1
|
Hamilton G, Hochmair MJ, Stickler S. Overcoming resistance in small-cell lung cancer. Expert Rev Respir Med 2024; 18:569-580. [PMID: 39099310 DOI: 10.1080/17476348.2024.2388288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) accounts for 15% of lung cancers and has a dismal prognosis due to early dissemination and acquired chemoresistance. The initial good response to chemotherapy is followed by refractory relapses within 1-2 years. Mechanisms leading to chemoresistance are not clear and progress is poor. AREAS COVERED This article reviews the current evidence of the resistance of SCLCs at the cellular level including alteration of key proteins and the possible presence of cancer stem cells (CSCs). Without compelling evidence for cellular mechanisms and clinical failures of novel approaches, the study of SCLC has advanced to the role of 3D tumor cell aggregates in chemoresistance. EXPERT OPINION The scarcity of viable tumor specimen from relapsed SCLC patients has hampered the investigations of acquired chemoresistance but a panel of nine SCLC circulating tumor cell (CTC) cell lines have revealed characteristics of SCLC in the advanced refractory states. The chemoresistance of relapsed SCLC seems to be linked to the spontaneous formation of large spheroids, termed tumorospheres, which contain resistant quiescent and hypoxic cells shielded by a physical barrier. So far, drugs to tackle large tumor spheroids are in preclinical and early clinical development.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J Hochmair
- Department of Pneumonology, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Huang X, Li J, Yang Y, Wang ZL, Yang XZ, Lu ZD, Xu CF. Lipid-assisted PEG- b-PLA nanoparticles with ultrahigh SN38 loading capability for efficient cancer therapy. Biomater Sci 2023; 11:7445-7457. [PMID: 37819252 DOI: 10.1039/d3bm01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The topoisomerase I inhibitor, 7-ethyl-10-hydroxycamptothecin (SN38), has demonstrated potent anticancer activity. However, its clinical application is hindered by its low solubility and high crystallization propensity, which further complicates its encapsulation into nanoparticles for systemic delivery. Herein, we explore the utilization of lipid-assisted poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PLA) nanoparticles to achieve ultrahigh loading capability for SN38. Through the introduction of cationic, anionic, or neutral lipids, the SN38 loading efficiency and loading capacity is elevated to >90% and >10% respectively. These lipids efficiently attenuate the intermolecular π-π stacking of SN38, thereby disrupting its crystalline structure. Moreover, we assess the therapeutic activity of SN38-loaded formulations in various tumor models and identify an anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG)-assisted formulation that exhibits the highest anticancer activity and has favorable biosafety. Overall, our findings present a simple and robust strategy to achieve ultrahigh loading efficiency of SN38 using commonly employed PEG-b-PLA nanoparticles, opening up a new avenue for the systemic delivery of SN38.
Collapse
Affiliation(s)
- Xiaoyi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
| | - Jieyi Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
| | - Yanfang Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
| | - Zi-Lu Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China.
| | - Xian-Zhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China.
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
3
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
4
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
5
|
HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis 2022; 13:929. [PMID: 36335088 PMCID: PMC9637177 DOI: 10.1038/s41419-022-05373-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.
