1
|
Zhang Z, Su M, Jiang P, Wang X, Tong X, Wu G. Unlocking Apoptotic Pathways: Overcoming Tumor Resistance in CAR-T-Cell Therapy. Cancer Med 2024; 13:e70283. [PMID: 39377542 PMCID: PMC11459502 DOI: 10.1002/cam4.70283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapy has transformed cancer treatment, leading to remarkable clinical outcomes. However, resistance continues to be a major obstacle, significantly limiting its efficacy in numerous patients. OBJECTIVES This review critically examines the challenges associated with CAR-T-cell therapy, with a particular focus on the role of apoptotic pathways in overcoming resistance. METHODS We explore various strategies to sensitize tumor cells to CAR-T-cell-mediated apoptosis, including the use of combination therapies with BH3 mimetics, Mcl-1 inhibitors, IAP inhibitors, and HDAC inhibitors. These agents inhibit anti-apoptotic proteins and activate intrinsic mitochondrial pathways, enhancing the susceptibility of tumor cells to apoptosis. Moreover, targeting the extrinsic pathway can increase the expression of death receptors on tumor cells, further promoting their apoptosis. The review also discusses the development of novel CAR constructs that enhance anti-apoptotic protein expression, such as Bcl-2, which may counteract CAR-T cell exhaustion and improve antitumor efficacy. We assess the impact of the tumor microenvironment (TME) on CAR-T cell function and propose dual-targeting CAR-T cells to simultaneously address both myeloid-derived suppressor cells (MDSCs) and tumor cells. Furthermore, we explore the potential of combining agents like PPAR inhibitors to activate the cGAS-STING pathway, thereby improving CAR-T cell infiltration into the tumor. CONCLUSIONS This review highlights that enhancing tumor cell sensitivity to apoptosis and increasing CAR-T cell cytotoxicity through apoptotic pathways could significantly improve therapeutic outcomes. Targeting apoptotic proteins, particularly those involved in the intrinsic mitochondrial pathway, constitutes a novel approach to overcoming resistance. The insights presented herein lay a robust foundation for future research and clinical applications aimed at optimizing CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhanna Zhang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Manqi Su
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Panruo Jiang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiaoxia Wang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiangmin Tong
- Department of Central LaboratorySchool of Medicine, Affiliated Hangzhou First People's Hospital, WestLake UniversityZhejiangHangzhouChina
| | - Gongqiang Wu
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| |
Collapse
|
2
|
Krzykawski K, Kubina R, Wendlocha D, Sarna R, Mielczarek-Palacz A. Multifaceted Evaluation of Inhibitors of Anti-Apoptotic Proteins in Head and Neck Cancer: Insights from In Vitro, In Vivo, and Clinical Studies (Review). Pharmaceuticals (Basel) 2024; 17:1308. [PMID: 39458950 PMCID: PMC11510346 DOI: 10.3390/ph17101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
This paper presents a multifaceted assessment of inhibitors of anti-apoptotic proteins (IAPs) in the context of head and neck squamous cell carcinoma (HNSCC). The article discusses the results of in vitro, in vivo, and clinical studies, highlighting the significance of IAPs in the resistance of cancer cells to apoptosis, which is a key factor hindering effective treatment. The main apoptosis pathways, including the intrinsic and extrinsic pathways, and the role of IAPs in their regulation, are presented. The study's findings suggest that targeting IAPs with novel therapies may offer clinical benefits in the treatment of advanced HNSCC, especially in cases resistant to conventional treatment methods. These conclusions underscore the need for further research to develop more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Krzykawski
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| | - Robert Sarna
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| |
Collapse
|
3
|
Zhao L, Li M, Shen C, Luo Y, Hou X, Qi Y, Huang Z, Li W, Gao L, Wu M, Luo Y. Nano-Assisted Radiotherapy Strategies: New Opportunities for Treatment of Non-Small Cell Lung Cancer. RESEARCH (WASHINGTON, D.C.) 2024; 7:0429. [PMID: 39045421 PMCID: PMC11265788 DOI: 10.34133/research.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Lung cancer is the second most commonly diagnosed cancer and a leading cause of cancer-related death, with non-small cell lung cancer (NSCLC) being the most prevalent type. Over 70% of lung cancer patients require radiotherapy (RT), which operates through direct and indirect mechanisms to treat cancer. However, RT can damage healthy tissues and encounter radiological resistance, making it crucial to enhance its precision to optimize treatment outcomes, minimize side effects, and overcome radioresistance. Integrating nanotechnology into RT presents a promising method to increase its efficacy. This review explores various nano-assisted RT strategies aimed at achieving precision treatment. These include using nanomaterials as radiosensitizers, applying nanotechnology to modify the tumor microenvironment, and employing nano-based radioprotectors and radiation-treated cell products for indirect cancer RT. We also explore recent advancements in nano-assisted RT for NSCLC, such as biomimetic targeting that alters mesenchymal stromal cells, magnetic targeting strategies, and nanosensitization with high-atomic number nanomaterials. Finally, we address the existing challenges and future directions of precision RT using nanotechnology, highlighting its potential clinical applications.
Collapse
Affiliation(s)
- Lihong Zhao
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Mei Li
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Chen Shen
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Yurui Luo
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Xiaoming Hou
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Yu Qi
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Wei Li
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Lanyang Gao
- The Affiliated Hospital ofSouthwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Min Wu
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Yao Luo
- West China Hospital,
Sichuan University, Chengdu 610041, China
- Zigong First People’s Hospital, Zigong 643000, China
| |
Collapse
|
4
|
Xiong Y, Luo J, Hong ZY, Zhu WZ, Hu A, Song BL. Hyperactivation of SREBP induces pannexin-1-dependent lytic cell death. J Lipid Res 2024; 65:100579. [PMID: 38880128 PMCID: PMC11284708 DOI: 10.1016/j.jlr.2024.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Sterol-regulatory element binding proteins (SREBPs) are a conserved transcription factor family governing lipid metabolism. When cellular cholesterol level is low, SREBP2 is transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes proteolytic activation to generate a soluble N-terminal fragment, which drives the expression of lipid biosynthetic genes. Malfunctional SREBP activation is associated with various metabolic abnormalities. In this study, we find that overexpression of the active nuclear form SREBP2 (nSREBP2) causes caspase-dependent lytic cell death in various types of cells. These cells display typical pyroptotic and necrotic signatures, including plasma membrane ballooning and release of cellular contents. However, this phenotype is independent of the gasdermin family proteins or mixed lineage kinase domain-like (MLKL). Transcriptomic analysis identifies that nSREBP2 induces expression of p73, which further activates caspases. Through whole-genome CRISPR-Cas9 screening, we find that Pannexin-1 (PANX1) acts downstream of caspases to promote membrane rupture. Caspase-3 or 7 cleaves PANX1 at the C-terminal tail and increases permeability. Inhibition of the pore-forming activity of PANX1 alleviates lytic cell death. PANX1 can mediate gasdermins and MLKL-independent cell lysis during TNF-induced or chemotherapeutic reagents (doxorubicin or cisplatin)-induced cell death. Together, this study uncovers a noncanonical function of SREBPs as a potentiator of programmed cell death and suggests that PANX1 can directly promote lytic cell death independent of gasdermins and MLKL.
Collapse
Affiliation(s)
- Yanni Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Zi-Yun Hong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Wen-Zhuo Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Sawyer EM, Kraft AS. SMACing down relapsed T-ALL. Blood 2024; 143:2116-2117. [PMID: 38780917 DOI: 10.1182/blood.2024024304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Affiliation(s)
| | - Andrew S Kraft
- Vortex Biotechnology Corporation
- University of Colorado Anschutz Medical Center
| |
Collapse
|
6
|
Sakao K, Hamamoto S, Urakawa D, He Z, Hou DX. Anticancer Activity and Molecular Mechanisms of Acetylated and Methylated Quercetin in Human Breast Cancer Cells. Molecules 2024; 29:2408. [PMID: 38792269 PMCID: PMC11124128 DOI: 10.3390/molecules29102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Quercetin, a flavonoid polyphenol found in many plants, has garnered significant attention due to its potential cancer chemoprevention. Our previous studies have shown that acetyl modification of the hydroxyl group of quercetin altered its antitumor effects in HepG2 cells. However, the antitumor effect in other cancer cells with different gene mutants remains unknown. In this study, we investigated the antitumor effect of quercetin and its methylated derivative 3,3',4',7-O-tetramethylquercetin (4Me-Q) and acetylated derivative 3,3',4',7-O-tetraacetylquercetin (4Ac-Q) on two human breast cancer cells, MCF-7 (wt-p53, caspase-3-ve) and MDA-MB-231 (mt-p53, caspase-3+ve). The results demonstrated that 4Ac-Q exhibited significant cell proliferation inhibition and apoptosis induction in both MCF-7 and MDA-MB-231 cells. Conversely, methylation of quercetin was found to lose the activity. The human apoptosis antibody array revealed that 4Ac-Q might induce apoptosis in MCF-7 cells via a p53-dependent pathway, while in MDA-MB-231 cells, it was induced via a caspase-3-dependent pathway. Furthermore, an evaluation using a superoxide inhibitor, MnTBAP, revealed 4Ac-Q-induced apoptosis in MCF-7 cells in a superoxide-independent manner. These findings provide valuable insights into the potential of acetylated quercetin as a new approach in cancer chemoprevention and offer new avenues for health product development.
