1
|
Mokoala KMG, Sathekge MM. Non-FDG hypoxia tracers. Semin Nucl Med 2024:S0001-2998(24)00087-4. [PMID: 39510855 DOI: 10.1053/j.semnuclmed.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Hypoxia plays a critical role in tumor biology, influencing cancer progression, treatment resistance, and patient prognosis. While 18-Fluorine fluoredeoxyglucose ([18F]F-FDG) PET imaging has been the standard for metabolic assessment, its limitations in accurately depicting hypoxic tumor regions necessitate the exploration of non-FDG hypoxia tracers. This review aims to evaluate emerging non-FDG radiotracers, such as nitroimidazole derivatives, copper-based agents, gallium-based agents and other innovative compounds, highlighting their mechanisms of action, biodistribution, and clinical applications. We will discuss the advantages and challenges associated with hypoxia imaging, as well as recent advancements in imaging techniques that enhance the assessment of tumor hypoxia. By synthesizing current research, this review seeks to provide insights into the potential of non-FDG hypoxia tracers for improving cancer diagnosis, treatment planning, and monitoring, ultimately contributing to more personalized and effective cancer care.
Collapse
Affiliation(s)
- Kgomotso M G Mokoala
- University of Pretoria, Pretoria, ZA-GP, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, ZA-GP, South Africa.
| | - Mike M Sathekge
- University of Pretoria, Pretoria, ZA-GP, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, ZA-GP, South Africa
| |
Collapse
|
2
|
O'Connor JPB, Tessyman V, Little RA, Babur M, Forster D, Latif A, Cheung S, Lipowska-Bhalla G, Higgins GS, Asselin MC, Parker GJM, Williams KJ. Combined Oxygen-Enhanced MRI and Perfusion Imaging Detect Hypoxia Modification from Banoxantrone and Atovaquone and Track Their Differential Mechanisms of Action. CANCER RESEARCH COMMUNICATIONS 2024; 4:2565-2574. [PMID: 39240065 PMCID: PMC11443776 DOI: 10.1158/2767-9764.crc-24-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Oxygen-enhanced MRI (OE-MRI) has shown promise for quantifying and spatially mapping tumor hypoxia, either alone or in combination with perfusion imaging. Previous studies have validated the technique in mouse models and in patients with cancer. Here, we report the first evidence that OE-MRI can track change in tumor oxygenation induced by two drugs designed to modify hypoxia. Mechanism of action of banoxantrone and atovaquone were confirmed using in vitro experiments. Next, in vivo OE-MRI studies were performed in Calu6 and U87 xenograft tumor models, alongside fluorine-18-fluoroazomycin arabinoside PET and immunohistochemistry assays of hypoxia. Neither drug altered tumor size. Banoxantrone reduced OE-MRI hypoxic fraction in Calu6 tumors by 52.5% ± 12.0% (P = 0.008) and in U87 tumors by 29.0% ± 15.8% (P = 0.004) after 3 days treatment. Atovaquone reduced OE-MRI hypoxic fraction in Calu6 tumors by 53.4% ± 15.3% (P = 0.002) after 7 days therapy. PET and immunohistochemistry provided independent validation of the MRI findings. Finally, combined OE-MRI and perfusion imaging showed that hypoxic tissue was converted into necrotic tissue when treated by the hypoxia-activated cytotoxic prodrug banoxantrone, whereas hypoxic tissue became normoxic when treated by atovaquone, an inhibitor of mitochondrial complex III of the electron transport chain. OE-MRI detected and quantified hypoxia reduction induced by two hypoxia-modifying therapies and could distinguish between their differential mechanisms of action. These data support clinical translation of OE-MRI biomarkers in clinical trials of hypoxia-modifying agents to identify patients demonstrating biological response and to optimize treatment timing and scheduling. Significance: For the first time, we show that hypoxic fraction measured by oxygen-enhanced MRI (OE-MRI) detected changes in tumor oxygenation induced by two drugs designed specifically to modify hypoxia. Furthermore, when combined with perfusion imaging, OE-MRI hypoxic volume distinguished the two drug mechanisms of action. This imaging technology has potential to facilitate drug development, enrich clinical trial design, and accelerate clinical translation of novel therapeutics into clinical use.
Collapse
Affiliation(s)
- James P B O'Connor
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Victoria Tessyman
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Ross A Little
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Muhammad Babur
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Duncan Forster
- Cancer Research UK Manchester Centre, University of Manchester, Manchester, United Kingdom
| | - Ayşe Latif
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoff J M Parker
- Bioxydyn Ltd., Manchester, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Maingueneau C, Lafargue AE, Guillouet S, Fillesoye F, Cao Pham TT, Jordan B, Perrio C. 18 F-Fluorination of Nitroimidazolyl-Containing Sultone: A Direct Access to a Highly Hydrophilic Radiotracer for High-Performance Positron Emission Tomography Imaging of Hypoxia. JACS AU 2024; 4:3248-3257. [PMID: 39211595 PMCID: PMC11350728 DOI: 10.1021/jacsau.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Hypoxia, characterized by nonphysiological levels of oxygen tension, is a key phenomenon common to the majority of malignant tumors with poor prognosis. Many efforts have been made to develop hypoxia imaging for diagnosis, staging, and monitoring of diseases, as well as for evaluating therapies. PET Imaging using 18F-fluoronitroimidazoles (i.e., [18F]FMISO as a lead radiotracer) has demonstrated potential for clinical investigations, but the poor contrast and prolonged acquisition times (>2.5 h) strongly limit its accuracy and routine developments. Here, we report an original [18F]fluoronitroimidazole bearing a sulfo group ([18F]FLUSONIM) that displays highly hydrophilic properties and rapid clearance, providing high-performance hypoxia specific PET imaging. We describe the synthesis and radiosynthesis of [18F]FLUSONIM, its in vivo preclinical evaluation by PET imaging in healthy rats and a rhabdomyosarcoma rat model, as well as its radiometabolization and histological studies. [18F]FLUSONIM was prepared in a single step by high yielding radiofluorination of a sultone precursor, highlighting the advantages of this new radiolabeling approach not yet explored for radiopharmaceutical development. PET imaging experiments were conducted by systematically comparing [18F]FLUSONIM to [18F]FMISO as a reference. The overall results unequivocally demonstrate that the developed radiopharmaceutical meets the criteria of an ideal candidate for hypoxia PET imaging-rapid and efficient radiosynthesis, total stability, exclusive urinary elimination, high specificity for hypoxic regions, unprecedented tumor/background ratios, short acquisition delays (<60 min), and promising potential for further preclinical and clinical applications.
Collapse
Affiliation(s)
- Clémence Maingueneau
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Anne-Elodie Lafargue
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Stéphane Guillouet
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Fabien Fillesoye
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Thanh T. Cao Pham
- UCLouvain,
Biomedical Magnetic Resonance Unit (REMA), Avenue Mounier 73.08, Woluwe-Saint-Lambert 1200, Belgium
| | - Bénédicte
F. Jordan
- UCLouvain,
Biomedical Magnetic Resonance Unit (REMA), Avenue Mounier 73.08, Woluwe-Saint-Lambert 1200, Belgium
| | - Cécile Perrio
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| |
Collapse
|
4
|
Daimiel Naranjo I, Bhowmik A, Basukala D, Lo Gullo R, Mazaheri Y, Kapetas P, Eskreis-Winkler S, Pinker K, Thakur SB. Assessment of Hypoxia in Breast Cancer: Emerging Functional MR Imaging and Spectroscopy Techniques and Clinical Applications. J Magn Reson Imaging 2024. [PMID: 38703143 DOI: 10.1002/jmri.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Breast cancer is one of the most prevalent forms of cancer affecting women worldwide. Hypoxia, a condition characterized by insufficient oxygen supply in tumor tissues, is closely associated with tumor aggressiveness, resistance to therapy, and poor clinical outcomes. Accurate assessment of tumor hypoxia can guide treatment decisions, predict therapy response, and contribute to the development of targeted therapeutic interventions. Over the years, functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) techniques have emerged as promising noninvasive imaging options for evaluating hypoxia in cancer. Such techniques include blood oxygen level-dependent (BOLD) MRI, oxygen-enhanced MRI (OE) MRI, chemical exchange saturation transfer (CEST) MRI, and proton MRS (1H-MRS). These may help overcome the limitations of the routinely used dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) techniques, contributing to better diagnosis and understanding of the biological features of breast cancer. This review aims to provide a comprehensive overview of the emerging functional MRI and MRS techniques for assessing hypoxia in breast cancer, along with their evolving clinical applications. The integration of these techniques in clinical practice holds promising implications for breast cancer management. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Isaac Daimiel Naranjo
- Department of Radiology, HM Hospitales, Madrid, Spain
- School of Medicine, Universidad CEU San Pablo, Madrid, Spain
| | - Arka Bhowmik
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dibash Basukala
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, New York, USA
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yousef Mazaheri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Panagiotis Kapetas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
5
|
Otowa Y, Kishimoto S, Saida Y, Yamashita K, Yamamoto K, Chandramouli GV, Devasahayam N, Mitchell JB, Krishna MC, Brender JR. Evofosfamide and Gemcitabine Act Synergistically in Pancreatic Cancer Xenografts by Dual Action on Tumor Vasculature and Inhibition of Homologous Recombination DNA Repair. Antioxid Redox Signal 2023; 39:432-444. [PMID: 37051681 PMCID: PMC10623073 DOI: 10.1089/ars.2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
Aims: Pancreatic ductal adenocarcinomas (PDACs) form hypovascular and hypoxic tumors, which are difficult to treat with current chemotherapy regimens. Gemcitabine (GEM) is often used as a first-line treatment for PDACs but has issues with chemoresistance and penetration in the interior of the tumor. Evofosfamide, a hypoxia-activated prodrug, has been shown to be effective in combination with GEM, although the mechanism of each drug on the other has not been established. We used mouse xenografts from two cell lines (MIA Paca-2 and SU.86.86) with different tumor microenvironmental characteristics to probe the action of each drug on the other. Results: GEM treatment enhanced survival times in mice with SU.86.86 leg xenografts (hazard ratio [HR] = 0.35, p = 0.03) but had no effect on MIA Paca-2 mice (HR = 0.91, 95% confidence interval = 0.37-2.25, p = 0.84). Conversely, evofosfamide did not improve survival times in SU.86.86 mice to a statistically significant degree (HR = 0.57, p = 0.22). Electron paramagnetic resonance imaging showed that oxygenation worsened in MIA Paca-2 tumors when treated with GEM, providing a direct mechanism for the activation of the hypoxia-activated prodrug evofosfamide by GEM. Sublethal amounts of either treatment enhanced the toxicity of other treatment in vitro in SU.86.86 but not in MIA Paca-2. By the biomarker γH2AX, combination treatment increased the number of double-stranded DNA lesions in vitro for SU.86.86 but not MIA Paca-2. Innovation and Conclusion: The synergy between GEM and evofosfamide appears to stem from the dual action of GEMs effect on tumor vasculature and inhibition by GEM of the homologous recombination DNA repair process. Antioxid. Redox Signal. 39, 432-444.
