1
|
Kumar D, Kanchan R, Chaturvedi NK. Targeting protein synthesis pathways in MYC-amplified medulloblastoma. Discov Oncol 2025; 16:23. [PMID: 39779613 PMCID: PMC11711608 DOI: 10.1007/s12672-025-01761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis. MTOR signaling-driven deregulated protein synthesis is widespread in various cancers, including medulloblastoma, which can promote the stabilization of MYC. Indeed, our previous studies demonstrate that the key components of protein synthesis machinery, including mTOR signaling and MYC targets, are overexpressed and activated in MYC-amplified medulloblastoma, confirming MYC-dependent addiction of enhanced protein synthesis in medulloblastoma. Further, targeting this enhanced protein synthesis pathway with combined inhibition of MYC transcription and mTOR translation by small-molecule inhibitors, demonstrates preclinical synergistic anti-tumor potential against MYC-driven medulloblastoma in vitro and in vivo. Thus, inhibiting enhanced protein synthesis by targeting the MYC indirectly and mTOR pathways together may present a highly appropriate strategy for treating MYC-driven medulloblastoma and other MYC-addicted cancers. Evidence strongly proposes that MYC/mTOR-driven tumorigenic signaling can predominantly control the translational machinery to elicit cooperative effects on increased cell proliferation, cell cycle progression, and genome dysregulation as a mechanism of cancer initiation. Several small molecule inhibitors of targeting MYC indirectly and mTOR signaling have been developed and used clinically with immunosuppressants and chemotherapy in multiple cancers. Only a few of them have been investigated as treatments for medulloblastoma and other pediatric tumors. This review explores concurrent targeting of MYC and mTOR signaling against MYC-driven medulloblastoma. Based on existing evidence, targeting of MYC and mTOR pathways together produces functional synergy that could be the basis for effective therapies against medulloblastoma.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
3
|
Ma T, Chen Y, Yi ZG, Li YH, Bai J, Li LJ, Zhang LS. BET in hematologic tumors: Immunity, pathogenesis, clinical trials and drug combinations. Genes Dis 2023; 10:2306-2319. [PMID: 37554207 PMCID: PMC10404881 DOI: 10.1016/j.gendis.2022.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
The bromodomain and extra-terminal (BET) proteins act as "readers" for lysine acetylation and facilitate the recruitment of transcriptional elongation complexes. BET protein is associated with transcriptional elongation of genes such as c-MYC and BCL-2, and is involved in the regulation of cell cycle and apoptosis. Meanwhile, BET inhibitors (BETi) have regulatory effects on immune checkpoints, immune cells, and cytokine expression. The role of BET proteins and BETi in a variety of tumors has been studied. This paper reviews the recent research progress of BET and BETi in hematologic tumors (mainly leukemia, lymphoma and multiple myeloma) from cellular level studies, animal studies, clinical trials, drug combination, etc. BETi has a promising future in hematologic tumors, and future research directions may focus on the combination with other drugs to improve the efficacy.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhi-Gang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan-Hong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Li-Juan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Lian-Sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
5
|
Ruan L, Lei J, Yuan Y, Li H, Yang H, Wang J, Zhang Q. MIR31HG, a potential lncRNA in human cancers and non-cancers. Front Genet 2023; 14:1145454. [PMID: 37636269 PMCID: PMC10449471 DOI: 10.3389/fgene.2023.1145454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Long non-coding RNAs have recently attracted considerable attention due to their aberrant expression in human diseases. LncMIR31HG is a novel lncRNA that is abnormally expressed in multiple diseases and implicated in various stages of disease progression. A large proportion of recent studies have indicated that MIR31HG has biological functions by triggering various signalling pathways in the pathogenesis of human diseases, especially cancers. More importantly, the abnormal expression of MIR31HG makes it a potential biomarker in diagnosis and prognosis, as well as a promising target for treatments. This review aims to systematically summarize the gene polymorphism, expression profiles, biological roles, underlying mechanisms, and clinical applications of MIR31HG in human diseases.
Collapse
Affiliation(s)
- Luxi Ruan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lei
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Yuan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huizi Li
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quanan Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Schreibing F, Anslinger TM, Kramann R. Fibrosis in Pathology of Heart and Kidney: From Deep RNA-Sequencing to Novel Molecular Targets. Circ Res 2023; 132:1013-1033. [PMID: 37053278 DOI: 10.1161/circresaha.122.321761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Diseases of the heart and the kidney, including heart failure and chronic kidney disease, can dramatically impair life expectancy and the quality of life of patients. The heart and kidney form a functional axis; therefore, functional impairment of 1 organ will inevitably affect the function of the other. Fibrosis represents the common final pathway of diseases of both organs, regardless of the disease entity. Thus, inhibition of fibrosis represents a promising therapeutic approach to treat diseases of both organs and to resolve functional impairment. However, despite the growing knowledge in this field, the exact pathomechanisms that drive fibrosis remain elusive. RNA-sequencing approaches, particularly single-cell RNA-sequencing, have revolutionized the investigation of pathomechanisms at a molecular level and facilitated the discovery of disease-associated cell types and mechanisms. In this review, we give a brief overview over the evolution of RNA-sequencing techniques, summarize most recent insights into the pathogenesis of heart and kidney fibrosis, and discuss how transcriptomic data can be used, to identify new drug targets and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Felix Schreibing
- Institute of Experimental Medicine and Systems Biology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Teresa M Anslinger
- Institute of Experimental Medicine and Systems Biology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands (R.K.)
| |
Collapse
|
7
|
Changizian M, Nourisanami F, Hajpoor V, Parvaresh M, Bahri Z, Motovali-Bashi M. LINC00467: A key oncogenic long non-coding RNA. Clin Chim Acta 2022; 536:112-125. [PMID: 36122666 DOI: 10.1016/j.cca.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
The significance of long non-coding RNAs (lncRNAs) in the development and progression of human cancers has attracted increasing attention in recent years of investigations. Having versatile interactions and diverse functions, lncRNAs can act as oncogenes or tumor-suppressors to actively regulate cell proliferation, survival, stemness, drug resistance, invasion and metastasis. LINC00467, an oncogenic member of long intergenic non-coding RNAs, is upregulated in numerous malignancies and its high expression is often related to poor clinicopathological features. LINC00467 facilitates the progression of cancer via sponging tumor-suppressive microRNAs, inhibiting cell death cascade, modulating cell cycle controllers, and regulating signalling pathways including AKT, STAT3, NF-κB and Wnt/β-catenin. A growing number of studies have revealed that LINC00467 may serve as a novel prognostic biomarker and its inhibitory targeting has a valuable therapeutic potential to suppress the malignant phenotypes of cancer cells. In the present review, we discuss the importance of LINC00467 and provide a comprehensive collection of its functions and molecular mechanisms in a variety of cancer types.
