1
|
Wang T, Desai AA, Thurber GM, Tessier PM. Maximizing activity and selectivity of antibody-mediated effector functions using antibody mixtures. MAbs 2025; 17:2480666. [PMID: 40180622 PMCID: PMC11980503 DOI: 10.1080/19420862.2025.2480666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/17/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Fc-mediated effector functions are key for conferring potent antibody-mediated killing of cancer cells. However, it is difficult to achieve highly selective targeting of cancer cells while minimizing toxicity on healthy tissue because of the expression of most receptors, albeit at lower levels, on non-cancer cells. Previous attempts to increase the selectivity of antibody-mediated effector functions have sought to reduce binding affinity and/or increase avidity, which typically results in modest improvements in selectivity. To overcome this limitation, we report the use of mixtures of antibody variants that achieve high selectivity based on receptor level while maintaining high activity for cells with high receptor levels. We have studied mixtures of two variants of an anti-HER2 antibody (trastuzumab), one that is affinity-reduced and effector-competent and a second high-affinity variant that is effectorless. Notably, we observe that the high-affinity, effectorless antibody reduces effector function for cells with low receptor levels, including reduced antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), while the high-avidity, effector-competent antibody mediates significant effector function for cells with high receptor levels. Moreover, replacing the effector-competent Fc region of the affinity-reduced antibody with high-affinity Fc domains that enhance effector function drives high activity while maintaining high selectivity for the antibody mixtures. These findings outline a general strategy for maximizing the therapeutic window by selectively targeting cancer cells based on receptor levels that could be applied to a wide range of applications involving antibody-mediated synapse formation, including antibody-drug conjugates and bispecific antibodies, such as T cell engagers.
Collapse
Affiliation(s)
- Tiexin Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Peter M. Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Lin S, Ma Y, Wang Y, Yang Y, Xue J, Huang Y, Zhao Y, Fang W, Hong S, Zhang Y, Liu Q, Liu G, She X, Zha J, Zheng S, Li Y, Luo P, Zhang L, Zhao H. Phase 1b/2 study of ADG106, a 4-1BB/CD137 agonist, in combination with toripalimab in patients with advanced solid tumors. iScience 2025; 28:112497. [PMID: 40421181 PMCID: PMC12104636 DOI: 10.1016/j.isci.2025.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/27/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
This phase 1b/2 clinical trial (NCT04775680) evaluated the safety, efficacy, pharmacokinetics and pharmacodynamics of ADG106, a ligand-blocking agonistic antibody targeting CD137 (4-1BB), combined with toripalimab in patients with advanced malignancies. ADG106 0.75-3 mg/kg plus toripalimab 240 mg were administered every 3 weeks. One dose-limiting toxicity occurred in 1 subject at 1.5 mg/kg and 2 in another subject at 3 mg/kg. Grade ≥ 3 treatment related adverse events occurred in 4/25 patients (16%). The overall disease control rate was 29.2% (7/24), including 1 partial response (PR) patient with a duration of response and a progression-free survival of 17.6 and 24.5 months. Circulating biomarkers suggested increased soluble CD137, CD3-CD16+CD56+ natural killer (NK) cells, interferon γ (IFN-γ), TNFα, and IL-6 after therapy. Elevated baseline memory T cells and PD-L1, activation of immune-related pathways, along with enhanced T cell proliferation and increased IFN-γ following treatment were observed in the PR patient. ADG106 in combination with toripalimab demonstrated a manageable safety profile but no efficacy conclusions could be drawn.
Collapse
Affiliation(s)
- Shaoyan Lin
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yuxiang Ma
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yongsheng Wang
- Department of Thoracic Medical Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Jinhui Xue
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yang Zhang
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Qianwen Liu
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | | | | | | | | | - Yan Li
- Adagene, Inc., San Diego, CA, USA
| | | | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, No. 651 Dongfeng East Road, Guangzhou 510060, China
| |
Collapse
|
3
|
Miura D, Kato Y, Yasunaga M, Kumagai I, Asano R. Design of a prodrug bispecific antibody masked by a functional molecule for lymphocyte activation for cancer therapy. J Biol Eng 2025; 19:45. [PMID: 40375288 PMCID: PMC12079947 DOI: 10.1186/s13036-025-00517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
Although T cells engaging bispecific antibodies (T-bsAbs) have shown great benefits, their use in treating solid tumors is challenging because of the minimal infiltration of T-cells. We fused an agonistic single-chain variable fragment (scFv) that induces a T cell co-stimulatory signal to the T cell-binding domain of T-bsAb via a linker containing a cancer-specific protease recognition site. With this antibody format, unexpected cytotoxicity to the surrounding normal tissue would be reduced and tumor-specific T cell activation would occur. The scFv-masked T-bsAb was cleaved by collagenase with intrinsic cancer-specific protease activity, releasing agonistic scFv without unwanted fragmentation and restoring the binding ability of the scFv-masked bsAbs to T cells. Compared to the original bsAb, a detectable enhancement of the T cell proliferation and cancer cytotoxicity was observed after the incubation with collagenase or protease-secretory cancer cells, which was suggested to be due to the modest co-stimulation by the released agonistic scFv. Our results provide important insights into an ideal T-bsAb prodrug format, precisely engineered to reduce side effects and exert high cancer cytotoxicity for solid tumor precision medicine.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Yuki Kato
- Department of Industrial Technology and Innovation, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan.
| |
Collapse
|
4
|
Bajaj G, Shchelokov D, Demin O, Adams HC, Feng Y, Gibiansky L, van der Lee S, Johri A, Belete M, Muik A, Panorchan P, Türeci Ö, Sahin U, Ahmadi T, Gupta M, Demin O, Thalhauser C. Dose Selection for DuoBody®-CD40x4-1BB (GEN1042/BNT312) Using a mPBPK/RO Model Leveraging Preclinical and Clinical Data. Clin Pharmacol Ther 2025. [PMID: 40347227 DOI: 10.1002/cpt.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 05/12/2025]
Abstract
Optimizing target engagement for bispecific antibodies (bsAbs) is challenging, as bsAbs bind to two different targets in vivo to form a trimolecular complex (trimer), and likely display a bell-shaped concentration-response curve. bsAbs trimer formation is expected to be related to efficacy and safety, and determining the dose level at which it is achieved may support dose selection; however, trimer levels currently cannot be quantified in vivo. GEN1042 (DuoBody®-CD40x4-1BB)-a novel, agonistic bsAb-combines targeting and conditional activation of co-stimulatory molecules CD40 and 4-1BB on immune cells, resulting in enhanced priming and reactivation of tumor-specific immunity. We describe data and models that supported GEN1042 dose selection for expansion, including a minimal physiologically based pharmacokinetic and receptor occupancy (mPBPK/RO) model that can predict levels of GEN1042 trimers crosslinked to CD40 and 4-1BB in tumors and lymph nodes to guide dose selection. The model leverages PK data, physiologic parameters, and in vitro data from the literature for parameterization of GEN1042 kinetics and distribution, its interaction with target receptors CD40 and 4-1BB, and their expression on the surface of various cell types. Trimer level outcomes were further assessed with clinical data for dose selection. An initial expansion dose of GEN1042 100 mg every 3 weeks was chosen based on available clinical safety/tolerability, efficacy, PK/pharmacodynamics data, mPBPK/RO, and exposure-response analysis. This dose level is currently being evaluated in combination with pembrolizumab, with or without chemotherapy, in the expansion phase of the GEN1042 phase 1/2 trial (NCT04083599); other alternative doses are currently being explored.
Collapse
Affiliation(s)
| | | | | | | | - Yan Feng
- Genmab, Plainsboro, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liao TY, Liu YL, Chen CY, Wu BT, Liu ES, Hong ST, Huang BC, Cheng YA, Chen M, Chuang KH, Lin WW, Chuang CH, Chen FM, Ho KW, Cheng TL. Development of a tumor-region-selective activation monoclonal antibody targeting the 4-1BB receptor for enhanced therapeutic efficacy and safety. Int J Biol Macromol 2025; 305:141003. [PMID: 39978521 DOI: 10.1016/j.ijbiomac.2025.141003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
4-1BB is a co-stimulatory immune checkpoint receptor that triggers CD8+ T cell activation, leading to robust anti-tumor responses. Although antibodies targeting 4-1BB show promise in preclinical studies, systemic 4-1BB over-activation can cause severe hepatotoxicity, limiting their clinical use. In this study, we developed Pro-Urelumab, an engineered version of the clinical anti-4-1BB antibody (Urelumab), utilizing an autologous hinge as a spatial hindrance-based antibody lock, linked the antibody and antibody lock with a matrix metalloproteinase-2/9 (MMP-2/9) substrate. This design selectively reactivates Pro-Urelumab within the tumor microenvironment, reducing systemic toxicity. Our results demonstrated that Pro-Urelumab exhibited a 389-fold reduction in binding ability toward the 4-1BB receptor compared to Urelumab, effectively preventing pro-inflammatory cytokine secretion from T cells. After MMP-2/9 cleavage, its agonist activity was fully restored. In a human T-cell-transfer mouse model, Pro-Urelumab avoided the 4-1BB antigen sink effect without causing organ damage. Mice treated with Pro-Urelumab exhibited 100 % survival over 14 days, while all Urelumab-treated mice succumbed to treatment-related toxicity. Additionally, Pro-Urelumab achieved 77 % tumor growth inhibition (TGI), compared to 45 % with Urelumab, and significantly increased T cell activation within the tumor. This study underscores the potential of tumor-selective 4-1BB activation for enhancing both the efficacy and safety of immuno-oncology therapies.
Collapse
Affiliation(s)
- Tzu-Yi Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yun Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - En-Shuo Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ting Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery Faculty of Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Precisemab Biotech Co. Ltd., Taipei, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Wei Lin
- Department of Laboratory Medicine, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ming Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Breast Oncology & Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan; Department of Surgery, Faculty & College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Wen Ho
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Schwartz R, Vajrala K, Falchook GS. 4-1BB Antibodies in Oncology Clinical Trials: A Review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2025; 8:121-131. [PMID: 40151672 PMCID: PMC11936102 DOI: 10.36401/jipo-24-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 03/29/2025]
Abstract
4-1BB is a transmembrane glycoprotein found on T lymphocytes, and signaling through 4-1BB activates and differentiates CD3+ and CD8+ T cells. The ability of 4-1BB to stimulate cytotoxic T-cell responses makes it a promising target for therapeutic cancer immunotherapy development. 4-1BB antibodies have shown promising antitumor activity in preclinical studies and clinical trials. Common side effects include transaminase elevation, cytopenias, fatigue, and nausea. This clinical review summarizes past and current 4-1BB antibodies in oncology clinical trials.
