1
|
Dutour A, Pasello M, Farrow L, Amer MH, Entz-Werlé N, Nathrath M, Scotlandi K, Mittnacht S, Gomez-Mascard A. Microenvironment matters: insights from the FOSTER consortium on microenvironment-driven approaches to osteosarcoma therapy. Cancer Metastasis Rev 2025; 44:44. [PMID: 40210800 PMCID: PMC11985652 DOI: 10.1007/s10555-025-10257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Osteosarcoma (OS), a prevalent malignant bone tumor, has seen limited progress in treatment efficacy and patient outcomes over decades. Recent insights into the tumor microenvironment (TME) have revealed its crucial role in tumor progression and therapeutic resistance, particularly in OS. This review offers a comprehensive exploration of the OS microenvironment, meticulously dissecting its crucial components: the mesenchymal stromal TME, the immune microenvironment, hypoxia-induced adaptations, and the impact of the physical microenvironment. By demonstrating how these elements collectively drive tumor proliferation, immune evasion, and invasion, this review explores the intricate molecular and cellular dynamics at play. Furthermore, innovative approaches targeting the OS microenvironment, such as immunotherapies, are presented. This review highlights the importance of the TME in OS progression and its potential as a source of novel therapeutic strategies, offering new hope for improved patient outcomes.
Collapse
Affiliation(s)
- Aurelie Dutour
- Childhood Cancer & Cell Death Team, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luke Farrow
- University College London Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley St, London, WC1E 6DD, UK
| | - Mahetab H Amer
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Natacha Entz-Werlé
- Pediatric Onco-Hematology Unit, University Hospitals of Strasbourg, Strasbourg, France
- Translational, Transversal and Therapeutic Oncology Team, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, CNRS UMR 7021, Illkirch, France
| | - Michaela Nathrath
- Department of Pediatric Hemato-Oncology, Psychosomatics and Systemic Diseases, Children's Hospital Kassel, Kassel, Germany
- Department of Pediatrics, Children'S Cancer Research Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sibylle Mittnacht
- University College London Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley St, London, WC1E 6DD, UK
| | - Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, 1 Avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
2
|
Zhra M, Akhund SA, Mohammad KS. Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies. Pharmaceuticals (Basel) 2025; 18:520. [PMID: 40283955 PMCID: PMC12030420 DOI: 10.3390/ph18040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma is recognized as the most prevalent primary bone malignancy, primarily affecting children and adolescents. It is characterized by its aggressive behavior and high metastatic potential, which often leads to poor patient outcomes. Despite advancements in surgical techniques and chemotherapy regimens, the prognosis for patients with osteosarcoma remains unsatisfactory, with survival rates plateauing over the past few decades. A significant barrier to effective treatment is the development of chemotherapy resistance, which complicates the management of the disease and contributes to high rates of recurrence. This review article aims to provide a comprehensive overview of recent advancements in osteosarcoma therapy, particularly in overcoming chemotherapy resistance. We begin by discussing the current standard treatment modalities, including surgical resection and conventional chemotherapy agents such as methotrexate, doxorubicin, and cisplatin. While these approaches have been foundational in managing osteosarcoma, they are often limited by adverse effects and variability in efficacy among patients. To address these challenges, we explore novel pharmacological strategies that aim to enhance treatment outcomes. This includes targeted therapies focusing on specific molecular alterations in osteosarcoma cells and immunotherapeutic approaches designed to harness the body's immune system against tumors. Additionally, we review innovative drug delivery systems that aim to improve the bioavailability and efficacy of existing treatments while minimizing toxicity. The review also assesses the mechanisms underlying chemotherapy resistance, such as drug efflux mechanisms, altered metabolism, and enhanced DNA repair pathways. By synthesizing current research findings, we aim to highlight the potential of new therapeutic agents and strategies for overcoming these resistance mechanisms. Ultimately, this article seeks to inform future research directions and clinical practices, underscoring the need for continued innovation in treating osteosarcoma to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.); (S.A.A.)
| |
Collapse
|
3
|
Schwarz E, Savardekar H, Zelinskas S, Mouse A, Lapurga G, Lyberger J, Rivaldi A, Ringwalt EM, Miller KE, Yu L, Behbehani GK, Cripe TP, Carson WE. Trabectedin Enhances the Antitumor Effects of IL-12 in Triple-Negative Breast Cancer. Cancer Immunol Res 2025; 13:560-576. [PMID: 39777457 PMCID: PMC11962391 DOI: 10.1158/2326-6066.cir-24-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
IL-12 is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL-12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T-box transcription factor (Tbx21), the cytotoxic ligands TNF-related apoptosis-inducing ligand (TNFSF10), Fas ligand (FASLG), and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1). The combination of IL-12 and trabectedin increased NK-cell cytotoxicity and activation and production of IFN-γ, TNF-α, and granzyme B in the presence of human TNBC cells. Treatment of 4T1 and EMT6 tumor-bearing mice with IL-12 and trabectedin led to a significant reduction in tumor burden compared with single-agent controls and the highest levels of plasma IFN-γ, intratumoral CD8+ T cells, and conventional type 1 DC. MDSC and M2-like macrophages were significantly decreased with combination therapy. NK-cell depletion abrogated the effects of combination therapy, as did the elimination of CD8+ T cells. NK-cell depletion led to lower levels of the NK cell-derived chemokine CCL5 and the DC-derived chemokine CXCL10, higher tumor burden, and decreased intratumoral CD8+ T cells. IL-12 and trabectedin also significantly enhanced the response of TNBC to anti-PD-L1 therapy. These data suggest that MDSC depletion augments the ability of IL-12-activated NK cells to drive the infiltration of DC and CD8+ T cells into TNBC for an antitumor effect.
Collapse
Affiliation(s)
- Emily Schwarz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Himanshu Savardekar
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sara Zelinskas
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Abigail Mouse
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Justin Lyberger
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Adithe Rivaldi
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Emily M. Ringwalt
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio
- Division of Hematology, Oncology & Blood and Marrow Transplant, Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio
| | - Katherine E. Miller
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Gregory K. Behbehani
- Division of Hematology, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Timothy P. Cripe
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Oncology & Blood and Marrow Transplant, Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
5
|
Fan Q, He Y, Liu J, Liu Q, Wu Y, Chen Y, Dou Q, Shi J, Kong Q, Ou Y, Guo J. Large Language Model-Assisted Genotoxic Metal-Phenolic Nanoplatform for Osteosarcoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403044. [PMID: 39670697 DOI: 10.1002/smll.202403044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Osteosarcoma, a leading primary bone malignancy in children and adolescents, is associated with a poor prognosis and a low global fertility rate. A large language model-assisted phenolic network (LLMPN) platform is demonstrated that integrates the large language model (LLM) GPT-4 into the design of multifunctional metal-phenolic network materials. Fine-tuned GPT-4 identified gossypol as a phenolic compound with superior efficacy against osteosarcoma after evaluating across a library of 60 polyphenols based on the correlation between experimental anti-osteosarcoma activity and multiplexed chemical properties of polyphenols. Subsequently, gossypol is then self-assembled into Cu2+-gossypol nanocomplexes with a hyaluronic acid surface modification (CuGOS NPs). CuGOS NPs has demonstrated the ability to induce genetic alterations and cell death in osteosarcoma cells, offering significant therapeutic benefits for primary osteosarcoma tumors and reducing metastasis without adverse effects on major organs or the genital system. This work presents an LLM-driven approach for engineering metal-organic nanoplatform and broadening applications by harnessing the capabilities of LLMs, thereby improving the feasibility and efficiency of research activities.
Collapse
Affiliation(s)
- Qingxin Fan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinling Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuxing Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Qingyu Dou
- National Clinical Research Center for Geriatrics, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Shi
- Section of Science and Education, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan, 610041, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Section of Science and Education, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan, 610041, China
| | - Yunsheng Ou
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Departments of Chemical, Biological Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
6
|
Ringwalt EM, Currier MA, Glaspell AM, Chen CY, Cannon MV, Cam M, Gross AC, Gust M, Wang PY, Boon L, Biederman LE, Schwarz E, Rajappa P, Lee DA, Mardis ER, Carson WE, Roberts RD, Cripe TP. Trabectedin promotes oncolytic virus antitumor efficacy, viral gene expression, and immune effector function in models of bone sarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200886. [PMID: 39492947 PMCID: PMC11530761 DOI: 10.1016/j.omton.2024.200886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/13/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular antiviral response which increases viral transcript presence in the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection. In the absence of robust virus replication, we found trabectedin enhanced viroimmunotherapy efficacy by reducing infiltrating immunosuppressive CD4 T and myeloid cells and stimulating granzyme expression in infiltrating T and natural killer cells to cause immune-mediated tumor regressions. Thus, trabectedin enhances both the direct virus-mediated killing of tumor cells and the viral-induced activation of cytotoxic effector lymphocytes to cause tumor regressions across models. Our data provide a strong rationale for clinical translation as both mechanisms should be simultaneously active in human patients.
