in many tumors, in this study we evaluate the apoptotic effects of thymoquinone (TQ) on PC3 cells. Also, we predicted the interaction of TQ with BCL-XL, BCL-2, and MCL-1anti-apoptotic factors by computer-simulated environment. Methods: PC3 cells were treated with different concentrations of TQ (0- 80 µM) and IC50 was determined using 3-(4, 5-dimethylthiaztol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Apoptotic and cytotoxicity effects of TQ were analyzed using flowcytometry and comet assay, respectively. Changes in energy and the molecular interactions of TQ with BCL-XL, BCL-2 and MCL-1 anti-apoptotic factors were investigated using simulation. Results: IC50 value was 40 µM. TQ led to the destruction of the genome of PC3 cells and inducing apoptosis. Molecular dynamics (MD) revealed that the root mean-square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and the number of hydrogen and hydrophobic bonds between TQ and residues of BCL-2, BCL-XL and MCL-1were significantly (P<0.001) changed. TQ makes a more stable and stronger connection with BCL-XL compared to BCL-2 and MCL-1 and inhibits BCL-XL non-competitively. Conclusion: Our results demonstrated that TQ not only led to apoptosis, at least partly, due to reduction in the Coil, Turn, and Bend structure of BCL-XL but also caused a decrease in the Rg and RMSD value of BCL-XL, MCL-1, and BCL-2.
Collapse
Affiliation(s)
| | | | - Fahimeh Moradi
- Cellular & Molecular, Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
28
|
Indovina P, Pentimalli F, Conti D, Giordano A. Translating RB1 predictive value in clinical cancer therapy: Are we there yet? Biochem Pharmacol 2019; 166:323-334. [PMID: 31176618 DOI: 10.1016/j.bcp.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The retinoblastoma RB1 gene has been identified in the 80s as the first tumor suppressor. RB1 loss of function, as well alterations in its pathway, occur in most human cancers and often have prognostic value. RB1 has a key role in restraining cell cycle entry and, along with its family members, regulates a myriad of cellular processes and affects cell response to a variety of stimuli, ultimately determining cell fate. Consistently, RB1 status is a crucial determinant of the cell response to antitumoral therapies, impacting on the outcome of both traditional and modern anti-cancer strategies, including precision medicine approaches, such as kinase inhibitors, and immunotherapy. Despite many efforts however, the predictive value of RB1 status in the clinical practice is still underused, mainly owing to the complexity of RB1 function, to differences depending on the cellular context and on the therapeutic strategies, and, not-lastly, to technical issues. Here, we provide an overview of studies analyzing the role of RB1 in response to conventional cytotoxic and cytostatic therapeutic agents in different cancer types, including hormone dependent ones. We also review RB1 predictive value in the response to the last generation CDK4/6 inhibitors, other kinase inhibitors, and immunotherapy and discuss new emerging non-canonical roles of RB1 that could impact on the response to antitumoral treatments.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Daniele Conti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy.
| |
Collapse
|
29
|
Aggressive variants of prostate cancer – Are we ready to apply specific treatment right now? Cancer Treat Rev 2019; 75:20-26. [DOI: 10.1016/j.ctrv.2019.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/05/2023]
|
30
|
Ulm M, Ramesh AV, McNamara KM, Ponnusamy S, Sasano H, Narayanan R. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr Connect 2019; 8:R10-R26. [PMID: 30640710 PMCID: PMC6365668 DOI: 10.1530/ec-18-0425] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Hormonal cancers affect over 400,000 men and women and contribute collectively to over 100,000 deaths in the United States alone. Thanks to advances in the understanding of these cancers at the molecular level and to the discovery of several disease-modifying therapeutics, the last decade has seen a plateauing or even a decreasing trend in the number of deaths from these cancers. These advanced therapeutics not only effectively slow the growth of hormonal cancers, but also provide an insight on how these cancers become refractory and evolve as an altogether distinct subset. This review summarizes the current therapeutic trends in hormonal cancers, with focus on prostate, breast and ovarian cancers. The review discusses the clinical drugs being used now, promising molecules that are going through various stages of development and makes some predictions on how the therapeutic landscape will shift in the next decade.
Collapse
Affiliation(s)
- Michael Ulm
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| | | | | | - Suriyan Ponnusamy
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Ramesh Narayanan
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| |
Collapse
|
31
|
Kim J, Kim JH, Kang HG, Park SY, Yu JY, Lee EY, Oh SE, Kim YH, Yun T, Park C, Cho SY, You HJ. Integrated molecular characterization of adult soft tissue sarcoma for therapeutic targets. BMC MEDICAL GENETICS 2018; 19:216. [PMID: 30598078 PMCID: PMC6311917 DOI: 10.1186/s12881-018-0722-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Several studies have investigated the molecular drivers and therapeutic targets in adult soft tissue sarcomas. However, such studies are limited by the genomic heterogeneity and rarity of sarcomas, particularly in those with complex and unbalanced karyotypes. Additional biomarkers are needed across sarcoma types to improve therapeutic strategies. To investigate the molecular characteristics of complex karyotype sarcomas (CKSs) for therapeutic targets, we performed genomic profiling. Results The mutational landscape showed that TP53, ATRX, and PTEN genes were highly mutated. CKS samples were categorized into three groups based on copy number variations that were associated with CDK4 and RB1 signatures. Integrated analysis of genomic and transcriptomic data revealed several pathways related to PDGFR, which could be a strategic target for anti-sarcoma therapy. Conclusions This study provides a detailed molecular classification of CKSs and proposes several therapeutic targets. Targeted or combinational therapies for treating CKS should be considered before chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12881-018-0722-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jihyun Kim
- Clinical Genomic Analysis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, 10408, South Korea
| | - June Hyuk Kim
- Orthopaedic Oncology Clinic, Hospital, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Hyun Guy Kang
- Orthopaedic Oncology Clinic, Hospital, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea.,Department of Cancer Biomedical Science, NCC-GCSP, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Seog Yun Park
- Division of Pathology, Hospital, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Jung Yeon Yu
- Translational Research Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Eun Young Lee
- Translational Research Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Sung Eun Oh
- Orthopaedic Oncology Clinic, Hospital, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Young Ho Kim
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Tak Yun
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Charny Park
- Clinical Genomic Analysis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, 10408, South Korea
| | - Soo Young Cho
- Clinical Genomic Analysis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, 10408, South Korea.