Collapse
Affiliation(s)
- Robin Schwartz
- Sarah Cannon Research Institute at HealthONE, Denver, CO, USA
| | - Keerti Vajrala
- Kansas City University College of Osteopathic Medicine, Kansas City, MO, USA
| | | |
Collapse
|
7
|
Capello M, Sette A, Plantinga T, Thalhauser CJ, Spires VM, Nürmberger KB, Blum JM, Higgs BW, Garrido Castro P, Yu C, Costa Sa C, Fellermeier-Kopf S, Burm SM, Strumane K, Toker A, Imle A, de Andrade Pereira B, Muik A, Ahmadi T, Türeci Ö, Fereshteh M, Sahin U, Jure-Kunkel M, Pencheva N. Acasunlimab, an Fc-inert PD-L1×4-1BB bispecific antibody, combined with PD-1 blockade potentiates antitumor immunity via complementary immune modulatory effects. J Immunother Cancer 2025; 13:e011377. [PMID: 40216443 PMCID: PMC11987116 DOI: 10.1136/jitc-2024-011377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Next-generation cancer immunotherapies aim to improve patient outcomes by combining inhibitory signal blockade with targeted T-cell costimulation in tumor and lymphoid tissues. Acasunlimab (DuoBody-PD-L1×4-1BB) is an investigational, bispecific antibody designed to elicit an antitumor immune response via conditional 4-1BB activation strictly dependent on simultaneous programmed death-ligand 1 (PD-L1) binding. Since 4-1BB is coexpressed with programmed cell death protein-1 (PD-1) on CD8+ T cells, PD-1 blockade and simultaneous costimulation through 4-1BB may synergistically enhance T-cell effector functions. We hypothesized that combining acasunlimab with PD-1 blockade to fully disrupt PD-1 interactions with both PD-L1 and PD-L2 would amplify the depth and duration of antitumor immunity. METHODS The effect of acasunlimab and pembrolizumab combination was analyzed in vitro using functional immune cell assays, including mixed-lymphocyte reactions and antigen-specific T-cell proliferation and cytotoxicity assays. The antitumor activity of the combination was tested in vivo in (1) MC38, MB49, Pan02, and B16F10 syngeneic tumor models using acasunlimab and anti-PD-1 mouse-surrogate antibodies; and (2) triple knock-in mice expressing the human targets using an acasunlimab chimeric antibody (chi-acasunlimab) and pembrolizumab. The mechanism of action of the combination was investigated in the MC38 syngeneic model through immunohistochemistry, flow cytometry, and bulk RNA sequencing. RESULTS The combination reinvigorated dysfunctional T cells in vitro, while also potentiating T-cell expansion, interleukin (IL)-2 and interferon gamma secretion and cytotoxic activity. In vivo, the combination of chi-acasunlimab and pembrolizumab or mouse-surrogate antibodies potentiated antitumor activity and survival in the humanized knock-in and multiple syngeneic mouse models, leading to durable complete tumor regressions in the MC38 model consistent with therapeutic synergy. Mechanistically, the combination enhanced clonal expansion of tumor-specific CD8+ T cells in tumor-draining lymph nodes and increased the density of proliferating and cytotoxic CD8+ T cells in the tumor microenvironment. It also potentiated the IL-2 signaling pathway, increasing the proportion of granzyme B (GZMB+) stem-like CD8+ T cells thought to have superior effector function. CONCLUSION These preclinical results demonstrate that conditional 4-1BB stimulation combined with complete PD-1 blockade enhances antitumor immunity through complementary mechanisms. The acasunlimab and pembrolizumab combination is being evaluated in Phase 2 (NCT05117242) and pivotal Phase 3 (NCT06635824) trials in patients with metastatic non-small cell lung cancer after checkpoint inhibitor therapy failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aras Toker
- BioNTech SE, Mainz, Rheinland-Pfalz, Germany
| | - Andrea Imle
- BioNTech SE, Mainz, Rheinland-Pfalz, Germany
| | | | | | | | | | | | - Ugur Sahin
- BioNTech SE, Mainz, Rheinland-Pfalz, Germany
| | | | | |
Collapse
|
8
|
Watts TH, Yeung KKM, Yu T, Lee S, Eshraghisamani R. TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited. Annu Rev Immunol 2025; 43:113-142. [PMID: 39745933 DOI: 10.1146/annurev-immunol-082423-040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous Annual Review of Immunology article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Karen K M Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Tianning Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | | |
Collapse
|
9
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Covert WM, Rogers JE. Future Landscape of Anti-Claudin 18.2 Antibodies in Gastric Adenocarcinoma. Antibodies (Basel) 2025; 14:26. [PMID: 40136475 PMCID: PMC11939718 DOI: 10.3390/antib14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Advanced gastric adenocarcinoma (GAC) carries a poor prognosis. Targeted therapy in GAC has traditionally been limited to anti-human epidermal growth factor receptor-2 and anti-vascular endothelial growth factor agents. Recent years have brought immune checkpoint therapy to the GAC treatment landscape. However, continued discovery of targeted therapy in GAC is needed. Claudins, transmembrane proteins located in tight junctions of epithelial and endothelial cells, help regulate cellular polarity. Claudin dysregulation has been linked to cancers and other diseases. Claudin 18.2 specifically has become a new novel and exciting biomarker for GAC. Many agents are in the investigative pipeline, including monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, and chimeric T-cell therapy. Recently, zolbetuximab, an anti-claudin 18.2 monoclonal antibody, was the first of these agents to get FDA approval. Here, we review zolbetuximab's place in therapy along with other agents being explored.
Collapse
Affiliation(s)
- Wendy M. Covert
- Department of Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | |
Collapse
|
11
|
Sun Y, Zhou L, Gu X, Zhao J, Bi J, Pan L. Leveraging T cell co-stimulation for enhanced therapeutic efficacy of trispecific antibodies targeting prostate cancer. J Immunother Cancer 2025; 13:e010140. [PMID: 40081942 PMCID: PMC11907039 DOI: 10.1136/jitc-2024-010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Clinical trials have demonstrated the efficacy of bispecific antibodies in eliciting potent antitumor responses by redirecting T cells to target cancer cells, particularly for the treatment of hematologic malignancies. However, their efficacy against solid tumors is limited by intratumoral T-cell dysfunction and inadequate persistence. The co-stimulatory domains of 4-1BB, OX40, and CD28 are most widely used in engineering chimeric antigen receptor T-cells to augment T-cell responses. METHODS In this study, we designed three co-stimulatory trispecific T cell-engaging antibodies (TriTCEs) that target Prostate-specific membrane antigen, CD3, and an additional co-stimulatory receptor(OX40, 4-1BB, or CD28). We conducted comparative profiling of the attributes of distinct co-stimulatory signals to T-cell functions in prostate cancer models. RESULTS Co-stimulatory trispecific T-cell engagers enhance T-cell activation, proliferation, and display tumor cell-killing activity in vitro. These trispecific antibodies further boosted antitumor activity in humanized mouse xenograft models and increased the infiltration of CD45+ immune cells into solid tumors. Specifically, TriTCE-4-1BB and TriTCE-CD28 selectively promoted the expansion of effector memory T cells and increased the presence of CD4+ T cells more than TriTCE-OX40. T cells stimulated with TriTCE-4-1BB exhibited reduced exhaustion. Furthermore, T cells treated with co-stimulatory trispecific antibodies demonstrated enhanced metabolic activity characterized by increased oxidative phosphorylation and elevated glycolysis. CONCLUSIONS Collectively, incorporating co-stimulatory receptor targeting domains represents a potentially effective strategy to unlock the full therapeutic potential of T-cell-engaging antibodies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linling Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaqi Zhao
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Bi
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liqiang Pan
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Wong T, Kang R, Yun K. The multi-faceted immune modulatory role of S100A4 in cancer and chronic inflammatory disease. Front Immunol 2025; 16:1525567. [PMID: 40078995 PMCID: PMC11897520 DOI: 10.3389/fimmu.2025.1525567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
S100A4 is a Ca2+-binding protein involved in multiple chronic inflammatory and neoplastic conditions. This review focuses on recent advances in the understanding of S100A4 function in immune cells, comparing and contrasting S100A4 regulation of immune responses in cancer and chronic inflammatory diseases. We provide evidence that S100A4 regulation of immune cell function has a profound role in promoting the pathogenesis of cancer and pro-inflammatory conditions. Finally, we discuss relevant future directions to target S100A4 therapeutically in different disease states.
Collapse
Affiliation(s)
- Thomas Wong
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Reece Kang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
13
|
Son W, Lee Y, Park Y, Park KS, Kim S, Youn H, Seo A, Sung B, Lee SH, Won J. Fc-competent TIGITx4-1BB bispecific antibody exerts potent long-lasting antitumor activity by potentiating CD8 + T cell activity and Fcγ receptor-mediated modulation of the tumor microenvironment. J Immunother Cancer 2025; 13:e010728. [PMID: 40010766 PMCID: PMC12083285 DOI: 10.1136/jitc-2024-010728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND TIGIT was identified as a target immune checkpoint for overcoming resistance to PD-(L)1-blocking antibodies. However, the clinical efficacies of TIGIT antibodies were moderate in monotherapy and mixed in combination with PD-(L)1 antibodies. 4-1BB, a strong inducible costimulatory receptor, is another attractive target in antitumor therapeutics. This study investigated whether ABL112, an Fc-competent bispecific antibody targeting TIGIT and 4-1BB (TIGITx4-1BB), would enhance antitumor activity via Fcγ receptor (FcγR)-mediated macrophage activation and antibody-dependent cell-mediated functions. METHODS TIGIT-dependent 4-1BB activation and TIGIT-blocking activity were assessed using reporter Jurkat T cell lines expressing 4-1BB and TIGIT, respectively. In vivo antitumor activity was confirmed in h4-1BB knock-in mice. The main immune cell subsets associated with the antitumor activity of ABL112 were identified using antibodies for depleting specific immune cell subtypes or FcγR-blocking antibodies. The effects of a combined pembrolizumab or atezolizumab treatment with ABL112 were assessed in two mouse models with different genetic backgrounds. Statistical analysis was performed using one-way or two-way analysis of variance (ANOVA) with Dunnett's multiple-comparison test or one-way ANOVA with Fisher's multiple-comparison test. RESULTS ABL112 restored T cell activity by blocking TIGIT-CD155 interactions, based on a TIGIT blockade reporter assay. ABL112, an Fc-competent TIGITx4-1BB bispecific antibody, showed strong FcγRI-dependent 4-1BB activation along with TIGIT-dependent 4-1BB activation. In H22 tumor models expressing high levels of endogenous CD155, both ABL112 and parent TIGIT single-domain Ab showed potent tumor-suppressive activity; however, only ABL112 exerted long-lasting antitumor activity. ABL112 induced a marked decrease in Treg numbers, while augmenting the absolute number of CD8+ T cells and proportion of CD226+ CD8+ T cells. The expressions of CXCL10, CXCL11, IFN-γ, and TNF-α increased, indicating myeloid cell activation and potential modification of the tumor microenvironment to an inflammatory phenotype. ABL112 not only showed outstanding antitumor activity as a monotherapy, but also showed synergistic effects with PD-(L)1 mAb compared with the combined TIGIT-PD-(L)1 mAb treatments. CONCLUSIONS Through multiple mechanisms of action, ABL112 exerted potent tumor-killing activity and immune memory response alone or in combination with anti-PD-(L)1 therapies, representing a promising new cancer treatment strategy.