Collapse
Affiliation(s)
- Emily M. Ringwalt
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mark A. Currier
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Andrea M. Glaspell
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Maren Cam
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Amy C. Gross
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Matthew Gust
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | | | - Laura E. Biederman
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Emily Schwarz
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Prajwal Rajappa
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Dean A. Lee
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Elaine R. Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - William E. Carson
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Hamza FN, Mohammad KS. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals (Basel) 2024; 17:1591. [PMID: 39770433 PMCID: PMC11679356 DOI: 10.3390/ph17121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases. Even though immune checkpoint inhibitors (ICIs) have significantly changed cancer treatment, their impact on bone metastases appears limited because of the bone microenvironment's immunosuppressive traits, which include high levels of transforming growth factor-beta (TGFβ) and the immune-suppressing cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This review underscores the investigation of combined therapeutic approaches that might ease these difficulties, such as the synergy of immune checkpoint inhibitors with agents aimed at bones (denosumab, bisphosphonates), chemotherapy, and radiotherapy, as well as the combination of immune checkpoint inhibitors with different immunotherapeutic methods, including CAR T-cell therapy. This review provides a comprehensive analysis of preclinical studies and clinical trials that show the synergistic potential of these combination approaches, which aim to both enhance immune responses and mitigate bone destruction. By offering an in-depth exploration of how these strategies can be tailored to the bone microenvironment, this review underscores the need for personalized treatment approaches. The findings emphasize the urgent need for further research into overcoming immune evasion in bone metastases, with the goal of improving patient survival and quality of life.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khalid Said Mohammad
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
8
|
Liang H, Cui M, Tu J, Chen X. Advancements in osteosarcoma management: integrating immune microenvironment insights with immunotherapeutic strategies. Front Cell Dev Biol 2024; 12:1394339. [PMID: 38915446 PMCID: PMC11194413 DOI: 10.3389/fcell.2024.1394339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Osteosarcoma, a malignant bone tumor predominantly affecting children and adolescents, presents significant therapeutic challenges, particularly in metastatic or recurrent cases. Conventional surgical and chemotherapeutic approaches have achieved partial therapeutic efficacy; however, the prognosis for long-term survival remains bleak. Recent studies have highlighted the imperative for a comprehensive exploration of the osteosarcoma immune microenvironment, focusing on the integration of diverse immunotherapeutic strategies-including immune checkpoint inhibitors, tumor microenvironment modulators, cytokine therapies, tumor antigen-specific interventions, cancer vaccines, cellular therapies, and antibody-based treatments-that are directly pertinent to modulating this intricate microenvironment. By targeting tumor cells, modulating the tumor microenvironment, and activating host immune responses, these innovative approaches have demonstrated substantial potential in enhancing the effectiveness of osteosarcoma treatments. Although most of these novel strategies are still in research or clinical trial phases, they have already demonstrated significant potential for individuals with osteosarcoma, suggesting the possibility of developing new, more personalized and effective treatment options. This review aims to provide a comprehensive overview of the current advancements in osteosarcoma immunotherapy, emphasizing the significance of integrating various immunotherapeutic methods to optimize therapeutic outcomes. Additionally, it underscores the imperative for subsequent research to further investigate the intricate interactions between the tumor microenvironment and the immune system, aiming to devise more effective treatment strategies. The present review comprehensively addresses the landscape of osteosarcoma immunotherapy, delineating crucial scientific concerns and clinical challenges, thereby outlining potential research directions.
Collapse
Affiliation(s)
- Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Ringwalt EM, Currier MA, Glaspell AM, Chen CY, Cannon MV, Cam M, Gross AC, Gust M, Wang PY, Boon L, Biederman LE, Schwarz E, Rajappa P, Lee DA, Mardis ER, Carson WE, Roberts RD, Cripe TP. Trabectedin Enhances Oncolytic Virotherapy by Reducing Barriers to Virus Spread and Cytotoxic Immunity in Preclinical Pediatric Bone Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.582994. [PMID: 38464161 PMCID: PMC10925327 DOI: 10.1101/2024.03.02.582994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection. In the absence of robust virus replication, we found trabectedin enhanced viroimmunotherapy efficacy by reducing immunosuppressive macrophages and stimulating granzyme expression in infiltrating T and NK cells to cause immune-mediated tumor regressions. Thus, trabectedin enhances both the direct virus-mediated killing of tumor cells and the viral-induced activation of cytotoxic effector lymphocytes to cause tumor regressions across models. Our data provide a strong rationale for clinical translation as both mechanisms should be simultaneously active in human patients.
Collapse
|
10
|
Povo-Retana A, Landauro-Vera R, Alvarez-Lucena C, Cascante M, Boscá L. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment-Progresses in Their Use in Combined Cancer Therapy. Molecules 2024; 29:331. [PMID: 38257245 PMCID: PMC10820391 DOI: 10.3390/molecules29020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
11
|
Leng Y, Li J, Long Z, Li C, Zhang L, Huang Z, Xi J, Liu Y. Osteoblast-derived exosomes promote osteogenic differentiation of osteosarcoma cells via URG4/Wnt signaling pathway. Bone 2024; 178:116933. [PMID: 37832904 DOI: 10.1016/j.bone.2023.116933] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Osteosarcoma is a primary malignant bone tumor. Although surgery and chemotherapy are the main treatment methods, the overall curative effect remains unsatisfactory. Therefore, there is an urgent need to develop new therapeutic options for osteosarcoma. In this study, the effect and molecular mechanism of osteoblast-derived exosomes on the treatment of osteosarcoma were evaluated. Human primary osteoblasts were cultured to observe the effects of osteoblast-derived exosomes on the osteogenic differentiation of osteosarcoma cells both in vitro and in vivo. Alizarin red staining and alkaline phosphatase detection were used to evaluate the degree of osteogenic differentiation, and immunofluorescence and Western blotting were used to detect protein expression. The results showed that osteoblast-derived exosomes effectively inhibited the proliferation of osteosarcoma cells and promoted their mineralization in vitro. The exosomes also significantly inhibited tumor growth and promoted tumor tissue mineralization in vivo. Osteoblast-derived exosomes upregulated the expression of bone sialoprotein, osteonectin, osteopontin, runt-related transcription factor 2, and Wnt inhibitory factor 1, downregulated the expression of cyclin D1, and suppressed the nuclear accumulation of β-catenin and promoted its phosphorylation in vitro and in vivo. However, these effects were significantly reversed by upregulated gene (URG) 4 overexpression. These findings suggest that osteoblast-derived exosomes could activate the osteogenic differentiation process in osteosarcoma cells and promote their differentiation by targeting the URG4/Wnt signaling pathway.
Collapse
Affiliation(s)
- Yuanxi Leng
- Orthopedics and Traumatology Department VI, Affiliated Hongdu Traditional Chinese Medicine Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province 330008, PR China
| | - Jingtang Li
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province 330006, PR China
| | - Zhisheng Long
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province 330006, PR China
| | - Chen Li
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province 330006, PR China
| | - Liang Zhang
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province 330006, PR China
| | - Zutai Huang
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province 330006, PR China
| | - Jinfeng Xi
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province 330006, PR China
| | - Yayun Liu
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province 330006, PR China.