| | - Hye Jin You
- Department of Cancer Biomedical Science, NCC-GCSP, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea. .,Translational Research Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea.
| |
Collapse
|
32
|
Schiewer MJ, Mandigo AC, Gordon N, Huang F, Gaur S, de Leeuw R, Zhao SG, Evans J, Han S, Parsons T, Birbe R, McCue P, McNair C, Chand SN, Cendon-Florez Y, Gallagher P, McCann JJ, Poudel Neupane N, Shafi AA, Dylgjeri E, Brand LJ, Visakorpi T, Raj GV, Lallas CD, Trabulsi EJ, Gomella LG, Dicker AP, Kelly WK, Leiby BE, Knudsen B, Feng FY, Knudsen KE. PARP-1 regulates DNA repair factor availability. EMBO Mol Med 2018; 10:e8816. [PMID: 30467127 PMCID: PMC6284389 DOI: 10.15252/emmm.201708816] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Amy C Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicolas Gordon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Renée de Leeuw
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Evans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sumin Han
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore Parsons
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruth Birbe
- Cooper University Health, Camden, NJ, USA
| | - Peter McCue
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Saswati N Chand
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Ylenia Cendon-Florez
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Gallagher
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Jennifer J McCann
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Neermala Poudel Neupane
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Ayesha A Shafi
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucas J Brand
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Costas D Lallas
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edouard J Trabulsi
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard G Gomella
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wm Kevin Kelly
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin E Leiby
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Shiota M, Dejima T, Yamamoto Y, Takeuchi A, Imada K, Kashiwagi E, Inokuchi J, Tatsugami K, Kajioka S, Uchiumi T, Eto M. Collateral resistance to taxanes in enzalutamide-resistant prostate cancer through aberrant androgen receptor and its variants. Cancer Sci 2018; 109:3224-3234. [PMID: 30051622 PMCID: PMC6172053 DOI: 10.1111/cas.13751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/22/2018] [Indexed: 01/09/2023] Open
Abstract
Currently, the optimal sequential use of androgen receptor (AR) axis-targeted agents and taxane chemotherapies remains undetermined. We aimed to elucidate the resistance status between taxanes and enzalutamide, and the functional role of the AR axis. Enzalutamide-resistant 22Rv1 cells showed collateral resistance to taxanes, including docetaxel and cabazitaxel. However, taxane-resistant cells showed no collateral resistance to enzalutamide; taxane-resistant cells expressed comparable protein levels of full-length AR and AR variants. Knockdown of both full-length AR and AR variants rendered cells sensitive to taxanes, whereas knockdown of AR variants sensitized cells to enzalutamide, but not to taxanes. In contrast, overexpression of full-length AR rendered cells resistant to taxanes. Consistently, the prostate-specific antigen response and progression-free survival in docetaxel chemotherapy were worse in cases with prior use of ARAT agents compared with cases without. Collateral resistance to taxanes was evident after obtaining enzalutamide resistance, and aberrant AR signaling might be involved in taxane resistance.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Dejima
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshiaki Yamamoto
- Department of UrologyGraduate School of MedicineYamaguchi UniversityUbeJapan
| | - Ario Takeuchi
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenjiro Imada
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eiji Kashiwagi
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Junichi Inokuchi
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Katsunori Tatsugami
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shunichi Kajioka
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory MedicineGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masatoshi Eto
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
34
|
de Leeuw R, McNair C, Schiewer MJ, Neupane NP, Brand LJ, Augello MA, Li Z, Cheng LC, Yoshida A, Courtney SM, Hazard ES, Hardiman G, Hussain MH, Diehl JA, Drake JM, Kelly WK, Knudsen KE. MAPK Reliance via Acquired CDK4/6 Inhibitor Resistance in Cancer. Clin Cancer Res 2018; 24:4201-4214. [PMID: 29739788 PMCID: PMC6125187 DOI: 10.1158/1078-0432.ccr-18-0410] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Purpose: Loss of cell-cycle control is a hallmark of cancer, which can be targeted with agents, including cyclin-dependent kinase-4/6 (CDK4/6) kinase inhibitors that impinge upon the G1-S cell-cycle checkpoint via maintaining activity of the retinoblastoma tumor suppressor (RB). This class of drugs is under clinical investigation for various solid tumor types and has recently been FDA-approved for treatment of breast cancer. However, development of therapeutic resistance is not uncommon.Experimental Design: In this study, palbociclib (a CDK4/6 inhibitor) resistance was established in models of early stage, RB-positive cancer.Results: This study demonstrates that acquired palbociclib resistance renders cancer cells broadly resistant to CDK4/6 inhibitors. Acquired resistance was associated with aggressive in vitro and in vivo phenotypes, including proliferation, migration, and invasion. Integration of RNA sequencing analysis and phosphoproteomics profiling revealed rewiring of the kinome, with a strong enrichment for enhanced MAPK signaling across all resistance models, which resulted in aggressive in vitro and in vivo phenotypes and prometastatic signaling. However, CDK4/6 inhibitor-resistant models were sensitized to MEK inhibitors, revealing reliance on active MAPK signaling to promote tumor cell growth and invasion.Conclusions: In sum, these studies identify MAPK reliance in acquired CDK4/6 inhibitor resistance that promotes aggressive disease, while nominating MEK inhibition as putative novel therapeutic strategy to treat or prevent CDK4/6 inhibitor resistance in cancer. Clin Cancer Res; 24(17); 4201-14. ©2018 AACR.