Collapse
Affiliation(s)
- Wonjun Son
- Oncology Discovery, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Yangsoon Lee
- Oncology Discovery, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Yelim Park
- Oncology Discovery, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Kyeong-Su Park
- Oncology Discovery, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Sora Kim
- Oncology Discovery, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Hyunseong Youn
- Oncology Discovery, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Arim Seo
- Quality Control, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Byungje Sung
- Analytics, ABL Bio Inc, Seongnam, Korea (the Republic of)
| | | | - Jonghwa Won
- Oncology Discovery, ABL Bio Inc, Seongnam, Korea (the Republic of)
| |
Collapse
|
14
|
Wang H, Wu J, Fang Y, Li Q. MD Simulation Reveals a Trimerization-Enhanced Interaction of CD137L with CD137. Int J Mol Sci 2025; 26:1903. [PMID: 40076530 PMCID: PMC11899465 DOI: 10.3390/ijms26051903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
CD137 is a prominent costimulatory molecule of the tumor necrosis factor (TNF) receptor superfamily that activates T cells through a complex bidirectional signaling process involving CD137L. The clinical value of immunotherapies underscores the potential of CD137L/CD137 as an effective target for boosting antitumor immune responses; however, the intricate mechanisms governing these interactions have not been fully elucidated. Herein, we constructed various oligomeric states of CD137L (monomeric, dimeric, and trimeric CD137L) and explored their interactions with CD137 using molecular dynamics simulations. Our findings revealed that trimeric CD137L exhibits higher thermal stability but reduced binding affinity for CD137 compared with the dimer form, with the A'B' loop of CD137L playing a critical role in both structural stability and promoting CD137 interactions. Notably, the formation of hexameric structures enhanced the binding affinity and stability. This study provides valuable insights into the CD137L/CD137 bidirectional signaling mechanisms, which may inform the design of next-generation CD137 agonists. Ultimately, these advancements may improve cancer immunotherapy strategies, aiming to enhance therapeutic outcomes for patients through more effective and targeted therapies.
Collapse
Affiliation(s)
| | | | - Ying Fang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (H.W.); (J.W.)
| | - Quhuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (H.W.); (J.W.)
| |
Collapse
|
15
|
Wang F, Zhao Q, Liu W, Zhang D, Dai X, Zhou W, Zeng X, Zhang Y, Cheng L, Shen G, Gu Y. A humanized anti-b7h3×4-1BB bispecific antibody exerts potent antitumour effects through the activation of innate and adaptive immunity. Biochem Biophys Res Commun 2025; 749:151347. [PMID: 39847994 DOI: 10.1016/j.bbrc.2025.151347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Agonistic monoclonal antibodies targeting 4-1BB have shown much preclinical promise, but their clinical development has been limited by obvious toxicity or unremarkable efficacy. Here, we generated two humanized anti-B7H3 × 4-1BB bsAbs (HK056-001/002) by fusing an anti-4-1BB scFv to the C-terminus of an anti-B7H3 with an intact Fc fragment from human IgG1 or IgG4. The two bsAbs were able to stimulate the 4-1BB signaling pathway, which was strictly dependent on B7H3 expression. In particular, HK056-001 retained Fc function and induced an ADCC effect in tumor cells, whereas HK056-002 did not. Strikingly, HK056-001 showed superior antitumour activity to HK056-002 both in vitro and in vivo. HK056-001 enhanced antitumour immunity and induced lasting antigen-specific immune memory to prevent tumor regrowth upon rechallenge, even at a dose as low as 2 mg/kg. Furthermore, HK056-001 did not induce nonspecific production of proinflammatory cytokines and had no apparent ability to induce ADA production. In addition, HK056-001 has no significant liver toxicity in human 4-1BB-KI BALB/c mice bearing CT26-B7H3 tumors. The optimal anti-B7H3 × 4-1BB bsAb HK056-001 exhibited synergistic antitumour effects by inducing an ADCC effect (innate immunity) and activating the 4-1BB signaling pathway (adaptive immunity) upon cross-bridging with B7H3 with no obvious toxicity, which could potentially provide a better therapeutic window compared to what is seen with 4-1BB agonists.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China; Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Xuejing Dai
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Weiming Zhou
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Yan Zhang
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Liansheng Cheng
- Hefei HankeMab Biotechnology Co., Ltd., Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China.
| | - Guodong Shen
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China; Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Yanting Gu
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
16
|
Wu L, Zhi X, Xie S, Li K, Chen M, Li G, Wu Q, Jiao S, Wang J, Liu T. Immunological characteristics of peripheral T cells as prognostic markers for Camrelizumab and Apatinib combination therapy in advanced squamous non-small-cell lung cancer. Mol Immunol 2025; 178:87-96. [PMID: 39870014 DOI: 10.1016/j.molimm.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
PURPOSE To determine the characteristic changes of peripheral blood T cells and identify potential biomarkers that associated with the clinical efficacy of combined immunotherapy and anti-angiogenic therapy in patients with advanced squamous non-small cell lung cancer (NSCLC). METHODS We performed a comprehensive immunological assessment of peripheral blood mononuclear cell samples from advanced squamous NSCLC patients before and after combination of immunotherapy (Camrelizumab) and anti-angiogenic therapy (Apatinib) using spectral flow cytometry. Correlations between these immunological features and clinical efficacy were analyzed. RESULTS Our findings revealed that, following two treatment cycles, the concentration of type 1 T helper (Th1) cells in the peripheral circulation was significantly higher in the responder group than in the non-responder group, correlating with a statistically significant improvement in survival outcomes. Post-treatment, CD137 expression within Th1 cells in the responders, whereas TIM-3 expression was significantly reduced. In the validation cohort, elevated CD4+ CXCR3+ CD137+ cells in the peripheral blood were associated with a positive clinical reaction to the treatment and extended survival. CONCLUSIONS Our findings suggest that peripheral blood circulating CD4+ CXCR3+ CD137+ cells serve as biomarkers of response to combined immunotherapy and anti-angiogenic therapy in patients with advanced squamous NSCLC, providing potential guidance for improving clinical outcomes.
Collapse
Affiliation(s)
- Liangliang Wu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Zhi
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Shengzhi Xie
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Keren Li
- Hepato-Pancereato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Man Chen
- Department of laboratory medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Gong Li
- Department of Radiation Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qiyan Wu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Jinliang Wang
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Tianyi Liu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
17
|
Carneiro A, Hahn A, Ellmark P, Enell Smith K, Schultz L, Ambarkhane S, Yachnin J, Ullenhag GJ. First-in-human, multicenter, open-label, phase I study of ATOR-1017 (evunzekibart), a 4-1BB antibody, in patients with advanced solid malignancies. J Immunother Cancer 2025; 13:e010113. [PMID: 39848688 PMCID: PMC11784162 DOI: 10.1136/jitc-2024-010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND ATOR-1017 (evunzekibart) is a human agonistic immunoglobulin G4 antibody targeting the costimulatory receptor 4-1BB (CD137). ATOR-1017 activates T cells and natural killer cells in the tumor environment, leading to immune-mediated tumor cell death. METHODS In this first-in-human, multicenter, phase I study, ATOR-1017 was administered intravenously every 21 days as a monotherapy to patients with advanced, unresectable solid tumors having received multiple standard-of-care treatments. The study used single patient cohorts for rapid dose escalation up to 40 mg; thereafter a modified 3+3 design up to 900 mg. Escalating doses were given until disease progression, unacceptable toxicity, or withdrawal of consent. The primary objective of the study included determination of the maximum tolerated dose (MTD) via assessment of adverse events and dose-limiting toxicities (DLTs). Secondary objectives included determination of the pharmacokinetics, immunogenicity and clinical efficacy assessed with CT scans using immune Response Evaluation Criteria in Solid Tumors. Exploratory objectives included pharmacodynamic (PD) assessment of immune system biomarkers. RESULTS Of the 27 patients screened, 25 received treatment with ATOR-1017. The median time on study was 13.1 weeks (range 4.3-92.3). The MTD of ATOR-1017 was not reached. Treatment-related adverse events (TRAEs) were reported in 13 (52%) of 25 patients; most common (≥10%) were fatigue (n=4 (16.0%) patients) and neutropenia (n=3 (12.0%) patients). Five patients experienced a severe (≥ grade 3) TRAE; neutropenia (n=2), febrile neutropenia (n=1), chest pain (n=1), increased liver enzymes (n=1), and leukopenia and thrombocytopenia (n=1). No patients discontinued due to TRAEs and no DLTs were observed. Pharmacokinetic data demonstrated approximate dose-proportional kinetics. Dose-dependent increases in PD biomarkers, including soluble 4-1BB, are indicative of target-mediated biological activity. Best response was stable disease in 13 out of 25 patients (52%), maintained for 6 months or longer in six patients (24%). CONCLUSIONS Treatment with ATOR-1017 was safe and well tolerated at all dose levels and demonstrated biological activity. Furthermore, almost one-third of patients experienced long-lasting stable disease in this heavily pretreated population. The encouraging safety and preliminary efficacy data warrant further clinical development of ATOR-1017, possibly in combination with other anticancer agents.
