1
|
Lu Y, Wang Z, Zhang D, Luo N, Yang H, Chen D, Huang H. Application of Circulating Tumor DNA in the Auxiliary Diagnosis and Prognosis Prediction of Glioma. Cell Mol Neurobiol 2024; 45:6. [PMID: 39692767 DOI: 10.1007/s10571-024-01515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Glioma is the most common primary malignant brain tumor. Despite significant advances in the past decade in understanding the molecular pathogenesis of this tumor and exploring therapeutic strategies, the prognosis of patients with glioma remains poor. Accurate diagnosis of glioma is very important for the treatment and prognosis. Although the gold-standard method for the diagnosis and prognosis prediction of patients with glioma is tissue biopsy, it still has many limitations. Liquid biopsy can provide information on the auxiliary diagnosis and prognosis of gliomas. In this review, we summarized the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in the auxiliary diagnosis and prognosis of glioma. The common methods used to detect ctDNA in gliomas using samples including blood and cerebrospinal fluid (CSF) and the detection techniques for ctDNA, including droplet digital PCR (ddPCR) and next-generation sequencing (NGS), were discussed. Detection of ctDNA from plasma of patients with brain tumors remains challenging because of the blood-brain barrier (BBB). CSF has been proposed as a medium for ctDNA analysis in brain tumors, and mutation detection using plasma ctDNA was less sensitive than CSF ctDNA sequencing. Moreover, ongoing relevant clinical studies were summarized. Finally, we discussed the challenges, and future directions for the studies on ctDNA in glioma.
Collapse
Affiliation(s)
- Ying Lu
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Danmeng Zhang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Ningning Luo
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Hui Yang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China.
| |
Collapse
|
2
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Karlsson J, Yasui H, Mañas A, Andersson N, Hansson K, Aaltonen K, Jansson C, Durand G, Ravi N, Ferro M, Yang M, Chattopadhyay S, Paulsson K, Spierings D, Foijer F, Valind A, Bexell D, Gisselsson D. Early evolutionary branching across spatial domains predisposes to clonal replacement under chemotherapy in neuroblastoma. Nat Commun 2024; 15:8992. [PMID: 39419962 PMCID: PMC11486966 DOI: 10.1038/s41467-024-53334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the most lethal childhood cancers due to its propensity to become treatment resistant. By spatial mapping of subclone geographies before and after chemotherapy across 89 tumor regions from 12 NBs, we find that densely packed territories of closely related subclones present at diagnosis are replaced under effective treatment by islands of distantly related survivor subclones, originating from a different most recent ancestor compared to lineages dominating before treatment. Conversely, in tumors that progressed under treatment, ancestors of subclones dominating later in disease are present already at diagnosis. Chemotherapy treated xenografts and cell culture models replicate these two contrasting scenarios and show branching evolution to be a constant feature of proliferating NB cells. Phylogenies based on whole genome sequencing of 505 individual NB cells indicate that a rich repertoire of parallel subclones emerges already with the first oncogenic mutations and lays the foundation for clonal replacement under treatment.