Collapse
|
6
|
Bei Y, Chen X, Xu Q, Lv J, Hu J, Yang S. Apatinib weakens resistance of gastric cancer cells to paclitaxel by suppressing JAK/STAT3 signaling pathway. Drug Dev Res 2021; 83:379-388. [PMID: 34405891 DOI: 10.1002/ddr.21867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/16/2023]
Abstract
Apatinib has experienced a long-term study in enhancing the sensitivity of various cancer cells to chemotherapy drugs. Currently, researches show that apatinib could attenuate the resistance of gastric cancer (GC) cells to paclitaxel (PTX), but the mechanism has not been fully elucidated, which therefore was explored in this study. PTX-resistant GC cell, namely HGC-27R, was established by exposure to stepwise-increasing PTX. The cell viability of HGC-27 and HGC-27R under PTX or apatinib at different concentrations was assessed by CCK-8 assay, while scratching test and invasion assay were used for investigating the harmful influence of GC cells resistance to PTX. The function of apatinib in HGC-27R was studied by performing functional experiments (flow cytometry, scratching test, and invasion assay). Western blot was performed to measure the expressions of proteins concerning apoptosis, epithelial-mesenchymal transition and janus-activated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. PTX-resistant GC cell, namely HGC-27R, was successively constructed. HGC-27R cells showed resistance to PTX by promoting migratory and invasive capabilities. Apatinib not only inhibited cell viability of HGC-27 and HGC-27R, but also combined with PTX to suppress that of HGC-27R. Apatinib enhanced apoptosis, diminished migration and invasion of HGC-27R cells, elevated proapoptotic protein expression, and reduced Bcl-2, vimentin, snail, MMP-3, MMP-2, and MMP-9 expressions. The phosphorylation of JAK2 and STAT3 was repressed by apatinib. JAK2 partially reversed the effect of apatinib on enhancing sensitivity of GC cells to PTX. Apatinib strengthened sensitivity of GC cells to PTX by inhibiting JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yanping Bei
- Department of Radiotherapy, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xue Chen
- Department of Radiotherapy, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Quan Xu
- Department of Radiotherapy, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jiaming Lv
- Department of Radiotherapy, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jing Hu
- Department of Radiotherapy, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shaohui Yang
- Department of Anorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
7
|
Sun D, Nikonova AS, Zhang P, Deneka AY, Fitzgerald ME, Michael RE, Lee L, Lilly AC, Fisher SL, Phillips AJ, Nasveschuk CG, Proia DA, Tu Z, Golemis EA. Evaluation of the Small-molecule BRD4 Degrader CFT-2718 in Small-cell Lung Cancer and Pancreatic Cancer Models. Mol Cancer Ther 2021; 20:1367-1377. [PMID: 34045230 DOI: 10.1158/1535-7163.mct-20-0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 01/03/2023]
Abstract
Targeted, catalytic degradation of oncoproteins using heterobifunctional small molecules is an attractive modality, particularly for hematologic malignancies, which are often initiated by aberrant transcription factors and are challenging to drug with inhibitors. BRD4, a member of the bromodomain and extraterminal family, is a core transcriptional and epigenetic regulator that recruits the P-TEFb complex, which includes Cdk9 and cyclin T, to RNA polymerase II (pol II). Together, BRD4 and CDK9 phosphorylate serine 2 (pSer2) of heptad repeats in the C-terminal domain of RPB1, the large subunit of pol II, promote transcriptional elongation. Small-molecule degraders of BRD4 have shown encouraging efficacy in preclinical models for several tumor types but less efficacy in other cancers including small-cell lung cancer (SCLC) and pancreatic cancer. Here, we evaluated CFT-2718, a new BRD4-targeting degrader with enhanced catalytic activity and in vivo properties. In vivo, CFT-2718 has significantly greater efficacy than the CDK9 inhibitor dinaciclib in reducing growth of the LX-36 SCLC patient-derived xenograft (PDX) model and performed comparably to dinaciclib in limiting growth of the PNX-001 pancreatic PDX model. In vitro, CFT-2718 reduced cell viability in four SCLC and two pancreatic cancer models. In SCLC models, this activity significantly exceeded that of dinaciclib; furthermore, CFT-2718 selectively increased the expression of cleaved PARP, an indicator of apoptosis. CFT-2718 caused rapid BRD4 degradation and reduced levels of total and pSer2 RPB1 protein. These and other findings suggest that BRD-mediated transcriptional suppression merits further exploration in the setting of SCLC.
Collapse
Affiliation(s)
- Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Institute of Life Sciences, Jiangsu University, Jinkou District, Zhenjiang, Jiangsu, China
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Peishan Zhang
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Institute of Life Sciences, Jiangsu University, Jinkou District, Zhenjiang, Jiangsu, China
| | - Alexander Y Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Linda Lee
- C4 Therapeutics, Inc., Watertown, Massachusetts
| | - Anna C Lilly
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Jinkou District, Zhenjiang, Jiangsu, China.
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04134c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of how SMDCs work. Small molecule drugs are conjugated with the targeted ligand using pH sensitive linkers which allow the drug molecule to get released at lower lysosomal pH. It helps to accumulate the chemotherapeutic agents to be localized in the tumor environment upon cleaving of the pH-labile bonds.