Collapse
Affiliation(s)
- Yasunori Otowa
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Kota Yamashita
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Gadisetti V.R. Chandramouli
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Yaromina A, Koi L, Schuitmaker L, van der Wiel AMMA, Dubois LJ, Krause M, Lambin P. Overcoming radioresistance with the hypoxia-activated prodrug CP-506: A pre-clinical study of local tumour control probability. Radiother Oncol 2023; 186:109738. [PMID: 37315579 DOI: 10.1016/j.radonc.2023.109738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia is an established radioresistance factor. A novel hypoxia-activated prodrug CP-506 has been proven to selectively target hypoxic tumour cells and to cause anti-tumour activity. The current study investigates whether CP-506 improves outcome of radiotherapy in vivo. MATERIALS AND METHODS Mice bearing FaDu and UT-SCC-5 xenografts were randomized to receive 5 daily injections of CP-506/vehicle followed by single dose (SD) irradiation. In addition, CP-506 was combined once per week with fractionated irradiation (30 fractions/6 weeks). Animals were followed-up to score all recurrences. In parallel, tumours were harvested to evaluate pimonidazole hypoxia, DNA damage (γH2AX), expression of oxidoreductases. RESULTS CP-506 treatment significantly increased local control rate after SD in FaDu, 62% vs. 27% (p = 0.024). In UT-SCC-5, this effect was not curative and only marginally significant. CP-506 induced significant DNA damage in FaDu (p = 0.009) but not in UT- SCC-5. Hypoxic volume (HV) was significantly smaller (p = 0.038) after pretreatment with CP-506 as compared to vehicle in FaDu but not in less responsive UT-SCC-5. Adding CP-506 to fractionated radiotherapy in FaDu did not result in significant benefit. CONCLUSION The results support the use of CP-506 in combination with radiation in particular using hypofractionation schedules in hypoxic tumours. The magnitude of effect depends on the tumour model, therefore it is expected that applying appropriate patient stratification strategy will further enhance the benefit of CP-506 treatment for cancer patients. A phase I-IIA clinical trial of CP-506 in monotherapy or in combination with carboplatin or a checkpoint inhibitor has been approved (NCT04954599).
Collapse
Affiliation(s)
- Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
| | - Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Lesley Schuitmaker
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | | | - Ludwig Jerome Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center, Heidelberg, National Center for Tumour Diseases (NCT), partner site Dresden, German Cancer Consortium (DKTK), core center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
7
|
Hami R, Apeke S, Redou P, Gaubert L, Dubois LJ, Lambin P, Visvikis D, Boussion N. Predicting the Tumour Response to Radiation by Modelling the Five Rs of Radiotherapy Using PET Images. J Imaging 2023; 9:124. [PMID: 37367472 DOI: 10.3390/jimaging9060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the intensive use of radiotherapy in clinical practice, its effectiveness depends on several factors. Several studies showed that the tumour response to radiation differs from one patient to another. The non-uniform response of the tumour is mainly caused by multiple interactions between the tumour microenvironment and healthy cells. To understand these interactions, five major biologic concepts called the "5 Rs" have emerged. These concepts include reoxygenation, DNA damage repair, cell cycle redistribution, cellular radiosensitivity and cellular repopulation. In this study, we used a multi-scale model, which included the five Rs of radiotherapy, to predict the effects of radiation on tumour growth. In this model, the oxygen level was varied in both time and space. When radiotherapy was given, the sensitivity of cells depending on their location in the cell cycle was taken in account. This model also considered the repair of cells by giving a different probability of survival after radiation for tumour and normal cells. Here, we developed four fractionation protocol schemes. We used simulated and positron emission tomography (PET) imaging with the hypoxia tracer 18F-flortanidazole (18F-HX4) images as input data of our model. In addition, tumour control probability curves were simulated. The result showed the evolution of tumours and normal cells. The increase in the cell number after radiation was seen in both normal and malignant cells, which proves that repopulation was included in this model. The proposed model predicts the tumour response to radiation and forms the basis for a more patient-specific clinical tool where related biological data will be included.
Collapse
Affiliation(s)
- Rihab Hami
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
| | - Sena Apeke
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Pascal Redou
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Laurent Gaubert
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Ludwig J Dubois
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Dimitris Visvikis
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| | - Nicolas Boussion
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| |
Collapse
|
8
|
Zhang Z, Wu B, Shao Y, Chen Y, Wang D. A systematic review verified by bioinformatic analysis based on TCGA reveals week prognosis power of CAIX in renal cancer. PLoS One 2022; 17:e0278556. [PMID: 36542612 PMCID: PMC9770376 DOI: 10.1371/journal.pone.0278556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbonic anhydrase IX (CAIX) protein has been correlated with progression and survival in patients with some tumors such as head and neck carcinoma. But renal cell carcinoma is an exception. The prognostic value of CAIX in RCC used to be associated with patients' survival according to published works. This study aimed to rectify the former conclusion. METHODS This study was registered in PROSPERO (CRD42020160181). A literature search of the PubMed, Embase, Cochrane library and Web of Science databases was performed to retrieve original studies until April of 2022. Twenty-seven studies, including a total of 5462 patients with renal cell carcinoma, were reviewed. Standard meta-analysis methods were used to evaluate the prognostic impact of CAIX expression on patient prognosis. The hazard ratio and its 95% confidence interval were recorded for the relationship between CAIX expression and survival, and the data were analyzed using Stata 11.0. Then we verify the meta-analysis resort to bioinformatics (TCGA). RESULTS Our initial search resulted in 908 articles in total. From PubMed, Embase, Web of Science electronic and Cochrane library databases, 493, 318 and 97 potentially relevant articles were discovered, respectively. We took the analysis between CA9 and disease-specific survival (HR = 1.18, 95% CI: 0.82-1.70, I2 = 79.3%, P<0.05), a subgroup then was performed to enhance the result (HR = 1.63, 95%CI: 1.30-2.03, I2 = 26.3%, P = 0.228); overall survival was also parallel with the former (HR = 1.13, 95%CI: 0.82-1.56, I2 = 79.8%, P<0.05), then a subgroup also be performed (HR = 0.90, 95%CI:0.75-1.07, I2 = 23.1%, P = 0.246) to verify the result; the analysis between CAIX and progression-free survival got the similar result (HR = 1.73, 95%CI:0.97-3.09, I2 = 82.4%, P<0.05), we also verify the result by subgroup analysis (HR = 1.04, 95%CI:0.79-1.36, I2 = 0.0%, P = 0.465); at last the relationship between CAIX and recurrence-free survival got the same result, too (HR = 0.99, 95%CI: 0.95-1.02, I2 = 57.8%, P = 0.050), the subgroup's result was also parallel with the former (HR = 1.01, 95%CI: 0.91-1.03, I2 = 0.00%, P = 0.704). To validate our meta-analysis, we took a bioinformatic analysis based on TCGA database, survival curve between low and high CAIX expression in four endpoints (DSS, OS, PFI, DFI) have corresponding P value (DSS:P = 0.23, OS:P = 0.77, PFI:P = 0.25, DFI:P = 0.78). CONCLUSIONS CAIX expression in patients with RCC is an exception to predict tumor survival. Both low CAIX expression and high expression are not associated with survivals in RCC patients.
Collapse
Affiliation(s)
- Zikuan Zhang
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Bo Wu
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Yuan Shao
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Yongquan Chen
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Dongwen Wang
- Basic Medicine of Shanxi Medical University, Taiyuan, China
- * E-mail:
| |
Collapse
|
9
|
van der Wiel AMA, Schuitmaker L, Cong Y, Theys J, Van Hoeck A, Vens C, Lambin P, Yaromina A, Dubois LJ. Homologous Recombination Deficiency Scar: Mutations and Beyond-Implications for Precision Oncology. Cancers (Basel) 2022; 14:cancers14174157. [PMID: 36077694 PMCID: PMC9454578 DOI: 10.3390/cancers14174157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Homologous recombination deficiency (HRD) is a prevalent in approximately 17% of tumors and is associated with enhanced sensitivity to anticancer therapies inducing double-strand DNA breaks. Accurate detection of HRD would therefore allow improved patient selection and outcome of conventional and targeted anticancer therapies. However, current clinical assessment of HRD mainly relies on determining germline BRCA1/2 mutational status and is insufficient for adequate patient stratification as mechanisms of HRD occurrence extend beyond functional BRCA1/2 loss. HRD, regardless of BRCA1/2 status, is associated with specific forms of genomic and mutational signatures termed HRD scar. Detection of this HRD scar might therefore be a more reliable biomarker for HRD. This review discusses and compares different methods of assessing HRD and HRD scar, their advances into the clinic, and their potential implications for precision oncology.