Collapse
Affiliation(s)
- Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hiroaki Yasui
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Natalie Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Hansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Caroline Jansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Geoffroy Durand
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Naveen Ravi
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Michele Ferro
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Minjun Yang
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Subhayan Chattopadhyay
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Diana Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anders Valind
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Pathology, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
4
|
Ek T, Ibrahim RR, Vogt H, Georgantzi K, Träger C, Gaarder J, Djos A, Rahmqvist I, Mellström E, Pujol-Calderón F, Vannas C, Hansson L, Fagman H, Treis D, Fransson S, Österlund T, Chuang TP, Verhoeven BM, Ståhlberg A, Palmer RH, Hallberg B, Martinsson T, Kogner P, Dalin M. Long-Lasting Response to Lorlatinib in Patients with ALK-Driven Relapsed or Refractory Neuroblastoma Monitored with Circulating Tumor DNA Analysis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2553-2564. [PMID: 39177282 PMCID: PMC11440348 DOI: 10.1158/2767-9764.crc-24-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Patients with anaplastic lymphoma kinase (ALK)-driven neuroblastoma may respond to tyrosine kinase inhibitors, but resistance to treatment occurs and methods currently used for detection of residual disease have limited sensitivity. Here, we present a national unselected cohort of five patients with relapsed or refractory ALK-driven neuroblastoma treated with lorlatinib as monotherapy and test the potential of targeted circulating tumor DNA (ctDNA) analysis as a guide for treatment decisions in these patients. We developed a sequencing panel for ultrasensitive detection of ALK mutations associated with neuroblastoma or resistance to tyrosine kinase inhibitors and used it for ctDNA analysis in 83 plasma samples collected longitudinally from the four patients who harbored somatic ALK mutations. All four patients with ALK p.R1275Q experienced major responses and were alive 35 to 61 months after starting lorlatinib. A fifth patient with ALK p.F1174L initially had a partial response but relapsed after 10 months of treatment. In all cases, ctDNA was detected at the start of lorlatinib single-agent treatment and declined gradually, correlating with clinical responses. In the two patients exhibiting relapse, ctDNA increased 9 and 3 months, respectively, before clinical detection of disease progression. In one patient harboring HRAS p.Q61L in the relapsed tumor, retrospective ctDNA analysis showed that the mutation appeared de novo after 8 months of lorlatinib treatment. We conclude that some patients with relapsed or refractory high-risk neuroblastoma show durable responses to lorlatinib as monotherapy, and targeted ctDNA analysis is effective for evaluation of treatment and early detection of relapse in ALK-driven neuroblastoma. SIGNIFICANCE We present five patients with ALK-driven relapsed or refractory neuroblastoma treated with lorlatinib as monotherapy. All patients responded to treatment, and four of them were alive after 3 to 5 years of follow-up. We performed longitudinal ctDNA analysis with ultra-deep sequencing of the ALK tyrosine kinase domain. We conclude that ctDNA analysis may guide treatment decisions in ALK-driven neuroblastoma, also when the disease is undetectable using standard clinical methods.
Collapse
Affiliation(s)
- Torben Ek
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Raghda R. Ibrahim
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Hartmut Vogt
- Department of Biomedical and Clinical Sciences, Crown Princess Victoria Children’s Hospital, and Division of Children’s and Women’s Health, Linköping University, Linköping, Sweden.
| | - Kleopatra Georgantzi
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Catarina Träger
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Pediatric Hematology and Oncology, Academic Children’s Hospital, Uppsala, Sweden.
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden.
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ida Rahmqvist
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Elisabeth Mellström
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Fani Pujol-Calderón
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Christoffer Vannas
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Lina Hansson
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Henrik Fagman
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Diana Treis
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Anders Ståhlberg
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Per Kogner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Martin Dalin
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Bobin C, Iddir Y, Butterworth C, Masliah-Planchon J, Saint-Charles A, Bellini A, Bhalshankar J, Pierron G, Combaret V, Attignon V, André N, Corradini N, Dumont B, Mansuy L, Khanfar C, Klein S, Briandet C, Plantaz D, Millot F, Thouvenin S, Aerts I, Ndounga-Diakou LA, Laghouati S, Abbou S, Jehanno N, Tissot H, Renault S, Baulande S, Raynal V, Bozec L, Bieche I, Delattre O, Berlanga P, Schleiermacher G. Sequential Analysis of cfDNA Reveals Clonal Evolution in Patients with Neuroblastoma Receiving ALK-Targeted Therapy. Clin Cancer Res 2024; 30:3316-3328. [PMID: 38787533 PMCID: PMC11292203 DOI: 10.1158/1078-0432.ccr-24-0753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.
Collapse
Affiliation(s)
- Charles Bobin
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Yasmine Iddir
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Charlotte Butterworth
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Alexandra Saint-Charles
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Angela Bellini
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Jaydutt Bhalshankar
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Valérie Combaret
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Valéry Attignon
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Nicolas André
- Marseille-La Timone University Hospital, Oncologie Pédiatrique, Marseille, France.