Collapse
Affiliation(s)
- Mohammad Changizian
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Farahdokht Nourisanami
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Vida Hajpoor
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, km 15, Tehran - Karaj Highway, Tehran 14965/161, Iran
| | - Maryam Parvaresh
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Zahra Bahri
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Majid Motovali-Bashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| |
Collapse
|
8
|
Pan J, Cai X, Zheng X, Zhu X, Feng J, Wang X. Luteolin inhibits viability, migration, angiogenesis and invasion of non-small cell lung cancer vascular endothelial cells via miR-133a-3p/purine rich element binding protein B-mediated MAPK and PI3K/Akt signaling pathways. Tissue Cell 2022; 75:101740. [PMID: 35101688 DOI: 10.1016/j.tice.2022.101740] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Luteolin inhibits tumorigenesis of non-small cell lung cancer (NSCLC), but its mechanism still needs to be clarified. We hereby explored the effects of luteolin in vascular endothelial cells of NSCLC (NSCLC-VECs). After extraction and identification of NSCLC-VECs, cells were treated with luteolin and transfected. The viability, migration, angiogenesis and invasion of the cells were measured. The levels of miR-133a-3p, purine rich element binding protein B (PURB), vascular endothelial growth factor (VEGF), phosphatidylinositol 3-kinase (PI3K), Akt, mitogen-activated protein kinases (MAPK), matrix metalloproteinase (MMP)-2/-9 were determined. The interaction relationship of miR-133a-3p and PURB was identified. Luteolin inhibited the viability, migration, angiogenesis and invasion of NSCLC-VECs yet up-regulated miR-133a-3p level, while miR-133a-3p inhibitor counteracted the repressive effect of luteolin on the viability, migration, angiogenesis, and invasion in NSCLC-VECs. Luteolin inhibited the expressions of migration- and invasion-associated proteins (VEGF, MMP-2 and MMP-9), PI3K/Akt and MAPK signaling pathways-related factors, while miR-133a-3p inhibitor reversed the inhibitory effect of Luteolin on NSCLC-VECs. Luteolin decreased the level of PURB, which was targeted by miR-133a-3p. ShPURB promoted miR-133a-3p level in NSCLC-VECs, while reversing the promoting effects of miR-133a-3p inhibitor on the migration, invasion, and levels of migration- and invasion-associated proteins, PI3K/Akt and MAPK pathways-associated factors in NSCLC-VECs. Collectively speaking, luteolin inhibits the migration and invasion of NSCLC-VECs via miR-133a-3p/PURB- mediated MAPK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Jie Pan
- Department of General Medicine, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiaoping Cai
- Department of Respiratory Medicine, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiao Zheng
- Department of Respiratory Medicine, Suichang County People's Hospital, China
| | - Xiaoyu Zhu
- Department of General Surgery, Lishui City People's Hospital, China
| | - Jihong Feng
- Department of Oncology, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiaoqiu Wang
- Department of Oncology, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China.
| |
Collapse
|
9
|
Chen ZQ, Cao ZR, Wang Y, Zhang X, Xu L, Wang YX, Chen Y, Yang CH, Ding J, Meng LH. Repressing MYC by targeting BET synergizes with selective inhibition of PI3Kα against B cell lymphoma. Cancer Lett 2022; 524:206-218. [PMID: 34688842 DOI: 10.1016/j.canlet.2021.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) δ-specific inhibitors have been approved for the therapy of certain types of B cell lymphoma (BCL). However, their clinical use is limited by the substantial toxicity and lack of efficacy in other types of BCL. Emerging evidence indicates that PI3Kα plays important roles in the progression of B cell lymphoma. In this study, we revealed that PI3Kα was important for the PI3K signaling and proliferation in BCL cells. A novel clinical PI3Kα-selective inhibitor CYH33 possessed superior activity against BCL compared to the marketed PI3Kα-selective inhibitor Alpelisib and PI3Kδ-selective inhibitor Idelalisib. Though CYH33 was able to inhibit PI3K/AKT signaling in tested BCL cells, differential activity against proliferation was observed. Transcriptome profiling revealed that CYH33 down-regulated "MYC-targets" gene set in sensitive but not resistant cells. CYH33 inhibited c-MYC transcription in sensitive cells, which was attributed to a decrease in acetylated H3 bound to the promoter and super-enhancer region of c-MYC. Accordingly, CYH33 treatment resulted in phosphorylation and proteasomal degradation of the histone acetyltransferase p300. An unbiased screening with drugs approved or in clinical trials for the therapy of BCL identified that the clinical BET (Bromodomain and Extra Terminal domain) inhibitor OTX015 significantly potentiated the activity of CYH33 against BCL in vitro and in vivo, which was associated with enhanced inhibition on c-MYC expression and induction of cell cycle arrest and apoptosis. Our findings provide the rationale of combined CYH33 with BET inhibitors for the therapy of B cell lymphoma.