Collapse
Affiliation(s)
- Alexander M. A. van der Wiel
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lesley Schuitmaker
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ying Cong
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Conchita Vens
- Institute of Cancer Science, University of Glasgow, Glasgow G61 1BD, Scotland, UK
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Yilmaz D, Tuzer M, Unlu MB. Assessing the therapeutic response of tumors to hypoxia-targeted prodrugs with an in silico approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10941-10962. [PMID: 36124576 DOI: 10.3934/mbe.2022511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor hypoxia is commonly recognized as a condition stimulating the progress of the aggressive phenotype of tumor cells. Hypoxic tumor cells inhibit the delivery of cytotoxic drugs, causing hypoxic areas to receive insufficient amounts of anticancer agents, which results in adverse treatment responses. Being such an obstruction to conventional therapies for cancer, hypoxia might be considered a target to facilitate the efficacy of treatments in the resistive environment of tumor sites. In this regard, benefiting from prodrugs that selectively target hypoxic regions remains an effective approach. Additionally, combining hypoxia-activated prodrugs (HAPs) with conventional chemotherapeutic drugs has been used as a promising strategy to eradicate hypoxic cells. However, determining the appropriate sequencing and scheduling of the combination therapy is also of great importance in obtaining favorable results in anticancer therapy. Here, benefiting from a modeling approach, we study the efficacy of HAPs in combination with chemotherapeutic drugs on tumor growth and the treatment response. Different treatment schedules have been investigated to see the importance of determining the optimal schedule in combination therapy. The effectiveness of HAPs in varying hypoxic conditions has also been explored in the study. The model provides qualitative conclusions about the treatment response, as the maximal benefit is obtained from combination therapy with greater cell death for highly hypoxic tumors. It has also been observed that the antitumor effects of HAPs show a hypoxia-dependent profile.
Collapse
Affiliation(s)
- Defne Yilmaz
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mert Tuzer
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648, Japan
| |
Collapse
|
11
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
12
|
Acharya S, Misra R. Hypoxia responsive phytonanotheranostics: A novel paradigm towards fighting cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102549. [PMID: 35301157 DOI: 10.1016/j.nano.2022.102549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia enhances tumor aggressiveness, thereby reducing the efficacy of anticancer therapies. Phytomedicine, which is nowadays considered as the new panacea owing to its dynamic physiological properties, is often plagued by shortcomings. Incorporating these wonder drugs in nanoparticles (phytonanomedicine) for hypoxia therapy is a new prospect in the direction of cancer management. Similarly, the concept of phytonanotheranostics for the precise tumor lesion detection and treatment monitoring in the hypoxic scenario is going on a rampant speed. In the same line, smart nanoparticles which step in for "on-demand" drug release based on internal or external stimuli are also being explored as a new tool for cancer management. However, studies regarding these smart and tailor-made nanotheranostics in the hypoxic tumor microenvironment are very limited. The present review is an attempt to collate these smart stimuli-responsive phytonanotherapeutics in one place for initiating future research in this upcoming field for better cancer treatment.
Collapse
Affiliation(s)
- Sarbari Acharya
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
13
|
Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn Off–On Probes for Hypoxia Imaging. Cancers (Basel) 2022; 14:cancers14112686. [PMID: 35681666 PMCID: PMC9179281 DOI: 10.3390/cancers14112686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Hypoxia-activated prodrugs (HAPs), selectively reduced by specific oxidoreductases under hypoxic conditions, form cytotoxic agents damaging the local cancer cells. On the basis of the reported clinical data concerning several HAPs, one can draw conclusions regarding their preclinical attractiveness and, regrettably, the low efficacy of Phase III clinical trials. Clinical failure may be explained, inter alia, by the lack of screening of patients on the basis of tumor hypoxia and low availability of specific oxidoreductases involved in HAP activation. There is surprisingly little information on the quantification of these enzymes in cells or tissues, compared to the advanced research associated with the use of HAPs. Our knowledge about the expression and activity of these enzymes in various cancer cell lines under hypoxic conditions is inadequate. Only in a few cases were researchers able to demonstrate the differences in the expression or activity of selected oxidoreductases, depending on the oxygen concentration. Additionally, it was cell line dependent. More systematic studies are required. The optical probes, based on turning on the fluorescence emission upon irreversible reduction catalyzed by the overexpressed oxidoreductases, can be helpful in this type of research. Ultimately, such sensors can estimate both the oxidoreductase activity and the degree of oxygenation in one step. To achieve this goal, their response must be correlated with the expression or activity of enzymes potentially involved in turning on their emissions, as determined by biochemical methods. In conclusion, the incorporation of biomarkers to identify hypoxia is a prerequisite for successful HAP therapies. However, it is equally important to assess the level of specific oxidoreductases required for their activation. Abstract Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off–on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.
Collapse
|
14
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Mudassar F, Shen H, Cook KM, Hau E. Improving the synergistic combination of programmed death‐1/programmed death ligand‐1 blockade and radiotherapy by targeting the hypoxic tumour microenvironment. J Med Imaging Radiat Oncol 2022; 66:560-574. [PMID: 35466515 PMCID: PMC9322583 DOI: 10.1111/1754-9485.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
Immune checkpoint inhibition with PD‐1/PD‐L1 blockade is a promising area in the field of anti‐cancer therapy. Although clinical data have revealed success of PD‐1/PD‐L1 blockade as monotherapy or in combination with CTLA‐4 or chemotherapy, the combination with radiotherapy could further boost anti‐tumour immunity and enhance clinical outcomes due to the immunostimulatory effects of radiation. However, the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy can be challenged by the complex nature of the tumour microenvironment (TME), including the presence of tumour hypoxia. Hypoxia is a major barrier to the effectiveness of both radiotherapy and PD‐1/PD‐L1 blockade immunotherapy. Thus, targeting the hypoxic TME is an attractive strategy to enhance the efficacy of the combination. Addition of compounds that directly or indirectly reduce hypoxia, to the combination of PD‐1/PD‐L1 inhibitors and radiotherapy may optimize the success of the combination and improve therapeutic outcomes. In this review, we will discuss the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy and highlight the role of hypoxic TME in impeding the success of both therapies. In addition, we will address the potential approaches for targeting tumour hypoxia and how exploiting these strategies could benefit the combination of PD‐1/PD‐L1 blockade and radiotherapy.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Kristina M Cook
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre Westmead Hospital Sydney New South Wales Australia
- Blacktown Hematology and Cancer Centre Blacktown Hospital Sydney New South Wales Australia
| |
Collapse
|
16
|
Galectin expression detected by 68Ga-galectracer PET as a predictive biomarker of radiotherapy resistance. Eur J Nucl Med Mol Imaging 2022; 49:2746-2760. [PMID: 35106644 DOI: 10.1007/s00259-022-05711-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Hypoxia is a hallmark of solid tumors that is related to radiotherapy resistance. As galectin members, such as galectin-1 and galectin-3, are associated with tumor hypoxia, herein we aimed to investigate whether positron emission tomography (PET) imaging of galectin expression can be employed to effectively pinpoint tumor hypoxia, and to predict radiotherapy resistance. METHODS We synthesized a galectin-targeting radiotracer, designated 68Ga-galectracer, by radiolabeling a thiodigalactoside derivative. The properties of 68Ga-galectracer for PET imaging of tumor hypoxia were characterized in three tumor hypoxia mouse models. Additionally, preliminary PET/CT was performed in two patients with lung cancer to investigate the potential application of 68Ga-galectracer for clinical imaging. RESULTS High-contrast imaging was achieved in the murine acute hypoxia tumor model, A549 natural hypoxia model, and sorafenib treatment-induced hypoxic 4T1 tumor model by PET using 68Ga-galectracer. In fact, 68Ga-galectracer exhibited superior hypoxia detection to that of 18F-misonidazole in the 4T1 tumors. Moreover, tumors with high galectin expression levels, as detected by 68Ga-galectracer PET, exhibited significantly lower responses to subsequent radiotherapy compared to those with low galectin expression levels. In patients with lung cancer, PET imaging using 68Ga-galectracer provided data that were complementary to that of the glucose metabolic PET radiotracer 18F-fluorodeoxyglucose. CONCLUSION 68Ga-galectracer is a promising radiotracer for PET-based imaging of tumor hypoxia in vivo. Thus, hypoxia PET with 68Ga-galectracer could provide a noninvasive approach to proactively predict radiotherapy efficacy. TRIAL REGISTRATION Chictr.org.cn (ChiCTR2000029522). Registered 03 February 2020.
Collapse
|
17
|
Solivio MJ, Stornetta A, Gilissen J, Villalta PW, Deschoemaeker S, Heyerick A, Dubois L, Balbo S. In Vivo Identification of Adducts from the New Hypoxia-Activated Prodrug CP-506 Using DNA Adductomics. Chem Res Toxicol 2022; 35:275-282. [PMID: 35050609 DOI: 10.1021/acs.chemrestox.1c00329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many chemotherapeutic drugs exert their cytotoxicity through the formation of DNA modifications (adducts), which interfere with DNA replication, an overactive process in rapidly dividing cancer cells. Side effects from the therapy are common, however, because these drugs also affect rapidly dividing noncancerous cells. Hypoxia-activated prodrugs (HAPs) have been developed to reduce these side effects as they preferentially activate in hypoxic environments, a hallmark of solid tumors. CP-506 is a newly developed DNA-alkylating HAP designed to exert strong activity under hypoxia. The resulting CP-506-DNA adducts can be used to elucidate the cellular and molecular effects of CP-506 and its selectivity toward hypoxic conditions. In this study, we characterize the profile of adducts resulting from the reaction of CP-506 and its metabolites CP-506H and CP-506M with DNA. A total of 39 putative DNA adducts were detected in vitro using our high-resolution/accurate-mass (HRAM) liquid chromatography tandem mass spectrometry (LC-MS3) adductomics approach. Validation of these results was achieved using a novel strategy involving 15N-labeled DNA. A targeted MS/MS approach was then developed for the detection of the 39 DNA adducts in five cancer cell lines treated with CP-506 under normoxic and hypoxic conditions to evaluate the selectivity toward hypoxia. Out of the 39 DNA adducts initially identified, 15 were detected, with more adducts observed from the two reactive metabolites and in cancer cells treated under hypoxia. The presence of these adducts was then monitored in xenograft mouse models bearing MDA-MB-231, BT-474, or DMS114 tumors treated with CP-506, and a relative quantitation strategy was used to compare the adduct levels across samples. Eight adducts were detected in all xenograft models, and MDA-MB-231 showed the highest adduct levels. These results suggest that CP-506-DNA adducts can be used to better understand the mechanism of action and monitor the efficacy of CP-506 in vivo, as well as highlight a new role of DNA adductomics in supporting the clinical development of DNA-alkylating drugs.