- CRCM INSERM U1068 REMAP4KIDS, Aix Marseille University, Marseille, France.
| | - Nadège Corradini
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Benoit Dumont
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Ludovic Mansuy
- Service d’oncologie Pédiatrique du CHRU de Nancy, Hôpital d’enfants, Vandoeuvre, France.
| | - Camille Khanfar
- Department of Pediatric Oncology, CHU Amiens Picardie, Amiens, France.
| | - Sebastien Klein
- Pediatric Oncology and Hematology, CHU Jean-Minjoz, Besançon, France.
| | | | - Dominique Plantaz
- Department of Pediatric Onco-Immuno-Hematology, Grenoble Alpes University Hospital, Grenoble, France.
| | - Frederic Millot
- Department of Paediatric Haematology and Oncology, Centre Hospitalo-Universitaire de Poitiers, Poitiers, France.
| | - Sandrine Thouvenin
- Department of Pediatric Hematology-Oncology, University Hospital St Etienne, St Etienne, France.
| | - Isabelle Aerts
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| | - Lee Aymar Ndounga-Diakou
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Salim Laghouati
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Hubert Tissot
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, Inserm CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France.
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Laurence Bozec
- Department of Medical Oncology, Institut Curie, Saint-Cloud, France.
| | - Ivan Bieche
- Pharmacogenomics Unit, Institut Curie, Paris, France.
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- Somatic Genetics Unit, Institut Curie, Paris, France.
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| |
Collapse
|
7
|
Cornelli L, Van Paemel R, Ferro Dos Santos MR, Roelandt S, Willems L, Vandersteene J, Baert E, Mus LM, Van Roy N, De Wilde B, De Preter K. Diagnosis of pediatric central nervous system tumors using methylation profiling of cfDNA from cerebrospinal fluid. Clin Epigenetics 2024; 16:87. [PMID: 38970137 PMCID: PMC11225235 DOI: 10.1186/s13148-024-01696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Pediatric central nervous system tumors remain challenging to diagnose. Imaging approaches do not provide sufficient detail to discriminate between different tumor types, while the histopathological examination of tumor tissue shows high inter-observer variability. Recent studies have demonstrated the accurate classification of central nervous system tumors based on the DNA methylation profile of a tumor biopsy. However, a brain biopsy holds significant risk of bleeding and damaging the surrounding tissues. Liquid biopsy approaches analyzing circulating tumor DNA show high potential as an alternative and less invasive tool to study the DNA methylation pattern of tumors. Here, we explore the potential of classifying pediatric brain tumors based on methylation profiling of the circulating cell-free DNA (cfDNA) in cerebrospinal fluid (CSF). For this proof-of-concept study, we collected cerebrospinal fluid samples from 19 pediatric brain cancer patients via a ventricular drain placed for reasons of increased intracranial pressure. Analyses on the cfDNA showed high variability of cfDNA quantities across patients ranging from levels below the limit of quantification to 40 ng cfDNA per milliliter of CSF. Classification based on methylation profiling of cfDNA from CSF was correct for 7 out of 20 samples in our cohort. Accurate results were mostly observed in samples of high quality, more specifically those with limited high molecular weight DNA contamination. Interestingly, we show that centrifugation of the CSF prior to processing increases the fraction of fragmented cfDNA to high molecular weight DNA. In addition, classification was mostly correct for samples with high tumoral cfDNA fraction as estimated by computational deconvolution (> 40%). In summary, analysis of cfDNA in the CSF shows potential as a tool for diagnosing pediatric nervous system tumors especially in patients with high levels of tumoral cfDNA in the CSF. Further optimization of the collection procedure, experimental workflow and bioinformatic approach is required to also allow classification for patients with low tumoral fractions in the CSF.
Collapse
Affiliation(s)
- Lotte Cornelli
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Maísa R Ferro Dos Santos
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Leen Willems
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Edward Baert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Biotechnology, VIB-UGent, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
8
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
9
|
McCabe MG, Geoerger B, Chesler L, Hargrave D, Parsons DW, van Tilburg CM, Schleiermacher G, Hickman JA, George SL. Precision Medicine for Childhood Cancer: Current Limitations and Future Perspectives. JCO Precis Oncol 2024; 8:e2300117. [PMID: 38207228 DOI: 10.1200/po.23.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 01/13/2024] Open
Abstract
Greater collaboration needed to realize potential of molecular profiling initiatives for pediatric cancers.