Collapse
Affiliation(s)
- Renée de Leeuw
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Lucas J Brand
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael A Augello
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhen Li
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Larry C Cheng
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Akihiro Yoshida
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Sean M Courtney
- Center for Genomic Medicine Bioinformatics, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - E Starr Hazard
- Center for Genomic Medicine Bioinformatics, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Library Science and Informatics, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Hardiman
- Center for Genomic Medicine Bioinformatics, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Maha H Hussain
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Justin M Drake
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Wm Kevin Kelly
- Department of Medical Oncology, Urology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Medical Oncology, Urology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferon University, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Centenera MM, Hickey TE, Jindal S, Ryan NK, Ravindranathan P, Mohammed H, Robinson JL, Schiewer MJ, Ma S, Kapur P, Sutherland PD, Hoffmann CE, Roehrborn CG, Gomella LG, Carroll JS, Birrell SN, Knudsen KE, Raj GV, Butler LM, Tilley WD. A patient-derived explant (PDE) model of hormone-dependent cancer. Mol Oncol 2018; 12:1608-1622. [PMID: 30117261 PMCID: PMC6120230 DOI: 10.1002/1878-0261.12354] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
Breast and prostate cancer research to date has largely been predicated on the use of cell lines in vitro or in vivo. These limitations have led to the development of more clinically relevant models, such as organoids or murine xenografts that utilize patient-derived material; however, issues related to low take rate, long duration of establishment, and the associated costs constrain use of these models. This study demonstrates that ex vivo culture of freshly resected breast and prostate tumor specimens obtained from surgery, termed patient-derived explants (PDEs), provides a high-throughput and cost-effective model that retains the native tissue architecture, microenvironment, cell viability, and key oncogenic drivers. The PDE model provides a unique approach for direct evaluation of drug responses on an individual patient's tumor, which is amenable to analysis using contemporary genomic technologies. The ability to rapidly evaluate drug efficacy in patient-derived material has high potential to facilitate implementation of personalized medicine approaches.
Collapse
Affiliation(s)
- Margaret M. Centenera
- Freemasons Foundation Centre for Men's HealthAdelaide Medical SchoolUniversity of AdelaideSAAustralia
- South Australian Health and Medical Research InstituteAdelaideSAAustralia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research LaboratoriesAdelaide Medical SchoolUniversity of AdelaideSAAustralia
| | - Shalini Jindal
- Dame Roma Mitchell Cancer Research LaboratoriesAdelaide Medical SchoolUniversity of AdelaideSAAustralia
| | - Natalie K. Ryan
- Freemasons Foundation Centre for Men's HealthAdelaide Medical SchoolUniversity of AdelaideSAAustralia
- South Australian Health and Medical Research InstituteAdelaideSAAustralia
| | | | - Hisham Mohammed
- Knight Cancer Early Detection Advanced Research CenterOregon Health and Science UniversityPortlandORUSA
| | - Jessica L. Robinson
- Transcription Factor LaboratoryCancer Research UKCambridge InstituteCambridge UniversityUK
| | | | - Shihong Ma
- Department of UrologyUT Southwestern Medical Center at DallasTXUSA
| | - Payal Kapur
- Department of UrologyUT Southwestern Medical Center at DallasTXUSA
| | | | - Clive E. Hoffmann
- Breast ClinicBurnside War Memorial HospitalToorak GardensSAAustralia
| | | | | | - Jason S. Carroll
- Transcription Factor LaboratoryCancer Research UKCambridge InstituteCambridge UniversityUK
| | | | - Karen E. Knudsen
- Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Ganesh V. Raj
- Department of UrologyUT Southwestern Medical Center at DallasTXUSA
| | - Lisa M. Butler
- Freemasons Foundation Centre for Men's HealthAdelaide Medical SchoolUniversity of AdelaideSAAustralia
- South Australian Health and Medical Research InstituteAdelaideSAAustralia
| | - Wayne D. Tilley
- Freemasons Foundation Centre for Men's HealthAdelaide Medical SchoolUniversity of AdelaideSAAustralia
- Dame Roma Mitchell Cancer Research LaboratoriesAdelaide Medical SchoolUniversity of AdelaideSAAustralia
| |
Collapse
|
36
|
Jarvis C, Nelius T, Martinez-Marin D, Sennoune SR, Filleur S. Cabazitaxel regimens inhibit the growth of prostate cancer cells and enhances the anti-tumor properties of PEDF with various efficacy and toxicity. Prostate 2018; 78:905-914. [PMID: 29749077 DOI: 10.1002/pros.23647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Taxanes chemotherapies represent the major therapeutic alternative for symptomatic mCRPC. While docetaxel is the most commonly prescribed Taxane for mCRPC; cabazitaxel has been approved for patients unresponsive to docetaxel. Still mCRPC remains incurable and patients often experience severe side effects. Recently, the FIRSTANA trial first demonstrated the absence of superiority in overall survival between cabazitaxel and docetaxel in mCRPC patients. Inversely, different toxicity were reported suggesting that cabazitaxel may provide a first line treatment option for some patients urging for a deeper characterization of cabazitaxel mechanisms of action as well as a re-evaluation of cabazitaxel conventional dose and schedule. In this study, our goal was therefore to evaluate the anti-tumor efficacy of various cabazitaxel regimens delivered as monotherapy or in combination with PEDF, a known anti-angiogenic and anti-neoplastic agent. METHODS CRPC cells undergoing Taxane treatment were evaluated for cell proliferation, migration and death, and apoptosis using crystal violet staining, chemotaxis, cell cycle, and TUNEL assays. In vitro data were corroborated in CL1 CRPC xenografts where mice received intermittent or metronomic low-doses cabazitaxel ± PEDF. RESULTS We found that cabazitaxel inhibits the proliferation of CRPC cells with a higher efficacy than docetaxel in vitro. As expected, high-doses of Taxanes blocked the cells in mitosis. Surprisingly, low-doses of cabazitaxel induced more cell death than docetaxel mainly through apoptosis. In vivo, intermittent cabazitaxel lead to disease stabilization when combined with PEDF. Unexpectedly, low-doses of cabazitaxel delayed tumor growth with severe toxicity for some of the doses tested. Other results showed that PEDF and low-doses of cabazitaxel combination inhibited the migration of tumor cell and increased the tumoricidal activity of macrophages toward prostate tumor cells. CONCLUSIONS Our findings highlight the great promise of cabazitaxel drug and predict a possible move of cabazitaxel forward within the therapeutic sequence of prostate cancer.