Collapse
Affiliation(s)
- Zi-Qi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhe-Rui Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Zhang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lan Xu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Xiang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hao Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Ling-Hua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Chen CC, Hsu CC, Chen SL, Lin PH, Chen JP, Pan YR, Huang CE, Chen YJ, Chen YY, Wu YY, Yang MH. RAS Mediates BET Inhibitor-Endued Repression of Lymphoma Migration and Prognosticates a Novel Proteomics-Based Subgroup of DLBCL through Its Negative Regulator IQGAP3. Cancers (Basel) 2021; 13:cancers13195024. [PMID: 34638508 PMCID: PMC8508075 DOI: 10.3390/cancers13195024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The inhibitors of BET proteins represent a promising class of therapeutic agents that target the oncogenic activity of MYC and repress DLBCL cell migration, but the mechanism of such repression remains elusive. Herein, we found that BET inhibitor JQ1 abrogated the amoeboid movement of DLBCL cells through a small GTPase-driven mechanism, including both restrained RAS signaling and MYC-mediated suppression of GTP-RhoA activity. BET inhibition drastically increased the expression of a GTPase regulatory protein, the IQ motif containing GTPase activating protein 3 (IQGAP3), in DLBCL. Proteomics-based re-stratification identified a specific subgroup of DLBCL patients whose tumors harbored an enhanced PI3K activity and had an inferior survival, whereas a lower IQGAP3 expression level further portended a very dismal outcome for those patients. The inhibitors of both BET and RAS (through attenuated PI3K signaling) activities effectively ameliorated the outspread of in vivo DLBCL tumors, indicating the potential of their synergism in the treatment of specific DLBCL subtypes. Abstract Phenotypic heterogeneity and molecular diversity make diffuse large B-cell lymphoma (DLBCL) a challenging disease. We recently illustrated that amoeboid movement plays an indispensable role in DLBCL dissemination and inadvertently identified that the inhibitor of bromodomain and extra-terminal (BET) proteins JQ1 could repress DLBCL migration. To explore further, we dissected the impacts of BET inhibition in DLBCL. We found that JQ1 abrogated amoeboid movement of DLBCL cells through both restraining RAS signaling and suppressing MYC-mediated RhoA activity. We also demonstrated that BET inhibition resulted in the upregulation of a GTPase regulatory protein, the IQ motif containing GTPase activating protein 3 (IQGAP3). IQGAP3 similarly exhibited an inhibitory effect on RAS activity in DLBCL cells. Through barcoded mRNA/protein profiling in clinical samples, we identified a specific subgroup of DLBCL tumors with enhanced phosphatidylinositol-3-kinase (PI3K) activity, which led to an inferior survival in these patients. Strikingly, a lower IQGAP3 expression level further portended those with PI3K-activated DLBCL a very dismal outcome. The inhibition of BET and PI3K signaling activity led to effective suppression of DLBCL dissemination in vivo. Our study provides an important insight into the ongoing efforts of targeting BET proteins as a therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Sung-Lin Chen
- Institute of Biotechnology in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Po-Han Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ju-Pei Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yi-Ru Pan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Bashir R, Ahmad Zargar O, Hamid Dar A, Yedukondalu N, Parvaiz Q, Hamid R. The modulation of PI3K/Akt pathway by 3β hydroxylup-12-en-28-oic acid isolated from Thymus linearis induces cell death in HCT-116 cells. Chem Biol Drug Des 2021; 99:162-178. [PMID: 34558199 DOI: 10.1111/cbdd.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022]
Abstract
The presence of intricate carbon skeletons in natural compounds enhances their bioactivity spectrum with unique modes of action at several targets in various dreadful diseases like cancer. The present study was designed to purify the molecules from Thymus linearis and elucidate their antiproliferative activity. The compounds were isolated from the active methanolic extract of Thymus linearis through column chromatography and characterized by various spectroscopic techniques. Antiproliferative activity of isolated compounds was evaluated using MTT assay on cancer and normal cell lines. Mechanism of cell death was elucidated using flow cytometric, microscopic, and Western blot analysis. Four compounds, Sitosterol, Chrysin, 3β-hydroxylup-12-en-28-oic acid (3BH), and β-Sitosterol glycoside, were isolated. Among these, 3BH was most potent antiproliferative agent across all cell lines under study, HCT-116 being the most affected one. 3BH was demonstrated to downregulate PI3Ksubunits (p110α and p85α), downstream pAktSer473 and prompted G1 phase cell cycle arrest. The cell cycle CDK inhibitor p27 and p21 were upregulated with simultaneous downregulation of cyclin D1 and cyclin E in HCT-116 cells. This was accompanied by apoptosis, as depicted by decrease in Bcl-2/Bax ratio, with increase in active caspases-3 and caspase-9, cleavage of PARP-1, the generation of reactive oxygen species (ROS), and the loss of mitochondrial membrane potential. The findings established that 3BH induced cell death in HCT-116 cells by modulating PI3K/Akt signaling axis, impeding cell cycle, and instigating apoptosis.
Collapse
Affiliation(s)
- Rohina Bashir
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Ovais Ahmad Zargar
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Abid Hamid Dar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | | | - Qazi Parvaiz
- Microbial Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, India
| | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
12
|
Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv 2021; 4:4382-4392. [PMID: 32926124 DOI: 10.1182/bloodadvances.2020001685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-β expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-β/δ. Treatment with the selective PI3K-β/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.
Collapse
|
13
|
Vitale SR, Martorana F, Stella S, Motta G, Inzerilli N, Massimino M, Tirrò E, Manzella L, Vigneri P. PI3K inhibition in breast cancer: Identifying and overcoming different flavors of resistance. Crit Rev Oncol Hematol 2021; 162:103334. [PMID: 33865994 DOI: 10.1016/j.critrevonc.2021.103334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is commonly deregulated in many human tumors, including breast cancer. Somatic mutations of the PI3K alpha catalytic subunit (PIK3CA) are the most common cause of pathway hyperactivation. Hence, several PI3K inhibitors have been investigated with one of them, alpelisib, recently approved for the treatment of endocrine sensitive, PIK3CA mutated, metastatic breast cancer. Unfortunately, all patients receiving a PI3K inhibitor eventually develop resistance to these compounds. Mechanisms of resistance include oncogenic PI3K alterations, pathway reactivation through upstream or downstream effectors and enhancement of parallel pro-survival pathways. We review the prognostic and predictive role of PI3K alterations in breast cancer, focusing on resistance to PI3K inhibitors and on biomarkers with potential clinical relevance. We also discuss combination strategies that may overcome resistance to PI3K inhibitors, thus increasing the efficacy of these drugs in breast cancer.