Collapse
Affiliation(s)
- Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| |
Collapse
|
9
|
Vidhyasagar V, Haq SU, Lok BH. Patient-derived Xenograft Models of Small Cell Lung Cancer for Therapeutic Development. Clin Oncol (R Coll Radiol) 2020; 32:619-625. [PMID: 32563548 DOI: 10.1016/j.clon.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- V Vidhyasagar
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - S Ul Haq
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - B H Lok
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Perino S, Moreau B, Freda J, Cirello A, White BH, Quinn JM, Kriksciukaite K, Someshwar A, Romagnoli J, Robinson M, Movassaghian S, Cipriani T, Wooster R, Bilodeau MT, Whalen KA. Novel Miniaturized Drug Conjugate Leverages HSP90-driven Tumor Accumulation to Overcome PI3K Inhibitor Delivery Challenges to Solid Tumors. Mol Cancer Ther 2020; 19:1613-1622. [PMID: 32499300 DOI: 10.1158/1535-7163.mct-19-0964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/06/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022]
Abstract
The PI3K pathway is considered a master regulator for cancer due to its frequent activation, making it an attractive target for pharmacologic intervention. While substantial efforts have been made to develop drugs targeting PI3K signaling, few drugs have been able to achieve the inhibition necessary for effective tumor control at tolerated doses. HSP90 is a chaperone protein that is overexpressed and activated in many tumors and as a consequence, small-molecule ligands of HSP90 are preferentially retained in tumors up to 20 times longer than in normal tissue. We hypothesize that the generation of conjugates that use a HSP90-targeting ligand and a payload such as copanlisib, may open the narrow therapeutic window of this and other PI3K inhibitors. In support of this hypothesis, we have generated a HSP90-PI3K drug conjugate, T-2143 and utilizing xenograft models, demonstrate rapid and sustained tumor accumulation of the conjugate, deep pathway inhibition, and superior efficacy than the PI3K inhibitor on its own. Selective delivery of T-2143 and the masking of the inhibitor active site was also able to mitigate a potentially dose-limiting side effect of copanlisib, hyperglycemia. These data demonstrate that by leveraging the preferential accumulation of HSP90-targeting ligands in tumors, we can selectively deliver a PI3K inhibitor leading to efficacy in multiple tumor models without hyperglycemia in mice. These data highlight a novel drug delivery strategy that allows for the potential opening of a narrow therapeutic window through specific tumor delivery of anticancer payloads and reduction of toxicity.
Collapse
|
11
|
Zhu S, Shen Q, Gao Y, Wang L, Fang Y, Chen Y, Lu W. Design, Synthesis, and Biological Evaluation of HSP90 Inhibitor–SN38 Conjugates for Targeted Drug Accumulation. J Med Chem 2020; 63:5421-5441. [DOI: 10.1021/acs.jmedchem.0c00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Qianqian Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yinglei Gao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Yanfen Fang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
12
|
Abstract
DNA topoisomerases are enzymes that catalyze changes in the torsional and flexural strain of DNA molecules. Earlier studies implicated these enzymes in a variety of processes in both prokaryotes and eukaryotes, including DNA replication, transcription, recombination, and chromosome segregation. Studies performed over the past 3 years have provided new insight into the roles of various topoisomerases in maintaining eukaryotic chromosome structure and facilitating the decatenation of daughter chromosomes at cell division. In addition, recent studies have demonstrated that the incorporation of ribonucleotides into DNA results in trapping of topoisomerase I (TOP1)–DNA covalent complexes during aborted ribonucleotide removal. Importantly, such trapped TOP1–DNA covalent complexes, formed either during ribonucleotide removal or as a consequence of drug action, activate several repair processes, including processes involving the recently described nuclear proteases SPARTAN and GCNA-1. A variety of new TOP1 inhibitors and formulations, including antibody–drug conjugates and PEGylated complexes, exert their anticancer effects by also trapping these TOP1–DNA covalent complexes. Here we review recent developments and identify further questions raised by these new findings.