Collapse
Affiliation(s)
- Ana Carneiro
- Skåne University Hospital and Lund University, Lund, Sweden
| | - Amanda Hahn
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden
- Department of Immunotechnolgy, Lund University, Lund, Sweden
| | | | | | | | | | - Gustav J Ullenhag
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Piha-Paul S, Olwill SA, Hamilton E, Tolcher A, Pohlmann P, Liu SV, Wurzenberger C, Hasenkamp LC, Hansbauer EM, Shroff R, Hurvitz S, Krishnamurthy A, Patnaik A, Hahn N, Kumar R, Duerr M, Zettl M, Aviano K, Matis L, Bruns I, Ku G. A First-in-Human Study of Cinrebafusp Alfa, a HER2/4-1BB Bispecific Molecule, in Patients with HER2-Positive Advanced Solid Malignancies. Clin Cancer Res 2025; 31:288-298. [PMID: 39235868 PMCID: PMC11739778 DOI: 10.1158/1078-0432.ccr-24-1552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE 4-1BB (CD137) is a costimulatory immune receptor expressed on activated T cells, activated B cells, NK cells, and tumor-infiltrating lymphocytes, making it a promising target for cancer immunotherapy. Cinrebafusp alfa, a monoclonal antibody-like bispecific protein targeting HER2 and 4-1BB, aims to localize 4-1BB activation to HER2-positive tumors. This study evaluated the safety, tolerability, and preliminary efficacy of cinrebafusp alfa in patients with previously treated HER2-positive malignancies. PATIENTS AND METHODS This was a multicenter dose-escalation study involving patients with HER2-positive malignancies who received prior treatment. The study assessed the safety and efficacy of cinrebafusp alfa across various dose levels. Patients were assigned to different cohorts, and antitumor responses were evaluated. The study aimed to determine the MTD and to observe any clinical activity at different dose levels. RESULTS Of 40 evaluable patients in the "active dose" efficacy cohorts, five showed an antitumor response, resulting in an overall response rate of 12.5% and a disease-control rate of 52.5%. Clinical activity was observed at the 8 and 18 mg/kg dose levels, with confirmed objective response rates of 28.6% and 25.0%, respectively. Cinrebafusp alfa was safe and tolerable, with grade ≤2 infusion-related reactions being the most frequent treatment-related adverse event. MTD was not reached during the study. CONCLUSIONS Cinrebafusp alfa demonstrates promising activity in patients with HER2-positive malignancies who have progressed on prior HER2-targeting regimens. Its acceptable safety profile suggests it could be a treatment option for patients not responding to existing HER2-directed therapies. See related commentary by Eguren-Santamaría et al., p. 231.
Collapse
Affiliation(s)
- Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shane A. Olwill
- Department of Research and Development, Pieris Pharmaceuticals GmbH, Bavaria, Germany
| | - Erika Hamilton
- Department of Oncology, Sarah Cannon Research Institute/Tennessee Oncology, LLC, Nashville, Tennessee
| | | | - Paula Pohlmann
- Department of Medicine, Georgetown University Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Stephen V. Liu
- Department of Medicine, Georgetown University Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Cornelia Wurzenberger
- Department of Research and Development, Pieris Pharmaceuticals GmbH, Bavaria, Germany
| | | | - Eva-Maria Hansbauer
- Department of Research and Development, Pieris Pharmaceuticals GmbH, Bavaria, Germany
| | - Rachna Shroff
- Department of Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Sara Hurvitz
- Department of Medicine, University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | - Amita Patnaik
- Department of Phase I Research, The START Center for Cancer Research, San Antonio, Texas
| | - Noah Hahn
- Department of Oncology and Urology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Raman Kumar
- Department of Research and Development, Pieris Pharmaceuticals GmbH, Bavaria, Germany
| | - Manuela Duerr
- Department of Research and Development, Pieris Pharmaceuticals GmbH, Bavaria, Germany
| | - Markus Zettl
- Department of Research and Development, Pieris Pharmaceuticals GmbH, Bavaria, Germany
| | - Kayti Aviano
- Department of Research and Development, Pieris Pharmaceuticals, Inc., Boston, Massachusetts
| | - Louis Matis
- Department of Research and Development, Pieris Pharmaceuticals, Inc., Boston, Massachusetts
| | - Ingmar Bruns
- Department of Research and Development, Pieris Pharmaceuticals, Inc., Boston, Massachusetts
| | - Geoffrey Ku
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
19
|
Zhang DY, Zhang ZH, Liu WT, Zhou WM, Zhou PF, Wei JJ, Dai XJ, Zeng XL, Zhou YQ, Li HW, Zhang H, Shen AL, Cheng LS, Shen GD, He YF. A humanized anti-MSLN×4-1BB bispecific antibody exhibits potent antitumour activity through 4-1BB signaling activation and fc function without systemic toxicity. J Transl Med 2025; 23:53. [PMID: 39806351 PMCID: PMC11726934 DOI: 10.1186/s12967-025-06107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays. In vivo antitumour activity was assessed by establishing humanized mice bearing human MSLN-expressing MC38 (MC38/hMSLN) or CT26 (CT26/hMSLN) cells, and safety was further evaluated in cynomolgus monkeys. RESULTS We generated two humanized anti-MSLN×4-1BB bsAbs (HK013-G1/G4) by fusing an anti-4-1BB scFv to the C-terminus of an anti-MSLN VHH with an intact Fc fragment from human IgG1 or IgG4. The two bsAbs were able to block the binding of CA125 to MSLN and stimulate 4-1BB signaling pathway, which was strictly dependent on MSLN expression. In particular, HK013-G1 retained Fc function and induced ADCC effect in tumour cells, whereas HK013-G4 did not. Strikingly, HK013-G1 showed superior antitumour activity to HK013-G4 both in vitro and in vivo and remained effective even in the presence of soluble MSLN. HK013-G1 enhanced antitumour immunity and induced durable antigen-specific immune memory to prevent rechallenged tumour growth, even at a dose as low as 1 mg/kg. Furthermore, HK013-G1 did not induce nonspecific production of proinflammatory cytokines and showed good tolerability up to the highest tested dose (30 mg/kg weekly) for 5 weeks, with no HK013-G1-related adverse effects observed in cynomolgus monkeys. In addition, the mean half-life of HK013-G1 was approximately 61 and 97 h at single doses of 3 and 30 mg/kg, respectively. CONCLUSION The optimal anti-MSLN×4-1BB bsAb HK013-G1 exhibited synergistic antitumour effects by inducing an ADCC effect (innate immunity) and stimulating the 4-1BB signaling pathway (adaptive immunity) upon cross-bridging with MSLN with no systemic toxicity, which may offer the promise of an improved therapeutic window relative to that of 4-1BB agonists.
Collapse
Affiliation(s)
- Da-Yan Zhang
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Zhi-Hua Zhang
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Wei-Ming Zhou
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Peng-Fei Zhou
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Juan-Juan Wei
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Xue-Jing Dai
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Xiao-Li Zeng
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Yu-Qiong Zhou
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Han-Wang Li
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Heng Zhang
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Ao-Lin Shen
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Lian-Sheng Cheng
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
| | - Guo-Dong Shen
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Yi-Fu He
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
| |
Collapse
|
20
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
21
|
Hangiu O, Navarro R, Frago S, Rubio-Pérez L, Tapia-Galisteo A, Díez-Alonso L, Gómez-Rosel M, Silva-Pilipich N, Vanrell L, Smerdou C, Howard KA, Sanz L, Álvarez-Vallina L, Compte M. Effective cancer immunotherapy combining mRNA-encoded bispecific antibodies that induce polyclonal T cell engagement and PD-L1-dependent 4-1BB costimulation. Front Immunol 2025; 15:1494206. [PMID: 39835115 PMCID: PMC11743637 DOI: 10.3389/fimmu.2024.1494206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Background Immune checkpoint inhibitors have revolutionized cancer therapy, but many patients fail to respond or develop resistance, often due to reduced T cell activity. Costimulation via 4-1BB has emerged as a promising approach to enhance the effector function of antigen-primed T cells. Bispecific T cell-engaging (TCE) antibodies are an effective way to provide tumor-specific T cell receptor-mediated signaling to tumor-infiltrating lymphocytes. mRNA-based delivery of bispecific antibodies, offer a novel approach to enhance tumor-specific immune responses while minimizing adverse effects. Methods Two bispecific antibodies were generated: the EGFR x CD3 TCE antibody (LiTE) and the PD-L1 x 4-1BB costimulatory antibody (LiTCo), which was further fused to a high FcRn albumin variant (Albu-LiTCo). The mRNA encoding these bispecific antibodies contains an N1-methylpseudouridine modified nucleoside and regulatory sequences to ensure proper expression and stability. A series of in vitro assays and cell-based analyses were performed to characterize both antibodies. The in vivo efficacy of the mRNA-encoded bispecific antibodies was evaluated in xenograft tumor models expressing EGFR. Results We investigated the combined effect of two mRNA-encoded Fc-free bispecific antibodies with complementary mechanisms of action: an EGFR-targeting TCE and a half-life extended PD-L1 x 4-1BB costimulatory antibody. The mRNAs encoding both bispecific LiTERNA and Albu-LiTCoRNA, showed similar binding specificity and in vitro function to their protein analogues. Pharmacokinetic studies demonstrated sustained expression of both bispecific antibodies following intravenous administration of the mRNAs formulated using a polymer/lipid-based nanoparticle (LNP) but different pharmacokinetic profiles, shorter for the TCE and longer for the PD-L1 x 4-1BB. When administered as a mRNA-LNP combination (ComboRNA), the growth of EGFR-positive tumors in immunocompetent mice was significantly inhibited, resulting in tumor regression in 20% of cases with no associated toxicity. Histological analysis confirmed increased T cell infiltration in the tumors treated with LITERNA and ComboRNA. Repeated administration resulted in sustained production of bispecific antibodies with different exposure cycles and potent antitumor activity with a favorable safety profile. Conclusions These results highlight the potential of combining two mRNA-encoded bispecific antibodies with different mechanisms of action and programmable half-life for cancer immunotherapy.
Collapse
Affiliation(s)
- Oana Hangiu
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Antonio Tapia-Galisteo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marina Gómez-Rosel
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, CIMA Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | | | - Cristian Smerdou
- Division of DNA and RNA Medicine, CIMA Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| |
Collapse
|
22
|
Ishibashi A, Li Y, Hisatomi Y, Ohta N, Uegaki Y, Tanemura A, Ohashi R, Kitamura K, Saga K, Yoshimura Y, Inubushi S, Ishida K, Iwabuchi S, Hashimoto S, Kiyohara E, Yagita H, Kaneda Y, Nimura K. Local treatment of HVJ-E with T cell costimulatory molecule stimulation elicits systemic anti-tumor effects. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200893. [PMID: 39534532 PMCID: PMC11555341 DOI: 10.1016/j.omton.2024.200893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The tumor-infiltrating lymphocyte (TIL) is a crucial factor in controlling tumor growth. A therapeutic method activating TIL is desired for treating patients with metastatic tumors. Here, we show that treating a local tumor with a combination therapy of UV-irradiated hemagglutinating virus of Japan envelope (HVJ-E) plus agonist antibodies, including OX40, against T cell costimulatory molecules induces systemic anti-tumor effects in a T cell-dependent manner in multiple cancer cell lines. Transcriptome and T cell receptor repertoire analyses revealed that HVJ-E + anti-OX40 antibody treatment activates CD4 and CD8 T cells and promotes T cell trafficking between tumors. These systemic anti-tumor effects required an association between Nkg2d and Nkg2d ligands. Our findings provide insights into how systemic anti-tumor effects are induced and may help the development of therapeutic strategies for eliciting such effects.