Collapse
Affiliation(s)
- Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Gianmarco Motta
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Nicola Inzerilli
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy.
| |
Collapse
|
14
|
du Plessis M, Davis T, Loos B, Pretorius E, de Villiers WJS, Engelbrecht AM. Molecular regulation of autophagy in a pro-inflammatory tumour microenvironment: New insight into the role of serum amyloid A. Cytokine Growth Factor Rev 2021; 59:71-83. [PMID: 33727011 DOI: 10.1016/j.cytogfr.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Chronic inflammation, systemic or local, plays a vital role in tumour progression and metastasis. Dysregulation of key physiological processes such as autophagy elicit unfavourable immune responses to induce chronic inflammation. Cytokines, growth factors and acute phase proteins present in the tumour microenvironment regulate inflammatory responses and alter crosstalk between various signalling pathways involved in the progression of cancer. Serum amyloid A (SAA) is a key acute phase protein secreted by the liver during the acute phase response (APR) following infection or injury. However, cancer and cancer-associated cells produce SAA, which when present in high levels in the tumour microenvironment contributes to cancer initiation, progression and metastasis. SAA can activate several signalling pathways such as the PI3K and MAPK pathways, which are also known modulators of the intracellular degradation process, autophagy. Autophagy can be regarded as having a double edged sword effect in cancer. Its dysregulation can induce malignant transformation through metabolic stress which manifests as oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. On the other hand, autophagy can promote cancer survival during metabolic stress, hypoxia and senescence. Autophagy has been utilised to promote the efficiency of chemotherapeutic agents and can either be inhibited or induced to improve treatment outcomes. This review aims to address the known mechanisms that regulate autophagy as well as illustrating the role of SAA in modulating these pathways and its clinical implications for cancer therapy.
Collapse
Affiliation(s)
- M du Plessis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa.
| | - T Davis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - E Pretorius
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - W J S de Villiers
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| | - A M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
15
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
16
|
Chaturvedi NK, Kling MJ, Griggs CN, Kesherwani V, Shukla M, McIntyre EM, Ray S, Liu Y, McGuire TR, Sharp JG, Band H, Joshi SS, Coulter DW. A Novel Combination Approach Targeting an Enhanced Protein Synthesis Pathway in MYC-driven (Group 3) Medulloblastoma. Mol Cancer Ther 2020; 19:1351-1362. [PMID: 32371591 DOI: 10.1158/1535-7163.mct-19-0996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
The MYC oncogene is frequently amplified in patients with medulloblastoma, particularly in group 3 patients, who have the worst prognosis. mTOR signaling-driven deregulated protein synthesis is very common in various cancers, including medulloblastoma, that can promote MYC stabilization. As a transcription factor, MYC itself is further known to regulate transcription of several components of protein synthesis machinery, leading to an enhanced protein synthesis rate and proliferation. Thus, inhibiting enhanced protein synthesis by targeting the MYC and mTOR pathways together may represent a highly relevant strategy for the treatment of MYC-driven medulloblastoma. Here, using siRNA and small-molecule inhibitor approaches, we evaluated the effects of combined inhibition of MYC transcription and mTOR signaling on medulloblastoma cell growth/survival and associated molecular mechanism(s) in MYC-amplified (group 3) medulloblastoma cell lines and xenografts. Combined inhibition of MYC and mTOR synergistically suppressed medulloblastoma cell growth and induced G1 cell-cycle arrest and apoptosis. Mechanistically, the combined inhibition significantly downregulated the expression levels of key target proteins of MYC and mTOR signaling. Our results with RNA-sequencing revealed that combined inhibition synergistically modulated global gene expression including MYC/mTOR components. In addition, the combination treatment significantly delayed tumor growth and prolonged survival of MYC-amplified medulloblastoma xenografted mice by downregulating expression of MYC and the key downstream components of mTOR signaling, compared with single-agent therapy. Together, our findings demonstrated that dual inhibition of MYC (transcription) and mTOR (translation) of the protein synthesis pathway can be a novel therapeutic approach against MYC-driven medulloblastoma.
Collapse
Affiliation(s)
| | - Matthew J Kling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Connor N Griggs
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Varun Kesherwani
- Child Health Research Institute Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Erin M McIntyre
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sutapa Ray
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy R McGuire
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - J Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Don W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
17
|
Transcriptional Regulation of Genes by Ikaros Tumor Suppressor in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21041377. [PMID: 32085659 PMCID: PMC7073093 DOI: 10.3390/ijms21041377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of oncogenic gene expression by transcription factors that function as tumor suppressors is one of the major mechanisms that regulate leukemogenesis. Understanding this complex process is essential for explaining the pathogenesis of leukemia as well as developing targeted therapies. Here, we provide an overview of the role of Ikaros tumor suppressor and its role in regulation of gene transcription in acute leukemia. Ikaros (IKZF1) is a DNA-binding protein that functions as a master regulator of hematopoiesis and the immune system, as well as a tumor suppressor in acute lymphoblastic leukemia (ALL). Genetic alteration or functional inactivation of Ikaros results in the development of high-risk leukemia. Ikaros binds to the specific consensus binding motif at upstream regulatory elements of its target genes, recruits chromatin-remodeling complexes and activates or represses transcription via chromatin remodeling. Over the last twenty years, a large number of Ikaros target genes have been identified, and the role of Ikaros in the regulation of their expression provided insight into the mechanisms of Ikaros tumor suppressor function in leukemia. Here we summarize the role of Ikaros in the regulation of the expression of the genes whose function is critical for cellular proliferation, development, and progression of acute lymphoblastic leukemia.
Collapse
|
18
|
Arafeh R, Samuels Y. PIK3CA in cancer: The past 30 years. Semin Cancer Biol 2019; 59:36-49. [DOI: 10.1016/j.semcancer.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
|
19
|
Elmadani M, Khan S, Tenhunen O, Magga J, Aittokallio T, Wennerberg K, Kerkelä R. Novel Screening Method Identifies PI3Kα, mTOR, and IGF1R as Key Kinases Regulating Cardiomyocyte Survival. J Am Heart Assoc 2019; 8:e013018. [PMID: 31617439 PMCID: PMC6898841 DOI: 10.1161/jaha.119.013018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Small molecule kinase inhibitors (KIs) are a class of agents currently used for treatment of various cancers. Unfortunately, treatment of cancer patients with some of the KIs is associated with cardiotoxicity, and there is an unmet need for methods to predict their cardiotoxicity. Here, we utilized a novel computational method to identify protein kinases crucial for cardiomyocyte viability. Methods and Results One hundred forty KIs were screened for their toxicity in cultured neonatal cardiomyocytes. The kinase targets of KIs were determined based on integrated data from binding assays. The key kinases mediating the toxicity of KIs to cardiomyocytes were identified by using a novel machine learning method for target deconvolution that combines the information from the toxicity screen and from the kinase profiling assays. The top kinases identified by the model were phosphoinositide 3‐kinase catalytic subunit alpha, mammalian target of rapamycin, and insulin‐like growth factor 1 receptor. Knockdown of the individual kinases in cardiomyocytes confirmed their role in regulating cardiomyocyte viability. Conclusions Combining the data from analysis of KI toxicity on cardiomyocytes and KI target profiling provides a novel method to predict cardiomyocyte toxicity of KIs.