Collapse
Affiliation(s)
- Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacolgy & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
13
|
Deneka AY, Boumber Y, Beck T, Golemis EA. Tumor-Targeted Drug Conjugates as an Emerging Novel Therapeutic Approach in Small Cell Lung Cancer (SCLC). Cancers (Basel) 2019; 11:E1297. [PMID: 31484422 PMCID: PMC6769513 DOI: 10.3390/cancers11091297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
There are few effective therapies for small cell lung cancer (SCLC), a highly aggressive disease representing 15% of total lung cancers. With median survival <2 years, SCLC is one of the most lethal cancers. At present, chemotherapies and radiation therapy are commonly used for SCLC management. Few protein-targeted therapies have shown efficacy in improving overall survival; immune checkpoint inhibitors (ICIs) are promising agents, but many SCLC tumors do not express ICI targets such as PD-L1. This article presents an alternative approach to the treatment of SCLC: the use of drug conjugates, where a targeting moiety concentrates otherwise toxic agents in the vicinity of tumors, maximizing the differential between tumor killing and the cytotoxicity of normal tissues. Several tumor-targeted drug conjugate delivery systems exist and are currently being actively tested in the setting of SCLC. These include antibody-drug conjugates (ADCs), radioimmunoconjugates (RICs), small molecule-drug conjugates (SMDCs), and polymer-drug conjugates (PDCs). We summarize the basis of action for these targeting compounds, discussing principles of construction and providing examples of effective versus ineffective compounds, as established by preclinical and clinical testing. Such agents may offer new therapeutic options for the clinical management of this challenging disease in the future.
Collapse
Affiliation(s)
- Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia.
| | - Yanis Boumber
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tim Beck
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
14
|
Schulze AB, Evers G, Kerkhoff A, Mohr M, Schliemann C, Berdel WE, Schmidt LH. Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer. Cancers (Basel) 2019; 11:E690. [PMID: 31108964 PMCID: PMC6562929 DOI: 10.3390/cancers11050690] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. With a focus on histology, there are two major subtypes: Non-small cell lung cancer (NSCLC) (the more frequent subtype), and small cell lung cancer (SCLC) (the more aggressive one). Even though SCLC, in general, is a chemosensitive malignancy, relapses following induction therapy are frequent. The standard of care treatment of SCLC consists of platinum-based chemotherapy in combination with etoposide that is subsequently enhanced by PD-L1-inhibiting atezolizumab in the extensive-stage disease, as the addition of immune-checkpoint inhibition yielded improved overall survival. Although there are promising molecular pathways with potential therapeutic impacts, targeted therapies are still not an integral part of routine treatment. Against this background, we evaluated current literature for potential new molecular candidates such as surface markers (e.g., DLL3, TROP-2 or CD56), apoptotic factors (e.g., BCL-2, BET), genetic alterations (e.g., CREBBP, NOTCH or PTEN) or vascular markers (e.g., VEGF, FGFR1 or CD13). Apart from these factors, the application of so-called 'poly-(ADP)-ribose polymerases' (PARP) inhibitors can influence tumor repair mechanisms and thus offer new perspectives for future treatment. Another promising therapeutic concept is the inhibition of 'enhancer of zeste homolog 2' (EZH2) in the loss of function of tumor suppressors or amplification of (proto-) oncogenes. Considering the poor prognosis of SCLC patients, new molecular pathways require further investigation to augment our therapeutic armamentarium in the future.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
15
|
Kryeziu K, Bruun J, Guren TK, Sveen A, Lothe RA. Combination therapies with HSP90 inhibitors against colorectal cancer. Biochim Biophys Acta Rev Cancer 2019; 1871:240-247. [PMID: 30708039 DOI: 10.1016/j.bbcan.2019.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Oncogene stability and homeostasis mediated by the HSP90 chaperone is a crucial protection trait of cancer cells. Therefore, HSP90 represents an attractive therapeutic target for many cancers, including colorectal cancer. Although monotherapy has limited clinical efficacy, preclinical and early-phase clinical studies indicate improved antitumor activity when HSP90 inhibitors are combined with chemotherapies or targeted agents. This may be further improved with a biomarker-guided approach based on oncogenic HSP90 clients, or stratification based on the consensus molecular subtypes of colorectal cancer, suggesting a synergistic activity with 5-fluorouracil in preclinical models of the chemorefractory mesenchymal subtype. Furthermore, HSP90 inhibition may activate mechanisms to turn non-immunogenic tumors hot and improve their recognition by the immune system, suggesting synergy with immune checkpoint blockade.