Collapse
Affiliation(s)
- Airi Ishibashi
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yue Li
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Division of Gene Therapy Science, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuuta Hisatomi
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Ohta
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Division of Gene Therapy Science, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuko Uegaki
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Riuko Ohashi
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Histopathology Core Facility, Center for Research Promotion, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Koji Kitamura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kotaro Saga
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuhide Yoshimura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satoko Inubushi
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kyoso Ishida
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Eiji Kiyohara
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Division of Gene Therapy Science, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
23
|
Hamouda AEI, Filtjens J, Brabants E, Kancheva D, Debraekeleer A, Brughmans J, Jacobs L, Bardet PMR, Knetemann E, Lefesvre P, Allonsius L, Gontsarik M, Varela I, Crabbé M, Clappaert EJ, Cappellesso F, Caro AA, Gordún Peiró A, Fredericq L, Hadadi E, Estapé Senti M, Schiffelers R, van Grunsven LA, Aboubakar Nana F, De Geest BG, Deschoemaeker S, De Koker S, Lambolez F, Laoui D. Intratumoral delivery of lipid nanoparticle-formulated mRNA encoding IL-21, IL-7, and 4-1BBL induces systemic anti-tumor immunity. Nat Commun 2024; 15:10635. [PMID: 39639025 PMCID: PMC11621563 DOI: 10.1038/s41467-024-54877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Local delivery of mRNA-based immunotherapy offers a promising avenue as it enables the production of specific immunomodulatory proteins that can stimulate the immune system to recognize and eliminate cancer cells while limiting systemic exposure and toxicities. Here, we develop and employ lipid-based nanoparticles (LNPs) to intratumorally deliver an mRNA mixture encoding the cytokines interleukin (IL)-21 and IL-7 and the immunostimulatory molecule 4-1BB ligand (Triplet LNP). IL-21 synergy with IL-7 and 4-1BBL leads to a profound increase in the frequency of tumor-infiltrating CD8+ T cells and their capacity to produce granzyme B and IFN-γ, leading to tumor eradication and the development of long-term immunological memory. Mechanistically, the efficacy of the Triplet LNP depends on tumor-draining lymph nodes to tumor CD8+ T-cell trafficking. Moreover, we highlight the therapeutic potential of the Triplet LNP in multiple tumor models in female mice and its superior therapeutic efficacy to immune checkpoint blockade. Ultimately, the expression of these immunomodulators is associated with better overall survival in patients with cancer.
Collapse
Affiliation(s)
- Ahmed E I Hamouda
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | - Daliya Kancheva
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ayla Debraekeleer
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jan Brughmans
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Pauline M R Bardet
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Elisabeth Knetemann
- Liver Cell Biology Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pierre Lefesvre
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZB), Brussels, Belgium
| | - Lize Allonsius
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mark Gontsarik
- Department of Pharmaceutics, University of Ghent, Ghent, Belgium
| | | | | | - Emile J Clappaert
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Federica Cappellesso
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Aarushi A Caro
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Alícia Gordún Peiró
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Luna Fredericq
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Eva Hadadi
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | | | | | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frank Aboubakar Nana
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, University of Ghent, Ghent, Belgium
| | - Sofie Deschoemaeker
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | - Damya Laoui
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium.
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
24
|
Ju Y, Dai F, Wang Y, Ye Z, Li Y, Ju S, Ge Y, Chen W. Oncolytic vaccinia virus armed with 4-1BBL elicits potent and safe antitumor immunity and enhances the therapeutic efficiency of PD-1/PD-L1 blockade in a pancreatic cancer model. Transl Oncol 2024; 50:102151. [PMID: 39388958 PMCID: PMC11736404 DOI: 10.1016/j.tranon.2024.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a poor prognosis. Mono-immunotherapy, such as blockade of the PD-1/PD-L1 pathway, for PDAC has proven to be less effective. The systemic exertion of 4-1BB signaling enhanced antitumor immunity accompanied by hepatotoxicity, which is an obstacle for its clinical application. Our study exploits an oncolytic virus armed with 4-1BBL (VV-ΔTK-4L) to locally express 4-1BBL in the tumor microenvironment (TME), thus avoiding hepatotoxicity. VV-ΔTK-4L prolonged the survival time of a pancreatic tumor mouse model and modified the immune status of the TME and spleen. In the TME, the quantities of CD45+ cells, NK1.1+ cells, CD11c+ DCs, CD3+T, CD4+T, and CD8+T cells increased. Compared to VV-ΔTK treatment, VV-ΔTK-4L further increases the number of CD8+T cells with effector phenotypes, and downregulates exhaustion-related molecules on CD8+T cells, and does not increase the proportion of Foxp3+T cells. Thus, the TME of pancreatic cancer was converted from "cold" to "hot" by VV-ΔTK-4L. Blockade of the PD-1/PD-L1 pathway combined with VV-ΔTK-4L further significantly improves the survival ratio of a tumor-bearing mouse model. This study provides a systemic therapeutic strategy and approach for PDAC immunotherapy.
Collapse
Affiliation(s)
- Yushi Ju
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Feiyu Dai
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Yirong Wang
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Yang Li
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Songguang Ju
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China.
| | - Yan Ge
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China.
| | - Wei Chen
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| |
Collapse
|
25
|
Croft M, Salek-Ardakani S, Ware CF. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. Nat Rev Drug Discov 2024; 23:939-961. [PMID: 39448880 DOI: 10.1038/s41573-024-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
The first anti-tumour necrosis factor (TNF) monoclonal antibody, infliximab (Remicade), celebrated its 25th anniversary of FDA approval in 2023. Inhibitors of TNF have since proved clinically efficacious at reducing inflammation associated with several autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn's disease. The success of TNF inhibitors raised unrealistic expectations for targeting other members of the TNF superfamily (TNFSF) of ligands and their receptors, with difficulties in part related to their more limited, variable expression and potential redundancy. However, there has been a resurgence of interest and investment, with many of these cytokines or their cognate receptors now under clinical investigation as targets for modulation of autoimmune and inflammatory diseases, as well as cancer. This Review assesses TNFSF-targeted biologics currently in clinical development for immune system-related diseases, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | | - Carl F Ware
- Laboratory of Molecular Immunology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
26
|
Li W, Wei J, Cheng M, Liu M. Unveiling promising targets in gastric cancer therapy: A comprehensive review. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200857. [PMID: 39280587 PMCID: PMC11396074 DOI: 10.1016/j.omton.2024.200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge, ranking fifth in incidence and third in mortality among all malignancies worldwide. Its insidious onset, aggressive growth, proclivity for metastasis, and limited treatment options have contributed to its high fatality rate. Traditional approaches for GC treatment primarily involve surgery and chemotherapy. However, there is growing interest in targeted therapies and immunotherapies. This comprehensive review highlights recent advancements in GC targeted therapy and immunotherapy. It delves into the mechanisms of various strategies, underscoring their potential in GC treatment. Additionally, the review evaluates the efficacy and safety of relevant clinical trials. Despite the benefits observed in numerous advanced GC patients with targeted therapies and immunotherapies, challenges persist. We discuss pertinent strategies to overcome these challenges, thereby providing a solid foundation for enhancing the clinical effectiveness of targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Wenke Li
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jing Wei
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Mo Cheng
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ming Liu
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
27
|
Jeon SH, You G, Park J, Chung Y, Park K, Kim H, Jeon J, Kim Y, Son WC, Jeong DS, Shin EC, Lee JY, Han DH, Jung J, Park SH. Anti-4-1BB×PDL1 Bispecific Antibody Reinvigorates Tumor-Specific Exhausted CD8+ T Cells and Enhances the Efficacy of Anti-PD1 Blockade. Clin Cancer Res 2024; 30:4155-4166. [PMID: 38743752 DOI: 10.1158/1078-0432.ccr-23-2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To overcome the limited efficacy of immune checkpoint blockade, there is a need to find novel cancer immunotherapeutic strategies for the optimal treatment of cancer. The novel anti-4-1BB×PDL1 bispecific antibody-ABL503 (also known as TJ-L14B)-was designed to simultaneously target PDL1 and 4-1BB and demonstrated strong antitumor T-cell responses without considerable toxicity. In this study, we investigated the mechanisms by which the combination of ABL503 and anti-PD1 blockade affected the reinvigoration of exhausted tumor-infiltrating CD8+ T cells (CD8+ TIL) and antitumor efficacy. EXPERIMENTAL DESIGN Single-cell suspensions of hepatocellular carcinoma and ovarian cancer tissues from treatment-naïve patients were used for immunophenotyping of CD8+ TILs and in vitro functional assays. Humanized hPD1/hPDL1/h4-1BB triple-knock-in mice were used to evaluate the effects of ABL503 and anti-PD1 blockade in vivo. RESULTS We observed that ABL503 successfully restored the functions of 4-1BB+ exhausted CD8+ TILs, which were enriched for tumor-specific T cells but unresponsive to anti-PD1 blockade. Importantly, compared with anti-PD1 blockade alone, the combination of ABL503 and anti-PD1 blockade further enhanced the functional restoration of human CD8+ TILs in vitro. Consistently, the combination of ABL503 with anti-PD1 in vivo significantly alleviated tumor growth and induced enhanced infiltration and activation of CD8+ TILs. CONCLUSIONS ABL503, a PDL1 and 4-1BB dual-targeting bispecific antibody, elicits pronounced additive tumor growth inhibition, with increased infiltration and functionality of exhausted CD8+ T cells, which in turn enhances the anticancer effects of anti-PD1 blockade. These promising findings suggest that ABL503 (TJ-L14B) in combination with PD1 inhibitors will likely further enhance therapeutic benefit in clinical trials. See related commentary by Molero-Glez et al., p. 3971.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Animals
- Humans
- Mice
- Female
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gihoon You
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Jung
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
28
|
Molero-Glez P, Azpilikueta A, Mosteo L, Glez-Vaz J, Palencia B, Melero I. CD137 (4-1BB) and T-Lymphocyte Exhaustion. Clin Cancer Res 2024; 30:3971-3973. [PMID: 39120463 DOI: 10.1158/1078-0432.ccr-24-1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
CD137 (4-1BB) costimulation results in the potent activation of antitumor T lymphocytes and elicits antitumor efficacy that is synergistic with anti-PD(L)1 checkpoint inhibitors, especially when using bispecific constructs. Emerging experimental evidence indicates that 4-1BB ligation prevents and may revert T-cell exhaustion. See related article by Jeon et al., p. 4155.