Collapse
Affiliation(s)
- Kozue Sakao
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shihomi Hamamoto
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Daigo Urakawa
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - Ziyu He
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - De-Xing Hou
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
Seidelin JB, Jensen S, Hansen M, de Carvalho Bronze MR, Cuchet-Lourenҫo D, Nejentsev S, LaCasse EC, Nielsen OH. IAPs and RIPK1 mediate LPS-induced cytokine production in healthy subjects and Crohn's disease. Clin Exp Immunol 2024; 215:291-301. [PMID: 37583360 PMCID: PMC10876114 DOI: 10.1093/cei/uxad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Innate immune activity fuels intestinal inflammation in Crohn's disease (CD), an inflammatory bowel disease. Identification and targeting of new molecular regulators of the innate activity are warranted to control the disease. Inhibitor of apoptosis proteins (IAPs) regulate both cell survival and inflammatory signaling. We investigated the effects of IAP inhibition by second mitochondria-derived activator of caspases (SMAC) mimetics (SMs) on innate responses and cell death to pathogen-associated molecular patterns in peripheral blood mononuclear cells (PBMCs) and monocytes. IAPs inhibited lipopolysaccharide (LPS)-induced expression of proinflammatory interleukin (IL)-1β, IL-6. Likewise, LPS (but not muramyl dipeptide or Escherichia coli) induced TNF-α was inhibited in CD and control PBMCs. The SM effect was partially reversed by inhibition of receptor-interacting serine/threonine-protein kinase 1 (RIPK1). The effect was mainly cell death independent. Thus, IAP inhibition by SMs leads to reduced production of proinflammatory cytokines and may be considered in the efforts to develop new therapeutic strategies to control CD.
Collapse
Affiliation(s)
- Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark
| | - Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark
| | - Morten Hansen
- Department of Oncology, Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Denmark
| | | | | | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|
9
|
Isfahani MB, Mahnam K, Seyedhosseini-Ghaheh H, Sadeghi HMM, Khanahmad H, Akbari V, Varshosaz J. Computational design of newly engineered DARPins as HER2 receptor inhibitors for breast cancer treatment. Res Pharm Sci 2023; 18:626-637. [PMID: 39005564 PMCID: PMC11246109 DOI: 10.4103/1735-5362.389950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 08/26/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 25% of breast cancer patients; therefore, its inhibition is a therapeutic target in cancer treatment. Experimental approach In this study, two new variants of designed ankyrin repeat proteins (DARPins), designated EG3-1 and EG3-2, were designed to increase their affinity for HER2 receptors. To this end, DARPin G3 was selected as a template, and six-point mutations comprising Q26E, I32V, T49A, L53H, K101R, and G124V were created on its structure. Furthermore, the 3D structures were formed through homology modeling and evaluated using molecular dynamic simulation. Then, both structures were docked to the HER2 receptor using the HADDOCK web tool, followed by 100 ns of molecular dynamics simulation for both DARPins / HER2 complexes. Findings/Results The theoretical result confirmed both structures' stability. Molecular dynamics simulations reveal that the applied mutations on DARPin EG3-2 significantly improve the receptor binding affinity of DARPin. Conclusion and implications The computationally engineered DARPin EG3-2 in this study could provide a hit compound for the design of promising anticancer agents targeting HER2 receptors.
Collapse
Affiliation(s)
- Maryam Beheshti Isfahani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Mahnam
- Faculty of Science, Department of Biology, Shahrekord University, Shahrekord, Iran
| | | | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Ngamphaiboon N, Chairoungdua A, Dajsakdipon T, Jiarpinitnun C. Evolving role of novel radiosensitizers and immune checkpoint inhibitors in (chemo)radiotherapy of locally advanced head and neck squamous cell carcinoma. Oral Oncol 2023; 145:106520. [PMID: 37467684 DOI: 10.1016/j.oraloncology.2023.106520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Chemoradiotherapy (CRT) remains the standard treatment for locally advanced head and neck squamous cell carcinoma (LA-HNSCC), based on numerous randomized controlled trials and meta-analyses demonstrating that CRT improved locoregional control and overall survival. Achieving locoregional control is a crucial outcome for the treatment of HNSCC, as it directly affects patient quality of life and survival. Cisplatin is the recommended standard-of-care radiosensitizing agent for LA-HNSCC patients undergoing CRT, whereas cetuximab-radiotherapy is reserved for cisplatin-ineligible patients. Immune checkpoint inhibitors (ICIs) have shown promise in the treatment of recurrent or metastatic HNSCC. However, the combination of ICIs with standard-of-care radiotherapy or chemoradiotherapy in LA-HNSCC has not demonstrated significant improvement in survivals. Over the past few decades, significant advancements in radiotherapy techniques have allowed for more precise and effective radiation delivery while minimizing toxicity to surrounding normal tissues. These advances have led to improved treatment outcomes and quality of life for patients with LA-HNSCC. Despite these advancements, the development of novel radiosensitizing agents remains an unmet need. This review discusses the mechanism of radiotherapy and its impact on the immune system. We summarize the latest clinical development of novel radiosensitizing agents, such as SMAC mimetics, DDR pathway inhibitors, and CDK4/6 inhibitor. We also elucidate the emerging evidence of combining ICIs with radiotherapy or chemoradiotherapy in curative settings for LA-HNSCC, using both concurrent and sequential approaches. Lastly, we discuss the future direction of systemic therapy in combination with radiotherapy in treatment for LA-HNSCC.
Collapse
Affiliation(s)
- Nuttapong Ngamphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Thanate Dajsakdipon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chuleeporn Jiarpinitnun
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Ng YL, Bricelj A, Jansen JA, Murgai A, Peter K, Donovan KA, Gütschow M, Krönke J, Steinebach C, Sosič I. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. J Med Chem 2023; 66:4703-4733. [PMID: 36996313 PMCID: PMC10108347 DOI: 10.1021/acs.jmedchem.2c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/01/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
Collapse
Affiliation(s)
- Yuen Lam
Dora Ng
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Jacqueline A. Jansen
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Arunima Murgai
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Kirsten Peter
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Katherine A. Donovan
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael Gütschow
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christian Steinebach
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Tavakoli S, Firoozpour L, Davoodi J. The synergistic effect of chimeras consisting of N-terminal smac and modified KLA peptides in inducing apoptosis in breast cancer cell lines. Biochem Biophys Res Commun 2023; 655:138-144. [PMID: 36934589 DOI: 10.1016/j.bbrc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Drug resistance is one of the most important obstacles in effective cancer therapy triggered through various mechanisms. One of these mechanisms is caused by the upregulation of Inhibitor of Apoptosis Proteins (IAPs). IAPs, inhibit apoptosis through direct and/or indirect caspase inhibition, which themselves are antagonized by an endogenous protein called Second Mitochondrial-derived Activator of Caspases, Smac/Diablo, mediated by the presence of a tetrapeptide IAP binding motif at its N-terminus. Accordingly, Smac-based peptides are under intense investigation as anti-cancer drugs and have reached Phase 2 clinical trials, although, Smac based peptides or mimetics alone have not been effective as anti-cancer agents. On the other hand, KLA peptide has shown major toxicity against cancer cells through the induction of apoptosis. Consequently, we designed an anti-cancer chimera by fusing an octa-peptide from the N-terminus of mature Smac protein to a modified proapoptotic KLA peptide (KLAKLCKKLAKLCK) to be called Smac-KLA. This chimera, therefore, possesses both proapoptotic and anti-IAP activities. In addition, we dimerized this chimera via intermolecular disulfide bonds in order to enhance their cellular permeability. Both the Smac-KLA monomeric and dimeric peptides exhibited cytotoxic activity against both MCF-7 and MDA-MB231 breast cancer cell lines at low micromolar concentrations. Importantly, the dimerization of the chimeras enhanced their potency 2-4- fold due to higher cellular uptake.
Collapse
Affiliation(s)
- Somayeh Tavakoli
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran.
| |
Collapse
|
14
|
Nishihara S, Yamaoka T, Ishikawa F, Higuchi K, Hasebe Y, Manabe R, Kishino Y, Kusumoto S, Ando K, Kuroda Y, Ohmori T, Sagara H, Yoshida H, Tsurutani J. Mechanisms of EGFR-TKI-Induced Apoptosis and Strategies Targeting Apoptosis in EGFR-Mutated Non-Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13122183. [PMID: 36553449 PMCID: PMC9778480 DOI: 10.3390/genes13122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Homeostasis is achieved by balancing cell survival and death. In cancer cells, especially those carrying driver mutations, the processes and signals that promote apoptosis are inhibited, facilitating the survival and proliferation of these dysregulated cells. Apoptosis induction is an important mechanism underlying the therapeutic efficacy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) for EGFR-mutated non-small cell lung cancer (NSCLC). However, the mechanisms by which EGFR-TKIs induce apoptosis have not been fully elucidated. A deeper understanding of the apoptotic pathways induced by EGFR-TKIs is essential for the developing novel strategies to overcome resistance to EGFR-TKIs or to enhance the initial efficacy through therapeutic synergistic combinations. Recently, therapeutic strategies targeting apoptosis have been developed for cancer. Here, we review the state of knowledge on EGFR-TKI-induced apoptotic pathways and discuss the therapeutic strategies for enhancing EGFR-TKI efficiency. We highlight the great progress achieved with third-generation EGFR-TKIs. In particular, combination therapies of EGFR-TKIs with anti-vascular endothelial growth factor/receptor inhibitors or chemotherapy have emerged as promising therapeutic strategies for patients with EGFR-mutated NSCLC. Nevertheless, further breakthroughs are needed to yield an appropriate standard care for patients with EGFR-mutated NSCLC, which requires gaining a deeper understanding of cancer cell dynamics in response to EGFR-TKIs.