Collapse
Affiliation(s)
- Morwena J Solivio
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | - Ludwig Dubois
- Convert Pharmaceuticals SA, Liège 4000, Belgium.,The D-Lab and The M-Lab, Department of Precision Medicine, GROW─School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht 6229 ER, The Netherlands
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022; 36:144-159. [PMID: 34428981 PMCID: PMC8856011 DOI: 10.1089/ars.2021.0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
van der Wiel AM, Jackson-Patel V, Niemans R, Yaromina A, Liu E, Marcus D, Mowday AM, Lieuwes NG, Biemans R, Lin X, Fu Z, Kumara S, Jochems A, Ashoorzadeh A, Anderson RF, Hicks KO, Bull MR, Abbattista MR, Guise CP, Deschoemaeker S, Thiolloy S, Heyerick A, Solivio MJ, Balbo S, Smaill JB, Theys J, Dubois LJ, Patterson AV, Lambin P. Selectively Targeting Tumor Hypoxia With the Hypoxia-Activated Prodrug CP-506. Mol Cancer Ther 2021; 20:2372-2383. [PMID: 34625504 PMCID: PMC9398139 DOI: 10.1158/1535-7163.mct-21-0406] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Hypoxia-activated prodrugs (HAP) are a promising class of antineoplastic agents that can selectively eliminate hypoxic tumor cells. This study evaluates the hypoxia-selectivity and antitumor activity of CP-506, a DNA alkylating HAP with favorable pharmacologic properties. Stoichiometry of reduction, one-electron affinity, and back-oxidation rate of CP-506 were characterized by fast-reaction radiolytic methods with observed parameters fulfilling requirements for oxygen-sensitive bioactivation. Net reduction, metabolism, and cytotoxicity of CP-506 were maximally inhibited at oxygen concentrations above 1 μmol/L (0.1% O2). CP-506 demonstrated cytotoxicity selectively in hypoxic 2D and 3D cell cultures with normoxic/anoxic IC50 ratios up to 203. Complete resistance to aerobic (two-electron) metabolism by aldo-keto reductase 1C3 was confirmed through gain-of-function studies while retention of hypoxic (one-electron) bioactivation by various diflavin oxidoreductases was also demonstrated. In vivo, the antitumor effects of CP-506 were selective for hypoxic tumor cells and causally related to tumor oxygenation. CP-506 effectively decreased the hypoxic fraction and inhibited growth of a wide range of hypoxic xenografts. A multivariate regression analysis revealed baseline tumor hypoxia and in vitro sensitivity to CP-506 were significantly correlated with treatment response. Our results demonstrate that CP-506 selectively targets hypoxic tumor cells and has broad antitumor activity. Our data indicate that tumor hypoxia and cellular sensitivity to CP-506 are strong determinants of the antitumor effects of CP-506.
Collapse
Affiliation(s)
- Alexander M.A. van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Victoria Jackson-Patel
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Raymon Niemans
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Emily Liu
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Alexandra M. Mowday
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Natasja G. Lieuwes
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Rianne Biemans
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Xiaojing Lin
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Zhe Fu
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sisira Kumara
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Arthur Jochems
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Robert F. Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Kevin O. Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Matthew R. Bull
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Maria R. Abbattista
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher P. Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeff B. Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jan Theys
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ludwig J. Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding Author: Adam V. Patterson, Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medicine and Health Sciences, Auckland 1142, New Zealand. E-mail:
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
20
|
Kishimoto S, Brender JR, Chandramouli GVR, Saida Y, Yamamoto K, Mitchell JB, Krishna MC. Hypoxia-Activated Prodrug Evofosfamide Treatment in Pancreatic Ductal Adenocarcinoma Xenografts Alters the Tumor Redox Status to Potentiate Radiotherapy. Antioxid Redox Signal 2021; 35:904-915. [PMID: 32787454 PMCID: PMC8568781 DOI: 10.1089/ars.2020.8131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Targeting Cellular DNA Damage Responses in Cancer: An In Vitro-Calibrated Agent-Based Model Simulating Monolayer and Spheroid Treatment Responses to ATR-Inhibiting Drugs. Bull Math Biol 2021; 83:103. [PMID: 34459993 PMCID: PMC8405495 DOI: 10.1007/s11538-021-00935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
We combine a systems pharmacology approach with an agent-based modelling approach to simulate LoVo cells subjected to AZD6738, an ATR (ataxia–telangiectasia-mutated and rad3-related kinase) inhibiting anti-cancer drug that can hinder tumour proliferation by targeting cellular DNA damage responses. The agent-based model used in this study is governed by a set of empirically observable rules. By adjusting only the rules when moving between monolayer and multi-cellular tumour spheroid simulations, whilst keeping the fundamental mathematical model and parameters intact, the agent-based model is first parameterised by monolayer in vitro data and is thereafter used to simulate treatment responses in in vitro tumour spheroids subjected to dynamic drug delivery. Spheroid simulations are subsequently compared to in vivo data from xenografts in mice. The spheroid simulations are able to capture the dynamics of in vivo tumour growth and regression for approximately 8 days post-tumour injection. Translating quantitative information between in vitro and in vivo research remains a scientifically and financially challenging step in preclinical drug development processes. However, well-developed in silico tools can be used to facilitate this in vitro to in vivo translation, and in this article, we exemplify how data-driven, agent-based models can be used to bridge the gap between in vitro and in vivo research. We further highlight how agent-based models, that are currently underutilised in pharmaceutical contexts, can be used in preclinical drug development.
Collapse
|
22
|
Anduran E, Dubois LJ, Lambin P, Winum JY. Hypoxia-activated prodrug derivatives of anti-cancer drugs: a patent review 2006 - 2021. Expert Opin Ther Pat 2021; 32:1-12. [PMID: 34241566 DOI: 10.1080/13543776.2021.1954617] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The hypoxic tumor microenvironment represents a persistent obstacle in the treatment of most solid tumors. In the past years, significant efforts have been made to improve the efficacy of anti-cancer drugs. Therefore, hypoxia-activated prodrugs (HAPs) of chemotherapeutic compounds have attracted widespread interest as a therapeutic means to treat hypoxic tumors. AREAS COVERED This updated review paper covers key patents published between 2006 and 2021 on the developments of HAP derivatives of anti-cancer compounds. EXPERT OPINION Despite significant achievements in the development of HAP derivatives of anti-cancer compounds and although many clinical trials have been performed or are ongoing both as monotherapies and as part of combination therapies, there has currently no HAP anti-cancer agent been commercialized into the market. Unsuccessful clinical translation is partly due to the lack of patient stratification based on reliable biomarkers that are predictive of a positive response to hypoxia-targeted therapy.
Collapse
Affiliation(s)
- Emilie Anduran
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.,GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Ludwig J Dubois
- GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Philippe Lambin
- GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
23
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
24
|
Zhang Y, Coleman M, Brekken RA. Perspectives on Hypoxia Signaling in Tumor Stroma. Cancers (Basel) 2021; 13:3070. [PMID: 34202979 PMCID: PMC8234221 DOI: 10.3390/cancers13123070] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a well-known characteristic of solid tumors that contributes to tumor progression and metastasis. Oxygen deprivation due to high demand of proliferating cancer cells and standard of care therapies induce hypoxia. Hypoxia signaling, mainly mediated by the hypoxia-inducible transcription factor (HIF) family, results in tumor cell migration, proliferation, metabolic changes, and resistance to therapy. Additionally, the hypoxic tumor microenvironment impacts multiple cellular and non-cellular compartments in the tumor stroma, including disordered tumor vasculature, homeostasis of ECM. Hypoxia also has a multifaceted and often contradictory influence on immune cell function, which contributes to an immunosuppressive environment. Here, we review the important function of HIF in tumor stromal components and summarize current clinical trials targeting hypoxia. We provide an overview of hypoxia signaling in tumor stroma that might help address some of the challenges associated with hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Department of Surgery, UT Southwestern, Dallas, TX 75390, USA
- Cancer Biology Graduate Program, UT Southwestern, Dallas, TX 75390, USA
| | - Morgan Coleman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Division of Pediatric Hematology and Oncology, UT Southwestern, Dallas, TX 75390, USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Department of Surgery, UT Southwestern, Dallas, TX 75390, USA
- Cancer Biology Graduate Program, UT Southwestern, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Ma M, Liang J, Zhang D, Xu X, Cheng Q, Xiao Z, Shi C, Luo L. Monitoring Treatment Efficacy of Antiangiogenic Therapy Combined With Hypoxia-Activated Prodrugs Online Using Functional MRI. Front Oncol 2021; 11:672047. [PMID: 33996599 PMCID: PMC8120295 DOI: 10.3389/fonc.2021.672047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
Objective This study aimed to investigate the effectiveness of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in monitoring tumor responses to antiangiogenic therapy combined with hypoxia-activated prodrugs (HAPs). Materials and methods Establishing colon cancer xenograft model by subcutaneously injecting the HCT116 cell line into BALB/C nude mice. Twenty-four tumor-bearing mice were randomly divided into four groups and injected with bevacizumab combined with TH-302 (A), bevacizumab (B), TH-302 (C), or saline (D) on days 1, 4, 7, 10 and 13. Functional MRI was performed before and at 3, 6, 9, 12 and 15 days after treatment. Pathologic examinations, including HE staining, HIF-1α and CD31 immunohistochemical staining, and TUNEL and Ki-67 immunofluorescent staining, were performed after the last scan. Results At the end of the study, Group A showed the lowest tumor volume, followed by Groups B, C, and D (F=120.652, P<0.001). For pathologic examinations, Group A showed the lowest percentage of CD31 staining (F=73.211, P<0.001) and Ki-67 staining (F=231.170, P<0.001), as well as the highest percentage of TUNEL staining (F=74.012, P<0.001). Moreover, the D* and f values exhibited positive correlations with CD31 (r=0.868, P<0.001, and r=0.698, P=0.012, respectively). R2* values was positively correlated with HIF-1α (r=0.776, P=0.003). D values were positively correlated with TUNEL (r=0.737, P=0.006) and negatively correlated with Ki-67 (r=0.912, P<0.001). The standard ADC values were positive correlated with TUNEL (r=0.672, P=0.017) and negative correlated with Ki-67 (r=0.873, P<0.001). Conclusion Anti-angiogenic agents combined with HAP can inhibit tumor growth effectively. In addition, IVIM-DWI and BOLD-MRI can be used to monitor the tumor microenvironment, including perfusion, hypoxia, cell apoptosis and proliferation, in a noninvasive manner.