Collapse
Affiliation(s)
- Manar Elmadani
- Research Unit of Biomedicine Department of Pharmacology and Toxicology University of Oulu Finland
| | - Suleiman Khan
- Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland
| | - Olli Tenhunen
- Department of Oncology and Radiotherapy Oulu University Hospital University of Oulu Finland
| | - Johanna Magga
- Research Unit of Biomedicine Department of Pharmacology and Toxicology University of Oulu Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine Department of Pharmacology and Toxicology University of Oulu Finland.,Medical Research Center Oulu Oulu University Hospital and University of Oulu Finland
| |
Collapse
|
20
|
Wu CH, Hwang MJ. Risk stratification for lung adenocarcinoma on EGFR and TP53 mutation status, chemotherapy, and PD-L1 immunotherapy. Cancer Med 2019; 8:5850-5861. [PMID: 31407494 PMCID: PMC6792489 DOI: 10.1002/cam4.2492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
The overall survival rates for lung cancer remain unsatisfactorily low, even for patients with biomarkers for which target therapies or immunotherapies are recommended. Better identification of at‐risk patients is needed to achieve more effective personalized treatment. Here, we derived a risk‐stratifying gene signature consisting of five genes that had the greatest differential expression by stage from lung adenocarcinoma (LUAD) transcriptomes. The new gene signature enabled survival prognosis for multiple LUAD datasets from different platforms of transcriptomics and risk stratification for patients with and without a mutation in TP53 or EGFR, with high and low levels of PD‐L1, and with and without adjuvant chemotherapy treatment. Using these evaluations, it was also shown to be more robust compared to several other gene signatures. Functional analysis of the five genes and their protein‐protein interaction partners indicated that they are functionally enriched in cell cycle, endocytosis, and EGFR regulation, which are biological processes associated with lung cancer and drug resistance. Extensive discussions on related experimental studies suggest that the five genes are novel and sensible targets for developing new drugs and/or tackling drug resistance problems for LUAD.
Collapse
Affiliation(s)
- Chih-Hsun Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
p110γ deficiency protects against pancreatic carcinogenesis yet predisposes to diet-induced hepatotoxicity. Proc Natl Acad Sci U S A 2019; 116:14724-14733. [PMID: 31266893 DOI: 10.1073/pnas.1813012116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor survival and resistance to conventional therapies. PI3K signaling is implicated in both disease initiation and progression, and specific inhibitors of selected PI3K p110 isoforms for managing solid tumors are emerging. We demonstrate that increased activation of PI3K signals cooperates with oncogenic Kras to promote aggressive PDAC in vivo. The p110γ isoform is overexpressed in tumor tissue and promotes carcinogenesis via canonical AKT signaling. Its selective blockade sensitizes tumor cells to gemcitabine in vitro, and genetic ablation of p110γ protects against Kras-induced tumorigenesis. Diet/obesity was identified as a crucial means of p110 subunit up-regulation, and in the setting of a high-fat diet, p110γ ablation failed to protect against tumor development, showing increased activation of pAKT and hepatic damage. These observations suggest that a careful and judicious approach should be considered when targeting p110γ for therapy, particularly in obese patients.
Collapse
|
22
|
Chokeshaiusaha K, Puthier D, Nguyen C, Sudjaidee P, Sananmuang T. Factor Analysis for Bicluster Acquisition (FABIA) revealed vincristine-sensitive transcript pattern of canine transmissible venereal tumors. Heliyon 2019; 5:e01558. [PMID: 31193204 PMCID: PMC6520609 DOI: 10.1016/j.heliyon.2019.e01558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Chemotherapeutic treatment for Canine transmissible venereal tumor (CTVT) commonly relies on vincristine administration. Since the treatment outcomes can vary among CTVT cases, gaining insight into the tumor cell mechanisms influencing vincristine's potency should render veterinarians novel knowledge to enhance its therapeutic effect. This study aimed to attain such knowledge from a meta-analysis of CTVT mRNA sequencing (mRNA-seq) transcriptome data using Factor Analysis for Bicluster Acquisition (FABIA) biclustering. FABIA biclustering identified 459 genes consistently expressed among mRNA-seq transcription profiling of CTVT samples regressed by vincristine. These genes were also differentially expressed from those of progressive CTVT (FDR ≤ 0.001). Enrichment analysis illustrated the affiliation of these genes with "Antigen presentation" and "Lysosome" GO terms (FDR ≤ 0.05). Several genes in "Lysosome" term involved 5 cell mechanisms-antigen presentation, autophagy, cell-adhesion, lysosomal membrane permeabilization (LMP), and PI3K/mTOR signaling. This study integrated FABIA biclustering in CTVT transcriptome analysis to gain insight into cell mechanisms responsible for vincristine-sensitive characteristics of the tumor, in order to identify new molecular targets augmenting therapeutic effect of vincristine. Interestingly, the analysis indicated LMP targeting by lysosome destabilizing agent-siramesine as the promising vincristine's enhancer for future study. As far as we know, this is the first canine tumor transcriptomic meta-analysis applying FABIA biclustering for the betterment of future CTVT therapy. This study hereby provided an interesting manifestation to acquire such knowledge in other canine neoplasia.