Collapse
Affiliation(s)
- Shigetoshi Nishihara
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Correspondence: ; Tel.: +81-3-3784-8146
| | | | - Kensuke Higuchi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yuki Hasebe
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yusuke Kuroda
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
15
|
Zhang T, Wang Y, Inuzuka H, Wei W. Necroptosis pathways in tumorigenesis. Semin Cancer Biol 2022; 86:32-40. [PMID: 35908574 PMCID: PMC11010659 DOI: 10.1016/j.semcancer.2022.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023]
Abstract
Necroptosis is a caspase-independent form of programmed cell death executed by the receptor interacting protein kinase 1 (RIPK1)-RIPK3-mixed lineage kinase domain-like protein (MLKL) signaling cascade, deregulation of which can cause various human diseases including cancer. Escape from programmed cell death is a hallmark of cancer, leading to uncontrolled growth and drug resistance. Therefore, it is crucial to further understand whether necroptosis plays a key role in therapeutic resistance. In this review, we summarize the recent findings of the link between necroptosis and cancer, and discuss that targeting necroptosis is a new strategy to overcome apoptosis resistance in tumor therapy.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yingnan Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol 2022; 112:1273-1284. [PMID: 35707952 PMCID: PMC9613504 DOI: 10.1002/jlb.4mr0422-636r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/02/2023] Open
Abstract
Although combination antiretroviral therapy (ART) has led to significant HIV-1 suppression and improvement in immune function, persistent viral reservoirs remain that are refractory to intensified ART. ART poses many challenges such as adherence to drug regimens, the emergence of resistant virus, and cumulative toxicity resulting from long-term therapy. Moreover, latent HIV-1 reservoir cells can be stochastically activated to produce viral particles despite effective ART and contribute to the rapid viral rebound that typically occurs within 2 weeks of ART interruption; thus, lifelong ART is required for continued viral suppression. Several strategies have been proposed to address the HIV-1 reservoir such as reactivation of HIV-1 transcription using latency reactivating agents with a combination of ART, host immune clearance and HIV-1-cytotoxicity to purge the infected cells-a "shock and kill" strategy. However, these approaches do not take into account the multiple transcriptional and translational blocks that contribute to HIV-1 latency or the complex heterogeneity of the HIV-1 reservoir, and clinical trials have thus far failed to produce the desired results. Here, we describe alternative strategies being pursued that are designed to kill selectively HIV-1-infected cells while sparing uninfected cells in the absence of enhanced humoral or adaptive immune responses.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Stephen A. Spector
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA,Division of Infectious DiseasesRady Children's HospitalSan DiegoCaliforniaUSA
| |
Collapse
|
17
|
Zhang Y, Feng Z, Liu J, Li H, Su Q, Zhang J, Huang P, Wang W, Liu J. Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater 2022; 16:359-371. [PMID: 35386314 PMCID: PMC8965723 DOI: 10.1016/j.bioactmat.2021.12.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioresistance reduces the antitumor efficiency of radiotherapy and further restricts its clinical application, which is mainly caused by the aggravation of immunosuppressive tumor microenvironment (ITM). Especially tumor-associated macrophages (TAMs) usually display the tumor-promoting M2 phenotype during high-dose fractional radiotherapy mediating radiotherapy resistance. Herein, the toll like receptor agonist TLR7/8a was conjugated with radiosensitive peptide hydrogel (Smac-TLR7/8 hydrogel) to regulate TAMs repolarization from M2 type into M1 type, thus modulating the ITM and overcoming the radioresistance. The Smac-TLR7/8 hydrogel was fabricated through self-assembly with nanofibrous morphology, porous structure and excellent biocompatibility. Upon γ-ray radiation, Smac-TLR7/8 hydrogel effectively polarized the macrophages into M1 type. Notably, combined with radiotherapy, TAMs repolarization regulated by Smac-TLR7/8 hydrogel could increase tumor necrosis factor secretion, activate antitumor immune response and effectively inhibit tumor growth. Moreover, TAMs repolarization rebuilt the ITM and elicited the immunogenic phenotypes in solid tumors, thus enhanced the PD1-blockade efficacy through increasing tumor infiltrating lymphocytes (TILs) and decreasing Treg cells in two different immune activity tumor mice models. Overall, this study substantiated that recruiting and repolarization of TAMs were critical in eliciting antitumor immune response and overcoming radioresistance, thus improving the efficacy of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Hui Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
- Corresponding author.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
- Corresponding author.
| |
Collapse
|
18
|
García-Gutiérrez L, Fallahi E, Aboud N, Quinn N, Matallanas D. Interaction of LATS1 with SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner. Cell Death Dis 2022; 13:692. [PMID: 35941108 PMCID: PMC9360443 DOI: 10.1038/s41419-022-05147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Metastatic malignant melanoma is the deadliest skin cancer, and it is characterised by its high resistance to apoptosis. The main melanoma driving mutations are part of ERK pathway, with BRAF mutations being the most frequent ones, followed by NRAS, NF1 and MEK mutations. Increasing evidence shows that the MST2/Hippo pathway is also deregulated in melanoma. While mutations are rare, MST2/Hippo pathway core proteins expression levels are often dysregulated in melanoma. The expression of the tumour suppressor RASSF1A, a bona fide activator of the MST2 pathway, is silenced by promoter methylation in over half of melanomas and correlates with poor prognosis. Here, using mass spectrometry-based interaction proteomics we identified the Second Mitochondria-derived Activator of Caspases (SMAC) as a novel LATS1 interactor. We show that RASSF1A-dependent activation of the MST2 pathway promotes LATS1-SMAC interaction and negatively regulates the antiapoptotic signal mediated by the members of the IAP family. Moreover, proteomic experiments identified a common cluster of apoptotic regulators that bind to SMAC and LATS1. Mechanistic analysis shows that the LATS1-SMAC complex promotes XIAP ubiquitination and its subsequent degradation which ultimately results in apoptosis. Importantly, we show that the oncogenic BRAFV600E mutant prevents the proapoptotic signal mediated by the LATS1-SMAC complex while treatment of melanoma cell lines with BRAF inhibitors promotes the formation of this complex, indicating that inhibition of the LATS1-SMAC might be necessary for BRAFV600E-driven melanoma. Finally, we show that LATS1-SMAC interaction is regulated by the SMAC mimetic Birinapant, which requires C-IAP1 inhibition and the degradation of XIAP, suggesting that the MST2 pathway is part of the mechanism of action of Birinapant. Overall, the current work shows that SMAC-dependent apoptosis is regulated by the LATS1 tumour suppressor and supports the idea that LATS1 is a signalling hub that regulates the crosstalk between the MST2 pathway, the apoptotic network and the ERK pathway.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Fallahi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall Quinn
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Yu C, Li Y, Chen G, Wu C, Wang X, Zhang Y. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ Sci B 2022; 23:547-563. [PMID: 35794685 PMCID: PMC9264107 DOI: 10.1631/jzus.b2101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is globally the most common invasive cancer in women and remains one of the leading causes of cancer-related deaths. Surgery, radiotherapy, chemotherapy, immunotherapy, and endocrine therapy are currently the main treatments for this cancer type. However, some breast cancer patients are prone to drug resistance related to chemotherapy or immunotherapy, resulting in limited treatment efficacy. Consequently, traditional Chinese medicinal materials (TCMMs) as natural products have become an attractive source of novel drugs. In this review, we summarized the current knowledge on the active components of animal-derived TCMMs, including Ophiocordycepssinensis-derived cordycepin, the aqueous and ethanolic extracts of O.sinensis, norcantharidin (NCTD), Chansu, bee venom, deer antlers, Ostreagigas, and scorpion venom, with reference to marked anti-breast cancer effects due to regulating cell cycle arrest, proliferation, apoptosis, metastasis, and drug resistance. In future studies, the underlying mechanisms for the antitumor effects of these components need to be further investigated by utilizing multi-omics technologies. Furthermore, large-scale clinical trials are necessary to validate the efficacy of bioactive constituents alone or in combination with chemotherapeutic drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiuping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yingwen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
20
|
Jang JY, Im E, Choi YH, Kim ND. Mechanism of Bile Acid-Induced Programmed Cell Death and Drug Discovery against Cancer: A Review. Int J Mol Sci 2022; 23:7184. [PMID: 35806184 PMCID: PMC9266679 DOI: 10.3390/ijms23137184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bile acids are major signaling molecules that play a significant role as emulsifiers in the digestion and absorption of dietary lipids. Bile acids are amphiphilic molecules produced by the reaction of enzymes with cholesterol as a substrate, and they are the primary metabolites of cholesterol in the body. Bile acids were initially considered as tumor promoters, but many studies have deemed them to be tumor suppressors. The tumor-suppressive effect of bile acids is associated with programmed cell death. Moreover, based on this fact, several synthetic bile acid derivatives have also been used to induce programmed cell death in several types of human cancers. This review comprehensively summarizes the literature related to bile acid-induced programmed cell death, such as apoptosis, autophagy, and necroptosis, and the status of drug development using synthetic bile acid derivatives against human cancers. We hope that this review will provide a reference for the future research and development of drugs against cancer.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| |
Collapse
|
21
|
Controlling Cancer Cell Death Types to Optimize Anti-Tumor Immunity. Biomedicines 2022; 10:biomedicines10050974. [PMID: 35625711 PMCID: PMC9138898 DOI: 10.3390/biomedicines10050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Over several decades, cell biology research has characterized distinct forms of regulated cell death, identified master regulators such as nuclear factor kappa B (NFκB), and contributed to translating these findings in order to improve anti-cancer therapies. In the era of immunotherapy, however, the field warrants a new appraisal-the targeted induction of immunogenic cell death may offer personalized strategies to optimize anti-tumor immunity. Once again, the spotlight is on NFκB, which is not only a master regulator of cancer cell death, survival, and inflammation, but also of adaptive anti-tumor immune responses that are triggered by dying tumor cells.
Collapse
|
22
|
Capparelli C, Purwin TJ, Glasheen M, Caksa S, Tiago M, Wilski N, Pomante D, Rosenbaum S, Nguyen MQ, Cai W, Franco-Barraza J, Zheng R, Kumar G, Chervoneva I, Shimada A, Rebecca VW, Snook AE, Hookim K, Xu X, Cukierman E, Herlyn M, Aplin AE. Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat Commun 2022; 13:1381. [PMID: 35296667 PMCID: PMC8927161 DOI: 10.1038/s41467-022-28801-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.