Collapse
Affiliation(s)
- Mengjie Ma
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianye Liang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xi Xu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qingqing Cheng
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Li Y, Zhao L, Li XF. The Hypoxia-Activated Prodrug TH-302: Exploiting Hypoxia in Cancer Therapy. Front Pharmacol 2021; 12:636892. [PMID: 33953675 PMCID: PMC8091515 DOI: 10.3389/fphar.2021.636892] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an important feature of most solid tumors, conferring resistance to radiation and many forms of chemotherapy. However, it is possible to exploit the presence of tumor hypoxia with hypoxia-activated prodrugs (HAPs), agents that in low oxygen conditions undergo bioreduction to yield cytotoxic metabolites. Although many such agents have been developed, we will focus here on TH-302. TH-302 has been extensively studied, and we discuss its mechanism of action, as well as its efficacy in preclinical and clinical studies, with the aim of identifying future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
27
|
Evofosfamide Is Effective against Pediatric Aggressive Glioma Cell Lines in Hypoxic Conditions and Potentiates the Effect of Cytotoxic Chemotherapy and Ionizing Radiations. Cancers (Basel) 2021; 13:cancers13081804. [PMID: 33918823 PMCID: PMC8070185 DOI: 10.3390/cancers13081804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite many therapeutic approaches attempted over the last years, the prognosis of children with high-grade glioma or diffuse intrinsic pontine glioma remains dismal. Hypoxia-activated prodrugs (HAPs) were developed to target hypoxic areas within solid tumors as gliomas. Evofosfamide (Evo) is a 2nd generation HAP exhibiting significant preclinical and clinical activities against adult glioblastoma. We thus investigated the potential of Evo in six pediatric glioma cell lines. Interestingly, we showed that the growth of all cell lines was inhibited by Evo, mainly under hypoxia as expected. We also evidenced a significant synergism between Evo and three drugs widely used in pediatric oncology. Finally, Evo appeared able to potentiate the effect of ionizing radiations. Since these tumors are highly hypoxic and Evo appears effective in hypoxic glioma cells as a single drug and in combination with radio- and chemotherapy, hypoxia-activated prodrugs could represent a promising therapeutic option for children with brain tumors. Abstract Hypoxia is a hallmark of many solid tumors and is associated with resistance to anticancer treatments. Hypoxia-activated prodrugs (HAPs) were developed to target the hypoxic regions of these tumors. Among 2nd generation HAPs, Evofosfamide (Evo, also known as TH-302) exhibits preclinical and clinical activities against adult glioblastoma. In this study, we evaluated its potential in the field of pediatric neuro-oncology. We assessed the efficacy of Evo in vitro as a single drug, or in combination with SN38, doxorubicin, and etoposide, against three pediatric high-grade glioma (pHGG) and three diffuse intrinsic pontine glioma (DIPG) cell lines under hypoxic conditions. We also investigated radio-sensitizing effects using clonogenic assays. Evo inhibited the growth of all cell lines, mainly under hypoxia. We also highlighted a significant synergism between Evo and doxorubicin, SN38, or etoposide. Finally, Evo radio-sensitized the pHGG cell line tested, both with fractionated and single-dose irradiation schedules. Altogether, we report here the first preclinical proof of evidence about Evofosfamide efficiency against hypoxic pHGG and DIPG cells. Since such tumors are highly hypoxic, and Evo potentiates the effect of ionizing radiation and chemotherapy, it appears as a promising therapeutic strategy for children with brain tumors.
Collapse
|
28
|
Jardim-Perassi BV, Mu W, Huang S, Tomaszewski MR, Poleszczuk J, Abdalah MA, Budzevich MM, Dominguez-Viqueira W, Reed DR, Bui MM, Johnson JO, Martinez GV, Gillies RJ. Deep-learning and MR images to target hypoxic habitats with evofosfamide in preclinical models of sarcoma. Theranostics 2021; 11:5313-5329. [PMID: 33859749 PMCID: PMC8039958 DOI: 10.7150/thno.56595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 11/05/2022] Open
Abstract
Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs (HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 under prolonged treatment that was not due to a reduction in hypoxic volumes. Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the emergence of resistance.
Collapse
|
29
|
Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2021; 16:1083-1102. [PMID: 33603370 PMCID: PMC7886779 DOI: 10.2147/ijn.s290438] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy (RT) is a cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Although great success has been achieved on radiotherapy, there is still an intractable challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are chemicals or pharmaceutical agents that can enhance the killing effect on tumor cells by accelerating DNA damage and producing free radicals indirectly. In most cases, radiosensitizers have less effect on normal tissues. In recent years, several strategies have been exploited to develop radiosensitizers that are highly effective and have low toxicity. In this review, we first summarized the applications of radiosensitizers including small molecules, macromolecules, and nanomaterials, especially those that have been used in clinical trials. Second, the development states of radiosensitizers and the possible mechanisms to improve radiosensitizers sensibility are reviewed. Third, the challenges and prospects for clinical translation of radiosensitizers in oncotherapy are presented.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Chengcheng Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
30
|
Bernauer C, Man YKS, Chisholm JC, Lepicard EY, Robinson SP, Shipley JM. Hypoxia and its therapeutic possibilities in paediatric cancers. Br J Cancer 2021; 124:539-551. [PMID: 33106581 PMCID: PMC7851391 DOI: 10.1038/s41416-020-01107-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
In tumours, hypoxia-a condition in which the demand for oxygen is higher than its availability-is well known to be associated with reduced sensitivity to radiotherapy and chemotherapy, and with immunosuppression. The consequences of hypoxia on tumour biology and patient outcomes have therefore led to the investigation of strategies that can alleviate hypoxia in cancer cells, with the aim of sensitising cells to treatments. An alternative therapeutic approach involves the design of prodrugs that are activated by hypoxic cells. Increasing evidence indicates that hypoxia is not just clinically significant in adult cancers but also in paediatric cancers. We evaluate relevant methods to assess the levels and extent of hypoxia in childhood cancers, including novel imaging strategies such as oxygen-enhanced magnetic resonance imaging (MRI). Preclinical and clinical evidence largely supports the use of hypoxia-targeting drugs in children, and we describe the critical need to identify robust predictive biomarkers for the use of such drugs in future paediatric clinical trials. Ultimately, a more personalised approach to treatment that includes targeting hypoxic tumour cells might improve outcomes in subgroups of paediatric cancer patients.
Collapse
Affiliation(s)
- Carolina Bernauer
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Y K Stella Man
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Julia C Chisholm
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Surrey, UK
- Sarcoma Clinical Trials in Children and Young People Team, The Institute of Cancer Research, London, UK
| | - Elise Y Lepicard
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK.
| |
Collapse
|
31
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
32
|
Sanduleanu S, Jochems A, Upadhaya T, Even AJG, Leijenaar RTH, Dankers FJWM, Klaassen R, Woodruff HC, Hatt M, Kaanders HJAM, Hamming-Vrieze O, van Laarhoven HWM, Subramiam RM, Huang SH, O'Sullivan B, Bratman SV, Dubois LJ, Miclea RL, Di Perri D, Geets X, Crispin-Ortuzar M, Apte A, Deasy JO, Oh JH, Lee NY, Humm JL, Schöder H, De Ruysscher D, Hoebers F, Lambin P. Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures. Radiother Oncol 2020; 153:97-105. [PMID: 33137396 DOI: 10.1016/j.radonc.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature. MATERIAL AND METHODS A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features. RESULTS A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80). CONCLUSION The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
Collapse
Affiliation(s)
- Sebastian Sanduleanu
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands.
| | - Arthur Jochems
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Taman Upadhaya
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France; Department of Radiation Oncology, University of California, 1600 Divisadero Street, CA 94115, San Francisco, United States
| | - Aniek J G Even
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Ralph T H Leijenaar
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Frank J W M Dankers
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Remy Klaassen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henry C Woodruff
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Mathieu Hatt
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France
| | - Hans J A M Kaanders
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, Antoni van Leeuwenhoek - Netherlands Cancer institute, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rathan M Subramiam
- Boston University School of Medicine, United States; Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiologic Sciences, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Brian O'Sullivan
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Scott V Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-LAB, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Razvan L Miclea
- Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Dario Di Perri
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Xavier Geets
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Mireia Crispin-Ortuzar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States; Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Philippe Lambin
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| |
Collapse
|
33
|
Krishnamachary B, Mironchik Y, Jacob D, Goggins E, Kakkad S, Ofori F, Dore-Savard L, Bharti SK, Wildes F, Penet MF, Black ME, Bhujwalla ZM. Hypoxia theranostics of a human prostate cancer xenograft and the resulting effects on the tumor microenvironment. Neoplasia 2020; 22:679-688. [PMID: 33142234 PMCID: PMC7586064 DOI: 10.1016/j.neo.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022] Open
Abstract
Developed a hypoxia theranostic imaging strategy to eliminate hypoxic cells. Hypoxic cell elimination resulted in fewer cancer associated fibroblasts (CAFs) Collagen 1 fiber patterns were altered with hypoxic cell elimination. cDNA nanoparticles with HRE driven prodrug enzyme expression can target hypoxia.