Collapse
Affiliation(s)
- K. Chokeshaiusaha
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - D. Puthier
- Aix Marseille Univ, TAGC INSERM UMR 1090, Marseille, France
| | - C. Nguyen
- Aix Marseille Univ, TAGC INSERM UMR 1090, Marseille, France
| | - P. Sudjaidee
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - T. Sananmuang
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
- Corresponding author.
| |
Collapse
|
23
|
Sheng S, Margarida Bernardo M, Dzinic SH, Chen K, Heath EI, Sakr WA. Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review. Cancer Metastasis Rev 2019; 37:655-663. [PMID: 30484007 DOI: 10.1007/s10555-018-9767-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The predominant cause of cancer mortality is metastasis. The major impediment to cancer cure is the intrinsic or acquired resistance to currently available therapies. Cancer is heterogeneous at the genetic, epigenetic, and metabolic levels. And, while a molecular-targeted drug may be pathway-precise, it can still fail to achieve wholesome cancer-precise toxicity. In the current review, we discuss the strategic differences between targeting the strengths of cancer cells in phenotypic plasticity and heterogeneity and targeting shared vulnerabilities of cancer cells such as the compromised integrity of membranous organelles. To better recapitulate subpopulations of cancer cells in different phenotypic and functional states, we developed a schematic combination of 2-dimensional culture (2D), 3-dimmensional culture in collagen I (3D), and mammosphere culture for stem cells (mammosphere), designated as Scheme 2D/3D/mammosphere. We investigated how the tumor suppressor maspin may limit carcinoma cell plasticity and affect their context-dependent response to drugs of different mechanisms including docetaxel, histone deacetylase (HDAC) inhibitor MS-275, and ionophore antibiotic salinomycin. We showed that tumor cell phenotypic plasticity is not an exclusive attribute to cancer stem cells. Nonetheless, three subpopulations of prostate cancer cells, enriched through Scheme 2D/3D/mammosphere, show qualitatively different drug responses. Interestingly, salinomycin was the only drug that effectively killed all three cancer cell subpopulations, irrespective of their capacity of stemness. Further, Scheme 2D/3D/mammosphere may be a useful model to accelerate the screening for curative cancer drugs while avoiding costly characterization of compounds that may have only selective toxicity to some, but not all, cancer cell subpopulations.
Collapse
Affiliation(s)
- Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kang Chen
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Elisabeth I Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Wael A Sakr
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
24
|
Molecular Research in Chronic Thromboembolic Pulmonary Hypertension. Int J Mol Sci 2019; 20:ijms20030784. [PMID: 30759794 PMCID: PMC6387321 DOI: 10.3390/ijms20030784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic Thromboembolic Pulmonary Hypertension (CTEPH) is a debilitating disease, for which the underlying pathophysiological mechanisms have yet to be fully elucidated. Occurrence of a pulmonary embolism (PE) is a major risk factor for the development of CTEPH, with non-resolution of the thrombus being considered the main cause of CTEPH. Polymorphisms in the α-chain of fibrinogen have been linked to resistance to fibrinolysis in CTEPH patients, and could be responsible for development and disease progression. However, it is likely that additional genetic predisposition, as well as genetic and molecular alterations occurring as a consequence of tissue remodeling in the pulmonary arteries following a persistent PE, also play an important role in CTEPH. This review summarises the current knowledge regarding genetic differences between CTEPH patients and controls (with or without pulmonary hypertension). Mutations in BMPR2, differential gene and microRNA expression, and the transcription factor FoxO1 have been suggested to be involved in the processes underlying the development of CTEPH. While these studies provide the first indications regarding important dysregulated pathways in CTEPH (e.g., TGF-β and PI3K signaling), additional in-depth investigations are required to fully understand the complex processes leading to CTEPH.
Collapse
|
25
|
ALK positively regulates MYCN activity through repression of HBP1 expression. Oncogene 2018; 38:2690-2705. [PMID: 30538293 DOI: 10.1038/s41388-018-0595-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/03/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential. We show that mutant ALK downregulates the 'HMG-box transcription factor 1' (HBP1) through the PI3K-AKT-FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 itself is under negative control of MYCN through miR-17~92. Combined targeting of HBP1 by PI3K antagonists and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly reduces tumor growth, suggesting a novel targeted therapy option for high-risk neuroblastoma.
Collapse
|
26
|
Kim SR, Lewis JM, Cyrenne BM, Monico PF, Mirza FN, Carlson KR, Foss FM, Girardi M. BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition. Oncotarget 2018; 9:29193-29207. [PMID: 30018745 PMCID: PMC6044378 DOI: 10.18632/oncotarget.25670] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
While several systemic therapies are approved for cutaneous T cell lymphoma (CTCL), a non-Hodgkin lymphoma of skin-homing T cells that may involve lymph nodes and peripheral blood in advanced stages, relapses are common. Mutational analysis of CTCL cells has revealed frequent amplification of the MYC oncogene, and bromodomain and extraterminal (BET) protein inhibitors have been shown to repress MYC expression in various malignancies. Towards a potential novel therapy, we thus sought to examine the effect of BET inhibition on CTCL cells in vitro. Each of the four tested BET inhibitors (JQ1, ABBV-075, I-BET762, CPI-0610) consistently induced dose-dependent decreases in viability of isolated patient-derived CTCL cells and established CTCL cell lines (MyLa, Sez4, HH, Hut78). This effect was synergistically potentiated by combination of BET inhibition with BCL2 inhibition (e.g. venetoclax) or histone deacetylase (HDAC) inhibition (e.g. vorinostat or romidepsin). There was also a marked increase in caspase 3/7 activation when JQ1 was combined with either vorinostat or romidepsin, confirming that the observed synergies are due in major part to induction of apoptosis. Furthermore, MYC and BCL2 expression were each synergistically repressed when CTCL cells were treated with JQ1 plus HDAC inhibitors, suggesting cooperative activities at the level of epigenetic regulation. Taken together, these data indicate that targeting BET proteins in CTCL represents a promising novel therapeutic strategy that may be substantially potentiated by combination with BCL2 or HDAC inhibition.