Collapse
Affiliation(s)
- Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Timothy J. Purwin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - McKenna Glasheen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Signe Caksa
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Manoela Tiago
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Nicole Wilski
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Danielle Pomante
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Sheera Rosenbaum
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Mai Q. Nguyen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Weijia Cai
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Janusz Franco-Barraza
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Richard Zheng
- grid.265008.90000 0001 2166 5843Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Gaurav Kumar
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Inna Chervoneva
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Ayako Shimada
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Vito W. Rebecca
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA ,grid.21107.350000 0001 2171 9311Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Adam E. Snook
- grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Kim Hookim
- grid.265008.90000 0001 2166 5843Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Xiaowei Xu
- grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Edna Cukierman
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Andrew E. Aplin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
23
|
Cossu F, Camelliti S, Lecis D, Sorrentino L, Majorini MT, Milani M, Mastrangelo E. Structure-based identification of a new IAP-targeting compound that induces cancer cell death inducing NF-κB pathway. Comput Struct Biotechnol J 2021; 19:6366-6374. [PMID: 34938412 PMCID: PMC8649670 DOI: 10.1016/j.csbj.2021.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Virtual docking vs type I BIRs of IAPs identified FC2 as a modulator of NF-kB. FC2 is active as a single agent with no toxicity in normal cells. The cytotoxic activity of FC2 is enhanced by TNF and by the Smac-mimetic SM83. FC2 stabilizes XIAP/TAB1 interaction, prolonging the activation of NF-κB.
Inhibitors of apoptosis proteins (IAPs) are validated onco-targets, as their overexpression correlates with cancer onset, progression, diffusion and chemoresistance. IAPs regulate cell death survival pathways, inflammation, and immunity. Targeting IAPs, by impairing their protein–protein interaction surfaces, can affect events occurring at different stages of cancer development. To this purpose, we employed a rational virtual screening approach to identify compounds predicted to interfere with the assembly of pro-survival macromolecular complexes. One of the candidates, FC2, was shown to bind in vitro the BIR1 domains of both XIAP and cIAP2. Moreover, we demonstrated that FC2 can induce cancer cell death as a single agent and, more potently, in combination with the Smac-mimetic SM83 or with the cytokine TNF. FC2 determined a prolonged activation of the NF-κB pathway, accompanied to a stabilization of XIAP-TAB1 complex. This candidate molecule represents a valuable lead compound for the development of a new class of IAP-antagonists for cancer treatment.
Collapse
Affiliation(s)
- Federica Cossu
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| | - Simone Camelliti
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy.,Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Daniele Lecis
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Luca Sorrentino
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Chimica, Università di Milano, Via Venezian, 21, I-20133 Milano, Italy
| | - Maria Teresa Majorini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Mario Milani
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| | - Eloise Mastrangelo
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| |
Collapse
|
24
|
Caballero RE, Dong SXM, Gajanayaka N, Ali H, Cassol E, Cameron WD, Korneluk R, Tremblay MJ, Angel JB, Kumar A. Role of RIPK1 in SMAC mimetics-induced apoptosis in primary human HIV-infected macrophages. Sci Rep 2021; 11:22901. [PMID: 34824340 PMCID: PMC8617210 DOI: 10.1038/s41598-021-02146-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Macrophages serve as viral reservoirs due to their resistance to apoptosis and HIV-cytopathic effects. We have previously shown that inhibitor of apoptosis proteins (IAPs) confer resistance to HIV-Vpr-induced apoptosis in normal macrophages. Herein, we show that second mitochondrial activator of caspases (SMAC) mimetics (SM) induce apoptosis of monocyte-derived macrophages (MDMs) infected in vitro with a R5-tropic laboratory strain expressing heat stable antigen, chronically infected U1 cells, and ex-vivo derived MDMs from HIV-infected individuals. To understand the mechanism governing SM-induced cell death, we show that SM-induced cell death of primary HIV-infected macrophages was independent of the acquisition of M1 phenotype following HIV infection of macrophages. Instead, SM-induced cell death was found to be mediated by IAPs as downregulation of IAPs by siRNAs induced cell death of HIV-infected macrophages. Moreover, HIV infection caused receptor interacting protein kinase-1 (RIPK1) degradation which in concert with IAP1/2 downregulation following SM treatment may result in apoptosis of macrophages. Altogether, our results show that SM selectively induce apoptosis in primary human macrophages infected in vitro with HIV possibly through RIPK1. Moreover, modulation of the IAP pathways may be a potential strategy for selective killing of HIV-infected macrophages in vivo.
Collapse
Affiliation(s)
- Ramon Edwin Caballero
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
| | - Simon Xin Min Dong
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Niranjala Gajanayaka
- Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - William D Cameron
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Robert Korneluk
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Michel J Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Université Laval, Québec City, QC, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada. .,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Ahmad I, Irfan S, Ali Beg MM, Kamli H, Ali SP, Begum N, Alshahrani MY, Rajagopalan P. The SMAC mimetic AT-101 exhibits anti-tumor and anti-metastasis activity in lung adenocarcinoma cells by the IAPs/ caspase-dependent apoptosis and p65-NFƙB cross-talk. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:969-977. [PMID: 34712428 PMCID: PMC8528260 DOI: 10.22038/ijbms.2021.56400.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/12/2021] [Indexed: 11/06/2022]
Abstract
Objective(s): The Inhibitors of Apoptosis (IAPs) regulate initiator and effector phases of caspase mediated apoptosis. This study evaluates the effects of SMAC mimetic AT-101 in regulation of IAPs/caspases/NFƙB-p65 in an adenocarcinoma cell line. Materials and Methods: MTT assay was performed in the NCI-H522 cell line. Flow cytometry was used for detecting cell cycle, apoptosis, and NFƙB-p65 regulation. Effects of AT-101 on IAPs and caspases were determined by quantitative real time-PCR and western blotting. AutoDock-VINA was used for computational analysis. Results: AT-101 reduced the cell proliferation of NCI-H522 with a GI50 value of 7 μM. The compound arrested adenocarcinoma cells in the G1 phase of the cell cycle and increased early and late phase apoptosis while decreasing tumor-cell trans-migration. AT-101 treatment to NCI H522 at a concentration of 0.35 μM decreased XIAP, cIAP-1, and cIAP-2 mRNA levels to 4.39±0.66, 1.93±0.26, and 2.20±0.24 folds, respectively. Increased dose of AT-101 at 0.7 μM concentration further decreased XIAP, cIAP-1, and cIAP-2 mRNA levels to 2.44±0.67, 1.46±0.93, and 0.97±0.10 folds, respectively. Similar effects of a dose-dependent decrease in the protein expressions of XIAP, cIAP-1, and cIAP-2 were observed with AT-101 treatments, while a dose-responsive increase in the mRNA and protein expression levels of caspase 6 and caspase 7 was observed in the NCI-H522 cell line. The compound exhibited binding affinity (-6.1 kcal/mol) and inhibited NFƙB-p65 in these cells. Conclusion: AT-101 had anti-tumor efficacy against lung adenocarcinoma cells which could be mediated through IAPs/caspase-dependent apoptosis and NFƙB-p65 cross talk. Results from this study suggests a signal cross talk between IAPs and NFkB and open new channels for further investigations in therapeutic intervention against lung cancer management.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Irfan
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India.,Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyzstan.,Centre for Promotion of Medical Research, Ala-Too International University, Bishkek, Kyrgyzstan
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Syed Parveen Ali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Biochemistry, Maulana Azad Medical College, New Delhi, India.,Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyzstan.,Centre for Promotion of Medical Research, Ala-Too International University, Bishkek, Kyrgyzstan.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
26
|
IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-κB- and caspase-8-dependent mechanisms. Blood Adv 2021; 5:3776-3788. [PMID: 34464977 DOI: 10.1182/bloodadvances.2020003597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Interactions between the inhibitor of apoptosis protein antagonist LCL161 and the histone deacetylase inhibitor panobinostat (LBH589) were examined in human multiple myeloma (MM) cells. LCL161 and panobinostat interacted synergistically to induce apoptosis in diverse MM cell lines, including those resistant to bortezomib (PS-R). Similar interactions were observed with other histone deacetylase inhibitors (MS-275) or inhibitors of apoptosis protein antagonists (birinapant). These events were associated with downregulation of the noncanonical (but not the canonical) NF-κB pathway and activation of the extrinsic, caspase-8-related apoptotic cascade. Coexposure of MM cells to LCL161/LBH589 induced TRAF3 upregulation and led to TRAF2 and NIK downregulation, diminished expression of BCL-XL, and induction of γH2A.X. Ectopic expression of TRAF2, NIK, or BCL-XL, or short hairpin RNA TRAF3 knock-down, significantly reduced LCL161/LBH589 lethality, as did ectopic expression of dominant-negative FADD. Stromal/microenvironmental factors failed to diminish LCL161/LBH589-induced cell death. The LCL161/LBH589 regimen significantly increased cell killing in primary CD138+ cells (N = 31) and was particularly effective in diminishing the primitive progenitor cell-enriched CD138-/19+/20+/27+ population (N = 23) but was nontoxic to normal CD34+ cells. Finally, combined LCL161/LBH589 treatment significantly increased survival compared with single-agent treatment in an immunocompetent 5TGM1 murine MM model. Together, these findings argue that LCL161 interacts synergistically with LBH589 in MM cells through a process involving inactivation of the noncanonical NF-κB pathway and activation of the extrinsic apoptotic pathway, upregulation of TRAF3, and downregulation of TRAF2/BCL-XL. Notably, this regimen overcomes various forms of resistance, is active against primary MM cells, and displays significant in vivo activity. This strategy warrants further consideration in MM.