Collapse
Affiliation(s)
- Courtney Jarvis
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Thomas Nelius
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Dalia Martinez-Marin
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Souad R Sennoune
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Stéphanie Filleur
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| |
Collapse
|
37
|
Lombard AP, Liu L, Cucchiara V, Liu C, Armstrong CM, Zhao R, Yang JC, Lou W, Evans CP, Gao AC. Intra versus Inter Cross-resistance Determines Treatment Sequence between Taxane and AR-Targeting Therapies in Advanced Prostate Cancer. Mol Cancer Ther 2018; 17:2197-2205. [PMID: 29891490 DOI: 10.1158/1535-7163.mct-17-1269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 05/07/2018] [Indexed: 02/05/2023]
Abstract
Current treatments for castration resistant prostate cancer (CRPC) largely fall into two classes: androgen receptor (AR)-targeted therapies such as the next-generation antiandrogen therapies (NGAT), enzalutamide and abiraterone, and taxanes such as docetaxel and cabazitaxel. Despite improvements in outcomes, patients still succumb to the disease due to the development of resistance. Further complicating the situation is lack of a well-defined treatment sequence and potential for cross-resistance between therapies. We have developed several models representing CRPC with acquired therapeutic resistance. Here, we utilized these models to assess putative cross-resistance between treatments. We find that resistance to enzalutamide induces resistance to abiraterone and vice versa, but resistance to neither alters sensitivity to taxanes. Acquired resistance to docetaxel induces cross-resistance to cabazitaxel but not to enzalutamide or abiraterone. Correlating responses with known mechanisms of resistance indicates that AR variants are associated with resistance to NGATs, whereas the membrane efflux protein ABCB1 is associated with taxane resistance. Mechanistic studies show that AR variant-7 (AR-v7) is involved in NGAT resistance but not resistance to taxanes. Our findings suggest the existence of intra cross-resistance within a drug class (i.e., within NGATs or within taxanes), whereas inter cross-resistance between drug classes does not develop. Furthermore, our data suggest that resistance mechanisms differ between drug classes. These results may have clinical implications by showing that treatments of one class can be sequenced with those of another, but caution should be taken when sequencing similar classed drugs. In addition, the development and use of biomarkers indicating resistance will improve patient stratification for treatment. Mol Cancer Ther; 17(10); 2197-205. ©2018 AACR.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urology, University of California, Davis, California
| | - Liangren Liu
- Department of Urology, University of California, Davis, California
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Vito Cucchiara
- Department of Urology, University of California, Davis, California
| | - Chengfei Liu
- Department of Urology, University of California, Davis, California
| | | | - Ruining Zhao
- Department of Urology, University of California, Davis, California
- Department of Urology, General Hospital of NingXia Medical University, Ningxia Huizuzizhiqu, China
| | - Joy C Yang
- Department of Urology, University of California, Davis, California
| | - Wei Lou
- Department of Urology, University of California, Davis, California
| | - Christopher P Evans
- Department of Urology, University of California, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Allen C Gao
- Department of Urology, University of California, Davis, California.
- UC Davis Comprehensive Cancer Center, University of California, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
38
|
Shafi AA, Schiewer MJ, de Leeuw R, Dylgjeri E, McCue PA, Shah N, Gomella LG, Lallas CD, Trabulsi EJ, Centenera MM, Hickey TE, Butler LM, Raj G, Tilley WD, Cukierman E, Knudsen KE. Patient-derived Models Reveal Impact of the Tumor Microenvironment on Therapeutic Response. Eur Urol Oncol 2018; 1:325-337. [PMID: 30467556 DOI: 10.1016/j.euo.2018.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Androgen deprivation therapy is a first-line treatment for disseminated prostate cancer (PCa). However, virtually all tumors become resistant and recur as castration-resistant PCa, which has no durable cure. One major hurdle in the development of more effective therapies is the lack of preclinical models that adequately recapitulate the heterogeneity of PCa, significantly hindering the ability to accurately predict therapeutic response. Objective To leverage the ex vivo culture method termed patient-derived explant (PDE) to examine the impact of PCa therapeutics on a patient-by-patient basis. Design setting and participants Fresh PCa tissue from patients who underwent radical prostatectomy was cultured as PDEs to examine therapeutic response. Outcome measurements and statistical analysis The impact of genomic and chemical perturbations in PDEs was assessed using various parameters (eg, AR levels, Ki67 staining, and desmoplastic indices). Results and limitations PDE maintained the integrity of the native tumor microenvironment (TME), tumor tissue morphology, viability, and endogenous hormone signaling. Tumor cells in this model system exhibited de novo proliferative capacity. Examination of the native TME in the PDE revealed a first-in-field insight into patient-specific desmoplastic stromal indices and predicted responsiveness to AR-directed therapeutics. Conclusions The PDE model allows for a comprehensive evaluation of individual tumors in their native TME to ultimately develop more effective therapeutic regimens tailored to individuals. Discernment of novel stromal markers may provide a basis for applying precision medicine in treating advanced PCa, which would have a transformative effect on patient outcomes. Patient summary In this study, an innovative model system was used to more effectively mimic human disease. The patient-derived explant (PDE) system can be used to predict therapeutic response and identify novel targets in advanced disease. Thus, the PDE will be an asset for the development of novel metrics for the implementation of precision medicine in prostate cancer.The patient-derived explant (PDE) model allows for a comprehensive evaluation of individual human tumors in their native tumor microenvironment (TME). TME analysis revealed first-in-field insight into predicted tumor responsiveness to AR-directed therapeutics through evaluation of patient-specific desmoplastic stromal indices.