Collapse
Affiliation(s)
- Sa Rang Kim
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benoit M Cyrenne
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Patrick F Monico
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fatima N Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Francine M Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
27
|
Hitting two oncogenic machineries in cancer cells: cooperative effects of the multi-kinase inhibitor ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells. Oncotarget 2018; 9:26491-26506. [PMID: 29899872 PMCID: PMC5995173 DOI: 10.18632/oncotarget.25474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
In recent years, numerous new targeted drugs, including multi-kinase inhibitors and epigenetic modulators have been developed for cancer treatment. Ponatinib blocks a variety of tyrosine kinases including ABL and fibroblast growth factor receptor (FGFR), and the BET bromodomain (BRD) antagonists JQ1 and dBET1 impede MYC oncogene expression. Both drugs have demonstrated substantial anti-cancer efficacy against several hematological malignancies. Solid tumors, on the other hand, although frequently driven by FGFR and/or MYC, are often unresponsive to these drugs. This is due, at least in part, to compensatory feedback-loops in the kinome and transcription network of these tumors, which are activated in response to drug exposure. Therefore, we hypothesized that the combination of the multi-kinase inhibitor ponatinib with transcription modulators such as JQ1 or dBET1 might overcome this therapeutic recalcitrance. Using 3H-thymidine uptake, cell cycle analysis, and caspase-3 or Annexin V labeling, we demonstrate that single drugs induce moderate dose-dependent growth-inhibition and/or apoptosis in colon (HCT116, HT29), breast (MCF-7, SKBR3) and ovarian (A2780, SKOV3) cancer cells. Ponatinib elicited primarily apoptosis, while JQ1 and dBET1 caused G0/G1 cell cycle arrest and very mild cell death. Phospho-FGFR and MYC, major targets of ponatinib and BET inhibitors, were downregulated after treatment with single drugs. Remarkably, ponatinib was found to sensitize cells to BET antagonists by enhancing apoptotic cell death, and this effect was associated with downregulation of MYC. In summary, our data shows that ponatinib sensitizes colon, breast, and ovarian cancer cells to BET bromodomain inhibitors. Further studies are warranted to determine the clinical value of this phenomenon.
Collapse
|
28
|
Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol 2018; 28:1776-1787. [PMID: 28838216 DOI: 10.1093/annonc/mdx157] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetics has been defined as 'the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states.' Currently, several classes of anticancer drugs function at the epigenetic level, including inhibitors of DNA methyltransferase, histone deacetylase (HDAC), lysine-specific demethylase 1, zeste homolog 2, and bromodomain and extra-terminal motif (BET) proteins.BET proteins have multiple functions, including the initiation and elongation of transcription and cell cycle regulation. In recent years, inhibitors of BET proteins have been developed as anticancer agents. These inhibitors exhibit selectivity for tumor cells by preferentially binding to superenhancers, noncoding regions of DNA critical for the transcription of genes that determine a cell's identity. Preclinical research on BET inhibitors has identified them as a potential means of targeting MYC.Early clinical trials with BET inhibitors have had mixed results, with few responses in both hematologic and solid tumors that tend to be short-lived. Toxicities have included severe, thrombocytopenia, fatigue, nausea, vomiting, and diarrhea; GI side-effects, fatigue, and low-grade dysgeusia have limited compliance. However, preclinical data suggest that BET inhibitors may have a promising future in combination with other agents. They appear to be able to overcome resistance to targeted agents and have strong synergy with immune checkpoint inhibitors as well as with multiple epigenetic agents, particularly HDAC inhibitors. In many instances, BET and HDAC inhibitors were synergistic at reduced doses, suggesting a potential means of avoiding the overlapping toxicities of the two drug classes.BET inhibitors provide a novel approach to epigenetic anticancer therapy. However, to date they appear to have limited efficacy as single agents. A focus on BET inhibitors in combination with other drugs such as targeted and/or as other epigenetic agents is warranted, due to limited monotherapy activity, including pharmacodynamic correlatives differential activity amongst select drug combinations.
Collapse
Affiliation(s)
- D B Doroshow
- Section of Medical Oncology, Department of Medicine, Yale University and Yale Cancer Center, New Haven, USA
| | - J P Eder
- Section of Medical Oncology, Department of Medicine, Yale University and Yale Cancer Center, New Haven, USA
| | - P M LoRusso
- Section of Medical Oncology, Department of Medicine, Yale University and Yale Cancer Center, New Haven, USA
| |
Collapse
|
29
|
Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ, Menke-Van der Houven van Oordt CW, Jansen BHE, Moll AC, Dorsman JC, Castelijns JA, de Graaf P, de Jong MC. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 2018; 9:20134-20155. [PMID: 29732009 PMCID: PMC5929452 DOI: 10.18632/oncotarget.24893] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
With targeted treatments playing an increasing role in oncology, the need arises for fast non-invasive genotyping in clinical practice. Radiogenomics is a rapidly evolving field of research aimed at identifying imaging biomarkers useful for non-invasive genotyping. Radiogenomic genotyping has the advantage that it can capture tumor heterogeneity, can be performed repeatedly for treatment monitoring, and can be performed in malignancies for which biopsy is not available. In this systematic review of 187 included articles, we compiled a database of radiogenomic associations and unraveled networks of imaging groups and gene pathways oncology-wide. Results indicated that ill-defined tumor margins and tumor heterogeneity can potentially be used as imaging biomarkers for 1p/19q codeletion in glioma, relevant for prognosis and disease profiling. In non-small cell lung cancer, FDG-PET uptake and CT-ground-glass-opacity features were associated with treatment-informing traits including EGFR-mutations and ALK-rearrangements. Oncology-wide gene pathway analysis revealed an association between contrast enhancement (imaging) and the targetable VEGF-signalling pathway. Although the need of independent validation remains a concern, radiogenomic biomarkers showed potential for prognosis prediction and targeted treatment selection. Quantitative imaging enhanced the potential of multiparametric radiogenomic models. A wealth of data has been compiled for guiding future research towards robust non-invasive genomic profiling.
Collapse
Affiliation(s)
- Robin W Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul van Amstel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adrianus J de Langen
- Department of Respiratory Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernard H E Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Lai ZY, Yeo HY, Chen YT, Chang KM, Chen TC, Chuang YJ, Chang SJ. PI3K inhibitor enhances the cytotoxic response to etoposide and cisplatin in a newly established neuroendocrine cervical carcinoma cell line. Oncotarget 2018; 8:45323-45334. [PMID: 28484083 PMCID: PMC5542189 DOI: 10.18632/oncotarget.17335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/12/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Neuroendocrine cervical carcinoma (NECC) is a rare and aggressive subtype of cervical cancer. To date, no NECC cell-based model is available, which hinders the development of new therapeutic strategies for NECC. In this study, we derived a new NECC cell line from an ex vivo biopsy and used it to explore novel drug combination approach for NECC. RESULTS The stable HM-1 cell line displayed high expression levels of the neuroendocrine marker, synaptophysin. HM-1 cell transplantation could induce tumor growth in nude mice. As expected, the combination of etoposide and cisplatin synergistically inhibited HM-1 cell proliferation. Strikingly, when etoposide and cisplatin were combined with PI3K inhibitor BEZ235, the growth of HM-1 cells was significantly reduced. Taken together, the data implied the combination of etoposide and cisplatin with BEZ235 not only inhibited HM-1 cell proliferation but also increased cell apoptosis. MATERIALS AND METHODS A NECC tissue sample from a 75-year-old female patient was processed to derive a primary cell line annotated as HM-1. The features of HM-1 were analyzed to establish its characteristic profile. Next, HM-1 was treated with PI3K inhibitors, BKM120 and/or BEZ235, in combination with two well-known genotoxic drugs, etoposide and/or cisplatin, to evaluate which combination could serve as a more effective treatment approach. Their inhibiting effects on HM-1 were evaluated by cell viability, apoptosis, and target kinase expression. CONCLUSIONS The newly established NECC cell line HM-1 could serve as a cell-based model for NECC research. The synergistic drug combination of PI3K inhibitor with genotoxic drugs might become a potential new treatment strategy against NECC.