Collapse
|
27
|
Cerna D, Lim B, Adelabu Y, Yoo S, Carter D, Fahim A, Mitsuuchi Y, Teicher BA, Bernhard E, Coleman CN, Takebe N, Ahmed MM. SMAC Mimetic/IAP Inhibitor Birinapant Enhances Radiosensitivity of Glioblastoma Multiforme. Radiat Res 2021; 195:549-560. [PMID: 33826739 DOI: 10.1667/rade-20-00171.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/01/2021] [Indexed: 11/03/2022]
Abstract
Birinapant is a novel SMAC peptidomimetic molecule in clinical development. It suppresses the inhibitor of apoptosis proteins (IAPs) and promotes cytochrome-C/Apaf-1/caspase-9 activation to induce effective apoptosis. Because IAP inhibition has been shown to enhance the sensitivity of cancer cells to radiation, we investigated the role of birinapant in radiosensitization of glioblastoma cells in vitro and in vivo. Two glioblastoma cell lines, U-251 and U-87, were used to analyze radiosensitization in vitro with 7-AAD cell death/apoptosis and clonogenic assays. Subcutaneous flank (U-251 and U-87) and intracranial orthotopic (U-251) xenografts in nude mice were used to evaluate radiosensitization in vivo. TNF-α levels in media and serum were measured using electrochemiluminescence. Radiosensitization in vitro was more prominent for U-251 cells than for U-87 cells. In vivo, in both tumor models, significant tumor growth delay was observed with combination treatment compared to radiation alone. There was a survival benefit with combination treatment in the orthotopic U-251 model. TNF-α levels in media correlated directly with radiation dose in vitro. These findings show that birinapant can enhance the radiosensitivity of glioblastoma cell lines in cell-based assays and tumor models via radiation-induced TNF-α. Further study into the use of birinapant with radiation therapy is warranted.
Collapse
Affiliation(s)
- David Cerna
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yusuf Adelabu
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland 20850
| | - Stephen Yoo
- Molecular Radiation Therapeutics Branch, National Cancer Institute, Rockville, Maryland 20850
| | - Donna Carter
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ahmed Fahim
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | | | - Beverly A Teicher
- Molecular Pharmacology Branch, National Cancer Institute, Rockville, Maryland 20850
| | - Eric Bernhard
- Radiotherapy Development Branch, National Cancer Institute, Rockville, Maryland 20850
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, Rockville, Maryland 20850
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland 20850
| | - Mansoor M Ahmed
- Molecular Radiation Therapeutics Branch, National Cancer Institute, Rockville, Maryland 20850.,Radiotherapy Development Branch, National Cancer Institute, Rockville, Maryland 20850.,Radiation Research Program, National Cancer Institute, Rockville, Maryland 20850
| |
Collapse
|
28
|
Bos T, Ratti JA, Harada H. Targeting Stress-Response Pathways and Therapeutic Resistance in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:676643. [PMID: 35048023 PMCID: PMC8757684 DOI: 10.3389/froh.2021.676643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Head and neck cancer is the sixth leading cancer worldwide; head and neck squamous cell carcinoma (HNSCC) accounts for more than 90% of incident cases. In the US, cases of HNSCC associated with human papillomavirus (HPV) have been growing in proportion amongst a younger demographic with superior outcomes to the same treatments, relative to cases associated with tobacco. Yet failures to improve the long-term prognosis of advanced HNSCC over the last three decades persist in part due to intrinsic and acquired mechanisms of resistance. Deregulation of the pathways to respond to stress, such as apoptosis and autophagy, often contributes to drug resistance and tumor progression. Here we review the stress-response pathways in drug response and resistance in HNSCC to explore strategies to overcome these resistance mechanisms. We focus on the mechanisms of resistance to current standard cares, such as chemotherapy (i.e., cisplatin), radiation, and cetuximab. Then, we discuss the strategies to overcome these resistances, including novel combinations and immunotherapy.
Collapse
Affiliation(s)
| | | | - Hisashi Harada
- School of Dentistry, Philips Institute for Oral Health Research, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
29
|
Devi GR, Finetti P, Morse MA, Lee S, de Nonneville A, Van Laere S, Troy J, Geradts J, McCall S, Bertucci F. Expression of X-Linked Inhibitor of Apoptosis Protein (XIAP) in Breast Cancer Is Associated with Shorter Survival and Resistance to Chemotherapy. Cancers (Basel) 2021; 13:2807. [PMID: 34199946 PMCID: PMC8200223 DOI: 10.3390/cancers13112807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
XIAP, the most potent inhibitor of cell death pathways, is linked to chemotherapy resistance and tumor aggressiveness. Currently, multiple XIAP-targeting agents are in clinical trials. However, the characterization of XIAP expression in relation to clinicopathological variables in large clinical series of breast cancer is lacking. We retrospectively analyzed non-metastatic, non-inflammatory, primary, invasive breast cancer samples for XIAP mRNA (n = 2341) and protein (n = 367) expression. XIAP expression was analyzed as a continuous value and correlated with clinicopathological variables. XIAP mRNA expression was heterogeneous across samples and significantly associated with younger patients' age (≤50 years), pathological ductal type, lower tumor grade, node-positive status, HR+/HER2- status, and PAM50 luminal B subtype. Higher XIAP expression was associated with shorter DFS in uni- and multivariate analyses in 909 informative patients. Very similar correlations were observed at the protein level. This prognostic impact was significant in the HR+/HER2- but not in the TN subtype. Finally, XIAP mRNA expression was associated with lower pCR rate to anthracycline-based neoadjuvant chemotherapy in both uni- and multivariate analyses in 1203 informative patients. Higher XIAP expression in invasive breast cancer is independently associated with poorer prognosis and resistance to chemotherapy, suggesting the potential therapeutic benefit of targeting XIAP.
Collapse
Affiliation(s)
- Gayathri R. Devi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
| | - Michael A. Morse
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| | - Seayoung Lee
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Alexandre de Nonneville
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| | | | - Jesse Troy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA;
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, East Carolina University Brody School of Medicine, Greenville, NC 27858, USA;
| | - Shannon McCall
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Francois Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
30
|
Zhu DL, Shuai LY. Effects of Birinapant on Proliferation and Invasion of MGC-803 Gastric Cancer Cells and Mechanism Underlying These Effects. Bull Exp Biol Med 2021; 171:56-61. [PMID: 34050412 DOI: 10.1007/s10517-021-05172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 11/26/2022]
Abstract
We studied the effects of birinapant, a mimetic of the second mitochondria-derived activator of caspase (SMAC), on invasion and proliferation of MGC-803 gastric cancer cells and the molecular mechanisms underlying these processes. The expression of cellular inhibitor of apoptosis 1 (cIAP1) and TNF receptor-associated factor 3 (TRAF3) in gastric cancer cell line MGC-803 and normal gastric mucosa GES-1 cells were analyzed by Western blotting and cell immunofluorescence assay. After pretreatment of MGC-803 cells with birinapant, a Transwell invasion assay was used to evaluate the cell invasion ability. MGC-803 cells were implanted under the skin of BALB/c nude mice. The tumors were removed 10 days later and its size was measured. Protein expression of proliferating cell nuclear antigen (PCNA) in the subcutaneous tumors was analyzed by immunohistochemical method. In addition, the expression of cIAP1, TRAF3, pNF-κB, and NF-κB in control and birinapant-treated cells was compared by Western blotting and the rate of cell apoptosis was evaluated by flow cytometry. In untreated MGC-803 gastric cancer cells, the expression of cIAP1 was higher and the expression of TRAF3 was lower than in normal gastric mucosa cell line GES-1. Pretreatment with birinapant inhibited the invasion and proliferation of MGC-803 cells and promoted cell apoptosis. Birinapant also promoted the expression of TRAF3 and inhibited the expression of cIAP1 and pNF-κB in MGC-803 cells. Thus, birinapant inhibited the expression of cIAP1, prevented degradation of TRAF3, and suppressed invasion and proliferation of MGC-803 cells by promoting cell apoptosis.
Collapse
Affiliation(s)
- D L Zhu
- Department of General Surgery of Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - L Y Shuai
- Department of General Surgery of Jiangjin Central Hospital of Chongqing, Chongqing, China.
| |
Collapse
|
31
|
Koch A, Jeiler B, Roedig J, van Wijk SJL, Dolgikh N, Fulda S. Smac mimetics and TRAIL cooperate to induce MLKL-dependent necroptosis in Burkitt's lymphoma cell lines. Neoplasia 2021; 23:539-550. [PMID: 33971465 PMCID: PMC8122156 DOI: 10.1016/j.neo.2021.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
Burkitt's lymphoma (BL) is a highly aggressive form of B-cell non-Hodgkin's lymphoma. The clinical outcome in children with BL has improved over the last years but the prognosis for adults is still poor, highlighting the need for novel treatment strategies. Here, we report that the combinational treatment with the Smac mimetic BV6 and TRAIL triggers necroptosis in BL when caspases are blocked by zVAD.fmk (TBZ treatment). The sensitivity of BL cells to TBZ correlates with MLKL expression. We demonstrate that necroptotic signaling critically depends on MLKL, since siRNA-induced knockdown and CRISPR/Cas9-mediated knockout of MLKL profoundly protect BL cells from TBZ-induced necroptosis. Conversely, MLKL overexpression in cell lines expressing low levels of MLKL leads to necroptosis induction, which can be rescued by pharmacological inhibitors, highlighting the important role of MLKL for necroptosis execution. Importantly, the methylation status analysis of the MLKL promoter reveals a correlation between methylation and MLKL expression. Thus, MLKL is epigenetically regulated in BL and might serve as a prognostic marker for treatment success of necroptosis-based therapies. These findings have crucial implications for the development of new treatment options for BL.