| |
Collapse
|
12
|
Wang J, Zhang F, Dong S, Yang Y, Gao F, Liu G, Zhang P, Wang X, Du X, Tian Z. Apatinib plus chemotherapy for non-metastatic osteosarcoma: a retrospective cohort study. Front Oncol 2023; 13:1227461. [PMID: 38023239 PMCID: PMC10679406 DOI: 10.3389/fonc.2023.1227461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Effective adjuvant therapy for osteosarcoma is necessary for improved outcomes. Previous studies demonstrated that apatinib plus doxorubicin-based chemotherapy may improve the efficacy of neoadjuvant therapy. This study aimed to clarify the effectiveness and safety of apatinib plus doxorubicin and cisplatin (AP) as neoadjuvant therapy for osteosarcoma. Methods The clinical data of osteosarcoma patients who underwent neoadjuvant therapy and surgery between August 2016 and April 2022 were retrospectively collected and analyzed. Patients were divided into two groups: the apatinib plus AP (apatinib + AP) group and the methotrexate, doxorubicin, and cisplatin (MAP) group. Results This study included 42 patients with nonmetastatic osteosarcoma (19 and 23 patients in the apatinib + AP and MAP groups, respectively). The 1- and 2-year disease-free survival rates in the apatinib + AP group were higher than those in the MAP group, but the difference was not significant (P=0.165 and 0.283, respectively). Some adverse events were significantly more common in the apatinib + AP group than in the MAP group, including oral mucositis (grades 3 and 4) (52.6% vs. 17.4%, respectively, P=0.023), limb edema (47.4% vs. 17.4%, respectively, P=0.049), hand-foot syndrome (31.6% vs. 0%, respectively, P=0.005), proteinuria (26.3% vs. 0%, respectively, P=0.014), hypertension (21.1% vs. 0%, respectively, P=0.035), and hypothyroidism (21.1% vs. 0%, respectively, P=0.035). No drug-related deaths occurred. There was no statistically significant difference in the incidence of postoperative complications between the groups (P>0.05). Conclusion The present study suggests that apatinib + AP may be a promising candidate for neoadjuvant therapy for osteosarcoma, warranting further validation in prospective randomized controlled clinical trials with long-term follow-up.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Fan Zhang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuping Dong
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yang Yang
- Modern Educational Technology Center, Henan University of Economics and Law, Zhengzhou, Henan, China
| | - Fangfang Gao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Guancong Liu
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Peng Zhang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xin Wang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xinhui Du
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Roulleaux-Dugage M, Italiano A. New immunotherapy strategies for patients with sarcomas: highlights from the 2023 ASCO annual meeting. J Hematol Oncol 2023; 16:93. [PMID: 37553669 PMCID: PMC10408188 DOI: 10.1186/s13045-023-01486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment, but currently, immuno-oncology agents have not been approved for patients with soft tissue sarcomas. However, there is growing evidence suggesting that immunotherapy could be an effective therapeutic strategy for this group of diseases. Here, we reviewed the latest advances of immunotherapy trials from the 2023 American Society of Clinical Oncology Annual Meeting, including some novel and encouraging combination regimens. Further research is still needed to fully understand the optimal use of these agents in sarcoma treatment.
Collapse
Affiliation(s)
| | - Antoine Italiano
- Department of Medicine, Institut Bergonié, 229 Cours de l'Argonne, 33000, Bordeaux, France.
- DITEP, Gustave Roussy, Villejuif, France.
- Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
14
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
15
|
Jia J, Wang Y, Zhou Q, Chen R, Chen X. Formal Synthesis of Ecteinascidin 743 from N-Cbz-l-tyrosine. J Org Chem 2023. [PMID: 37463501 DOI: 10.1021/acs.joc.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A formal total synthesis of ecteinascidin 743 and lurbinectedin is achieved. Key features involve a Pictet-Spengler cyclization coupling of the tetrahydroisoquinoline and phenylalaninol moieties prepared by a common route with high yield and selectivity, a Parikh-Doering oxidation with good chemoselectivity and functionality tolerance, and a light-mediated A-ring elaboration of pentacyclic methoxyquinone substrates. By the approach, the known advanced intermediate (4-step conversion to Et-743) can be obtained conveniently in 21 total steps from N-Cbz-l-tyrosine.
Collapse
Affiliation(s)
- Junhao Jia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yue Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Qin Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | | | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
16
|
Cascini C, Ratti C, Botti L, Parma B, Cancila V, Salvaggio A, Meazza C, Tripodo C, Colombo MP, Chiodoni C. Rewiring innate and adaptive immunity with TLR9 agonist to treat osteosarcoma. J Exp Clin Cancer Res 2023; 42:154. [PMID: 37365634 DOI: 10.1186/s13046-023-02731-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary bone tumor in children and adolescent. Surgery and multidrug chemotherapy are the standard of treatment achieving 60-70% of event-free survival for localized disease at diagnosis. However, for metastatic disease, the prognosis is dismal. Exploiting immune system activation in the setting of such unfavorable mesenchymal tumors represents a new therapeutic challenge. METHODS In immune competent OS mouse models bearing two contralateral lesions, we tested the efficacy of intralesional administration of a TLR9 agonist against the treated and not treated contralateral lesion evaluating abscopal effect. Multiparametric flow cytometry was used to evaluate changes of the tumor immune microenviroment. Experiments in immune-deficient mice allowed the investigation of the role of adaptive T cells in TLR9 agonist effects, while T cell receptor sequencing was used to assess the expansion of specific T cell clones. RESULTS TLR9 agonist strongly impaired the growth of locally-treated tumors and its therapeutic effect also extended to the contralateral, untreated lesion. Multiparametric flow cytometry showed conspicuous changes in the immune landscape of the OS immune microenvironment upon TLR9 engagement, involving a reduction in M2-like macrophages, paralleled by increased infiltration of dendritic cells and activated CD8 T cells in both lesions. Remarkably, CD8 T cells were needed for the induction of the abscopal effect, whereas they were not strictly necessary for halting the growth of the treated lesion. T cell receptor (TCR) sequencing of tumor infiltrating CD8 T cells showed the expansion of specific TCR clones in the treated tumors and, remarkably, their selected representation in the contralateral untreated lesions, providing the first evidence of the rewiring of tumor-associated T cell clonal architectures. CONCLUSIONS Overall these data indicate that the TLR9 agonist acts as an in situ anti-tumor vaccine, activating an innate immune response sufficient to suppress local tumor growth while inducing a systemic adaptive immunity with selective expansion of CD8 T cell clones, which are needed for the abscopal effect.
Collapse
Affiliation(s)
- Caterina Cascini
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Chiara Ratti
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Botti
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Beatrice Parma
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Valeria Cancila
- Department of Health Science, Tumor Immunology Unit, University of Palermo School of Medicine, Palermo, Italy
| | - Adriana Salvaggio
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Cristina Meazza
- Pediatric Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Claudio Tripodo
- Department of Health Science, Tumor Immunology Unit, University of Palermo School of Medicine, Palermo, Italy
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario P Colombo
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Claudia Chiodoni
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
17
|
Weil R, Loeb D. Breaking down the tumor immune infiltration within pediatric sarcomas. Front Endocrinol (Lausanne) 2023; 14:1187289. [PMID: 37424864 PMCID: PMC10324675 DOI: 10.3389/fendo.2023.1187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapies are a promising therapeutic option, yet for a variety of reasons, these treatments have achieved limited success against sarcomas. The immunosuppressive tumor microenvironment (TME) of sarcomas as well as lack of predictive biomarkers, decreased T-cell clonal frequency, and high expression of immunosuppressive infiltrating cells has thus far prevented major success using immunotherapies. By breaking down the TME into its individual components and understanding how the various cell types interact with each other as well as in the context of the complex immune microenvironment, can lead to effective therapeutic immunotherapy treatments, potentially improving outcomes for those with metastatic disease.
Collapse
Affiliation(s)
- Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - David Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
18
|
Characterizing the tumor microenvironment at the single-cell level reveals a novel immune evasion mechanism in osteosarcoma. Bone Res 2023; 11:4. [PMID: 36596773 PMCID: PMC9810605 DOI: 10.1038/s41413-022-00237-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/08/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023] Open
Abstract
The immune microenvironment extensively participates in tumorigenesis as well as progression in osteosarcoma (OS). However, the landscape and dynamics of immune cells in OS are poorly characterized. By analyzing single-cell RNA sequencing (scRNA-seq) data, which characterize the transcription state at single-cell resolution, we produced an atlas of the immune microenvironment in OS. The results suggested that a cluster of regulatory dendritic cells (DCs) might shape the immunosuppressive microenvironment in OS by recruiting regulatory T cells. We also found that major histocompatibility complex class I (MHC-I) molecules were downregulated in cancer cells. The findings indicated a reduction in tumor immunogenicity in OS, which can be a potential mechanism of tumor immune escape. Of note, CD24 was identified as a novel "don't eat me" signal that contributed to the immune evasion of OS cells. Altogether, our findings provide insights into the immune landscape of OS, suggesting that myeloid-targeted immunotherapy could be a promising approach to treat OS.
Collapse
|
19
|
Glinkina K, Nemati F, Teunisse AFAS, Gelmi MC, Etienne V, Kuipers MJ, Alsafadi S, Jager MJ, Decaudin D, Jochemsen AG. Preclinical Evaluation of Trabectedin in Combination With Targeted Inhibitors for Treatment of Metastatic Uveal Melanoma. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 36515935 PMCID: PMC9756579 DOI: 10.1167/iovs.63.13.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Uveal melanoma (UM) is considered a rare disease; yet, it is the most common intraocular malignancy in adults. Although the primary tumor may be efficiently managed, more than 50% of patients with UM develop distant metastases. The mortality at the first year after diagnosis of metastatic UM has been estimated at 81%, and the poor prognosis has not improved in the past years due to the lack of effective therapies. Methods In order to search for novel therapeutic possibilities for metastatic UM, we performed a small-scale screen of targeted drug combinations. We verified the targets of the tested compounds by western blotting and PCR and clarified the mechanism of action of the selected combinations by caspase 3 and 7 activity assay and flow cytometry. The best two combinations were tested in a mouse patient-derived xenograft (PDX) UM model as putative therapeutics for metastatic UM. Results Combinations of the multitarget drug trabectedin with either the CK2/CLK double-inhibitor CX-4945 (silmitasertib) or the c-MET/TAM (TYRO3, Axl, MERTK) receptor inhibitors foretinib and cabozantinib demonstrated synergistic effects and induced apoptosis (relative caspase 3 and 7 activity increased up to 20.5-fold in UM cell lines). In the case of the combination of foretinib and cabozantinib, inhibition of the TAM receptors, but not c-Met, was essential to inhibit the growth of UM cells. Monotreatment with trabectedin inhibited tumor growth by 42%, 49%, and 35% in the MM26, MM309, and MM339 PDX mouse models, respectively. Conclusions Trabectedin alone or in combination with cabozantinib inhibited tumor growth in PDX UM mouse models. Blocking of MERTK, rather than TYRO3, activity inhibited UM cell growth and synergized with trabectedin.