Collapse
Affiliation(s)
- Zih-Yin Lai
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Hsin-Yueh Yeo
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Ya-Tse Chen
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Kuo-Ming Chang
- Department of Pathology, Hsinchu MacKay Memorial Hospital, Hsinchu, 30071, Taiwan (R.O.C.)
| | - Tze-Chien Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, 10449, Taiwan (R.O.C.)
| | - Yung-Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, 30071, Taiwan (R.O.C.)
| |
Collapse
|
31
|
Qu X, Tang Y, Hua S. Immunological Approaches Towards Cancer and Inflammation: A Cross Talk. Front Immunol 2018; 9:563. [PMID: 29662489 PMCID: PMC5890100 DOI: 10.3389/fimmu.2018.00563] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
The inflammation is the protective response of the body against various harmful stimuli; however, the aberrant and inappropriate activation tends to become harmful. The acute inflammatory response tends to resolved once the offending agent is subside but this acute response becomes chronic in nature when the body is unable to successfully neutralized the noxious stimuli. This chronic inflammatory microenvironment is associated with the release of various pro-inflammatory and oncogenic mediators such as nitric oxide (NO), cytokines [IL-1β, IL-2, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)], growth factor, and chemokines. These mediators make the inflammatory microenvironment more vulnerable toward tumorigenesis. The pro-inflammatory mediators released during the chronic inflammation tends to induce several molecular signaling cascades such as nuclear factor kappa B, MAPKinase, nuclear factor erythroid 2-related factor 2, phosphoinositide-3-kinase, Janus kinases/STAT, Wnt/B-catenin, and cyclic AMP response element binding protein. The immune system and its components have a pleiotropic effect on inflammation and cancer progression. Immune components such as T cells, natural killer cells, macrophages, and neutrophils either inhibit or enhance tumor initiation depending on the type of tumor and immune cells involved. Tumor-associated macrophages and tumor-associated neutrophils are pro-tumorigenic cells highly prevalent in inflammation-mediated tumors. Similarly, presence of T regulatory (Treg) cells in an inflammatory and tumor setting suppresses the immune system, thus paving the way for oncogenesis. However, Treg cells also inhibit autoimmune inflammation. By contrast, cytotoxic T cells and T helper cells confer antitumor immunity and are associated with better prognosis in patients with cancer. Cytotoxic T cells inflict a direct cytotoxic effect on cells expressing oncogenic markers. Currently, several anti-inflammatory and antitumor therapies are under trials in which these immune cells are exploited. Adoptive cell transfer composed of tumor-infiltrating lymphocytes has been tried for the treatment of tumors after their ex vivo expansion. Mediators released by cells in a tumorigenic and inflammatory microenvironment cross talk with nearby cells, either promoting or inhibiting inflammation and cancer. Recently, several cytokine-based therapies are either being developed or are under trial to treat such types of manifestations. Monoclonal antibodies directed against TNF-α, VEGF, and IL-6 has shown promising results to ameliorate inflammation and cancer, while direct administration of IL-2 has been shown to cause tumor regression.
Collapse
Affiliation(s)
- Xinglong Qu
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Ying Tang
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Katoh T, Narita K. Total Syntheses of Liphagal: A Potent and Selective Phosphoinositide 3-Kinase α (PI3Kα) Inhibitor from the Marine Sponge Aka coralliphaga. HETEROCYCLES 2018. [DOI: 10.3987/rev-17-873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Bosic M, Kirchner M, Brasanac D, Leichsenring J, Lier A, Volckmar AL, Oliveira C, Buchhalter I, Stögbauer F, Zivkovic-Perisic S, Goeppert B, Schirmacher P, Penzel R, Endris V, Stenzinger A. Targeted molecular profiling reveals genetic heterogeneity of poromas and porocarcinomas. Pathology 2017; 50:327-332. [PMID: 29269125 DOI: 10.1016/j.pathol.2017.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
The genetic landscape of rare benign tumours and their malignant counterparts is still largely unexplored. While recent work showed that mutant HRAS is present in subsets of poromas and porocarcinomas, a more comprehensive genetic view on these rare adnexal neoplasms is lacking. Using high-coverage next generation sequencing, we investigated the mutational profile of 50 cancer-related genes in 12 cases (six poromas and six porocarcinomas). Non-synonymous mutations were found in two-thirds of both poromas and porocarcinomas. Hotspot HRAS mutations were identified in two poromas (p.G13R and p.Q61R) and one porocarcinoma (p.G13C). While in poromas only few cases showed single mutated genes, porocarcinomas showed greater genetic heterogeneity with up to six mutated genes per case. Recurrent TP53 mutations were found in all porocarcinomas that harboured mutated genes. Non-recurrent mutations in porocarcinomas were found in several additional tumour suppressors (RB1, APC, CDKN2A, and PTEN), and genes implicated in PI3K-AKT and MAPK signalling pathways (ABL1, PDGFRA, PIK3CA, HRAS, and RET). UV-associated mutations were found in TP53, APC, CDKN2A, PTEN, and RET. In conclusion, our study confirms and extends the spectrum of genetic lesions in poromas and porocarcinomas. While poromas exhibited only few mutations, which did not involve TP53, the majority of porocarcinomas harboured UV-mediated mutations in TP53 with some of these cases showing considerable genetic heterogeneity that may be clinically exploitable.
Collapse
Affiliation(s)
- Martina Bosic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Martina Kirchner
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Dimitrije Brasanac
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Amelie Lier
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | | | - Ivo Buchhalter
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | - Benjamin Goeppert
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Penzel
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|