Collapse
Affiliation(s)
- Annkathrin Koch
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birte Jeiler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Jens Roedig
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Nadezda Dolgikh
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany.
| |
Collapse
|
32
|
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 2021; 18:1106-1121. [PMID: 33785842 PMCID: PMC8008022 DOI: 10.1038/s41423-020-00630-3] [Citation(s) in RCA: 895] [Impact Index Per Article: 298.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023] Open
Abstract
Cell death is a fundamental physiological process in all living organisms. Its roles extend from embryonic development, organ maintenance, and aging to the coordination of immune responses and autoimmunity. In recent years, our understanding of the mechanisms orchestrating cellular death and its consequences on immunity and homeostasis has increased substantially. Different modalities of what has become known as 'programmed cell death' have been described, and some key players in these processes have been identified. We have learned more about the intricacies that fine tune the activity of common players and ultimately shape the different types of cell death. These studies have highlighted the complex mechanisms tipping the balance between different cell fates. Here, we summarize the latest discoveries in the three most well understood modalities of cell death, namely, apoptosis, necroptosis, and pyroptosis, highlighting common and unique pathways and their effect on the surrounding cells and the organism as a whole.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
- German Center for Neurodegenerative Diseases, Bonn, NRW, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| |
Collapse
|
33
|
Tewary P, Brooks AD, Xu YM, Wijeratne EMK, Babyak AL, Back TC, Chari R, Evans CN, Henrich CJ, Meyer TJ, Edmondson EF, de Aquino MTP, Kanagasabai T, Shanker A, Gunatilaka AAL, Sayers TJ. Small-Molecule Natural Product Physachenolide C Potentiates Immunotherapy Efficacy by Targeting BET Proteins. Cancer Res 2021; 81:3374-3386. [PMID: 33837043 DOI: 10.1158/0008-5472.can-20-2634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Screening for sensitizers of cancer cells to TRAIL-mediated apoptosis identified a natural product of the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), as a promising hit. In this study, we show that PCC was also able to sensitize melanoma and renal carcinoma cells to apoptosis in response not only to TRAIL, but also to the synthetic polynucleotide poly I:C, a viral mimetic and immune activator, by reducing levels of antiapoptotic proteins cFLIP and Livin. Both death receptor and TLR3 signaling elicited subsequent increased assembly of a proapoptotic ripoptosome signaling complex. Administration of a combination of PCC and poly I:C in human M14 melanoma xenograft and a syngeneic B16 melanoma model provided significant therapeutic benefit as compared with individual agents. In addition, PCC enhanced melanoma cell death in response to activated human T cells in vitro and in vivo in a death ligand-dependent manner. Biochemical mechanism-of-action studies established bromo and extraterminal domain (BET) proteins as major cellular targets of PCC. Thus, by targeting of BET proteins to reduce antiapoptotic proteins and enhance caspase-8-dependent apoptosis of cancer cells, PCC represents a unique agent that can potentially be used in combination with various immunotherapeutic approaches to promote tumor regression and improve outcome. SIGNIFICANCE: These findings demonstrate that PCC selectively sensitizes cancer cells to immune-mediated cell death, potentially improving the efficacy of cancer immunotherapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3374/F1.large.jpg.
Collapse
Affiliation(s)
- Poonam Tewary
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alan D Brooks
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona
| | | | - Timothy C Back
- Cancer and Inflammation Program, NCI, Frederick, Maryland
| | - Raj Chari
- Genome Modification Core Laboratory Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christine N Evans
- Genome Modification Core Laboratory Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Curtis J Henrich
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, Maryland.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Maria T Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona.
| | - Thomas J Sayers
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
34
|
Ebert G, Lopaticki S, O'Neill MT, Steel RWJ, Doerflinger M, Rajasekaran P, Yang ASP, Erickson S, Ioannidis L, Arandjelovic P, Mackiewicz L, Allison C, Silke J, Pellegrini M, Boddey JA. Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Rep 2021; 30:4343-4354.e4. [PMID: 32234472 DOI: 10.1016/j.celrep.2020.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.
Collapse
Affiliation(s)
- Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ryan W J Steel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sara Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arandjelovic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
35
|
Villa I, Villa C, Crapanzano R, Secchi V, Tawfilas M, Trombetta E, Porretti L, Brambilla A, Campione M, Torrente Y, Vedda A, Monguzzi A. Functionalized Scintillating Nanotubes for Simultaneous Radio- and Photodynamic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12997-13008. [PMID: 33719410 PMCID: PMC8153399 DOI: 10.1021/acsami.1c02504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a model radio-photodynamic therapy (RPDT) agent, we developed a multicomponent nanomaterial by anchoring conjugated chromophores on the surface of scintillating chrysotile nanotubes. Its ultimate composition makes the system a scintillation-activated photosensitizer for the singlet oxygen production. This nanomaterial shows a remarkable ability to enhance the production of singlet oxygen in an aqueous environment, under X-ray irradiation, boosting its production by almost 1 order of magnitude. Its efficiency as a coadjutant for radiotherapy has been tested in vitro, showing a striking efficacy in enhancing both the prompt cytotoxicity of the ionizing radiation and the long-term cytotoxicity given by radiation-activated apoptosis. Notably, the beneficial activity of the RPDT agent is prominent at low levels of delivered doses comparable to the one employed in clinical treatments. This opens the possibility of effectively reducing the therapy exposure and consequently undesired collateral effects due to prolonged exposure of patients to high-energy radiation.
Collapse
Affiliation(s)
- Irene Villa
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Chiara Villa
- Stem
Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino
Ferrari, via F. Sforza
35, 20122 Milan, Italy
| | - Roberta Crapanzano
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Valeria Secchi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Massimo Tawfilas
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Elena Trombetta
- Servizio
di Citofluorimetria, Laboratorio Analisi, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy
| | - Laura Porretti
- Servizio
di Citofluorimetria, Laboratorio Analisi, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy
| | - Andrea Brambilla
- Stem
Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino
Ferrari, via F. Sforza
35, 20122 Milan, Italy
| | - Marcello Campione
- Dipartimento
di Scienze dell’Ambiente e della Terra, Università degli Studi Milano-Bicocca, Piazza della Scienza, 20126 Milano, Italy
| | - Yvan Torrente
- Stem
Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino
Ferrari, via F. Sforza
35, 20122 Milan, Italy
| | - Anna Vedda
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Angelo Monguzzi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
36
|
McKenna S, García-Gutiérrez L, Matallanas D, Fey D. BAX and SMAC regulate bistable properties of the apoptotic caspase system. Sci Rep 2021; 11:3272. [PMID: 33558564 PMCID: PMC7870884 DOI: 10.1038/s41598-021-82215-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/07/2020] [Indexed: 01/30/2023] Open
Abstract
The initiation of apoptosis is a core mechanism in cellular biology by which organisms control the removal of damaged or unnecessary cells. The irreversible activation of caspases is essential for apoptosis, and mathematical models have demonstrated that the process is tightly regulated by positive feedback and a bistable switch. BAX and SMAC are often dysregulated in diseases such as cancer or neurodegeneration and are two key regulators that interact with the caspase system generating the apoptotic switch. Here we present a mathematical model of how BAX and SMAC control the apoptotic switch. Formulated as a system of ordinary differential equations, the model summarises experimental and computational evidence from the literature and incorporates the biochemical mechanisms of how BAX and SMAC interact with the components of the caspase system. Using simulations and bifurcation analysis, we find that both BAX and SMAC regulate the time-delay and activation threshold of the apoptotic switch. Interestingly, the model predicted that BAX (not SMAC) controls the amplitude of the apoptotic switch. Cell culture experiments using siRNA mediated BAX and SMAC knockdowns validated this model prediction. We further validated the model using data of the NCI-60 cell line panel using BAX protein expression as a cell-line specific parameter and show that model simulations correlated with the cellular response to DNA damaging drugs and established a defined threshold for caspase activation that could distinguish between sensitive and resistant melanoma cells. In summary, we present an experimentally validated dynamic model that summarises our current knowledge of how BAX and SMAC regulate the bistable properties of irreversible caspase activation during apoptosis.
Collapse
Affiliation(s)
- Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
37
|
Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer-A Promising Signaling Network for Therapeutic Interventions. Cancers (Basel) 2021; 13:cancers13040624. [PMID: 33557398 PMCID: PMC7916307 DOI: 10.3390/cancers13040624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options. Abstract Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Collapse
|
38
|
Abstract
BACKGROUND The evasion from apoptosis is a common strategy adopted by most tumors, and inhibitors of apoptosis proteins (IAPs) are among the most studied molecular and therapeutic targets. BIRC3 (cellular IAP2) and BIRC5 (survivin) are two of the eight members of the human IAPs family. This family is characterized by the presence of the baculoviral IAP repeat (BIR) domains, involved in protein-protein interactions. In addition to the BIR domains, IAPs also contain other important domains like the C-terminal ubiquitin-conjugating (UBC) domain, the caspase recruitment (CARD) domain and the C-terminal Ring zinc-finger (RING) domain. MAIN BODY BIRC3 and BIRC5 have been characterized in some solid and hematological tumors and are therapeutic targets for the family of drugs called "Smac mimetics". Many evidences point to the pro-survival and antiapoptotic role of BIRC3 in cancer cells, however, not all the data are consistent and the resulting picture is heterogeneous. For instance, BIRC3 genetic inactivation due to deletions or point mutations is consistently associated to shorter progression free survival and poor prognosis in chronic lymphocytic leukemia patients. BIRC3 inactivation has also been associated to chemoimmunotherapy resistance. On the contrary, the progression from low grade gliomas to high grade gliomas is accompanied by BIRC3 expression increase, which bears relevant prognostic consequences. Due to the relationship between BIRC3, MAP3K14 and the non-canonical NF-kB pathway, BIRC3 inactivation bears consequences also on the tumor cells relying on NF-kB pathway to survive. BIRC5, on the contrary, is commonly considered an anti-apoptotic molecule, promoting cell division and tumor progression and it is widely regarded as potential therapeutic target. CONCLUSIONS The present manuscript collects and reviews the most recent literature concerning the role played by BIRC3 and BIRC5 in cancer cells, providing useful information for the choice of the best therapeutic targets.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, Reggio Emilia, Italy.