Collapse
Affiliation(s)
- Paula Molero-Glez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Laura Mosteo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Glez-Vaz
- Department of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Belen Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Medina JA, Ledezma DK, Ghofrani J, Chen J, Chin SJ, Balakrishnan PB, Lee NH, Sweeney EE, Fernandes R. Photothermal therapy co-localized with CD137 agonism improves survival in an SM1 melanoma model without hepatotoxicity. Nanomedicine (Lond) 2024; 19:2049-2064. [PMID: 39225150 PMCID: PMC11485692 DOI: 10.1080/17435889.2024.2389770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.
Collapse
Affiliation(s)
- Jacob A Medina
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Debbie K Ledezma
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Joshua Ghofrani
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Jie Chen
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Samantha J Chin
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | | | - Norman H Lee
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Rohan Fernandes
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| |
Collapse
|
30
|
Cao Z, Wichmann CW, Burvenich IJG, Osellame LD, Guo N, Rigopoulos A, O'Keefe GJ, Scott FE, Lorensuhewa N, Lynch KP, Scott AM. Radiolabelling and preclinical characterisation of [ 89Zr]Zr-Df-ATG-101 bispecific to PD-L1/4-1BB. Eur J Nucl Med Mol Imaging 2024; 51:3202-3214. [PMID: 38730087 PMCID: PMC11368977 DOI: 10.1007/s00259-024-06742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- School of Chemistry - Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Laura Danielle Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | | | | | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
31
|
Shimozaki K, Fukuoka S, Ooki A, Yamaguchi K. HER2-low gastric cancer: is the subgroup targetable? ESMO Open 2024; 9:103679. [PMID: 39178538 PMCID: PMC11386020 DOI: 10.1016/j.esmoop.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024] Open
Abstract
Therapeutic developments in the targeting of human epidermal growth factor receptor 2 (HER2)-expressing gastric cancer have followed the dramatic success of HER2-expressing breast cancer treatment, which has facilitated the expansion of indications for anti-HER2 agents to include not only conventional HER2-positive breast cancer, but also HER2-low and HER2-ultralow subgroups. The targetability of HER2-low gastric cancer, however, has yet to be established. Hence, further studies are needed to comprehensively understand the clinicopathological features, specific gene alterations, and distinct tumor immune microenvironment of HER2-low gastric cancer and compare them with those for HER2-positive or -negative gastric cancer. Antibody-drug conjugates for HER2 play an important role in making HER2-low gastric cancer targetable. In this context, a deeper understanding of the novel anti-HER2 agents, including antibody-drug conjugates, bispecific T-cell engager antibodies, and a combination of these agents, as well as new forms of immunomodulatory agents are also required. Redefining and re-categorizing HER2 status through not only immunohistochemistry/fluorescence in situ hybridization but also evaluating ERRB2 copy number gain or protein overexpression levels measured using DNA or RNA sequencing might be helpful for identifying populations with HER2-expressing tumors who would ideally benefit from anti-HER2 treatment. The current paper reviewed recent clinical trials, focusing particularly on HER2-low gastric cancer together with basic/translational findings, and discuss perspectives on further therapeutic development in the treatment of this distinct subgroup.
Collapse
Affiliation(s)
- K Shimozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo; Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - S Fukuoka
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo
| | - A Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo.
| | - K Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo
| |
Collapse
|
32
|
Liu L, Chen F, Li S, Yang T, Chen S, Zhou Y, Lin Z, Zeng G, Feng P, Shu HB, Zhou Q, Ding K, Chen L. Human/mouse CD137 agonist, JNU-0921, effectively shrinks tumors through enhancing the cytotoxicity of CD8 + T cells in cis and in trans. SCIENCE ADVANCES 2024; 10:eadp8647. [PMID: 39178257 PMCID: PMC11343023 DOI: 10.1126/sciadv.adp8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Agonistic antibodies against CD137 have been demonstrated to completely regress established tumors through activating T cell immunity. Unfortunately, current CD137 antibodies failed to benefit patients with cancer. Moreover, their antitumor mechanisms in vivo remain to be determined. Here, we report the development of a small molecular CD137 agonist, JNU-0921. JNU-0921 effectively activates both human and mouse CD137 through direct binding their extracellular domains to induce oligomerization and signaling and effectively shrinks tumors in vivo. Mechanistically, JNU-0921 enhances effector and memory function of cytotoxic CD8+ T cells (CTLs) and alleviates their exhaustion. JNU-0921 also skews polarization of helper T cells toward T helper 1 type and enhances their activity to boost CTL function. Meanwhile, JNU-0921 attenuates the inhibitory function of regulatory T cells on CTLs. Our current work shows that JNU-0921 shrinks tumors by enhancing the cytotoxicity of CTLs in cis and in trans and sheds light on strategy for developing CD137 small molecular agonists.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fenghua Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shan Li
- Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310018 Zhejiang, China
| | - Tong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuzhen Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zejian Lin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou, Guangzhou 510632, China
| | - Hong-Bing Shu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qian Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
33
|
Herault A, Mak J, de la Cruz-Chuh J, Dillon MA, Ellerman D, Go M, Cosino E, Clark R, Carson E, Yeung S, Pichery M, Gador M, Chiang EY, Wu J, Liang Y, Modrusan Z, Gampa G, Sudhamsu J, Kemball CC, Cheung V, Nguyen TTT, Seshasayee D, Piskol R, Totpal K, Yu SF, Lee G, Kozak KR, Spiess C, Walsh KB. NKG2D-bispecific enhances NK and CD8+ T cell antitumor immunity. Cancer Immunol Immunother 2024; 73:209. [PMID: 39112670 PMCID: PMC11306676 DOI: 10.1007/s00262-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.
Collapse
Affiliation(s)
- Aurelie Herault
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Judy Mak
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Josefa de la Cruz-Chuh
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Michael A Dillon
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Diego Ellerman
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - MaryAnn Go
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Ely Cosino
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Robyn Clark
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Emily Carson
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Stacey Yeung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Melanie Pichery
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Mylène Gador
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Eugene Y Chiang
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Gautham Gampa
- Department of Development Sciences PTPK, Genentech, South San Francisco, CA, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Christopher C Kemball
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Victoria Cheung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | | - Dhaya Seshasayee
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Klara Totpal
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Shang-Fan Yu
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Genee Lee
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Katherine R Kozak
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kevin B Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
34
|
Eguren-Santamaría I, Rodríguez I, Herrero-Martin C, Fernández de Piérola E, Azpilikueta A, Sánchez-Gregorio S, Bolaños E, Gomis G, Molero-Glez P, Chacón E, Mínguez JÁ, Chiva S, Diez-Caballero F, de Andrea C, Teijeira Á, Sanmamed MF, Melero I. Short-term cultured tumor fragments to study immunotherapy combinations based on CD137 (4-1BB) agonism. Oncoimmunology 2024; 13:2373519. [PMID: 38988823 PMCID: PMC11236292 DOI: 10.1080/2162402x.2024.2373519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Biomarkers for cancer immunotherapy are an unmet medical need. The group of Daniela Thommen at the NKI recently reported on novel methodologies based on short-term cultures of patient-derived tumor fragments whose cytokine concentrations in the supernatants and activation markers on infiltrating T cells were associated with clinical response to PD-1 blockade. We set up a similar culture technology with tumor-derived fragments using mouse tumors transplanted into syngeneic immunocompetent mice to test an agonist anti-CD137 mAb and its combinations with anti-PD-1 and/or anti-TGF-β. Increases in IFNγ concentrations in the tissue culture supernatants were detected upon in-culture activation with the anti-CD137 and anti-PD-1 mAb combinations or concanavalin A as a positive control. No other cytokine from a wide array was informative of stimulation with these mAbs. Interestingly, increases in Ki67 and other activation markers were substantiated in lymphocytes from cell suspensions gathered at the end of 72 h cultures. In mice bearing bilateral tumors in which one was excised prior to in vivo anti-CD137 + anti-PD-1 treatment to perform the fragment culture evaluation, no association was found between IFNγ production from the fragments and the in vivo therapeutic outcome in the non-resected contralateral tumors. The experimental system permitted freezing and thawing of the fragments with similar functional outcomes. Using a series of patient-derived tumor fragments from excised solid malignancies, we showed IFNγ production in a fraction of the studied cases, that was conserved in frozen/thawed fragments. The small tumor fragment culture technique seems suitable to preclinically explore immunotherapy combinations.
Collapse
Affiliation(s)
- Iñaki Eguren-Santamaría
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Inmaculada Rodríguez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Claudia Herrero-Martin
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Eva Fernández de Piérola
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sandra Sánchez-Gregorio
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elixabet Bolaños
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gabriel Gomis
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Molero-Glez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Enrique Chacón
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - José Ángel Mínguez
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Santiago Chiva
- Urology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Carlos de Andrea
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Pathology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Miguel F. Sanmamed
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Mikami H, Feng S, Matsuda Y, Ishii S, Naoi S, Azuma Y, Nagano H, Asanuma K, Kayukawa Y, Tsunenari T, Kamikawaji S, Iwabuchi R, Shinozuka J, Yamazaki M, Kuroi H, Ho SSW, Gan SW, Chichili P, Pang CL, Yeo CY, Shimizu S, Hironiwa N, Kinoshita Y, Shimizu Y, Sakamoto A, Muraoka M, Takahashi N, Kawa T, Shiraiwa H, Mimoto F, Kashima K, Kamata-Sakurai M, Ishikawa S, Aburatani H, Kitazawa T, Igawa T. Engineering CD3/CD137 Dual Specificity into a DLL3-Targeted T-Cell Engager Enhances T-Cell Infiltration and Efficacy against Small-Cell Lung Cancer. Cancer Immunol Res 2024; 12:719-730. [PMID: 38558120 DOI: 10.1158/2326-6066.cir-23-0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.