Hypoxia is frequently observed in human prostate cancer, and is associated with chemoresistance, radioresistance, metastasis, and castrate-resistance. Our purpose in these studies was to perform hypoxia theranostics by combining in vivo hypoxia imaging and hypoxic cancer cell targeting in a human prostate cancer xenograft. This was achieved by engineering PC3 human prostate cancer cells to express luciferase as well as a prodrug enzyme, yeast cytosine deaminase, under control of hypoxic response elements (HREs). Cancer cells display an adaptive response to hypoxia through the activation of several genes mediated by the binding of hypoxia inducible factors (HIFs) to HRE in the promoter region of target gene that results in their increased transcription. HIFs promote key steps in tumorigenesis, including angiogenesis, metabolism, proliferation, metastasis, and differentiation. HRE-driven luciferase expression allowed us to detect hypoxia in vivo to time the administration of the nontoxic prodrug 5-fluorocytosine that was converted by yeast cytosine deaminase, expressed under HRE regulation, to the chemotherapy agent 5-fluorouracil to target hypoxic cells. Conversion of 5-fluorocytosine to 5-fluorouracil was detected in vivo by 19F magnetic resonance spectroscopy. Morphological and immunohistochemical staining and molecular analyses were performed to characterize tumor microenvironment changes in cancer-associated fibroblasts, cell viability, collagen 1 fiber patterns, and HIF-1α. These studies expand our understanding of the effects of eliminating hypoxic cancer cells on the tumor microenvironment and in reducing stromal cell populations such as cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Desmond Jacob
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eibhlin Goggins
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Francis Ofori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Louis Dore-Savard
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Santosh Kumar Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Margaret E Black
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD; Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
34
|
Relevance of the combination of external beam radiotherapy with the hypoxia-activated prodrug ICF05016 in an experimental model of extraskeletal myxoid chondrosarcoma. Invest New Drugs 2020; 39:295-303. [PMID: 32948981 DOI: 10.1007/s10637-020-01002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Currently, there is no gold standard treatment for Extraskeletal Myxoid Chondrosarcomas (EMC) making wide margin surgical resection the most effective alternative treatment. Nevertheless, in previous preclinical studies our lab demonstrated the potential of the hypoxia-activated prodrug (HAP) ICF05016 on EMC murine model inoculated with the H-EMC-SS human cell line. The aim of this study was to assess, in vivo, the relevance of the combination of this HAP with External Beam Radiotherapy (EBR). Firstly EMC-bearing mice were treated with 6 Gy or 12 Gy of EBR (single 6 MV photon). Then for combination of HAP and EBR, animals received 6 doses of ICF05016 (46.8 μmol/kg, intravenously) at 4-day intervals, with 6 Gy EBR performed 24 h after the 3rd dose of HAP. Animals were monitored throughout the study for clinical observations (tumour growth, side effects) and survival studies were performed. From tumour samples, PCNA, Ki-67 and p21 expressions were used as markers of proliferation and cell cycle arrest. Statistical significances were determined using Kruskall-Wallis and log rank tests. The radiosensitivity of the EMC model was demonstrated at 12 Gy with significant inhibition of tumour growth. Then, the HAP strategy potentiated EBR efficacy at a lower dose (6 Gy) by improving survival without generating side effects. Thus, results of this study showed the potential interest of ICF05016 for the combination with EBR in the management of EMC.
Collapse
|
35
|
Hamis S, Kohandel M, Dubois LJ, Yaromina A, Lambin P, Powathil GG. Combining hypoxia-activated prodrugs and radiotherapy in silico: Impact of treatment scheduling and the intra-tumoural oxygen landscape. PLoS Comput Biol 2020; 16:e1008041. [PMID: 32745136 PMCID: PMC7425994 DOI: 10.1371/journal.pcbi.1008041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/13/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-activated prodrugs (HAPs) present a conceptually elegant approach to not only overcome, but better yet, exploit intra-tumoural hypoxia. Despite being successful in vitro and in vivo, HAPs are yet to achieve successful results in clinical settings. It has been hypothesised that this lack of clinical success can, in part, be explained by the insufficiently stringent clinical screening selection of determining which tumours are suitable for HAP treatments. Taking a mathematical modelling approach, we investigate how tumour properties and HAP-radiation scheduling influence treatment outcomes in simulated tumours. The following key results are demonstrated in silico: (i) HAP and ionising radiation (IR) monotherapies may attack tumours in dissimilar, and complementary, ways. (ii) HAP-IR scheduling may impact treatment efficacy. (iii) HAPs may function as IR treatment intensifiers. (iv) The spatio-temporal intra-tumoural oxygen landscape may impact HAP efficacy. Our in silico framework is based on an on-lattice, hybrid, multiscale cellular automaton spanning three spatial dimensions. The mathematical model for tumour spheroid growth is parameterised by multicellular tumour spheroid (MCTS) data.
Collapse
Affiliation(s)
- Sara Hamis
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland
- Department of Mathematics, College of Science, Swansea University, Swansea, Wales, United Kingdom
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Gibin G. Powathil
- Department of Mathematics, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
36
|
Hamis S, Powathil GG, Chaplain MAJ. Blackboard to Bedside: A Mathematical Modeling Bottom-Up Approach Toward Personalized Cancer Treatments. JCO Clin Cancer Inform 2020; 3:1-11. [PMID: 30742485 DOI: 10.1200/cci.18.00068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancers present with high variability across patients and tumors; thus, cancer care, in terms of disease prevention, detection, and control, can highly benefit from a personalized approach. For a comprehensive personalized oncology practice, this personalization should ideally consider data gathered from various information levels, which range from the macroscale population level down to the microscale tumor level, without omission of the central patient level. Appropriate data mined from each of these levels can significantly contribute in devising personalized treatment plans tailored to the individual patient and tumor. Mathematical models of solid tumors, combined with patient-specific tumor profiles, present a unique opportunity to personalize cancer treatments after detection using a bottom-up approach. Here, we discuss how information harvested from mathematical models and from corresponding in silico experiments can be implemented in preclinical and clinical applications. To conceptually illustrate the power of these models, one such model is presented, and various pertinent tumor and treatment scenarios are demonstrated in silico. The presented model, specifically a multiscale, hybrid cellular automaton, has been fully validated in vitro using multiple cell-line-specific data. We discuss various insights provided by this model and other models like it and their role in designing predictive tools that are both patient, and tumor specific. After refinement and parametrization with appropriate data, such in silico tools have the potential to be used in a clinical setting to aid in treatment protocols and decision making.
Collapse
Affiliation(s)
- Sara Hamis
- Swansea University, Swansea, Wales, United Kingdom
| | | | | |
Collapse
|
37
|
Meaney C, Rhebergen S, Kohandel M. In silico analysis of hypoxia activated prodrugs in combination with anti angiogenic therapy through nanocell delivery. PLoS Comput Biol 2020; 16:e1007926. [PMID: 32463836 PMCID: PMC7282674 DOI: 10.1371/journal.pcbi.1007926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/09/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023] Open
Abstract
Tumour hypoxia is a well-studied phenomenon with implications in cancer progression, treatment resistance, and patient survival. While a clear adverse prognosticator, hypoxia is also a theoretically ideal target for guided drug delivery. This idea has lead to the development of hypoxia-activated prodrugs (HAPs): a class of chemotherapeutics which remain inactive in the body until metabolized within hypoxic regions. In theory, these drugs have the potential for increased tumour selectivity and have therefore been the focus of numerous preclinical studies. Unfortunately, HAPs have had mixed results in clinical trials, necessitating further study in order to harness their therapeutic potential. One possible avenue for the improvement of HAPs is through the selective application of anti angiogenic agents (AAs) to improve drug delivery. Such techniques have been used in combination with other conventional chemotherapeutics to great effect in many studies. A further benefit is theoretically achieved through nanocell administration of the combination, though this idea has not been the subject of any experimental or mathematical studies to date. In the following, a mathematical model is outlined and used to compare the predicted efficacies of separate vs. nanocell administration for AAs and HAPs in tumours. The model is experimentally motivated, both in mathematical form and parameter values. Preliminary results of the model are highlighted throughout which qualitatively agree with existing experimental evidence. The novel prediction of our model is an improvement in the efficacy of AA/HAP combination therapies when administered through nanocells as opposed to separately. While this study specifically models treatment on glioblastoma, similar analyses could be performed for other vascularized tumours, making the results potentially applicable to a range of tumour types. Tumour hypoxia is a well-documented phenomenon with adverse effects for the progression of the cancer. Accordingly, various therapeutic strategies have emerged in recent years to combat its effects. Herein, we present an experimentally-motivated mathematical model used to assess the feasibility of the therapeutic combination of anti angiogenic agents with hypoxia-activated prodrugs. Analysis of the combination therapy shows that delivery through drug nanocells provides the optimal anticancer effect: a novel result which should inspire further examination.
Collapse
Affiliation(s)
- Cameron Meaney
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Sander Rhebergen
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
38
|
Sanduleanu S, van der Wiel AM, Lieverse RI, Marcus D, Ibrahim A, Primakov S, Wu G, Theys J, Yaromina A, Dubois LJ, Lambin P. Hypoxia PET Imaging with [18F]-HX4-A Promising Next-Generation Tracer. Cancers (Basel) 2020; 12:cancers12051322. [PMID: 32455922 PMCID: PMC7280995 DOI: 10.3390/cancers12051322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/04/2023] Open
Abstract
Hypoxia—a common feature of the majority of solid tumors—is a negative prognostic factor, as it is associated with invasion, metastasis and therapy resistance. To date, a variety of methods are available for the assessment of tumor hypoxia, including the use of positron emission tomography (PET). A plethora of hypoxia PET tracers, each with its own strengths and limitations, has been developed and successfully validated, thereby providing useful prognostic or predictive information. The current review focusses on [18F]-HX4, a promising next-generation hypoxia PET tracer. After a brief history of its development, we discuss and compare its characteristics with other hypoxia PET tracers and provide an update on its progression into the clinic. Lastly, we address the potential applications of assessing tumor hypoxia using [18F]-HX4, with a focus on improving patient-tailored therapies.