| |
Collapse
|
39
|
Ali H, Caballero R, Dong SXM, Gajnayaka N, Vranjkovic A, Ahmed D, Iqbal S, Crawley AM, Angel JB, Cassol E, Kumar A. Selective killing of human M1 macrophages by Smac mimetics alone and M2 macrophages by Smac mimetics and caspase inhibition. J Leukoc Biol 2021; 110:693-710. [PMID: 33404106 DOI: 10.1002/jlb.4a0220-114rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
The inflammatory and anti-inflammatory Mϕs have been implicated in many diseases including rheumatoid arthritis, multiple sclerosis, and leprosy. Recent studies suggest targeting Mϕ function and activation may represent a potential target to treat these diseases. Herein, we investigated the effect of second mitochondria-derived activator of caspases (SMAC) mimetics (SMs), the inhibitors of apoptosis (IAPs) proteins, on the killing of human pro- and anti-inflammatory Mϕ subsets. We have shown previously that human monocytes are highly susceptible whereas differentiated Mϕs (M0) are highly resistant to the cytocidal abilities of SMs. To determine whether human Mϕ subsets are resistant to the cytotoxic effects of SMs, we show that M1 Mϕs are highly susceptible to SM-induced cell death whereas M2a, M2b, and M2c differentiated subsets are resistant, with M2c being the most resistant. SM-induced cell death in M1 Mϕs was mediated by apoptosis as well as necroptosis, activated both extrinsic and intrinsic pathways of apoptosis, and was attributed to the IFN-γ-mediated differentiation. In contrast, M2c and M0 Mϕs experienced cell death through necroptosis following simultaneous blockage of the IAPs and the caspase pathways. Overall, the results suggest that survival of human Mϕs is critically linked to the activation of the IAPs pathways. Moreover, agents blocking the cellular IAP1/2 and/or caspases can be exploited therapeutically to address inflammation-related diseases.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Ramon Caballero
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Simon X M Dong
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Niranjala Gajnayaka
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Duale Ahmed
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Salma Iqbal
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada.,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
40
|
Ahmad I, Dera A, Irfan S, Rajagopalan P, Ali Beg M, Alshahrani M, Mir M, Abohashrh M, Alam M, Wahab S, Verma A, Srivastava S. BV6 enhances apoptosis in Lung cancer cells by ameliorating caspase expressions through attenuation of XIAP, cIAP-1, and cIAP-2 proteins. J Cancer Res Ther 2021; 18:1651-1657. [PMID: 36412426 DOI: 10.4103/jcrt.jcrt_1281_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
An Updated Review of Smac Mimetics, LCL161, Birinapant, and GDC-0152 in Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are suggested as therapeutic targets for cancer treatment. Smac/DIABLO is a natural IAP antagonist in cells; therefore, Smac mimetics have been developed for cancer treatment in the past decade. In this article, we review the anti-cancer potency and novel molecular targets of LCL161, birinapant, and GDC-0152. Preclinical studies demonstrated that Smac mimetics not only induce apoptosis but also arrest cell cycle, induce necroptosis, and induce immune storm in vitro and in vivo. The safety and tolerance of Smac mimetics are evaluated in phase 1 and phase 2 clinical trials. In addition, the combination of Smac mimetics and chemotherapeutic compounds was reported to improve anti-cancer effects. Interestingly, the novel anti-cancer molecular mechanism of action of Smac mimetics was reported in recent studies, suggesting that many unknown functions of Smac mimetics still need to be revealed. Exploring these currently unknown signaling pathways is important to provide hints for the modification and combination therapy of further compounds.
Collapse
|
42
|
Xie X, Lee J, Liu H, Pearson T, Lu AY, Tripathy D, Devi GR, Bartholomeusz C, Ueno NT. Birinapant Enhances Gemcitabine's Antitumor Efficacy in Triple-Negative Breast Cancer by Inducing Intrinsic Pathway-Dependent Apoptosis. Mol Cancer Ther 2020; 20:296-306. [PMID: 33323457 DOI: 10.1158/1535-7163.mct-19-1160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subgroup of breast cancer, and patients with TNBC have few therapeutic options. Apoptosis resistance is a hallmark of human cancer, and apoptosis regulators have been targeted for drug development for cancer treatment. One class of apoptosis regulators is the inhibitors of apoptosis proteins (IAPs). Dysregulated IAP expression has been reported in many cancers, including breast cancer, and has been shown to be responsible for resistance to chemotherapy. Therefore, IAPs have become attractive molecular targets for cancer treatment. Here, we first investigated the antitumor efficacy of birinapant (TL32711), a biindole-based bivalent mimetic of second mitochondria-derived activator of caspases (SMACs), in TNBC. We found that birinapant as a single agent has differential antiproliferation effects in TNBC cells. We next assessed whether birinapant has a synergistic effect with commonly used anticancer drugs, including entinostat (class I histone deacetylase inhibitor), cisplatin, paclitaxel, voxtalisib (PI3K inhibitor), dasatinib (Src inhibitor), erlotinib (EGFR inhibitor), and gemcitabine, in TNBC. Among these tested drugs, gemcitabine showed a strong synergistic effect with birinapant. Birinapant significantly enhanced the antitumor activity of gemcitabine in TNBC both in vitro and in xenograft mouse models through activation of the intrinsic apoptosis pathway via degradation of cIAP2 and XIAP, leading to apoptotic cell death. Our findings demonstrate the therapeutic potential of birinapant to enhance the antitumor efficacy of gemcitabine in TNBC by targeting the IAP family of proteins.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Troy Pearson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Y Lu
- Department of Bioengineering, Rice University, Houston, Texas
| | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke Cancer Institute, Duke University School of Medicine, North Carolin
- Women's Cancer Program, Duke Cancer Institute, Duke University School of Medicine, North Carolina
| | - Chandra Bartholomeusz
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
43
|
Ge Q, Huang X, Fang S, Guo S, Liu Y, Lin W, Xiong M. Conditional Generative Adversarial Networks for Individualized Treatment Effect Estimation and Treatment Selection. Front Genet 2020; 11:585804. [PMID: 33362849 PMCID: PMC7759680 DOI: 10.3389/fgene.2020.585804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Treatment response is heterogeneous. However, the classical methods treat the treatment response as homogeneous and estimate the average treatment effects. The traditional methods are difficult to apply to precision oncology. Artificial intelligence (AI) is a powerful tool for precision oncology. It can accurately estimate the individualized treatment effects and learn optimal treatment choices. Therefore, the AI approach can substantially improve progress and treatment outcomes of patients. One AI approach, conditional generative adversarial nets for inference of individualized treatment effects (GANITE) has been developed. However, GANITE can only deal with binary treatment and does not provide a tool for optimal treatment selection. To overcome these limitations, we modify conditional generative adversarial networks (MCGANs) to allow estimation of individualized effects of any types of treatments including binary, categorical and continuous treatments. We propose to use sparse techniques for selection of biomarkers that predict the best treatment for each patient. Simulations show that MCGANs outperform seven other state-of-the-art methods: linear regression (LR), Bayesian linear ridge regression (BLR), k-Nearest Neighbor (KNN), random forest classification [RF (C)], random forest regression [RF (R)], logistic regression (LogR), and support vector machine (SVM). To illustrate their applications, the proposed MCGANs were applied to 256 patients with newly diagnosed acute myeloid leukemia (AML) who were treated with high dose ara-C (HDAC), Idarubicin (IDA) and both of these two treatments (HDAC+IDA) at M. D. Anderson Cancer Center. Our results showed that MCGAN can more accurately and robustly estimate the individualized treatment effects than other state-of-the art methods. Several biomarkers such as GSK3, BILIRUBIN, SMAC are identified and a total of 30 biomarkers can explain 36.8% of treatment effect variation.
Collapse
Affiliation(s)
- Qiyang Ge
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuanyuan Liu
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Lin
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
44
|
Uzunparmak B, Gao M, Lindemann A, Erikson K, Wang L, Lin E, Frank SJ, Gleber-Netto FO, Zhao M, Skinner HD, Newton J, Sikora AG, Myers JN, Pickering CR. Caspase-8 loss radiosensitizes head and neck squamous cell carcinoma to SMAC mimetic-induced necroptosis. JCI Insight 2020; 5:139837. [PMID: 33108350 PMCID: PMC7714407 DOI: 10.1172/jci.insight.139837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Caspase-8 (CASP8) is one of the most frequently mutated genes in head and neck squamous carcinomas (HNSCCs), and CASP8 mutations are associated with poor survival. The distribution of these mutations in HNSCCs suggests that they are likely to be inactivating. Inhibition of CASP8 has been reported to sensitize cancer cells to necroptosis, a regulated cell death mechanism. Here, we show that knockdown of CASP8 renders HNSCCs susceptible to necroptosis by a second mitochondria-derived activator of caspase (SMAC) mimetic, birinapant, in combination with pan-caspase inhibitors Z-VAD-FMK or emricasan and radiation. In a syngeneic mouse model of oral cancer, birinapant, particularly when combined with radiation, delayed tumor growth and enhanced survival under CASP8 loss. Exploration of molecular underpinnings of necroptosis sensitivity confirmed that the level of functional receptor-interacting serine/threonine protein kinase 3 (RIP3) determines susceptibility to this mode of death. Although an in vitro screen revealed that low RIP3 levels rendered many HNSCC cell lines resistant to necroptosis, patient tumors maintained RIP3 expression and should therefore remain sensitive. Collectively, these results suggest that targeting the necroptosis pathway with SMAC mimetics, especially in combination with radiation, may be relevant therapeutically in HNSCC with compromised CASP8 status, provided that RIP3 function is maintained.