Collapse
Affiliation(s)
- Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vesnie Etienne
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Muriel J. Kuipers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France,Department of Medical Oncology, Institut Curie, PSL University, Paris, France
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Tan G, Xu J, Yu Q, Yang Z, Zhang H. The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports. Photodiagnosis Photodyn Ther 2022; 40:103093. [PMID: 36031143 DOI: 10.1016/j.pdpdt.2022.103093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is an aggressive malignant bone tumour with high mortality. A poor prognosis is noted in patients with distal metastases or multidrug resistance. As an emerging antitumor strategy, photodynamic therapy (PDT) mediated by visible and near infrared light has attracted intensive attention given its target selectivity, remote controllability, minimal or non-invasive features. However, PDT also has obvious limitations. Specifically, due to the limited penetration of light, it is mainly used in the clinical treatment of superficial malignant tumours, such as musculoskeletal sarcomas and melanoma, but it has not been applied to the clinical treatment of deep malignant bone tumours except for a very small number of experiments on deep canine OS models. MATERIALS AND METHODS We searched for studies that focused on the effectiveness and safety of PDT for OS based on in vitro experiments and animal models in the last decade. A systematic search was conducted using electronic databases, including PubMed, ClinicalTrials.gov, and the Cochrane Library. INCLUSION CRITERIA (1) original research articles about PDT for OS; (2) articles in English; (3) in vitro or animal model research; and (4) detailed information, including cell name, fluence, irradiation wavelength, time of incubation with PS, duration between PS treatment and irradiation, and duration between irradiation and viability assays. EXCLUSION CRITERIA (1) study was a review/systemic review article, patent, letter, or conference abstract/paper; (2) articles were not published in English; (3) studies containing overlapping or insufficient data. RESULTS We identified 201 publications, and 44 articles met the inclusion criteria and were included in the synthesis. Unfortunately, there are no relevant clinical reports of the use of PDT in the treatment of human OS. In these studies, 8 studies only employed in vivo experiments to evaluate the efficiency of PDT in an OS animal model, 19 studies exclusively performed in vitro viability assays of cells treated with PDT under different conditions, and 17 studies included in vitro cell experiments and in vivo animal OS models to evaluate the effect of PDT on OS in vivo and in vitro. All studies have shown that PDT is cytotoxic to OS cells or can inhibit the growth of OS in heterologous or homologous animal OS models but exhibits minimal cytotoxicity at a certain range of dosages. CONCLUSION Based on this systematic review, PDT can eradicate OS cells in cell culture and there is some evidence for efficacy in animal models. However, the ability for PDT to control human OS is unclear, the animal and human reports do not show evidence of human OS control, they just do show feasibility. The major issues concerning the potential for treatment of osteosarcoma with PDT are that adequate light should be transmitted to tumor loci and if the disease is caught before metastasis and irradiation of tumor sites is feasible, curative potential is there. Otherwise, PDT may be mainly palliative. To determine whether PDT can safely and efficiently be used in the clinical treatment of OS, many preclinical orthotopic animal OS models and OS models of multiple systemic metastases must be performed and interstitial PDT or intraoperative PDT may be a good and potential candidate for human OS treatment. If these problems can be well solved, PDT may be a potentially effective strategy for the treatment of OS patients.
Collapse
Affiliation(s)
- Gang Tan
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Yu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeyu Yang
- Rotex Tech.Ltd.Co. Room 1104, floor 11, building 6, No. 599, Shijicheng South Road, high tech Zone, Chengdu, Sichuan, China.
| | - Hui Zhang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Jiang Y, Wang J, Sun M, Zuo D, Wang H, Shen J, Jiang W, Mu H, Ma X, Yin F, Lin J, Wang C, Yu S, Jiang L, Lv G, Liu F, Xue L, Tian K, Wang G, Zhou Z, Lv Y, Wang Z, Zhang T, Xu J, Yang L, Zhao K, Sun W, Tang Y, Cai Z, Wang S, Hua Y. Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment. Nat Commun 2022; 13:7207. [PMID: 36418292 PMCID: PMC9684515 DOI: 10.1038/s41467-022-34689-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that most commonly affects children, adolescents, and young adults. Here, we comprehensively analyze genomic, epigenomic and transcriptomic data from 121 OS patients. Somatic mutations are diverse within the cohort, and only TP53 is significantly mutated. Through unsupervised integrative clustering of the multi-omics data, we classify OS into four subtypes with distinct molecular features and clinical prognosis: (1) Immune activated (S-IA), (2) Immune suppressed (S-IS), (3) Homologous recombination deficiency dominant (S-HRD), and (4) MYC driven (S-MD). MYC amplification with HR proficiency tumors is identified with a high oxidative phosphorylation signature resulting in resistance to neoadjuvant chemotherapy. Potential therapeutic targets are identified for each subtype, including platinum-based chemotherapy, immune checkpoint inhibitors, anti-VEGFR, anti-MYC and PARPi-based synthetic lethal strategies. Our comprehensive integrated characterization provides a valuable resource that deepens our understanding of the disease, and may guide future clinical strategies for the precision treatment of OS.
Collapse
Affiliation(s)
- Yafei Jiang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jinzeng Wang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Mengxiong Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Dongqing Zuo
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Hongsheng Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jiakang Shen
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Wenyan Jiang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200001 Shanghai, PR China
| | - Haoran Mu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Xiaojun Ma
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Fei Yin
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jun Lin
- grid.16821.3c0000 0004 0368 8293Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Chongren Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Shuting Yu
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Lu Jiang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Gang Lv
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Feng Liu
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Linghang Xue
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Kai Tian
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Gangyang Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Zifei Zhou
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Yu Lv
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Zhuoying Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Tao Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jing Xu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Liu Yang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Kewen Zhao
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200001 Shanghai, PR China
| | - Wei Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Yujie Tang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200001 Shanghai, PR China
| | - Zhengdong Cai
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Shengyue Wang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Yingqi Hua
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| |
Collapse
|
22
|
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547:215887. [PMID: 35995141 DOI: 10.1016/j.canlet.2022.215887] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yang Wen
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
23
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
24
|
Holterhus M, Altvater B, Kailayangiri S, Rossig C. The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers (Basel) 2022; 14:cancers14092177. [PMID: 35565307 PMCID: PMC9105669 DOI: 10.3390/cancers14092177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Common pediatric solid cancers fail to respond to standard immuno-oncology agents relying on preexisting adaptive antitumor immune responses. The adoptive transfer of tumor-antigen specific T cells, such as CAR-gene modified T cells, is an attractive strategy, but its efficacy has been limited. Evidence is accumulating that local barriers in the tumor microenvironment prevent the infiltration of T cells and impede therapeutic immune responses. A thorough understanding of the components of the functional compartment of the tumor microenvironment and their interaction could inform effective combination therapies and novel engineered therapeutics, driving immunotherapy towards its full potential in pediatric patients. This review summarizes current knowledge on the cellular composition and significance of the tumor microenvironment in common extracranial solid cancers of childhood and adolescence, such as embryonal tumors and bone and soft tissue sarcomas, with a focus on myeloid cell populations that are often present in abundance in these tumors. Strategies to (co)target immunosuppressive myeloid cell populations with pharmacological anticancer agents and with selective antagonists are presented, as well as novel concepts aiming to employ myeloid cells to cooperate with antitumor T cell responses.
Collapse
|
25
|
Inoue M, Horiuchi K, Susa M, Taguchi E, Ishizaka T, Rikitake H, Matsuhashi Y, Chiba K. Trabectedin suppresses osteosarcoma pulmonary metastasis in a mouse tumor xenograft model. J Orthop Res 2022; 40:945-953. [PMID: 34057747 DOI: 10.1002/jor.25105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor that mainly affects adolescents and young adults. Although standard treatment modality can achieve up to 60%-70% 5-year survival rate, there has not been any substantial improvement over the past four decades. Furthermore, those presenting with pulmonary metastatic lesions often undergo a highly unfavorable clinical course. Therefore, there is a severely unmet clinical need to provide a more effective treatment for patients with OS. In this study, we show that trabectedin (TBD), a chemotherapeutic agent approved for soft tissue sarcomas, significantly suppresses pulmonary metastasis in a mouse OS xenograft model. In vitro experiments revealed that TBD suppresses cell migration potentially by downregulating the activity of ERK1/2, intracellular molecules that are critically involved in the regulation of cell motility. Collectively, our data may provide a basis for further investigation of TBD on the potential use for OS patients who are at great risk of pulmonary metastasis.