Collapse
Affiliation(s)
- Kushtrim Kryeziu
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway
| | - Tormod K Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Heterogeneity of Small Cell Lung Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:41-57. [PMID: 31134494 DOI: 10.1007/978-3-030-14366-4_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small cell lung cancer, a subtype of lung cancer is an extremely malignant disease due to its metastases and recurrence. Patients with SCLC develop resistance to chemotherapy and the disease relapses. This relapse and resistance are attributed to the heterogeneity of SCLC. Various factors such as recurrent mutations in key regulatory genes such as TP53, RB1, and myc, epigenetic changes, and cancer stem cells contribute to the observed heterogeneity. Cancer stem cell models predict neuroendocrine origin of SCLC. Though an unambiguous established CSC marker has not been assigned, markers CD133, CD44 have been found associated with SCLC. Genetically engineered mouse models (GEMMs) allow the validation of driver mutations and are necessary for design of targeted therapy. This chapter outlines the factors contributing to SCLC heterogeneity, detection methods, and the current therapy trials.
Collapse
|
17
|
Miao Z, Hu Y, Zhang X, Yang X, Tang Y, Kang A, Zhu D. Screening and identification of ligand-protein interactions using functionalized heat shock protein 90-fluorescent mesoporous silica-indium phosphide/zinc sulfide quantum dot nanocomposites. J Chromatogr A 2018; 1562:1-11. [DOI: 10.1016/j.chroma.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023]
|
18
|
Hu Y, Miao ZY, Zhang XJ, Yang XT, Tang YY, Yu S, Shan CX, Wen HM, Zhu D. Preparation of Microkernel-Based Mesoporous (SiO2–CdTe–SiO2)@SiO2 Fluorescent Nanoparticles for Imaging Screening and Enrichment of Heat Shock Protein 90 Inhibitors from Tripterygium Wilfordii. Anal Chem 2018; 90:5678-5686. [DOI: 10.1021/acs.analchem.7b05295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Ojha R, Huang HL, HuangFu WC, Wu YW, Nepali K, Lai MJ, Su CJ, Sung TY, Chen YL, Pan SL, Liou JP. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur J Med Chem 2018; 150:667-677. [PMID: 29567459 DOI: 10.1016/j.ejmech.2018.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022]
Abstract
A series of 1-aroylindoline-hydroxamic acids have been synthesized in the present study. The results of the biological evaluation led to the identification of compound 12 as dual HDAC6/HSP90 inhibitor. Compound 12 displayed striking inhibitory effects towards the HDAC6 isoform and HSP 90 protein with IC50 values of 1.15 nM (HDAC6) and 46.3 nM (HSP90). Compound 12 also exhibited 113, 139 and 246 fold higher selectivity for HDAC6 over HDAC 1, HDAC 3 and HDAC 8 isoforms and was endowed with significant cytotoxic effects with GI50 values ranging 1.04-1.61 μM against lung A549, colorectal HCT116, leukemia HL60, and EGFR T790M mutant lung H1975 cell lines. Another interesting finding of the study was substantial cytotoxic effects of compounds particularly against lung H1975 (NSCLC) cell lines with IC50 = 0.26 μM which may be mediated through HSP90 inhibition. Compound 8 as such was devoid of HDAC inhibitory activity.