Collapse
Affiliation(s)
- Burak Uzunparmak
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas USA
| | - Meng Gao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Antje Lindemann
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly Erikson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eric Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederico O. Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jared Newton
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew G. Sikora
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
45
|
Shim MK, Moon Y, Yang S, Kim J, Cho H, Lim S, Yoon HY, Seong JK, Kim K. Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy. Biomaterials 2020; 261:120347. [DOI: 10.1016/j.biomaterials.2020.120347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/19/2023]
|
46
|
Oliver Metzig M, Tang Y, Mitchell S, Taylor B, Foreman R, Wollman R, Hoffmann A. An incoherent feedforward loop interprets NFκB/RelA dynamics to determine TNF-induced necroptosis decisions. Mol Syst Biol 2020; 16:e9677. [PMID: 33314666 PMCID: PMC7734648 DOI: 10.15252/msb.20209677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
Balancing cell death is essential to maintain healthy tissue homeostasis and prevent disease. Tumor necrosis factor (TNF) not only activates nuclear factor κB (NFκB), which coordinates the cellular response to inflammation, but may also trigger necroptosis, a pro-inflammatory form of cell death. Whether TNF-induced NFκB affects the fate decision to undergo TNF-induced necroptosis is unclear. Live-cell microscopy and model-aided analysis of death kinetics identified a molecular circuit that interprets TNF-induced NFκB/RelA dynamics to control necroptosis decisions. Inducible expression of TNFAIP3/A20 forms an incoherent feedforward loop to interfere with the RIPK3-containing necrosome complex and protect a fraction of cells from transient, but not long-term TNF exposure. Furthermore, dysregulated NFκB dynamics often associated with disease diminish TNF-induced necroptosis. Our results suggest that TNF's dual roles in either coordinating cellular responses to inflammation, or further amplifying inflammation are determined by a dynamic NFκB-A20-RIPK3 circuit, that could be targeted to treat inflammation and cancer.
Collapse
Affiliation(s)
- Marie Oliver Metzig
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Ying Tang
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Simon Mitchell
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Present address:
Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
| | - Brooks Taylor
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Robert Foreman
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Department of Integrative Biology and PhysiologyUCLALos AngelesCAUSA
| | - Roy Wollman
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Department of Integrative Biology and PhysiologyUCLALos AngelesCAUSA
| | - Alexander Hoffmann
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| |
Collapse
|
47
|
Fichtner M, Bozkurt E, Salvucci M, McCann C, McAllister KA, Halang L, Düssmann H, Kinsella S, Crawford N, Sessler T, Longley DB, Prehn JHM. Molecular subtype-specific responses of colon cancer cells to the SMAC mimetic Birinapant. Cell Death Dis 2020; 11:1020. [PMID: 33257690 PMCID: PMC7705699 DOI: 10.1038/s41419-020-03232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is a molecularly heterogeneous disease. Responses to genotoxic chemotherapy in the adjuvant or palliative setting vary greatly between patients, and colorectal cancer cells often resist chemotherapy by evading apoptosis. Antagonists of an inhibitor of apoptosis proteins (IAPs) can restore defective apoptosis signaling by degrading cIAP1 and cIAP2 proteins and by inhibition of XIAP. Due to the multiple molecular mechanisms-of-action of these targets, responses to IAP antagonist may differ between molecularly distinct colon cancer cells. In this study, responses to the IAP antagonist Birinapant and oxaliplatin/5-fluorouracil (5-FU) were investigated in 14 colon cancer cell lines, representing the consensus molecular subtypes (CMS). Treatment with Birinapant alone did not result in a substantial increase in apoptotic cells in this cell line panel. Annexin-V/PI assays quantified by flow cytometry and high-content screening showed that Birinapant increased responses of CMS1 and partially CMS3 cell lines to oxaliplatin/5-FU, whereas CMS2 cells were not effectively sensitized. FRET-based imaging of caspase-8 and -3 activation validated these differences at the single-cell level, with CMS1 cells displaying sustained activation of caspase-8-like activity during Birinapant and oxaliplatin/5-FU co-treatment, ultimately activating the intrinsic mitochondrial apoptosis pathway. In CMS2 cell lines, Birinapant exhibited synergistic effects in combination with TNFα, suggesting that Birinapant can restore extrinsic apoptosis signaling in the context of inflammatory signals in this subtype. To explore this further, we co-cultured CMS2 and CMS1 colon cancer cells with peripheral blood mononuclear cells. We observed increased cell death during Birinapant single treatment in these co-cultures, which was abrogated by anti-TNFα-neutralizing antibodies. Collectively, our study demonstrates that IAP inhibition is a promising modulator of response to oxaliplatin/5-FU in colorectal cancers of the CMS1 subtype, and may show promise as in the CMS2 subtype, suggesting that molecular subtyping may aid as a patient stratification tool for IAP antagonists in this disease.
Collapse
Affiliation(s)
- Michael Fichtner
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Christopher McCann
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | - Luise Halang
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinéad Kinsella
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Tamas Sessler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
48
|
Khan I, Eklund EE, Gartel AL. Therapeutic Vulnerabilities of Transcription Factors in AML. Mol Cancer Ther 2020; 20:229-237. [PMID: 33158995 DOI: 10.1158/1535-7163.mct-20-0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by impaired myeloid lineage differentiation, uncontrolled proliferation, and inhibition of proapoptotic pathways. In spite of a relatively homogeneous clinical disease presentation, risk of long-term survival in AML varies from 20% to 80% depending on molecular disease characteristics. In recognition of the molecular heterogeneity of AML, the European Leukemia Net (ELN) and WHO classification systems now incorporate cytogenetics and increasing numbers of gene mutations into AML prognostication. Several of the genomic AML subsets are characterized by unique transcription factor alterations that are highlighted in this review. There are many mechanisms of transcriptional deregulation in leukemia. We broadly classify transcription factors based on mechanisms of transcriptional deregulation including direct involvement of transcription factors in recurrent translocations, loss-of-function mutations, and intracellular relocalization. Transcription factors, due to their pleiotropic effects, have been attractive but elusive targets. Indirect targeting approaches include inhibition of upstream kinases such as TAK1 for suppression of NFκB signaling and downstream effectors such as FGF signaling in HOXA-upregulated leukemia. Other strategies include targeting scaffolding proteins like BrD4 in the case of MYC or coactivators such as menin to suppress HOX expression; disrupting critical protein interactions in the case of β-catenin:TCF/LEF, and preventing transcription factor binding to DNA as in the case of PU.1 or FOXM1. We comprehensively describe the mechanism of deregulation of transcription factors in genomic subsets of AML, consequent pathway addictions, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Irum Khan
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Elizabeth E Eklund
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| | - Andrei L Gartel
- Department of Medicine, University of Illinois, Chicago, Illinois.
| |
Collapse
|
49
|
Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, Unno M, Sasano H, Jitkaew S. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal 2020; 18:161. [PMID: 33036630 PMCID: PMC7545934 DOI: 10.1186/s12964-020-00661-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) ligand which activates TLR3 signaling induces both cancer cell death and activates anti-tumor immunity. However, TLR3 signaling can also harbor pro-tumorigenic consequences. Therefore, we examined the status of TLR3 in cholangiocarcinoma (CCA) cases to better understand TLR3 signaling and explore the potential therapeutic target in CCA. METHODS The expression of TLR3 and receptor-interacting protein kinase 1 (RIPK1) in primary CCA tissues was assayed by Immunohistochemical staining and their associations with clinicopathological characteristics and survival data were evaluated. The effects of TLR3 ligand, Poly(I:C) and Smac mimetic, an IAP antagonist on CCA cell death and invasion were determined by cell death detection methods and Transwell invasion assay, respectively. Both genetic and pharmacological inhibition of RIPK1, RIPK3 and MLKL and inhibitors targeting NF-κB and MAPK signaling were used to investigate the underlying mechanisms. RESULTS TLR3 was significantly higher expressed in tumor than adjacent normal tissues. We demonstrated in a panel of CCA cell lines that TLR3 was frequently expressed in CCA cell lines, but was not detected in a nontumor cholangiocyte. Subsequent in vitro study demonstrated that Poly(I:C) specifically induced CCA cell death, but only when cIAPs were removed by Smac mimetic. Cell death was also switched from apoptosis to necroptosis when caspases were inhibited in CCA cells-expressing RIPK3. In addition, RIPK1 was required for Poly(I:C) and Smac mimetic-induced apoptosis and necroptosis. Of particular interest, high TLR3 or low RIPK1 status in CCA patients was associated with more invasiveness. In vitro invasion demonstrated that Poly(I:C)-induced invasion through NF-κB and MAPK signaling. Furthermore, the loss of RIPK1 enhanced Poly(I:C)-induced invasion and ERK activation in vitro. Smac mimetic also reversed Poly(I:C)-induced invasion, partly mediated by RIPK1. Finally, a subgroup of patients with high TLR3 and high RIPK1 had a trend toward longer disease-free survival (p = 0.078, 28.0 months and 10.9 months). CONCLUSION RIPK1 plays a pivotal role in TLR3 ligand, Poly(I:C)-induced cell death when cIAPs activity was inhibited and loss of RIPK1 enhanced Poly(I:C)-induced invasion which was partially reversed by Smac mimetic. Our results suggested that TLR3 ligand in combination with Smac mimetic could provide therapeutic benefits to the patients with CCA. Video abstract.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Swati Choksi
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892 USA
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Hajime Usubuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Miyagi 98-8075 Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Siriporn Jitkaew
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
50
|
Koch PD, Pittet MJ, Weissleder R. The chemical biology of IL-12 production via the non-canonical NFkB pathway. RSC Chem Biol 2020; 1:166-176. [PMID: 34458756 PMCID: PMC8341911 DOI: 10.1039/d0cb00022a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Interleukin-12 (IL-12) has emerged as an attractive cytokine for cancer therapy because it has direct anti-cancer effects and additionally plays a critical role in enhancing checkpoint inhibitors. Given these multiple modes of actions, identifying means to pharmacologically induce IL-12 production in the tumor microenvironment has become important. In this review, we highlight therapeutics that promote IL-12 induction in tumor-associated myeloid cells through the non-canonical NFkB pathway. We discuss existing clinical trials and briefly examine the additional pathway targets that warrant further exploration for drug discovery.
Collapse
Affiliation(s)
- Peter D Koch
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| |
Collapse
|