Collapse
Affiliation(s)
- Masahiro Inoue
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Michiro Susa
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Eiko Taguchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takahiro Ishizaka
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hajime Rikitake
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Matsuhashi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
26
|
Allavena P, Belgiovine C, Digifico E, Frapolli R, D'Incalci M. Effects of the Anti-Tumor Agents Trabectedin and Lurbinectedin on Immune Cells of the Tumor Microenvironment. Front Oncol 2022; 12:851790. [PMID: 35299737 PMCID: PMC8921639 DOI: 10.3389/fonc.2022.851790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immune cells in the tumor micro-environment (TME) establish a complex relationship with cancer cells and may strongly influence disease progression and response to therapy. It is well established that myeloid cells infiltrating tumor tissues favor cancer progression. Tumor-Associated Macrophages (TAMs) are abundantly present at the TME and actively promote cancer cell proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Active research of the last decade has provided novel therapeutic approaches aimed at depleting TAMs and/or at reprogramming their functional activities. We reported some years ago that the registered anti-tumor agent trabectedin and its analogue lurbinectedin have numerous mechanisms of action that also involve direct effects on immune cells, opening up new interesting points of view. Trabectedin and lurbinectedin share the unique feature of being able to simultaneously kill cancer cells and to affect several features of the TME, most notably by inducing the rapid and selective apoptosis of monocytes and macrophages, and by inhibiting the transcription of several inflammatory mediators. Furthermore, depletion of TAMs alleviates the immunosuppressive milieu and rescues T cell functional activities, thus enhancing the anti-tumor response to immunotherapy with checkpoint inhibitors. In view of the growing interest in tumor-infiltrating immune cells, the availability of antineoplastic compounds showing immunomodulatory effects on innate and adaptive immunity deserves particular attention in the oncology field.
Collapse
Affiliation(s)
- Paola Allavena
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Cristina Belgiovine
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Elisabeth Digifico
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
27
|
Meftahpour V, Aghebati-Maleki A, Fotouhi A, Safarzadeh E, Aghebati-Maleki L. Prognostic significance and therapeutic potentials of immune checkpoints in osteosarcoma. EXCLI JOURNAL 2022; 21:250-268. [PMID: 35145371 PMCID: PMC8822307 DOI: 10.17179/excli2021-4094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Although there exist manifold strategies for cancer treatment, researchers are obliged to develop novel treatments based on the challenges that arise. One of these recent treatment approaches is cancer immunotherapy, which enjoys various types of strategies itself. However, one of the most significant methods, in this regard, is employing immune checkpoint proteins (ICPs). Bone sarcomas have several subtypes, with the most common ones being chordoma, chondrosarcoma, Ewing sarcoma, and osteosarcoma. Although many aggressive treatment approaches, including radiotherapy, chemotherapy, and surgical resection, have been employed over the last decades, significantly improved outcomes have not been observed for Ewing sarcoma or osteosarcoma patients. Additionally, chordoma and chdrosarcoma resist against both radiation and chemotherapy. Accordingly, elucidating how recent therapies could affect bone sarcomas is necessary. Checkpoint inhibitors have attracted great attention for the treatment of several cancer types, including bone sarcoma. Herein, the recent advances of current immune checkpoint targets, such as anti-PD-1/PD-L1 and anti-CTLA-4 blockade, for the treatment of bone sarcoma have been reviewed.
Collapse
Affiliation(s)
- Vafa Meftahpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Toulmonde M, Brahmi M, Giraud A, Chakiba C, Bessede A, Kind M, Toulza E, Pulido M, Albert S, Guégan JP, Cousin S, Mathoulin-Pélissier S, Perret R, Croce S, Blay JY, Ray-Coquard I, Floquet A, Italiano A. Trabectedin plus durvalumab in patients with advanced pretreated soft tissue sarcoma and ovarian carcinoma (TRAMUNE): an open-label, multicenter phase Ib study. Clin Cancer Res 2021; 28:1765-1772. [PMID: 34965951 DOI: 10.1158/1078-0432.ccr-21-2258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Trabectedin has shown pre-clinical synergy with immune-checkpoint inhibitors in pre-clinical models. EXPERIMENTAL DESIGN TRAMUNE is a phase Ib study investigating trabectedin combined with durvalumab trough a dose-escalation phase and two expansion cohorts (soft tissue sarcoma and ovarian carcinoma). Trabectedin was given at three dose levels (1 mg/m2, 1.2 mg/m2 and 1.5 mg/m2) on day 1, in combination with durvalumab, 1120 mg on day 2, every 3 weeks. The primary endpoints were the recommended phase II dose (RP2D) of trabectedin combined with durvalumab and the objective response rate (ORR) as per RECIST 1.1. The secondary endpoints included safety, 6-month progression-free rate (PFR), progression-free survival (PFS), overall survival, and biomarker analyses. RESULTS 40 patients were included (dose escalation: n=9; STS cohort: n=16; ovarian cohort: n=15, 80% platinum resistant/refractory). The most frequent toxicities were grade 1-2 fatigue, nausea, neutropenia, and alanine/aspartate aminotransferase increase. One patient experienced a dose-limiting toxicity at dose level 2. Trabectedin at 1.2 mg/m2 was selected as the RP2D. In the STS cohort, 43% of patients experienced tumor shrinkage, the ORR was 7% (95% CI 0.2 - 33.9) and the 6-month PFR 28.6% (95% CI 8.4-58.1). In the ovarian carcinoma cohort, 43% of patients experienced tumor shrinkage, the ORR was 21.4% (95% CI 4.7 - 50.8) and the 6-month PFR 42.9% (95% CI 17.7 - 71.1). Baseline levels of PD-L1 expression and CD8-positive T-cell infiltrates were associated with PFS in ovarian carcinoma patients. CONCLUSIONS Combining trabectedin and durvalumab is manageable. Promising activity is observed in platinum-refractory ovarian carcinoma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sabrina Albert
- Clinical research and Epidemiology Unit, Institut Bergonié
| | | | | | | | | | | | - Jean-Yves Blay
- Medecine, Centre Leon Bérard, Univ Claude Bernard, Unicancer
| | | | | | | |
Collapse
|
29
|
Belgiovine C, Frapolli R, Liguori M, Digifico E, Colombo FS, Meroni M, Allavena P, D'Incalci M. Inhibition of tumor-associated macrophages by trabectedin improves the antitumor adaptive immunity in response to anti-PD-1 therapy. Eur J Immunol 2021; 51:2677-2686. [PMID: 34570376 PMCID: PMC9293411 DOI: 10.1002/eji.202149379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
A considerable proportion of cancer patients are resistant or only partially responsive to immune checkpoint blockade immunotherapy. Tumor‐Associated Macrophages (TAMs) infiltrating the tumor stroma suppress the adaptive immune responses and, hence, promote tumor immune evasion. Depletion of TAMs or modulation of their protumoral functions is actively pursued, with the purpose of relieving this state of immunesuppression. We previously reported that trabectedin, a registered antitumor compound, selectively reduces monocytes and TAMs in treated tumors. However, its putative effects on the adaptive immunity are still unclear. In this study, we investigated whether treatment of tumor‐bearing mice with trabectedin modulates the presence and functional activity of T‐lymphocytes. In treated tumors, there was a significant upregulation of T cell‐associated genes, including CD3, CD8, perforin, granzyme B, and IFN‐responsive genes (MX1, CXCL10, and PD‐1), indicating that T lymphocytes were activated after treatment. Notably, the mRNA levels of the Pdcd1 gene, coding for PD‐1, were strongly increased. Using a fibrosarcoma model poorly responsive to PD‐1‐immunotherapy, treatment with trabectedin prior to anti‐PD‐1 resulted in improved antitumor efficacy. In conclusion, pretreatment with trabectedin enhances the therapeutic response to checkpoint inhibitor‐based immunotherapy. These findings provide a good rational for the combination of trabectedin with immunotherapy regimens.