Collapse
Affiliation(s)
- Hirofumi Mikami
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Shu Feng
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yutaka Matsuda
- Project & Lifecycle Management Unit, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Sotaro Naoi
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yumiko Azuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Hiroaki Nagano
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kentaro Asanuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yoko Kayukawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shogo Kamikawaji
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Ryutaro Iwabuchi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Junko Shinozuka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaki Yamazaki
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Haruka Kuroi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Siok Wan Gan
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | | | - Chai Ling Pang
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Chiew Ying Yeo
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Shun Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Naoka Hironiwa
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yasuko Kinoshita
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Tatsuya Kawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Futa Mimoto
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kenji Kashima
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| |
Collapse
|
36
|
Navarro R, Frago S, Hangiu O, Erce-Llamazares A, Lázaro-Gorines R, Morcillo MA, Rodriguez-Peralto JL, Sanz L, Compte M, Alvarez-Vallina L. Pharmacokinetics and safety of LEAD-452, an EGFR-specific 4-1BB-agonistic trimerbody in non-human primates. Toxicol Appl Pharmacol 2024; 487:116961. [PMID: 38740095 DOI: 10.1016/j.taap.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
LEAD-452 is a humanized bispecific EGFR-targeted 4-1BB-agonistic trimerbody with a unique trimeric configuration compared to other 4-1BB-specific antibodies that are currently in development. Indeed, enhanced tumor-specific costimulation and very remarkable safety and efficacy profiles have been observed in mouse models. Here, we conducted for the first time a preclinical pharmacokinetic and toxicity study in non-human primates (NHP) (Macaca fascicularis). LEAD-452 exhibits comparable binding affinity for human and macaque targets, indicating its pharmacological significance for safety testing across species. The NHP were administered LEAD-452 in a series of ascending doses, ranging from 0.1 mg/kg to 10 mg/kg, and repeated doses up to 20 mg/kg. The administration of LEAD-452 was found to be clinically well tolerated, with no major related adverse effects observed. Furthermore, there have been no reported cases of liver toxicity, thrombocytopenia, and neutropenia, which are commonly associated with treatments using conventional anti-4-1BB IgG-based antibodies. In addition, neither IgM nor IgG-based anti-drug antibodies were detected in serum samples from NHP during the study, regardless of the dose of LEAD-452 administered. These results support the clinical development of LEAD-452 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Oana Hangiu
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel A Morcillo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - José L Rodriguez-Peralto
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain; Department of Pathology, Universidad Complutense, Madrid, Spain; Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Fundación para la Investigación Biomédica Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain.
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
37
|
Halpert MM, Burns BA, Rosario SR, Withers HG, Trivedi AJ, Hofferek CJ, Gephart BD, Wang H, Vazquez-Perez J, Amanya SB, Hyslop ST, Yang J, Kemnade JO, Sandulache VC, Konduri V, Decker WK. Multifactoral immune modulation potentiates durable remission in multiple models of aggressive malignancy. FASEB J 2024; 38:e23644. [PMID: 38738472 PMCID: PMC11155525 DOI: 10.1096/fj.202302675r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.
Collapse
Affiliation(s)
- MM Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BA Burns
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SR Rosario
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
| | - HG Withers
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
| | - AJ Trivedi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - CJ Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BD Gephart
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - H Wang
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SB Amanya
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - ST Hyslop
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Yang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 United States
| | - JO Kemnade
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - VC Sandulache
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 United States
| | - V Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - WK Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030 United States
| |
Collapse
|
38
|
Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, Shapiro JW, Kim DEC, Zha Y, Sweis RF, Gajewski TF. Batf3 + DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. Cell Rep 2024; 43:114141. [PMID: 38656869 PMCID: PMC11229087 DOI: 10.1016/j.celrep.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.
Collapse
Affiliation(s)
- Andrea Ziblat
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Brendan L Horton
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Emily F Higgs
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ken Hatogai
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anna Martinez
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Shapiro
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Danny E C Kim
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - YuanYuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637, USA
| | - Randy F Sweis
- Department of Medicine, University of Chicago, Chicago, IL 60612, USA
| | - Thomas F Gajewski
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
40
|
Yuwen H, Wang H, Li T, Ren Y, Zhang YK, Chen P, Sun A, Bian G, Li B, Flowers D, Presler M, Subramanian K, Xue J, Wang J, Lynch K, Mei J, He X, Shan B, Hou B. ATG-101 Is a Tetravalent PD-L1×4-1BB Bispecific Antibody That Stimulates Antitumor Immunity through PD-L1 Blockade and PD-L1-Directed 4-1BB Activation. Cancer Res 2024; 84:1680-1698. [PMID: 38501978 PMCID: PMC11094422 DOI: 10.1158/0008-5472.can-23-2701] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
Collapse
Affiliation(s)
- Hui Yuwen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Huajing Wang
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Tengteng Li
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Yijing Ren
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | | | - Peng Chen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Ao Sun
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Gang Bian
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Bohua Li
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | | | | | | | - Jia Xue
- Crown Bioscience Inc., Taicang, P.R. China
| | | | | | - Jay Mei
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Xiaowen He
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Bo Shan
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Bing Hou
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| |
Collapse
|
41
|
Zhu X, Feng Y, Fan P, Dong D, Yuan J, Chang C, Wang R. Increased co-expression of 4-1BB with PD-1 on CD8+ tumor-infiltrating lymphocytes is associated with improved prognosis and immunotherapy response in cervical cancer. Front Oncol 2024; 14:1381381. [PMID: 38756662 PMCID: PMC11096482 DOI: 10.3389/fonc.2024.1381381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background The combination of agonistic antibodies with immune checkpoint inhibitors presents a promising avenue for cancer immunotherapy. Our objective is to explore the co-expression of 4-1BB, ICOS, CD28, with PD-1 on CD8+ T cells in the peripheral blood and tumor tissue of cervical cancer(CC) patients, with a specific focus on the association between the co-expression levels of 4-1BB with PD-1 and clinical features, prognosis as well as immunotherapy response. The goal is to offer valuable insights into cervical cancer immunotherapy. Methods In this study, 50 treatment-naive patients diagnosed with CC were enrolled. Flow cytometry was used to detect PD-1/4-1BB, PD-1/ICOS and PD-1/CD28 co-expression on CD8+ T cells. Subsequent analysis aimed to investigate the differential co-expression between peripheral blood and cancer tissue, and also the correlation between co-expression and clinical features in these patients. Gene Expression Omnibus (GEO) datasets, The Cancer Genome Atlas (TCGA) cohort, The IMvigor210 cohort, The BMS038cohort and Immunophenoscores were utilized to investigate the correlation between PD-1/4-1BB and the immune microenvironment, prognosis, immunotherapy, and drug sensitivity in cervical cancer. Results The co-expression levels of PD-1/4-1BB, PD-1/ICOS, and PD-1/CD28 on CD8+ tumor-infiltrating lymphocytes (TILs) were significantly higher in cervical cancer patients compared to those in peripheral blood. Clinical feature analysis reveals that on CD8+ TILs, the co-expression of PD-1/4-1BB is more closely correlated with clinical characteristics compared to PD-1/ICOS, PD-1/CD28, PD-1, and 4-1BB. Pseudo-time analysis and cell communication profiling reveal close associations between the subgroups harboring 4-1BB and PD-1. The prognosis, tumor mutation burden, immune landscape, and immunotherapy response exhibit statistically significant variations between the high and low co-expression groups of PD-1/4-1BB. The high co-expression group of PD-1/4-1BB is more likely to benefit from immunotherapy. Conclusion PD-1/4-1BB, PD-1/ICOS, and PD-1/CD28 exhibit elevated co-expression on CD8+TILs of cervical cancer, while demonstrating lower expression in circulating T cells. The co-expression patterns of PD-1/4-1BB significantly contributed to the prediction of immune cell infiltration characteristics, prognosis, and tailored immunotherapy tactics. PD-1/4-1BB exhibits potential as a target for combination immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Xiaonan Zhu
- The Third Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaning Feng
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Peiwen Fan
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang, China
| | - Danning Dong
- Department of Head and Neck Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianlin Yuan
- The Third Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cheng Chang
- Nuclear Medicine Department, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ruozheng Wang
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Urumqi, Xinjiang, China
- Clinical Key Specialty of the Health Commission, Urumqi, Xinjiang, China
| |
Collapse
|
42
|
Lim SH, Beers SA, Al-Shamkhani A, Cragg MS. Agonist Antibodies for Cancer Immunotherapy: History, Hopes, and Challenges. Clin Cancer Res 2024; 30:1712-1723. [PMID: 38153346 PMCID: PMC7615925 DOI: 10.1158/1078-0432.ccr-23-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Immunotherapy is among the most promising new treatment modalities to arise over the last two decades; antibody drugs are delivering immunotherapy to millions of patients with many different types of cancer. Initial success with antibody therapeutics came in the form of direct targeting or cytotoxic antibodies, such as rituximab and trastuzumab, which bind directly to tumor cells to elicit their destruction. These were followed by immunomodulatory antibodies that elicit antitumor responses by either stimulating immune cells or relieving tumor-mediated suppression. By far the most successful approach in the clinic to date has been relieving immune suppression, with immune checkpoint blockade now a standard approach in the treatment of many cancer types. Despite equivalent and sometimes even more impressive effects in preclinical models, agonist antibodies designed to stimulate the immune system have lagged behind in their clinical translation. In this review, we document the main receptors that have been targeted by agonist antibodies, consider the various approaches that have been evaluated to date, detail what we have learned, and consider how their anticancer potential can be unlocked.
Collapse
Affiliation(s)
- Sean H. Lim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
43
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
44
|
Wang J, Dong T, Gong X, Li D, Sun J, Luo Y, Wu H. Safety and Pharmacokinetic Assessment of the FIC CLDN18.2/4-1BB Bispecific Antibody in Rhesus Monkeys. Int J Toxicol 2024; 43:291-300. [PMID: 38115178 DOI: 10.1177/10915818231221282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Gastric cancer is one of the most common cancers worldwide, particularly in China, with over half a million new cases and over 400 thousand deaths in 2022. Zolbetuximab, a first-in-class investigational monoclonal antibody (mAb) targeting tumor-associated antigen CLDN18.2 which is highly expressed on gastric cancer cells, was recently reported to meet the primary endpoint in Phase III trial as first-line treatment in CLDN18.2 positive and HER2-negative gastric cancers. In the present study, we developed a humanized bispecific antibody (bsAb) CLDN18.2/4-1BB named PM1032. PM1032 activates immune cells via CLDN18.2 mediated crosslinking of 4-1BB, a potent stimulator of T/NK cells. It induced strong immunological memory in multiple tumor-bearing animal models, indicating significant potential as an effective treatment for CLDN18.2 positive cancers such as gastric cancer. Since liver and gastrointestinal (GI) related toxicities were reported in 4-1BB and CLDN18.2 targeting programs during the clinical development, respectively, extensive pharmacokinetics (PK) and safety profile characterization of PM1032 was performed in rhesus monkeys. PM1032 had a half-life comparable to a conventional IgG1 mAb, and serum drug concentration increased in a dose-dependent pattern. Furthermore, PM1032 was generally well tolerated, with no significant abnormalities observed in toxicity studies, including the liver and stomach. In summary, PM1032 demonstrated good PK and an exceptional safety profile in rhesus monkeys supporting further investigation in clinical studies.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
- TriApex Laboratories Co., Ltd, Nanjing, China
| | - Tiantian Dong
- New Drug Technology Department, Biotheus Inc., Zhuhai, China
- TriApex Laboratories Co., Ltd, Nanjing, China
| | - Xinjiang Gong
- New Drug Technology Department, Biotheus Inc., Zhuhai, China
- TriApex Laboratories Co., Ltd, Nanjing, China
| | - Deli Li
- TriApex Laboratories Co., Ltd, Nanjing, China
| | - Joanne Sun
- New Drug Technology Department, Biotheus Inc., Zhuhai, China
| | - Yi Luo
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Huazhang Wu
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
45
|
Haugh A, Daud AI. Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. Am J Clin Dermatol 2024; 25:407-419. [PMID: 38329690 DOI: 10.1007/s40257-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
There have been many recent advances in melanoma therapy. While 50% of melanomas have a BRAF mutation and are a target for BRAF inhibitors, the remaining 50% are BRAF wild-type. Immune checkpoint inhibitors targeting PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and lymphocyte activated gene-3 (Lag-3) are all approved for the treatment of patients with advanced BRAF wild-type melanoma; however, treatment of this patient population following initial immune checkpoint blockade is a current therapeutic challenge given the lack of other efficacious options. Here, we briefly review available US FDA-approved therapies for BRAF wild-type melanoma and focus on developing treatment avenues for this heterogeneous group of patients. We review the basics of genomic features of both BRAF mutant and BRAF wild-type melanoma as well as efforts underway to develop new targeted therapies involving the mitogen-activated protein kinase (MAPK) pathway for patients with BRAF wild-type tumors. We then focus on novel immunotherapies, including developing checkpoint inhibitors and agonists, cytokine therapies, oncolytic viruses and tumor-infiltrating lymphocytes, all of which represent potential therapeutic avenues for patients with BRAF wild-type melanoma who progress on currently approved immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexandra Haugh
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adil I Daud
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA.