Collapse
Affiliation(s)
- Ritu Ojha
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Han-Li Huang
- TMU Biomedical Commercialization Center, Taipei, Taiwan
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Wu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jou Su
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yi Sung
- Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Lin Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- TMU Biomedical Commercialization Center, Taipei, Taiwan; The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Biomedical Commercialization Center, Taipei, Taiwan; Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
20
|
Heske CM, Mendoza A, Edessa LD, Baumgart JT, Lee S, Trepel J, Proia DA, Neckers L, Helman LJ. STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget 2018; 7:65540-65552. [PMID: 27608846 PMCID: PMC5323173 DOI: 10.18632/oncotarget.11869] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
Long-term survival in patients with metastatic, relapsed, or recurrent Ewing sarcoma and rhabdomyosarcoma is dismal. Irinotecan, a topoisomerase 1 inhibitor, has activity in these sarcomas, but due to poor bioavailability of its active metabolite (SN-38) has had limited clinical efficacy. In this study we have evaluated the efficacy and toxicity of STA-8666, a novel drug conjugate which uses an HSP90 inhibitor to facilitate intracellular, tumor-targeted delivery of the topoisomerase 1 inhibitor SN-38, thus preferentially delivering and concentrating SN-38 within tumor tissue. We present in vivo evidence from mouse xenograft models that STA-8666 results in more persistent inhibition of topoisomerase 1 and prolonged DNA damage compared to irinotecan. This translates into superior antitumor efficacy and survival in multiple aggressive models of both diseases in mouse xenografts, as well as in an irinotecan-resistant model of pediatric osteosarcoma, demonstrated by dramatic tumor shrinkage, durable remission and prolonged complete regressions following short-term treatment, compared to conventional irinotecan. Gene expression analysis performed on xenograft tumors treated with either irinotecan or STA-8666 showed that STA-8666 affected expression of DNA damage and repair genes more robustly than irinotecan. These results suggest that STA-8666 may be a promising new agent for patients with pediatric-type sarcoma.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leah D Edessa
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua T Baumgart
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jane Trepel
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Len Neckers
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lee J Helman
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget 2018; 8:4399-4409. [PMID: 27779106 PMCID: PMC5354841 DOI: 10.18632/oncotarget.12642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/19/2016] [Indexed: 12/27/2022] Open
Abstract
The lack of effective treatment modalities is a major problem in pancreatic cancer (PCa), a devastating malignancy that is nearly universally driven by the “undruggable” KRAS and TP53 cancer genes. Poor tumor tissue penetration is the major source of resistance in pancreatic cancer where chemotherapy is the mainstay of treatment. In this study we exploited the selective tumor-targeting properties of the heat shock 90 protein inhibitors as the vehicle for drug delivery to pancreatic tumor tissues. STA-12-8666 is a novel esterase-cleavable conjugate of an HSP90i and a topoisomerase I inhibitor, SN-38. STA-12-8666 selectively binds activated HSP90 and releases its cytotoxic payload resulting in drug accumulation in pancreatic cancer cells in vivo. We investigated the preclinical activity of STA-12-8666 in patient derived xenograft and genetic models of pancreatic cancer. Treatment with STA-12-8666 of the KPC mice (knock-in alleles of LSL-KrasG12D, Tp53fl/fl and Pdx1-Cre transgene) at the advanced stages of pancreatic tumors doubled their survival (49 days vs. 74 days, p=0.008). STA-12-8666 also demonstrated dramatically superior activity in comparison to equimolar doses of irinotecan against 5 patient-derived pancreatic adenocarcinoma xenografts with prolonged remissions in some tumors. Analysis of activity of STA-12-8666 against tumor tissues and matched cell lines demonstrated prolonged accumulation and release of cytotoxic payload in the tumor leading to DNA damage response and cell cycle arrest. Our results provide a proof-of-principle validation that HSP90i-based drug conjugates can overcome the notorious treatment resistance by utilizing the inherently high affinity of pancreatic cancer cells to HSP90 antagonists.