Collapse
Affiliation(s)
- Cristina Belgiovine
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Manuela Liguori
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Elisabeth Digifico
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Federico Simone Colombo
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Marina Meroni
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
30
|
Tang F, Tie Y, Wei YQ, Tu CQ, Wei XW. Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim Biophys Acta Rev Cancer 2021; 1876:188606. [PMID: 34371128 DOI: 10.1016/j.bbcan.2021.188606] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Sarcomas represent a distinct group of rare malignant tumors with high heterogeneity. Limited options with clinical efficacy for the metastatic or local advanced sarcoma existed despite standard therapy. Recently, targeted therapy according to the molecular and genetic phenotype of individual sarcoma is a promising option. Among these drugs, anti-angiogenesis therapy achieved favorable efficacy in sarcomas. Inhibitors targeting cyclin-dependent kinase 4/6, poly-ADP-ribose polymerase, insulin-like growth factor-1 receptor, mTOR, NTRK, metabolisms, and epigenetic drugs are under clinical evaluation for sarcomas bearing the corresponding signals. Immunotherapy represents a promising and favorable method in advanced solid tumors. However, most sarcomas are immune "cold" tumors, with only alveolar soft part sarcoma and undifferentiated pleomorphic sarcoma respond to immune checkpoint inhibitors. Cellular therapies with TCR-engineered T cells, chimeric antigen receptor T cells, tumor infiltrating lymphocytes, and nature killer cells transfer show therapeutic potential. Identifying tumor-specific antigens and exploring immune modulation factors arguing the efficacy of these immunotherapies are the current challenges. This review focuses on the mechanisms, advances, and potential strategies of targeted and immune-based therapies in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chong-Qi Tu
- Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
The immunocytokine L19-TNF eradicates sarcomas in combination with chemotherapy agents or with immune check-point inhibitors. Anticancer Drugs 2021; 31:799-805. [PMID: 32304410 DOI: 10.1097/cad.0000000000000938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-cytokine fusion proteins (also called 'immunocytokines') represent an emerging class of biopharmaceutical products, which are being considered for cancer immunotherapy. When used as single agents, pro-inflammatory immunocytokines are rarely capable of inducing complete and durable cancer regression in mouse models and in patients. However, the combination treatment with conventional chemotherapy or with other immune-stimulatory agents typically increases the therapeutic efficacy of immunocytokines. In this article, we describe combination treatments of a tumor-targeting antibody-cytokine fusion protein based on the L19 antibody (specific to a splice isoform of fibronectin) fused to murine tumor necrosis factor with standard chemotherapy (dacarbazine, trabectedin or melphalan) or with an immune check-point inhibitor (anti-PD-1) in a BALB/c derived immunocompetent murine model of sarcoma (WEHI-164). All combination treatments led to improved tumor remission compared to single-agent treatments, suggesting that these combination partners may be suitable for further clinical development in sarcoma patients.
Collapse
|
32
|
Xu C, Wang M, Guo W, Sun W, Liu Y. Curcumin in Osteosarcoma Therapy: Combining With Immunotherapy, Chemotherapeutics, Bone Tissue Engineering Materials and Potential Synergism With Photodynamic Therapy. Front Oncol 2021; 11:672490. [PMID: 34094974 PMCID: PMC8172965 DOI: 10.3389/fonc.2021.672490] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a dominating malignant bone tumor with high mortality due to pulmonary metastases. Furthermore, because of the cancer cell erosion and surgery resection, osteosarcoma always causes bone defects, which means dysfunction and disfigurement are seldom inevitable. Although various advanced treatments (e.g. chemotherapy, immunotherapy, radiotherapy) are coming up, the 5-year survival rate for osteosarcoma with metastases is still dismal. In line with this, the more potent treatments for osteosarcoma are in high demand. Curcumin, a perennial herb, has been reportedly applied in the therapy of various types of tumors via different mechanisms. In vitro, it has also been reported that curcumin can inhibit the proliferation of osteosarcoma cell lines and can be used to repair bone defects. This seems curcumin is a promising candidate in osteosarcoma treatment. However, due to its congenital property like hydrophobicity, and low bioavailability, affecting its anticancer effect, clinical applications of curcumin are highly limited. To enhance its performance in cancer therapies, some synergist approaches with curcumin have emerged. The present review presents some prospective ones (i.e. combinations with immunotherapy, chemotherapeutics, bone tissue engineering, and biomaterials) applied in osteosarcoma treatment. Additionally, with the advancements of photodynamic therapy in cancer therapy, this review also prospects the combination of curcumin with photodynamic therapy in osteosarcoma treatment.
Collapse
Affiliation(s)
- Chunfeng Xu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Guo
- Department of Oral-Maxillofacial and Head-Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yuelian Liu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Yang B, Su Z, Chen G, Zeng Z, Tan J, Wu G, Zhu S, Lin L. Identification of prognostic biomarkers associated with metastasis and immune infiltration in osteosarcoma. Oncol Lett 2021; 21:180. [PMID: 33574919 PMCID: PMC7816295 DOI: 10.3892/ol.2021.12441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy of the bones, and is associated with a high rate of metastasis and a poor prognosis. A tight association between the tumor microenvironment (TME) and osteosarcoma metastasis has been established. In the present study, the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm was applied to calculate the immune and stromal scores of patients with osteosarcoma based on data from The Cancer Genome Atlas database. A metagene approach and deconvolution method were used to reveal distinct TME landscapes in patients with osteosarcoma. Bioinformatics analysis was used to identify differentially expressed genes (DEGs) associated with metastasis and immune infiltration in osteosarcoma, and a risk model was constructed using the DEGs with potential prognostic significance. Subsequently, gene set enrichment and Spearman's correlation analyses were used to delineate the biological processes associated with these prognostic biomarkers. Finally, immunohistochemical (IHC) analysis was performed to evaluate the expression levels of immune infiltrates and prognostic biomarkers in clinical osteosarcoma tissues. The results of the ESTIMATE demonstrated that patients with non-metastatic osteosarcoma presented with higher immune/stromal scores and a more favorable prognosis compared with those with metastatic osteosarcoma. The TME landscapes in patients with osteosarcoma suggested that high levels of tumor-infiltrating immune cells (TIICs) may suppress metastasis. Increased numbers of CD56bright natural killer cells, immature B cells, M1 macrophages and neutrophils, and lower levels of M2 macrophages were observed in the non-metastatic tissues compared with those in the metastatic tissues. A total of 69 DEGs were identified to be associated with metastasis and immune infiltration in osteosarcoma. Of these, GATA3, LPAR5, EVI2B, RIAM and CFH exhibited prognostic potential and were highly expressed in non-metastatic osteosarcoma tissues based on the IHC analysis results. These biomarkers were involved in various immune-related biological processes and were positively associated with multiple TIICs and immune signatures. The risk model constructed using these prognostic biomarkers demonstrated high predictive accuracy for the prognosis of osteosarcoma. In conclusion, the present study proposed a five-biomarker prognostic signature for the prediction of metastasis and immune infiltration in patients with osteosarcoma.
Collapse
Affiliation(s)
- Bingsheng Yang
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zexin Su
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Guoli Chen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Jianye Tan
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Guofeng Wu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shuang Zhu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Lijun Lin
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
34
|
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13040683. [PMID: 33567616 PMCID: PMC7915189 DOI: 10.3390/cancers13040683] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development.