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Archer S, Brailey PM, Song M, Bartlett PD, Figueiredo I, Gurel B, Guo C, Brucklacher-Waldert V, Thompson HL, Akinwale J, Boyle SE, Rossant C, Birkett NR, Pizzey J, Maginn M, Legg J, Williams R, Johnston CM, Bland-Ward P, de Bono JS, Pierce AJ. CB307: A Dual Targeting Costimulatory Humabody VH Therapeutic for Treating PSMA-Positive Tumors. Clin Cancer Res 2024; 30:1595-1606. [PMID: 38593226 PMCID: PMC11016891 DOI: 10.1158/1078-0432.ccr-23-3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease. EXPERIMENTAL DESIGN We designed and manufactured CB307, a novel half-life extended bispecific costimulatory Humabody VH therapeutic to elicit CD137 agonism exclusively in a PSMA-high tumor microenvironment (TME). The functional activity of CB307 was assessed in cell-based assays and in syngeneic mouse antitumor pharmacology studies. Nonclinical toxicology and toxicokinetic properties of CB307 were assessed in a good laboratory practice (GLP) compliant study in cynomolgus macaques. RESULTS CB307 provides effective CD137 agonism in a PSMA-dependent manner, with antitumor activity both in vitro and in vivo, and additional activity when combined with checkpoint inhibitors. A validated novel PSMA/CD137 IHC assay demonstrated a higher prevalence of CD137-positive cells in the PSMA-expressing human mCRPC TME with respect to primary lesions. CB307 did not show substantial toxicity in nonhuman primates and exhibited a plasma half-life supporting weekly clinical administration. CONCLUSIONS CB307 is a first-in-class immunotherapeutic that triggers potent PSMA-dependent T-cell activation, thereby alleviating toxicologic concerns against unrestricted CD137 agonism.
Collapse
Affiliation(s)
- Sophie Archer
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip M. Brailey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Minjung Song
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip D. Bartlett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Ines Figueiredo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Bora Gurel
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Christina Guo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | | | | | - Jude Akinwale
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Samantha E. Boyle
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Christine Rossant
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Neil R. Birkett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Julia Pizzey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Mark Maginn
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - James Legg
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Richard Williams
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Colette M. Johnston
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Philip Bland-Ward
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Johann S. de Bono
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | - Andrew J. Pierce
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
47
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
48
|
Zhang H, Wang Q, Yalavarthi S, Pekar L, Shamnoski S, Hu L, Helming L, Zielonka S, Xu C. Development of a c-MET x CD137 bispecific antibody for targeted immune agonism in cancer immunotherapy. Cancer Treat Res Commun 2024; 39:100805. [PMID: 38492435 DOI: 10.1016/j.ctarc.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Targeting the costimulatory receptor CD137 has shown promise as a therapeutic approach for cancer immunotherapy, resulting in anti-tumor efficacy demonstrated in clinical trials. However, the initial CD137 agonistic antibodies, urelumab and utomilumab, faced challenges in clinical trials due to the liver toxicity or lack of efficacy, respectively. Concurrently, c-MET has been identified as a highly expressed tumor-associated antigen (TAA) in various solid and soft tumors. METHODS In this study, we aimed to develop a bispecific antibody (BsAb) that targets both c-MET and CD137, optimizing the BsAb format and CD137 binder for efficient delivery of the CD137 agonist to the tumor microenvironment (TME). We employed a monovalent c-MET motif and a trimeric CD137 Variable Heavy domain of Heavy chain (VHH) for the BsAb design. RESULTS Our results demonstrate that the c-MET x CD137 BsAb provides co-stimulation to T cells through cross-linking by c-MET-expressing tumor cells. Functional immune assays confirmed the enhanced efficacy and potency of the c-MET x CD137 BsAb, as indicated by activation of CD137 signaling, target cell killing, and cytokine release in various tumor cell lines. Furthermore, the combination of c-MET x CD137 BsAb with Pembrolizumab showed a dose-dependent enhancement of target-induced T cell cytokine release. CONCLUSION Overall, the c-MET x CD137 BsAb exhibits a promising developability profile as a tumor-targeted immune agonist by minimizing off-target effects while effectively delivering immune agonism. It has the potential to overcome resistance to anti-PD-(L)1 therapies.
Collapse
Affiliation(s)
- Hong Zhang
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Qun Wang
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Sireesha Yalavarthi
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Steven Shamnoski
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Liufang Hu
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Laura Helming
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Chunxiao Xu
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
49
|
Na K, Lee S, Kim DK, Kim YS, Hwang JY, Kang SS, Baek S, Lee CY, Yang SM, Han YJ, Kim MH, Han H, Kim Y, Kim JH, Jeon S, Byeon Y, Lee JB, Lim SM, Hong MH, Pyo KH, Cho BC. CD81 and CD82 expressing tumor-infiltrating lymphocytes in the NSCLC tumor microenvironment play a crucial role in T-cell activation and cytokine production. Front Immunol 2024; 15:1336246. [PMID: 38515751 PMCID: PMC10954780 DOI: 10.3389/fimmu.2024.1336246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.
Collapse
Affiliation(s)
- Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Seob Kim
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-San Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghyun Jeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngseon Byeon
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Khushalani NI, Ott PA, Ferris RL, Cascone T, Schadendorf D, Le DT, Sharma MR, Barlesi F, Sharfman W, Luke JJ, Melero I, Lathers D, Neely J, Suryawanshi S, Sanyal A, Holloway JL, Suryawanshi R, Ely S, Segal NH. Final results of urelumab, an anti-CD137 agonist monoclonal antibody, in combination with cetuximab or nivolumab in patients with advanced solid tumors. J Immunother Cancer 2024; 12:e007364. [PMID: 38458639 PMCID: PMC10921538 DOI: 10.1136/jitc-2023-007364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitors and targeted treatments for cancer is common; thus, novel immunotherapy agents are needed. Urelumab is a monoclonal antibody agonist that binds to CD137 receptors expressed on T cells. Here, we report two studies that evaluated urelumab in combination with cetuximab or nivolumab in patients with select, advanced solid tumors. METHODS CA186-018: Patients with metastatic colorectal cancer or metastatic squamous cell carcinoma of the head and neck (SCCHN) were treated in a dose-evaluation phase with urelumab 0.1 mg/kg (urelumab-0.1) every 3 weeks (Q3W)+cetuximab 250 mg/m2 (cetuximab-250) weekly; and in a dose-expansion phase with urelumab 8 mg flat dose (urelumab-8) Q3W+cetuximab-250 weekly. CA186-107: The dose-escalation phase included patients with previously treated advanced solid tumors (or treated or treatment-naive melanoma); patients received urelumab 3 mg flat dose (urelumab-3) or urelumab-8 every 4 weeks+nivolumab 3 mg/kg (nivolumab-3) or 240 mg (nivolumab-240) every 2 weeks. In the expansion phase, patients with melanoma, non-small cell lung cancer, or SCCHN were treated with urelumab-8+nivolumab-240. Primary endpoints were safety and tolerability, and the secondary endpoint included efficacy assessments. RESULTS CA186-018: 66 patients received study treatment. The most frequent treatment-related adverse events (TRAEs) were fatigue (75%; n=3) with urelumab-0.1+cetuximab-250 and dermatitis (45%; n=28) with urelumab-8+cetuximab-250. Three patients (5%) discontinued due to TRAE(s) (with urelumab-8+cetuximab-250). One patient with SCCHN had a partial response (objective response rate (ORR) 5%, with urelumab-8+cetuximab-250).CA186-107: 134 patients received study treatment. Fatigue was the most common TRAE (32%; n=2 with urelumab-3+nivolumab-3; n=1 with urelumab-8+nivolumab-3; n=40 with urelumab-8+nivolumab-240). Nine patients (7%) discontinued due to TRAE(s) (n=1 with urelumab-3+nivolumab-3; n=8 with urelumab-8+nivolumab-240). Patients with melanoma naive to anti-PD-1 therapy exhibited the highest ORR (49%; n=21 with urelumab-8+nivolumab-240). Intratumoral gene expression in immune-related pathways (CD3, CD8, CXCL9, GZMB) increased on treatment with urelumab+nivolumab. CONCLUSIONS Although the addition of urelumab at these doses was tolerable, preliminary response rates did not indicate an evident additive benefit. Nevertheless, the positive pharmacodynamics effects observed with urelumab and the high response rate in treatment-naive patients with melanoma warrant further investigation of other anti-CD137 agonist agents for treatment of cancer. TRIAL REGISTRATION NUMBERS NCT02110082; NCT02253992.
Collapse
Affiliation(s)
- Nikhil I Khushalani
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Patrick A Ott
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robert L Ferris
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tina Cascone
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dirk Schadendorf
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, University Hospital Essen, Essen, Germany
| | - Dung T Le
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Fabrice Barlesi
- Aix-Marseille University, Marseille, France
- Hopital de la Timone, Marseille, France
| | | | - Jason J Luke
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ignacio Melero
- CIBERONC, and Clinica Universidad de Navarra, Pamplona, Spain
| | - Deanne Lathers
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | - Jaclyn Neely
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | | | | | - James L Holloway
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | | | - Scott Ely
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | - Neil H Segal
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|