Collapse
|
22
|
Hu Y, Fu A, Miao Z, Zhang X, Wang T, Kang A, Shan J, Zhu D, Li W. Fluorescent ligand fishing combination with in-situ imaging and characterizing to screen Hsp 90 inhibitors from Curcuma longa L. based on InP/ZnS quantum dots embedded mesoporous nanoparticles. Talanta 2018; 178:258-267. [DOI: 10.1016/j.talanta.2017.09.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
|
23
|
Rong B, Yang S. Molecular mechanism and targeted therapy of Hsp90 involved in lung cancer: New discoveries and developments (Review). Int J Oncol 2017; 52:321-336. [PMID: 29207057 DOI: 10.3892/ijo.2017.4214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/13/2017] [Indexed: 11/05/2022] Open
Abstract
The exploration of the molecular mechanisms and signaling pathways on lung cancer is very important for developing new strategies of diagnosis and treatment to this disease, such as finding valuable lung cancer markers and molecularly targeted therapies. Previously, a number of studies disclose that heat shock protein 90 (Hsp90) is upregulated in cancer cells, tissues and serum of lung cancer patients, and its upregulation intimately correlates with the occurrence, development and outcome of lung cancer. On the contrary, inhibition of Hsp90 can suppress cell proliferation, motility and metastasis of lung cancer and promote apoptosis of lung cancer cells via complex signaling pathways. In addition, a series of Hsp90 inhibitors have been investigated as effective molecular targeted therapy tactics fighting against lung cancer. This review, systematically summarizes the role of Hsp90 in lung cancer, the molecular mechanisms and development of anti-Hsp90 treatment in lung cancer.
Collapse
Affiliation(s)
- Biaoxue Rong
- Department of Oncology, First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, P.R. China
| | - Shuanying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
24
|
Deneka AY, Haber L, Kopp MC, Gaponova AV, Nikonova AS, Golemis EA. Tumor-targeted SN38 inhibits growth of early stage non-small cell lung cancer (NSCLC) in a KRas/p53 transgenic mouse model. PLoS One 2017; 12:e0176747. [PMID: 28453558 PMCID: PMC5409145 DOI: 10.1371/journal.pone.0176747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, with a 5-year survival of only ~16%. Potential strategies to address NSCLC mortality include improvements in early detection and prevention, and development of new therapies suitable for use in patients with early and late stage diagnoses. Controlling the growth of early stage tumors could yield significant clinical benefits for patients with comorbidities that make them poor candidates for surgery: however, many drugs that limit cancer growth are not useful in the setting of long-term use or in comorbid patients, because of associated toxicities. In this study, we explored the use of a recently described small molecule agent, STA-8666, as a potential agent for controlling early stage tumor growth. STA-8666 uses a cleavable linker to merge a tumor-targeting moiety that binds heat shock protein 90 (HSP90) with the cytotoxic chemical SN38, and has been shown to have high efficacy and low toxicity, associated with efficient tumor targeting, in preclinical studies using patient-derived and other xenograft models for pancreatic, bladder, and small cell lung cancer. Using a genetically engineered model of NSCLC arising from induced mutation of KRas and knockout of Trp53, we continuously dosed mice with STA-8666 from immediately after tumor induction for 15 weeks. STA-8666 significantly slowed the rate of tumor growth, and was well tolerated over this extended dosing period. STA-8666 induced DNA damage and apoptosis, and reduced proliferation and phosphorylation of the proliferation-associated protein ERK1/2, selectively in tumor tissue. In contrast, STA-8666 did not affect tumor features, such as degree of vimentin staining, associated with epithelial-mesenchymal transition (EMT), or downregulate tumor expression of HSP90. These data suggest STA-8666 and other similar targeted compounds may be useful additions to control the growth of early stage NSCLC in patient populations.
Collapse
Affiliation(s)
- Alexander Y. Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry, Kazan Federal University, Kazan, Russia
- * E-mail: (EG); (AD)
| | - Leora Haber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Meghan C. Kopp
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Anna V. Gaponova
- Laboratory of Genome Engineering, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Immanuel Kant Baltic Federal University, Konigsberg, Russia
| | - Anna S. Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Erica A. Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (EG); (AD)
| |
Collapse
|
25
|
Lim JSJ, Collins D, Yap TA. Emerging strategies for the treatment of advanced small cell lung cancer. J Thorac Dis 2016; 8:E1249-E1253. [PMID: 27867600 DOI: 10.21037/jtd.2016.10.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joline S J Lim
- Royal Marsden Hospital, London, UK; ; National University Cancer Institute of Singapore, Singapore
| | | | - Timothy A Yap
- Royal Marsden Hospital, London, UK; ; The Institute of Cancer Research, London, UK
| |
Collapse
|