Collapse
|
35
|
Bozorgi A, Sabouri L. Osteosarcoma, personalized medicine, and tissue engineering; an overview of overlapping fields of research. Cancer Treat Res Commun 2021; 27:100324. [PMID: 33517237 DOI: 10.1016/j.ctarc.2021.100324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Osteosarcoma is a common bone malignancy in patients of all ages. Surgical and chemotherapy interventions fail to shrink tumor growth and metastasis. The development of efficient patient-specific therapeutic strategies for osteosarcoma is of great interest in tissue engineering and personalized medicine. The present manuscript aimed to review the advancements in tissue engineering and personalized medicine strategies to overcome osteosarcoma and the relevant biological aspects as well as the current tumor models in vitro and in vivo. RESULTS Tissue engineering and personalized medicine contribute to gene/cell engineering and cell-based therapies specific to genomic and proteomic profiles of individual patients to improve the current treatment options. Also, tissue engineering scaffolds provide physical support to missing bones, could trap cancer cells and deliver immune cells. Taken together, these strategies suppress tumor growth, angiogenic potential, and the subsequent metastasis as well as elicit desirable immune responses against tumor mass. DISCUSSION Advanced and high-throughput gene and protein identification technologies have facilitated the recognition of genomic and proteomic profiles of patients to design and develop patient-specific treatments. The pre-clinical studies showed promising outcomes to inhibit tumor growth and invasion but controversial results compared to clinical investigations make the importance of more clinical reports inevitable. The experimental tumor models assist the evolution of effective treatments by understanding the mechanisms of tumor progression. CONCLUSION Tissue engineering and personalized medicine strategies seem encouraging alternatives to conventional therapies against osteosarcoma. Modeling the tumor microenvironment coupled with pre-clinical results give new intelligence into the translation of strategies into the clinic.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Leila Sabouri
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
He A, Huang Y, Cheng W, Zhang D, He W, Bai Y, Gu C, Ma Z, He Z, Si G, Chen B, Breault DT, Dong M, Xiang D. Organoid culture system for patient-derived lung metastatic osteosarcoma. Med Oncol 2020; 37:105. [PMID: 33079257 DOI: 10.1007/s12032-020-01429-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy with high rates of recurrence and metastasis. OS often spreads to lungs, an optimized model for studying lung metastatic OS cells may help develop potential therapies for patients with lung metastasis. Here we firstly report an organoid culture system for lung metastatic OS tissues. We provided a fully described formula that was required for establishing lung metastatic OS organoids (OSOs). Using this protocol, the lung OSOs were able to be maintained and serially propagated for at least six months; the OSOs can also be generated from cryopreserved patient samples without damaging the morphology. The patient-derived lung OSOs retained the cellular morphology and expression of OS markers (Vimentin and Sox9) that recapitulate the histological features of the human OS. The microenvironment of primary lung metastatic OSOs preserved a similar T cell distribution with the human lung OS lesions; this provided a possible condition to explore how OS cells may react to immunotherapy. OSOs established from this protocol can be further utilized for studying various aspects of OS biology (e.g., tumorigenesis and drug screen/discovery) for precision medicine.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, Shanghai, People's Republic of China. .,Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yujing Huang
- Department of Oncology, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Wanying Cheng
- Shanghai Bioheb Biomed Technology Company, Shanghai, People's Republic of China
| | - Deng Zhang
- Shanghai Bioheb Biomed Technology Company, Shanghai, People's Republic of China
| | - Weiwei He
- Department of Thoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yueqing Bai
- Department of Pathology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Chao Gu
- Department of Pathology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhongping Ma
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - Zhenfang He
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - Guifan Si
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - Bing Chen
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Research Center of Biliary Tract Disease, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Lilienthal I, Herold N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int J Mol Sci 2020; 21:ijms21186885. [PMID: 32961800 PMCID: PMC7555161 DOI: 10.3390/ijms21186885] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Due to micrometastatic spread, radical surgery alone rarely results in cure. Introduction of combination chemotherapy in the 1970s, however, dramatically increased overall survival rates from 20% to approximately 70%. Unfortunately, large clinical trials aiming to intensify treatment in the past decades have failed to achieve higher cure rates. In this review, we revisit how the heterogenous nature of osteosarcoma as well as acquired and intrinsic resistance to chemotherapy can account for stagnation in therapy improvement. We summarise current osteosarcoma treatment strategies focusing on molecular determinants of treatment susceptibility and resistance. Understanding therapy susceptibility and resistance provides a basis for rational therapy betterment for both identifying patients that might be cured with less toxic interventions and targeting resistance mechanisms to sensitise resistant osteosarcoma to conventional therapies.
Collapse
Affiliation(s)
- Ingrid Lilienthal
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| | - Nikolas Herold
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Paediatric Oncology, Astrid Lindgren’s Children Hospital, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| |
Collapse
|
38
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
39
|
Gu HY, Zhang C, Guo J, Yang M, Zhong HC, Jin W, Liu Y, Gao LP, Wei RX. Risk score based on expression of five novel genes predicts survival in soft tissue sarcoma. Aging (Albany NY) 2020; 12:3807-3827. [PMID: 32084007 PMCID: PMC7066896 DOI: 10.18632/aging.102847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify potential biomarkers of soft tissue sarcoma (STS) and construct a prognostic model. The model was used to calculate risk scores based on the expression of five key genes, among which MYBL2 and FBN2 were upregulated and TSPAN7, GCSH, and DDX39B were downregulated in STS patients. We also examined gene signatures associated with the key genes and evaluated the model’s clinical utility. The key genes were found to be involved in the cell cycle, DNA replication, and various cancer pathways, and gene alterations were associated with a poor prognosis. According to the prognostic model, risk scores negatively correlated with infiltration of six types of immune cells. Furthermore, age, margin status, presence of metastasis, and risk score were independent prognostic factors for STS patients. A nomogram that incorporated the risk score and other independent prognostic factors accurately predicted survival in STS patients. These findings may help to improve prognostic prediction and aid in the identification of effective treatments for STS patients.
Collapse
Affiliation(s)
- Hui-Yun Gu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Yang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hou-Cheng Zhong
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jin
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Ping Gao
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Heymann MF, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy era. Br J Pharmacol 2020; 178:1955-1972. [PMID: 31975481 DOI: 10.1111/bph.14999] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Bone sarcomas are primary bone tumours found mainly in children and adolescents, as osteosarcoma and Ewing's sarcoma, and in adults in their 40s as chondrosarcoma. The last four decades the development of therapeutic approaches was based on drug combinations have shown no real improvement in overall survival. Recently oncoimmunology has allowed a better understand of the crucial role played by the immune system in the oncologic process. This led to clinical trials with the aim of reprogramming the immune system to facilitate cancer cell recognition. Immune infiltrates of bone sarcomas have been characterized and their molecular profiling identified as immune therapeutic targets. Unfortunately, the clinical responses in trials remain anecdotal but highlight the necessity to improve the characterization of tumour micro-environment to unlock the immunotherapeutic response, especially in their paediatric forms. Bone sarcomas have entered the immunotherapy era and here we overview the recent developments in immunotherapies in these sarcomas. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Marie-Françoise Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Kristina Schiavone
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
41
|
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer 2020; 2:zcaa002. [PMID: 34316682 PMCID: PMC8209987 DOI: 10.1093/narcan/zcaa002] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibodies targeting programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoints have improved the treatments of cancers. However, not all patients equally benefit from immunotherapy. The use of cytotoxic drugs is practically inevitable to treat advanced cancers and metastases. The repertoire of cytotoxics includes 80 products that principally target nucleic acids or the microtubule network in rapidly proliferating tumor cells. Paradoxically, many of these compounds tend to become essential to promote the activity of immunotherapy and to offer a sustained therapeutic effect. We have analyzed each cytotoxic drug with respect to effect on expression and function of PD-(L)1. The major cytotoxic drugs—carboplatin, cisplatin, cytarabine, dacarbazine, docetaxel, doxorubicin, ecteinascidin, etoposide, fluorouracil, gemcitabine, irinotecan, oxaliplatin, paclitaxel and pemetrexed—all have the capacity to upregulate PD-L1 expression on cancer cells (via the generation of danger signals) and to promote antitumor immunogenicity, via activation of cytotoxic T lymphocytes, maturation of antigen-presenting cells, depletion of immunosuppressive regulatory T cells and/or expansion of myeloid-derived suppressor cells. The use of ‘immunocompatible’ cytotoxic drugs combined with anti-PD-(L)1 antibodies is a modern approach, not only for increasing the direct killing of cancer cells, but also as a strategy to minimize the activation of immunosuppressive and cancer cell prosurvival program responses.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, UMR-S 1172, CHU Lille, 59045 Lille, France
| | - Bruno Quesnel
- Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, UMR-S 1172, CHU Lille, 59045 Lille, France
| |
Collapse
|
42
|
Yoshida K, Okamoto M, Sasaki J, Kuroda C, Ishida H, Ueda K, Ideta H, Kamanaka T, Sobajima A, Takizawa T, Tanaka M, Aoki K, Uemura T, Kato H, Haniu H, Saito N. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer 2020; 20:25. [PMID: 31914969 PMCID: PMC6950856 DOI: 10.1186/s12885-019-6499-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Background There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. Results We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment.
Collapse
Affiliation(s)
- Kazushige Yoshida
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Okamoto
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Jun Sasaki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Chika Kuroda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Hirokazu Ideta
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Kamanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Sobajima
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Takizawa
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Manabu Tanaka
- Department of Orthopedic Surgery, Okaya City Hospital, Okaya, Japan
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
| |
Collapse
|
43
|
Pratt HG, Justin EM, Lindsey BA. Applying Osteosarcoma Immunology to Understand Disease Progression and Assess Immunotherapeutic Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:91-109. [PMID: 32767236 DOI: 10.1007/978-3-030-43085-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteosarcoma, the most common malignant bone tumor in children and adolescents, remains a complicated disease to treat; no new treatments have been developed in more than three decades. Due to the importance of the immune system in osteosarcoma disease progression, immunotherapeutic strategies have been explored to potentially improve long-term survival. However, most immunotherapeutics have not reached the level of success hoped would occur in this disease. Understanding the immune system in osteosarcoma will be key to optimizing treatments and improving patient outcomes. Therefore, immunophenotyping can be used as a very powerful tool to help better understand the complexity of the immune response seen in osteosarcoma and in the use of immunotherapy in this malignancy. This book chapter will provide an overview of the known immune responses seen in this disease and potential developments for the future of immunophenotyping. Indeed, it appears that being able to track the immune system throughout the disease and treatment of patients with osteosarcoma could allow for a personalized approach to immunotherapy.