Collapse
Affiliation(s)
- Ayesha A Shafi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Renée de Leeuw
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuela Dylgjeri
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter A McCue
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Neelima Shah
- Cancer Biology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Leonard G Gomella
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Costas D Lallas
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edouard J Trabulsi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Margaret M Centenera
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia.,South Australian Health and Medician Research Institute, Adelaide, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia.,South Australian Health and Medician Research Institute, Adelaide, Australia
| | - Ganesh Raj
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Edna Cukierman
- Cancer Biology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Departments of Cancer Biology and Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
39
|
MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer. Sci Rep 2018; 8:7820. [PMID: 29777112 PMCID: PMC5959911 DOI: 10.1038/s41598-018-26050-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/30/2018] [Indexed: 01/13/2023] Open
Abstract
Docetaxel and cabazitaxel are taxane chemotherapy treatments for metastatic castration-resistant prostate cancer (CRPC). However, therapeutic resistance remains a major issue. MicroRNAs are short non-coding RNAs that can silence multiple genes, regulating several signalling pathways simultaneously. Therefore, synthetic microRNAs may have therapeutic potential in CRPC by regulating genes involved in taxane response and minimise compensatory mechanisms that cause taxane resistance. To identify microRNAs that can improve the efficacy of taxanes in CRPC, we performed a genome-wide screen of 1280 microRNAs in the CRPC cell lines PC3 and DU145 in combination with docetaxel or cabazitaxel treatment. Mimics of miR-217 and miR-181b-5p enhanced apoptosis significantly in PC3 cells in the presence of these taxanes. These mimics downregulated at least a thousand different transcripts, which were enriched for genes with cell proliferation and focal adhesion functions. Individual knockdown of a selection of 46 genes representing these transcripts resulted in toxic or taxane sensitisation effects, indicating that these genes may be mediating the effects of the microRNA mimics. A range of these genes are expressed in CRPC metastases, suggesting that these microRNA mimics may be functional in CRPC. With further development, these microRNA mimics may have therapeutic potential to improve taxane response in CRPC patients.
Collapse
|
40
|
Ríos-Colón L, Cajigas-Du Ross CK, Basu A, Elix C, Alicea-Polanco I, Sanchez TW, Radhakrishnan V, Chen CS, Casiano CA. Targeting the stress oncoprotein LEDGF/p75 to sensitize chemoresistant prostate cancer cells to taxanes. Oncotarget 2018; 8:24915-24931. [PMID: 28212536 PMCID: PMC5421899 DOI: 10.18632/oncotarget.15323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/13/2016] [Indexed: 12/05/2022] Open
Abstract
Prostate cancer (PCa) is associated with chronic prostate inflammation resulting in activation of stress and pro-survival pathways that contribute to disease progression and chemoresistance. The stress oncoprotein lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, promotes cellular survival against environmental stressors, including oxidative stress, radiation, and cytotoxic drugs. Furthermore, LEDGF/p75 overexpression in PCa and other cancers has been associated with features of tumor aggressiveness, including resistance to cell death and chemotherapy. We report here that the endogenous levels of LEDGF/p75 are upregulated in metastatic castration resistant prostate cancer (mCRPC) cells selected for resistance to the taxane drug docetaxel (DTX). These cells also showed resistance to the taxanes cabazitaxel (CBZ) and paclitaxel (PTX), but not to the classical inducer of apoptosis TRAIL. Silencing LEDGF/p75 effectively sensitized taxane-resistant PC3 and DU145 cells to DTX and CBZ, as evidenced by a significant decrease in their clonogenic potential. While TRAIL induced apoptotic blebbing, caspase-3 processing, and apoptotic LEDGF/p75 cleavage, which leads to its inactivation, in both taxane-resistant and -sensitive PC3 and DU145 cells, treatment with DTX and CBZ failed to robustly induce these signature apoptotic events. These observations suggested that taxanes induce both caspase-dependent and -independent cell death in mCRPC cells, and that maintaining the structural integrity of LEDGF/p75 is critical for its role in promoting taxane-resistance. Our results further establish LEDGF/p75 as a stress oncoprotein that plays an important role in taxane-resistance in mCRPC cells, possibly by antagonizing drug-induced caspase-independent cell death.
Collapse
Affiliation(s)
- Leslimar Ríos-Colón
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Christina K Cajigas-Du Ross
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Catherine Elix
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Ivana Alicea-Polanco
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Vinodh Radhakrishnan
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Department of Medicine, Division of Hematology/Medical Oncology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.,Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
41
|
McNair C, Xu K, Mandigo AC, Benelli M, Leiby B, Rodrigues D, Lindberg J, Gronberg H, Crespo M, De Laere B, Dirix L, Visakorpi T, Li F, Feng FY, de Bono J, Demichelis F, Rubin MA, Brown M, Knudsen KE. Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 2017; 128:341-358. [PMID: 29202480 DOI: 10.1172/jci93566] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/24/2017] [Indexed: 01/03/2023] Open
Abstract
The tumor suppressor protein retinoblastoma (RB) is mechanistically linked to suppression of transcription factor E2F1-mediated cell cycle regulation. For multiple tumor types, loss of RB function is associated with poor clinical outcome. RB action is abrogated either by direct depletion or through inactivation of RB function; however, the basis for this selectivity is unknown. Here, analysis of tumor samples and cell-free DNA from patients with advanced prostate cancer showed that direct RB loss was the preferred pathway of disruption in human disease. While RB loss was associated with lethal disease, RB-deficient tumors had no proliferative advantage and exhibited downstream effects distinct from cell cycle control. Mechanistically, RB loss led to E2F1 cistrome expansion and different binding specificity, alterations distinct from those observed after functional RB inactivation. Additionally, identification of protumorigenic transcriptional networks specific to RB loss that were validated in clinical samples demonstrated the ability of RB loss to differentially reprogram E2F1 in human cancers. Together, these findings not only identify tumor-suppressive functions of RB that are distinct from cell cycle control, but also demonstrate that the molecular consequence of RB loss is distinct from RB inactivation. Thus, these studies provide insight into how RB loss promotes disease progression, and identify new nodes for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kexin Xu