Collapse
Affiliation(s)
- Sebastian Sanduleanu
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Correspondence:
| | - Alexander M.A. van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Relinde I.Y. Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Abdalla Ibrahim
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre+, 6229 Maastricht, The Netherlands
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, 4030 Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Sergey Primakov
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Guangyao Wu
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Jan Theys
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Ludwig J. Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre+, 6229 Maastricht, The Netherlands
| |
Collapse
|
39
|
Yu W, Qiao F, Su X, Zhang D, Wang H, Jiang J, Xu H. 18F-HX4/18F-FMISO-based micro PET for imaging of tumor hypoxia and radiotherapy-associated changes in mice. Biomed Pharmacother 2019; 119:109454. [DOI: 10.1016/j.biopha.2019.109454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022] Open
|
40
|
Spiegelberg L, van Hoof SJ, Biemans R, Lieuwes NG, Marcus D, Niemans R, Theys J, Yaromina A, Lambin P, Verhaegen F, Dubois LJ. Evofosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol 2019; 141:247-255. [PMID: 31431383 PMCID: PMC6913516 DOI: 10.1016/j.radonc.2019.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Esophageal cancer incidence is increasing and is rarely curable. Hypoxic tumor areas cause resistance to conventional therapies, making them susceptible for treatment with hypoxia-activated prodrugs (HAPs). We investigated in vivo whether the HAP evofosfamide (TH-302) could increase the therapeutic ratio by sensitizing esophageal carcinomas to radiotherapy without increasing normal tissue toxicity. MATERIALS AND METHODS To assess therapeutic efficacy, growth of xenografted esophageal squamous cell (OE21) or adeno (OE19) carcinomas was monitored after treatment with TH-302 (50 mg/kg, QD5) and irradiation (sham or 10 Gy). Short- and long-term toxicity was assessed in a gut mucosa and lung fibrosis irradiation model, sensitive to acute and late radiation injury respectively. Mice were injected with TH-302 (50 mg/kg, QD5) and the abdominal area (sham, 8 or 10 Gy) or the upper part of the right lung (sham, 20 Gy) was irradiated. Damage to normal tissues was assessed 84 hours later by histology and blood plasma citrulline levels (gut) and for up to 1 year by non-invasive micro CT imaging (lung). RESULTS The combination treatment of TH-302 with radiotherapy resulted in significant tumor growth delay in OE19 (P = 0.02) and OE21 (P = 0.03) carcinomas, compared to radiotherapy only. Irradiation resulted in a dose-dependent decrease of crypt survival (P < 0.001), mucosal surface area (P < 0.01) and citrulline levels (P < 0.001) in both tumor and non-tumor bearing animals. On the long-term, irradiation increased CT density in the lung, indicating fibrosis, over time. TH-302 did not influence the radiation-induced short-term and long-term toxicity, confirmed by histological evaluation. CONCLUSION The combination of TH-302 and radiotherapy might be a promising approach to improve the therapeutic index for esophageal cancer patients.
Collapse
Affiliation(s)
- Linda Spiegelberg
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Stefan J van Hoof
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Raymon Niemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Jan Theys
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
41
|
Harms JK, Lee TW, Wang T, Lai A, Kee D, Chaplin JM, McIvor NP, Hunter FW, Macann AMJ, Wilson WR, Jamieson SMF. Impact of Tumour Hypoxia on Evofosfamide Sensitivity in Head and Neck Squamous Cell Carcinoma Patient-Derived Xenograft Models. Cells 2019; 8:E717. [PMID: 31337055 PMCID: PMC6678517 DOI: 10.3390/cells8070717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023] Open
Abstract
Tumour hypoxia is a marker of poor prognosis and failure of chemoradiotherapy in head and neck squamous cell carcinoma (HNSCC), providing a strategy for therapeutic intervention in this setting. To evaluate the utility of the hypoxia-activated prodrug evofosfamide (TH-302) in HNSCC, we established ten early passage patient-derived xenograft (PDX) models of HNSCC that were characterised by their histopathology, hypoxia status, gene expression, and sensitivity to evofosfamide. All PDX models closely resembled the histology of the patient tumours they were derived from. Pimonidazole-positive tumour hypoxic fractions ranged from 1.7-7.9% in line with reported HNSCC clinical values, while mRNA expression of the Toustrup hypoxia gene signature showed close correlations between PDX and matched patient tumours, together suggesting the PDX models may accurately model clinical tumour hypoxia. Evofosfamide as a single agent (50 mg/kg IP, qd × 5 for three weeks) demonstrated antitumour efficacy that was variable across the PDX models, ranging from complete regressions in one p16-positive PDX model to lack of significant activity in the three most resistant models. Despite all PDX models showing evidence of tumour hypoxia, and hypoxia being essential for activation of evofosfamide, the antitumour activity of evofosfamide only weakly correlated with tumour hypoxia status determined by pimonidazole immunohistochemistry. Other candidate evofosfamide sensitivity genes-MKI67, POR, and SLFN11-did not strongly influence evofosfamide sensitivity in univariate analyses, although a weak significant relationship with MKI67 was observed, while SLFN11 expression was lost in PDX tumours. Overall, these data confirm that evofosfamide has antitumour activity in clinically-relevant PDX tumour models of HNSCC and support further clinical evaluation of this drug in HNSCC patients. Further research is required to identify those factors that, alongside hypoxia, can influence sensitivity to evofosfamide and could act as predictive biomarkers to support its use in precision medicine therapy of HNSCC.
Collapse
Affiliation(s)
- Julia K Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Tet-Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tao Wang
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Dennis Kee
- LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - John M Chaplin
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Nick P McIvor
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Andrew M J Macann
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
42
|
Diethelm-Varela B, Ai Y, Liang D, Xue F. Nitrogen Mustards as Anticancer Chemotherapies: Historic Perspective, Current Developments and Future Trends. Curr Top Med Chem 2019; 19:691-712. [PMID: 30931858 DOI: 10.2174/1568026619666190401100519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Nitrogen mustards, a family of DNA alkylating agents, marked the start of cancer pharmacotherapy. While traditionally characterized by their dose-limiting toxic effects, nitrogen mustards have been the subject of intense research efforts, which have led to safer and more effective agents. Even though the alkylating prodrug mustards were first developed decades ago, active research on ways to improve their selectivity and cytotoxic efficacy is a currently active topic of research. This review addresses the historical development of the nitrogen mustards, outlining their mechanism of action, and discussing the improvements on their therapeutic profile made through rational structure modifications. A special emphasis is made on discussing the nitrogen mustard prodrug category, with Cyclophosphamide (CPA) serving as the main highlight. Selected insights on the latest developments on nitrogen mustards are then provided, limiting such information to agents that preserve the original nitrogen mustard mechanism as their primary mode of action. Additionally, future trends that might follow in the quest to optimize these invaluable chemotherapeutic medications are succinctly suggested.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
43
|
Hunter FW, Devaux JBL, Meng F, Hong CR, Khan A, Tsai P, Ketela TW, Sharma I, Kakadia PM, Marastoni S, Shalev Z, Hickey AJR, Print CG, Bohlander SK, Hart CP, Wouters BG, Wilson WR. Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide. Mol Pharmacol 2019; 95:638-651. [PMID: 30979813 DOI: 10.1124/mol.118.115196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/08/2019] [Indexed: 01/29/2023] Open
Abstract
Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whole-genome CRISPR knockout, and reductase-focused short hairpin RNA screens to interrogate modifiers of evofosfamide activation in cancer cell lines. Involvement of mitochondrial electron transport in the activation of evofosfamide and the related nitroaromatic compounds EF5 and FSL-61 was investigated using 143B ρ 0 (ρ zero) cells devoid of mitochondrial DNA and biochemical assays in UT-SCC-74B cells. The potency of evofosfamide in 30 genetically diverse cancer cell lines correlated with the expression of genes involved in mitochondrial electron transfer. A whole-genome CRISPR screen in KBM-7 cells identified the DNA damage-response factors SLX4IP, C10orf90 (FATS), and SLFN11, in addition to the key regulator of mitochondrial function, YME1L1, and several complex I constituents as modifiers of evofosfamide sensitivity. A reductase-focused shRNA screen in UT-SCC-74B cells similarly identified mitochondrial respiratory chain factors. Surprisingly, 143B ρ 0 cells showed enhanced evofosfamide activation and sensitivity but had global transcriptional changes, including increased expression of nonmitochondrial flavoreductases. In UT-SCC-74B cells, evofosfamide oxidized cytochromes a, b, and c and inhibited respiration at complexes I, II, and IV without quenching reactive oxygen species production. Our results suggest that the mitochondrial electron transport chain contributes to evofosfamide activation and that predicting evofosfamide sensitivity in patients by measuring the expression of canonical bioreductive enzymes such as cytochrome P450 oxidoreductase is likely to be futile.