Collapse
Affiliation(s)
- Hillary G Pratt
- West Virginia University School of Medicine, Morgantown, WV, USA
| | - E Markel Justin
- West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brock A Lindsey
- West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
44
|
Wedekind MF, Cripe TP. Oncolytic Viruses and Their Potential as a Therapeutic Opportunity in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:77-89. [PMID: 32767235 DOI: 10.1007/978-3-030-43085-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteosarcoma remains an unmet medical need. Oncolytic viruses are gaining traction as novel cancer therapeutics. These viruses are either naturally nonpathogenic or engineered to be safe by specific genetic deletions yet retain the ability to infect and kill human cancer cells and elicit anticancer immunity. Some versions are being specifically designed and tested in patients with osteosarcoma, though due to their generalized mechanism of action most are being tested in patients across a broad range of cancer types. The activity of these viruses is impacted not only by the susceptibility of tumor cells to infection but also by the tumor microenvironment (TME) and by tumor immunogenicity. Here we review the field of oncolytic viruses with a particular emphasis on highlighting any available data in preclinical osteosarcoma models or in patients with osteosarcoma. While in general the viruses have been shown safe to administer to patients by a variety of routes, their therapeutic efficacy to date has been limited. Given the low rate of adverse events and the likely absence of long-term side effects, the utility of oncolytic viruses will most likely be realized when used in combination with other agents.
Collapse
Affiliation(s)
| | - Timothy P Cripe
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
45
|
Banerjee P, Zhang R, Ivan C, Galletti G, Clise-Dwyer K, Barbaglio F, Scarfò L, Aracil M, Klein C, Wierda W, Plunkett W, Caligaris-Cappio F, Gandhi V, Keating MJ, Bertilaccio MTS. Trabectedin Reveals a Strategy of Immunomodulation in Chronic Lymphocytic Leukemia. Cancer Immunol Res 2019; 7:2036-2051. [PMID: 31530560 DOI: 10.1158/2326-6066.cir-19-0152] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell neoplasia characterized by protumor immune dysregulation involving nonmalignant cells of the microenvironment, including T lymphocytes and tumor-associated myeloid cells. Although therapeutic agents have improved treatment options for CLL, many patients still fail to respond. Some patients also show immunosuppression. We have investigated trabectedin, a marine-derived compound with cytotoxic activity on macrophages in solid tumors. Here, we demonstrate that trabectedin induces apoptosis of human primary leukemic cells and also selected myeloid and lymphoid immunosuppressive cells, mainly through the TRAIL/TNF pathway. Trabectedin modulates transcription and translation of IL6, CCL2, and IFNα in myeloid cells and FOXP3 in regulatory T cells. Human memory CD8+ T cells downregulate PD-1 and, along with monocytes, exert in vivo antitumor function. In xenograft and immunocompetent CLL mouse models, trabectedin has antileukemic effects and antitumor impact on the myeloid and lymphoid cells compartment. It depletes myeloid-derived suppressor cells and tumor-associated macrophages and increases memory T cells. Trabectedin also blocks the PD-1/PD-L1 axis by targeting PD-L1+ CLL cells, PD-L1+ monocytes/macrophages, and PD-1+ T cells. Thus, trabectedin behaves as an immunomodulatory drug with potentially attractive therapeutic value in the subversion of the protumor microenvironment and in overcoming chemoimmune resistance.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ronghua Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giovanni Galletti
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Federica Barbaglio
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lydia Scarfò
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Christian Klein
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Zurich, Zurich, Switzerland
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Teresa S Bertilaccio
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
46
|
Chen Y, Cao J, Zhang N, Yang B, He Q, Shao X, Ying M. Advances in differentiation therapy for osteosarcoma. Drug Discov Today 2019; 25:497-504. [PMID: 31499188 DOI: 10.1016/j.drudis.2019.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/04/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
Differentiation therapy involves the use of agents that can induce differentiation in cancer cells, with the irreversible loss of tumour phenotype. The application of differentiation therapy in osteosarcoma has made progress because of a better understanding of the potential links between differentiation defects and tumorigenesis. Here, we review recent studies on differentiation therapy for osteosarcoma, describing a variety of differentiation inducers. By highlighting these examples of drug-induced osteosarcoma cell differentiation, we can acquire unique insights into not only osteosarcoma treatment, but also novel approaches to transform differentiating drugs into more effective therapies for other solid tumours.
Collapse
Affiliation(s)
- Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study. Eur J Cancer 2019; 119:151-157. [PMID: 31442817 DOI: 10.1016/j.ejca.2019.07.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE There are some lines of evidence suggesting a potential role of immunotherapy for treating patients with osteosarcomas. PATIENTS AND METHODS This was an open-label, multicentre, phase 2 study of pembrolizumab in combination with metronomic cyclophosphamide in patients with advanced osteosarcomas. All patients received 50 mg b.i.d. of cyclophosphamide one week on and one week off and 200 mg of intravenous pembrolizumab (every 3 weeks). There was a dual primary end-point, encompassing both the non-progression and objective responses at 6 months per Response Evaluation Criteria in Solid Tumours (RECIST), version 1.1. An objective response rate of 20% and/or a 6-month non-progression rate of 60% were determined as reasonable objectives for treatment with meaningful effect. Correlative studies of immune biomarkers were planned from the patients' tumour samples. RESULTS Between October 13 2015 and July 3 2017, 17 patients were included. Fifty were assessable for the efficacy end-point. Four patients experienced tumour shrinkage, resulting in a partial response (PR) in one patient (6.7%). The 6-month non-progression rate was 13.3% (95% confidence interval [CI]: 1.7-40.5). The most frequent adverse events were grade I or II nausea, anaemia, anorexia and fatigue. programmed death-ligand 1 (PD-L1) expression rate was low, observed in only 2 cases of 14 with available tumour material. The only patient who experienced PR had a PD-L1-negative tumour. CONCLUSION Programmed cell death 1 (PD-1) inhibition has limited activity in osteosarcomas. Further studies investigating PD-1 inhibitor in combination with agents modulating the microenvironment are warranted. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov, number NCT02406781.
Collapse
|
48
|
Roberts RD, Lizardo MM, Reed DR, Hingorani P, Glover J, Allen-Rhoades W, Fan T, Khanna C, Sweet-Cordero EA, Cash T, Bishop MW, Hegde M, Sertil AR, Koelsche C, Mirabello L, Malkin D, Sorensen PH, Meltzer PS, Janeway KA, Gorlick R, Crompton BD. Provocative questions in osteosarcoma basic and translational biology: A report from the Children's Oncology Group. Cancer 2019; 125:3514-3525. [PMID: 31355930 PMCID: PMC6948723 DOI: 10.1002/cncr.32351] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Abstract
Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.
Collapse
Affiliation(s)
- Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Michael M Lizardo
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Damon R Reed
- Sarcoma Department, Chemical Biology and Molecular Medicine Program and Adolescent and Young Adult Oncology Program, Moffitt Cancer Center, Tampa, Florida
| | - Pooja Hingorani
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Jason Glover
- Children's Cancer and Blood Disorders Program, Randall Children's Hospital, Portland, Oregon
| | - Wendy Allen-Rhoades
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Cancer and Hematology Centers, Houston, Texas
| | - Timothy Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Chand Khanna
- Ethos Vet Health, Woburn, Massachusetts.,Ethos Discovery (501c3), Washington, DC
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Thomas Cash
- Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael W Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Aparna R Sertil
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Christian Koelsche
- Department of General Pathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Malkin
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Hematology/Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D Crompton
- Dana-Farber Cancer Institute, Boston, and Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
49
|
Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J Control Release 2019; 305:130-154. [DOI: 10.1016/j.jconrel.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
50
|
Wang Z, Wang Z, Li B, Wang S, Chen T, Ye Z. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma. Front Immunol 2019; 10:1114. [PMID: 31156651 PMCID: PMC6531991 DOI: 10.3389/fimmu.2019.01114] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced, recurrent, or metastasized osteosarcomas remain challenging to cure or even alleviate. Therefore, the development of novel therapeutic strategies is urgently needed. Cancer immunotherapy has greatly improved in recent years, with options including adoptive cellular therapy, vaccination, and checkpoint inhibitors. As such, immunotherapy is becoming a potential strategy for the treatment of osteosarcoma. Innate immunocytes, the first line of defense in the immune system and the bridge to adaptive immunity, are one of the vital effector cell subpopulations in cancer immunotherapy. Innate immune cell-based therapy has shown potent antitumor activity against hematologic malignancies and some solid tumors, including osteosarcoma. Importantly, some immune checkpoints are expressed on both innate and adaptive immune cells, modulating their functions in tumor immunity. Therefore, blocking or activating immune checkpoint-mediated downstream signaling pathways can improve the therapeutic effects of innate immune cell-based therapy. In this review, we summarize the current status and future prospects of innate immune cell-based therapy for the treatment of osteosarcoma, with a focus on the potential synergistic effects of combination therapy involving innate immunotherapy and immune checkpoint inhibitors/oncolytic viruses.
Collapse
Affiliation(s)
- Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|