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Amy C Mandigo
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Matteo Benelli
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Benjamin Leiby
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Rodrigues
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mateus Crespo
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Bram De Laere
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Luc Dirix
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium.,Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Tapio Visakorpi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Fugen Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Urology, and Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Johann de Bono
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Trento, Italy.,Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York, USA
| | - Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, New York, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Climent MÁ, Pérez-Valderrama B, Mellado B, Fernández Parra EM, Fernández Calvo O, Ochoa de Olza M, Muinelo Romay L, Anido U, Domenech M, Hernando Polo S, Arranz Arija JÁ, Caballero C, Juan Fita MJ, Castellano D. Weekly cabazitaxel plus prednisone is effective and less toxic for ‘unfit’ metastatic castration-resistant prostate cancer: Phase II Spanish Oncology Genitourinary Group (SOGUG) trial. Eur J Cancer 2017; 87:30-37. [DOI: 10.1016/j.ejca.2017.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022]
|
43
|
Beltran H, Wyatt AW, Chedgy EC, Donoghue A, Annala M, Warner EW, Beja K, Sigouros M, Mo F, Fazli L, Collins CC, Eastham J, Morris M, Taplin ME, Sboner A, Halabi S, Gleave ME. Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy. Clin Cancer Res 2017; 23:6802-6811. [PMID: 28842510 PMCID: PMC5690882 DOI: 10.1158/1078-0432.ccr-17-1034] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Purpose: The combination of docetaxel chemotherapy and androgen deprivation therapy (ADT) has become a standard treatment for patients with metastatic prostate cancer. The recently accrued phase III CALGB 90203 trial was designed to investigate the clinical effectiveness of this treatment approach earlier in the disease. Specimens from this trial offer a unique opportunity to interrogate the acute molecular response to docetaxel and ADT and identify potential biomarkers.Experimental Design: We evaluated baseline clinical data, needle biopsies, and radical prostatectomy (RP) specimens from 52 (of 788) patients enrolled on CALGB 90203 at one high volume center. Pathology review, tumor and germline-targeted DNA sequencing (n = 72 genes), and expression profiling using NanoString platform (n = 163 genes) were performed to explore changes in critical prostate cancer pathways linked to aggression and resistance.Results: Three of 52 patients had only microfocal residual cancer at prostatectomy. The most common alterations included TMPRSS2-ERG fusion (n = 32), TP53 mutation or deletion (n = 11), PTEN deletion (n = 6), FOXA1 (n = 6), and SPOP (n = 4) mutation, with no significant enrichment in posttreated specimens. We did not observe AR amplification or mutations. The degree of AR signaling suppression varied among treated tumors and there was upregulation of both AR and AR-V7 expression as well as a subset of neuroendocrine and plasticity genes.Conclusions: These data support the feasibility of targeted and temporal genomic and transcriptome profiling of neoadjuvant-treated prostate cancer with limited formalin-fixed paraffin embedded tissue requirement. Characterization of the heterogeneity of treatment response and molecular outliers that arise posttreatment provides new insight into potential early markers of resistance. Clin Cancer Res; 23(22); 6802-11. ©2017 AACR.
Collapse
Affiliation(s)
- Himisha Beltran
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York.
| | - Alexander W Wyatt
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edmund C Chedgy
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Donoghue
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Matti Annala
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Evan W Warner
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Beja
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Sigouros
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Fan Mo
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Eastham
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Morris
- Department of Medical Oncology, Dana-Farber/Partners Cancer Care, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York New York
| | - Andrea Sboner
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
- Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York
| | - Susan Halabi
- Alliance Statistics and Data Center and Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Martin E Gleave
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
44
|
Zhang T, Armstrong AJ. The Who, What, and How of Cabazitaxel Treatment in Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol 2017; 35:3175-3177. [PMID: 28809609 DOI: 10.1200/jco.2017.74.7931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tian Zhang
- Tian Zhang and Andrew J. Armstrong, Duke Cancer Institute, Durham NC
| | | |
Collapse
|
45
|
Effects of Thymoquinone on IL-6 Gene Expression and Some Cellular Signaling Pathways in Prostate Cancer PC3 Cells. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.63753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