Collapse
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Jules B L Devaux
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Fanying Meng
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Cho Rong Hong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Aziza Khan
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Peter Tsai
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Troy W Ketela
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Indumati Sharma
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Purvi M Kakadia
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Stefano Marastoni
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Zvi Shalev
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Anthony J R Hickey
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Cristin G Print
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Stefan K Bohlander
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Charles P Hart
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019; 10:407. [PMID: 30930892 PMCID: PMC6423917 DOI: 10.3389/fimmu.2019.00407] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
In order to compensate for the increased oxygen consumption in growing tumors, tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in this process or in the microcirculation leads to hypoxic tumor areas with a significantly reduced pO2, which in turn leads to alterations in the biology of cancer cells as well as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes, stem cell features and are more prone to metastasis formation and migration. In addition, intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic tumor cells show a two- to threefold increase in radioresistance. The microenvironment is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally reducing radiosensitivity. During recent years hypoxia has also been identified as a major factor for immune suppression in the tumor microenvironment. Hypoxic tumors show increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of metastatic cancer patients, but is also tested in multiple curative treatment settings. There is a strong rationale for synergistic effects, such as increased T cell infiltration in irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis of patients with hypoxic tumors due to local therapy resistance but also increased rate of distant metastases and the strong immune suppression induced by hypoxia, we hypothesize that the subgroup of patients with hypoxic tumors might be of special interest for combining immune checkpoint inhibition with radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
45
|
Jackson RK, Liew LP, Hay MP. Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs. Clin Oncol (R Coll Radiol) 2019; 31:290-302. [PMID: 30853148 DOI: 10.1016/j.clon.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Abstract
The role of hypoxia in radiation resistance is well established and many approaches to overcome hypoxia in tumours have been explored, with variable success. Two small molecule strategies for targeting hypoxia have dominated preclinical and clinical efforts. One approach has been the use of electron-affinic nitroheterocycles as oxygen-mimetic sensitisers. These agents are best exemplified by the 5-nitroimidazole nimorazole, which has limited use in conjunction with radiotherapy in head and neck squamous cell carcinoma. The second approach seeks to leverage tumour hypoxia as a tumour-specific address for hypoxia-activated prodrugs. These prodrugs are selectively activated by reductases under hypoxia to release cytotoxins, which in some instances may diffuse to kill surrounding oxic tumour tissue. A number of these hypoxia-activated prodrugs have been examined in clinical trial and the merits and shortcomings of recent examples are discussed. There has been an evolution from delivering DNA-interactive cytotoxins to molecularly targeted agents. Efforts to implement these strategies clinically continue today, but success has been elusive. Several issues have been identified that compromised these clinical campaigns. A failure to consider the extravascular transport and the micropharmacokinetic properties of the prodrugs has reduced efficacy. One key element for these 'targeted' approaches is the need to co-develop biomarkers to identify appropriate patients. Hypoxia-activated prodrugs require biomarkers for hypoxia, but also for appropriate activating reductases in tumours, as well as markers of intrinsic sensitivity to the released drug. The field is still evolving and changes in radiation delivery and the impact of immune-oncology will provide fertile ground for future innovation.
Collapse
Affiliation(s)
- R K Jackson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L P Liew
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - M P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
46
|
O'Connor JPB, Robinson SP, Waterton JC. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br J Radiol 2019; 92:20180642. [PMID: 30272998 PMCID: PMC6540855 DOI: 10.1259/bjr.20180642] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is known to be a poor prognostic indicator for nearly all solid tumours and also is predictive of treatment failure for radiotherapy, chemotherapy, surgery and targeted therapies. Imaging has potential to identify, spatially map and quantify tumour hypoxia prior to therapy, as well as track changes in hypoxia on treatment. At present no hypoxia imaging methods are available for routine clinical use. Research has largely focused on positron emission tomography (PET)-based techniques, but there is gathering evidence that MRI techniques may provide a practical and more readily translational alternative. In this review we focus on the potential for imaging hypoxia by measuring changes in longitudinal relaxation [R1; termed oxygen-enhanced MRI or tumour oxygenation level dependent (TOLD) MRI] and effective transverse relaxation [R2*; termed blood oxygenation level dependent (BOLD) MRI], induced by inhalation of either 100% oxygen or the radiosensitising hyperoxic gas carbogen. We explain the scientific principles behind oxygen-enhanced MRI and BOLD and discuss significant studies and their limitations. All imaging biomarkers require rigorous validation in order to translate into clinical use and the steps required to further develop oxygen-enhanced MRI and BOLD MRI into decision-making tools are discussed.
Collapse
Affiliation(s)
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
47
|
Spiegelberg L, Houben R, Niemans R, de Ruysscher D, Yaromina A, Theys J, Guise CP, Smaill JB, Patterson AV, Lambin P, Dubois LJ. Hypoxia-activated prodrugs and (lack of) clinical progress: The need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin Transl Radiat Oncol 2019; 15:62-69. [PMID: 30734002 PMCID: PMC6357685 DOI: 10.1016/j.ctro.2019.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/07/2023] Open
Abstract
Hypoxia-activated prodrugs have yielded promising results up to phase II trials. Implementation of hypoxia-activated prodrugs in the clinic has not been successful. Phase III clinical trials lack patient stratification based on tumor hypoxia status. Stratification will decrease the number of patients needed and increase success. Improvements in hypoxia-activated prodrug design can also increase success rates.
Hypoxia-activated prodrugs (HAPs) are designed to specifically target the hypoxic cells of tumors, which are an important cause of treatment resistance to conventional therapies. Despite promising preclinical and clinical phase I and II results, the most important of which are described in this review, the implementation of hypoxia-activated prodrugs in the clinic has, so far, not been successful. The lack of stratification of patients based on tumor hypoxia status, which can vary widely, is sufficient to account for the failure of phase III trials. To fully exploit the potential of hypoxia-activated prodrugs, hypoxia stratification of patients is needed. Here, we propose a biomarker-stratified enriched Phase III study design in which only biomarker-positive (i.e. hypoxia-positive) patients are randomized between standard treatment and the combination of standard treatment with a hypoxia-activated prodrug. This implies the necessity of a Phase II study in which the biomarker or a combination of biomarkers will be evaluated. The total number of patients needed for both clinical studies will be far lower than in currently used randomize-all designs. In addition, we elaborate on the improvements in HAP design that are feasible to increase the treatment success rates.
Collapse
Affiliation(s)
- Linda Spiegelberg
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Raymon Niemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Theys
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Christopher P Guise
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jeffrey B Smaill
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Adam V Patterson
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
48
|
Göttgens EL, Ostheimer C, Span PN, Bussink J, Hammond EM. HPV, hypoxia and radiation response in head and neck cancer. Br J Radiol 2019; 92:20180047. [PMID: 29493265 PMCID: PMC6435089 DOI: 10.1259/bjr.20180047] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, the incidence of human papilloma virus (HPV) positive head and neck squamous-cell carcinoma (HNSCC) has significantly increased. Infection with high-risk HPV types drives tumourigenesis through expression of the oncoproteins E6 and E7. Currently, the primary treatment of HNSCC consists of radiotherapy, often combined with platinum-based chemotherapeutics. One of the common features of HNSCC is the occurrence of tumour hypoxia, which impairs the efficacy of radiotherapy and is a negative prognostic factor. Therefore, it is important to detect and quantify the severity of hypoxia, as well as develop strategies to specifically target hypoxic tumours. HPV-positive tumours are remarkably radiosensitive compared to HPV-negative tumours and consequently the HPV-positive patients have a better prognosis. This provides an opportunity to elucidate mechanisms of radiation sensitivity, which may reveal targets for improved therapy for HPV-negative head and neck cancers. In this review, we will discuss the differences between HPV-positive and HPV-negative head and neck tumours and methods of hypoxia detection and targeting in these disease types. Particular emphasis will be placed on the mechanisms by which HPV infection impacts radiosensitivity.
Collapse
Affiliation(s)
- Eva-Leonne Göttgens
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Paul N Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Bussink
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ester M Hammond
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
An Intratumor Pharmacokinetic/Pharmacodynamic Model for the Hypoxia-Activated Prodrug Evofosfamide (TH-302): Monotherapy Activity is Not Dependent on a Bystander Effect. Neoplasia 2018; 21:159-171. [PMID: 30591421 PMCID: PMC6314220 DOI: 10.1016/j.neo.2018.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor hypoxia contributes to resistance to anticancer therapies. Hypoxia-activated prodrugs (HAPs) selectively target hypoxic cells and their activity can extend to well-oxygenated areas of tumors via diffusion of active metabolites. This type of bystander effect has been suggested to be responsible for the single agent activity of the clinical-stage HAP evofosfamide (TH-302) but direct evidence is lacking. To dissect the contribution of bystander effects to TH-302 activity, we implemented a Green's function pharmacokinetic (PK) model to simulate the spatial distribution of O2, TH-302 and its cytotoxic metabolites, bromo-isophosphoramide mustard (Br-IPM) and its dichloro derivative isophosphoramide mustard (IPM), in two digitized tumor microvascular networks. The model was parameterized from literature and experimentally, including measurement of diffusion coefficients of TH-302 and its metabolites in multicellular layer cultures. The latter studies demonstrate that Br-IPM and IPM cannot diffuse significantly from the cells in which they are generated, although evidence was obtained for diffusion of the hydroxylamine metabolite of TH-302. The spatially resolved PK model was linked to a pharmacodynamic (PD) model that describes cell killing probability at each point in the tumor microregion as a function of Br-IPM and IPM exposure. The resulting PK/PD model accurately predicted previously reported monotherapy activity of TH-302 in H460 tumors, without invoking a bystander effect, demonstrating that the notable single agent activity of TH-302 in tumors can be accounted for by significant bioreductive activation of TH-302 even in oxic regions, driven by the high plasma concentrations achievable with this well-tolerated prodrug.
Collapse
|
50
|
How to Modulate Tumor Hypoxia for Preclinical In Vivo Imaging Research. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4608186. [PMID: 30420794 PMCID: PMC6211155 DOI: 10.1155/2018/4608186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
Abstract
Tumor hypoxia is related with tumor aggressiveness, chemo- and radiotherapy resistance, and thus a poor clinical outcome. Therefore, over the past decades, every effort has been made to develop strategies to battle the negative prognostic influence of tumor hypoxia. For appropriate patient selection and follow-up, noninvasive imaging biomarkers such as positron emission tomography (PET) radiolabeled ligands are unprecedentedly needed. Importantly, before being able to implement these new therapies and potential biomarkers into the clinical setting, preclinical in vivo validation in adequate animal models is indispensable. In this review, we provide an overview of the different attempts that have been made to create differential hypoxic in vivo cancer models with a particular focus on their applicability in PET imaging studies.
Collapse
|