Lombard AP, Liu C, Armstrong CM, Cucchiara V, Gu X, Lou W, Evans CP, Gao AC. ABCB1 Mediates Cabazitaxel-Docetaxel Cross-Resistance in Advanced Prostate Cancer. Mol Cancer Ther 2017; 16:2257-2266. [PMID: 28698198 DOI: 10.1158/1535-7163.mct-17-0179] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/23/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Advancements in research have added several new therapies for castration-resistant prostate cancer (CRPC), greatly augmenting our ability to treat patients. However, CRPC remains an incurable disease due to the development of therapeutic resistance and the existence of cross-resistance between available therapies. Understanding the interplay between different treatments will lead to improved sequencing and the creation of combinations that overcome resistance and prolong survival. Whether there exists cross-resistance between docetaxel and the next-generation taxane cabazitaxel is poorly understood. In this study, we use C4-2B and DU145 derived docetaxel-resistant cell lines to test response to cabazitaxel. Our results demonstrate that docetaxel resistance confers cross-resistance to cabazitaxel. We show that increased ABCB1 expression is responsible for cross-resistance to cabazitaxel and that inhibition of ABCB1 function through the small-molecule inhibitor elacridar resensitizes taxane-resistant cells to treatment. In addition, the antiandrogens bicalutamide and enzalutamide, previously demonstrated to be able to resensitize taxane-resistant cells to docetaxel through inhibition of ABCB1 ATPase activity, are also able to resensitize resistant cells to cabazitaxel treatment. Finally, we show that resensitization using an antiandrogen is far more effective in combination with cabazitaxel than docetaxel. Collectively, these results address key concerns in the field, including that of cross-resistance between taxanes and highlighting a mechanism of cabazitaxel resistance involving ABCB1. Furthermore, these preclinical studies suggest the potential in using combinations of antiandrogens with cabazitaxel for increased effect in treating advanced CRPC. Mol Cancer Ther; 16(10); 2257-66. ©2017 AACR.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urology, University of California Davis, Davis, California
| | - Chengfei Liu
- Department of Urology, University of California Davis, Davis, California
| | | | - Vito Cucchiara
- Department of Urology, University of California Davis, Davis, California
| | - Xinwei Gu
- Department of Urology, University of California Davis, Davis, California
| | - Wei Lou
- Department of Urology, University of California Davis, Davis, California
| | - Christopher P Evans
- Department of Urology, University of California Davis, Davis, California.,UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Allen C Gao
- Department of Urology, University of California Davis, Davis, California. .,UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California.,VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
47
|
Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer. Oncotarget 2017; 8:62131-62142. [PMID: 28977932 PMCID: PMC5617492 DOI: 10.18632/oncotarget.19100] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
Androgen receptor (AR) mediates initiation and progression of prostate cancer (PCa); AR-driven transcription is activated by binding of androgens to the ligand-binding domain (LBD) of AR. Androgen ablation therapy offers only a temporary relief of locally advanced and metastatic PCa, and the disease eventually recurs as a lethal castration-resistant PCa (CRPC) as there is no effective treatment for CRPC patients. Thus, it is critical to identify novel targeted and combinatorial regimens for clinical management of CRPC. Reduction of the repressive epigenetic modification H3K27me2/3 correlates with PCa aggressiveness, while corresponding demethylases JMJD3/UTX are overexpressed in PCa. We found that JMJD3/UTX inhibitor GSK-J4 reduced more efficiently proliferation of AR-ΔLBD cells (CRPC model) compared with isogenic AR-WT cells. Inhibition of JMJD3/UTX protects demethylation of H3K27Me2/3, thus reducing levels of H3k27Me1. We observed that the reduction dynamics of H3K27Me1 was faster and achieved at lower inhibitor concentrations in AR-ΔLBD cells, suggesting that inhibition of JMJD3/UTX diminished proliferation of these cells by hindering AR-driven transcription. In addition, we observed synergy between GSK-J4 and Cabazitaxel, a taxane derivative that is approved for CRPC treatment. Collectively, our results point at the H3K27 demethylation pathway as a new potential therapeutic target in CRPC patients.
Collapse
|
48
|
Antonarakis ES, Tagawa ST, Galletti G, Worroll D, Ballman K, Vanhuyse M, Sonpavde G, North S, Albany C, Tsao CK, Stewart J, Zaher A, Szatrowski T, Zhou W, Gjyrezi A, Tasaki S, Portella L, Bai Y, Lannin TB, Suri S, Gruber CN, Pratt ED, Kirby BJ, Eisenberger MA, Nanus DM, Saad F, Giannakakou P. Randomized, Noncomparative, Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa, With Integrated Biomarker Analysis, in Men With Chemotherapy-Naïve, Metastatic, Castration-Resistant Prostate Cancer. J Clin Oncol 2017. [PMID: 28632486 DOI: 10.1200/jco.2017.72.4138] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose The TAXYNERGY trial ( ClinicalTrials.gov identifier: NCT01718353) evaluated clinical benefit from early taxane switch and circulating tumor cell (CTC) biomarkers to interrogate mechanisms of sensitivity or resistance to taxanes in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. Patients and Methods Patients were randomly assigned 2:1 to docetaxel or cabazitaxel. Men who did not achieve ≥ 30% prostate-specific antigen (PSA) decline by cycle 4 (C4) switched taxane. The primary clinical endpoint was confirmed ≥ 50% PSA decline versus historical control (TAX327). The primary biomarker endpoint was analysis of post-treatment CTCs to confirm the hypothesis that clinical response was associated with taxane drug-target engagement, evidenced by decreased percent androgen receptor nuclear localization (%ARNL) and increased microtubule bundling. Results Sixty-three patients were randomly assigned to docetaxel (n = 41) or cabazitaxel (n = 22); 44.4% received prior potent androgen receptor-targeted therapy. Overall, 35 patients (55.6%) had confirmed ≥ 50% PSA responses, exceeding the historical control rate of 45.4% (TAX327). Of 61 treated patients, 33 (54.1%) had ≥ 30% PSA declines by C4 and did not switch taxane, 15 patients (24.6%) who did not achieve ≥ 30% PSA declines by C4 switched taxane, and 13 patients (21.3%) discontinued therapy before or at C4. Of patients switching taxane, 46.7% subsequently achieved ≥ 50% PSA decrease. In 26 CTC-evaluable patients, taxane-induced decrease in %ARNL (cycle 1 day 1 v cycle 1 day 8) was associated with a higher rate of ≥ 50% PSA decrease at C4 ( P = .009). Median composite progression-free survival was 9.1 months (95% CI, 4.9 to 11.7 months); median overall survival was not reached at 14 months. Common grade 3 or 4 adverse events included fatigue (13.1%) and febrile neutropenia (11.5%). Conclusion The early taxane switch strategy was associated with improved PSA response rates versus TAX327. Taxane-induced shifts in %ARNL may serve as an early biomarker of clinical benefit in patients treated with taxanes.
Collapse
Affiliation(s)
- Emmanuel S Antonarakis
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Scott T Tagawa
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Giuseppe Galletti
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Daniel Worroll
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Karla Ballman
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Marie Vanhuyse
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Guru Sonpavde
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Scott North
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Costantine Albany
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Che-Kai Tsao
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - John Stewart
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Atef Zaher
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Ted Szatrowski
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Wei Zhou
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Ada Gjyrezi
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Shinsuke Tasaki
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Luigi Portella
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Yang Bai
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Timothy B Lannin
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Shalu Suri
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Conor N Gruber
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Erica D Pratt
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Brian J Kirby
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Mario A Eisenberger
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - David M Nanus
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Fred Saad
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | - Paraskevi Giannakakou
- Emmanuel S. Antonarakis and Mario A. Eisenberger, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Scott T. Tagawa, Giuseppe Galletti, Daniel Worroll, Karla Ballman, Ada Gjyrezi, Shinsuke Tasaki, Luigi Portella, Yang Bai, Brian J. Kirby, David M. Nanus, and Paraskevi Giannakakou, Weill Cornell Medicine/Meyer Cancer Center; Che-Kai Tsao, Mount Sinai Medical Center, New York; Timothy B. Lannin, Shalu Suri, Conor N. Gruber, Erica D. Pratt, and Brian J. Kirby, Cornell University, Ithaca, NY; Marie Vanhuyse, Medical Oncology, Montréal General Hospital; Fred Saad, University of Montreal Hospital Center, Montreal; John Stewart, Atef Zaher, and Wei Zhou, Sanofi, Laval, Quebec, Canada; Guru Sonpavde, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; Scott North, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Costantine Albany, Indiana University School of Medicine, Indianapolis, IN; and Ted Szatrowski, Sanofi, Bridgewater, NJ
| | | |
Collapse
|
49
|
Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017; 57:16-27. [PMID: 28527407 DOI: 10.1016/j.ctrv.2017.04.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Patients with metastatic castration-resistant prostate cancer (mCPRC) now have an unprecedented number of approved treatment options, including chemotherapies (docetaxel, cabazitaxel), androgen receptor (AR)-targeted therapies (enzalutamide, abiraterone), a radioisotope (radium-223) and a cancer vaccine (sipuleucel-T). However, the optimal treatment sequencing pathway is unknown, and this problem is exacerbated by the issues of primary and acquired resistance. This review focuses on mechanisms of resistance to AR-targeted therapies and taxane-based chemotherapy. Patients treated with abiraterone, enzalutamide, docetaxel or cabazitaxel may present with primary resistance, or eventually acquire resistance when on treatment. Multiple resistance mechanisms to AR-targeted agents have been proposed, including: intratumoral androgen production, amplification, mutation, or expression of AR splice variants, increased steroidogenesis, upregulation of signals downstream of the AR, and development of androgen-independent tumor cells. Known mechanisms of resistance to chemotherapy are distinct, and include: tubulin alterations, increased expression of multidrug resistance genes, TMPRSS2-ERG fusion genes, kinesins, cytokines, and components of other signaling pathways, and epithelial-mesenchymal transition. Utilizing this information, biomarkers of resistance/response have the potential to direct treatment decisions. Expression of the AR splice variant AR-V7 may predict resistance to AR-targeted agents, but available biomarker assays are yet to be prospectively validated in the clinic. Ongoing prospective trials are evaluating the sequential use of different drugs, or combination regimens, and the results of these studies, combined with a deeper understanding of mechanisms of primary and acquired resistance to treatment, have the potential to drive future treatment decisions in mCRPC.
Collapse
|
50
|
Wyatt AW, Azad AA, Volik SV, Annala M, Beja K, McConeghy B, Haegert A, Warner EW, Mo F, Brahmbhatt S, Shukin R, Le Bihan S, Gleave ME, Nykter M, Collins CC, Chi KN. Genomic Alterations in Cell-Free DNA and Enzalutamide Resistance in Castration-Resistant Prostate Cancer. JAMA Oncol 2017; 2:1598-1606. [PMID: 27148695 DOI: 10.1001/jamaoncol.2016.0494] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance The molecular landscape underpinning response to the androgen receptor (AR) antagonist enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC) is undefined. Consequently, there is an urgent need for practical biomarkers to guide therapy selection and elucidate resistance. Although tissue biopsies are impractical to perform routinely in the majority of patients with mCRPC, the analysis of plasma cell-free DNA (cfDNA) has recently emerged as a minimally invasive method to explore tumor characteristics. Objective To reveal genomic characteristics from cfDNA associated with clinical outcomes during enzalutamide treatment. Design, Setting, and Participants Plasma samples were obtained from August 4, 2013, to July 31, 2015, at a single academic institution (British Columbia Cancer Agency) from 65 patients with mCRPC. We collected temporal plasma samples (at baseline, 12 weeks, end of treatment) for circulating cfDNA and performed array comparative genomic hybridization copy number profiling and deep AR gene sequencing. Samples collected at end of treatment were also subjected to targeted sequencing of 19 prostate cancer-associated genes. Exposure Enzalutamide, 160 mg, daily orally. Main Outcomes and Measures Prostate-specific antigen response rate (decline ≥50% from baseline confirmed ≥3 weeks later). Radiographic (as per Prostate Cancer Working Group 2 Criteria) and/or clinical progression (defined as worsening disease-related symptoms necessitating a change in anticancer therapy and/or deterioration in Eastern Cooperative Group performance status ≥2 levels). Results The 65 patients had a median (interquartile range) age of 74 (68-79) years. Prostate-specific antigen response rate to enzalutamide treatment was 38% (25 of 65), while median clinical/radiographic progression-free survival was 3.5 (95% CI, 2.1-5.0) months. Cell-free DNA was isolated from 122 of 125 plasma samples, and targeted sequencing was successful in 119 of 122. AR mutations and/or copy number alterations were robustly detected in 48% (31 of 65) and 60% (18 of 30) of baseline and progression samples, respectively. Detection of AR amplification, heavily mutated AR (≥2 mutations), and RB1 loss were associated with worse progression-free survival, with hazard ratios of 2.92 (95% CI, 1.59-5.37), 3.94 (95% CI, 1.46-10.64), and 4.46 (95% CI, 2.28-8.74), respectively. AR mutations exhibited clonal selection during treatment, including an increase in glucocorticoid-sensitive AR L702H and promiscuous AR T878A in patients with prior abiraterone treatment. At the time of progression, cfDNA sequencing revealed mutations or copy number changes in all patients tested, including clinically actionable alterations in DNA damage repair genes and PI3K pathway genes, and a high frequency (4 of 14) of activating CTNNB1 mutations. Conclusions and Relevance Clinically informative genomic profiling of cfDNA was feasible in nearly all patients with mCRPC and can provide important insights into enzalutamide response and resistance.
Collapse
Affiliation(s)
- Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arun A Azad
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada3School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Stanislav V Volik
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matti Annala
- Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Kevin Beja
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian McConeghy
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne Haegert
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan W Warner
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fan Mo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sonal Brahmbhatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Shukin
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Le Bihan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matti Nykter
- Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Colin C Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada2Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|