Collapse
Affiliation(s)
- Martin G McCabe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Louis Chesler
- Paediatric Oncology Experimental Medicine Centre, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - D Williams Parsons
- Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology & Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Parbe the only one citing a postcodeis, France
| | - John A Hickman
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Sally L George
- Paediatric Oncology Experimental Medicine Centre, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, The Royal Marsden Hospital, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
10
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
11
|
Gelineau NU, van Barneveld A, Samim A, Van Zogchel L, Lak N, Tas ML, Matser Y, Mavinkurve-Groothuis AMC, van Grotel M, Zsiros J, van Eijkelenburg NKA, Knops RRG, van Ewijk R, Langenberg KPS, Krijger RD, Hiemcke-Jiwa LS, Van Paemel R, Cornelli L, De Preter K, De Wilde B, Van Der Schoot E, Tytgat G. Case series on clinical applications of liquid biopsy in pediatric solid tumors: towards improved diagnostics and disease monitoring. Front Oncol 2023; 13:1209150. [PMID: 37664065 PMCID: PMC10473251 DOI: 10.3389/fonc.2023.1209150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background and aims Solid tumors account for about 30% of all pediatric cancers. The diagnosis is typically based on histological and molecular analysis of a primary tumor biopsy. Liquid biopsies carry several advantages over conventional tissue biopsy. However, their use for genomic analysis and response monitoring of pediatric solid tumors is still in experimental stages and mostly performed retrospectively without direct impact on patient management. In this case series we discuss six clinical cases of children with a solid tumor for whom a liquid biopsy assay was performed and demonstrate the potential of liquid biopsy for future clinical decision making. Methods We performed quantitative real-time PCR (RT-qPCR), droplet digital PCR (ddPCR) or reduced representation bisulphite sequencing of cell-free DNA (cfRRBS) on liquid biopsies collected from six pediatric patients with a solid tumor treated between 2017 and 2023 at the Princess Máxima Center for Pediatric Oncology in the Netherlands. Results were used to aid in clinical decision making by contribution to establish a diagnosis, by prognostication and response to therapy monitoring. Results In three patients cfRRBS helped to establish the diagnosis of a rhabdomyosarcoma, an Ewing sarcoma and a neuroblastoma (case 1-3). In two patients, liquid biopsies were used for prognostication, by MYCN ddPCR in a patient with neuroblastoma and by RT-qPCR testing rhabdomyosarcoma-specific mRNA in bone marrow of a patient with a rhabdomyosarcoma (case 4 and 5). In case 6, mRNA testing demonstrated disease progression and assisted clinical decision making. Conclusion This case series illustrates the value of liquid biopsy. We further demonstrate and recommend the use of liquid biopsies to be used in conjunction with conventional methods for the determination of metastatic status, prognostication and monitoring of treatment response in patients with pediatric solid tumors.
Collapse
Affiliation(s)
- Nina U. Gelineau
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Atia Samim
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Lieke Van Zogchel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Nathalie Lak
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Michelle L. Tas
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Yvette Matser
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Martine van Grotel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Jószef Zsiros
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Rutger R. G. Knops
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Ronald De Krijger
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Laura S. Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Lotte Cornelli
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Ellen Van Der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Godelieve Tytgat
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
12
|
Chicard M, Iddir Y, Masliah Planchon J, Combaret V, Attignon V, Saint-Charles A, Frappaz D, Faure-Conter C, Beccaria K, Varlet P, Geoerger B, Baulande S, Pierron G, Bouchoucha Y, Doz F, Delattre O, Waterfall JJ, Bourdeaut F, Schleiermacher G. Cell-Free DNA Extracted from CSF for the Molecular Diagnosis of Pediatric Embryonal Brain Tumors. Cancers (Basel) 2023; 15:3532. [PMID: 37444642 DOI: 10.3390/cancers15133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Liquid biopsies are revolutionary tools used to detect tumor-specific genetic alterations in body fluids, including the use of cell-free DNA (cfDNA) for molecular diagnosis in cancer patients. In brain tumors, cerebrospinal fluid (CSF) cfDNA might be more informative than plasma cfDNA. Here, we assess the use of CSF cfDNA in pediatric embryonal brain tumors (EBT) for molecular diagnosis. METHODS The CSF cfDNA of pediatric patients with medulloblastoma (n = 18), ATRT (n = 3), ETMR (n = 1), CNS NB FOXR2 (n = 2) and pediatric EBT NOS (n = 1) (mean cfDNA concentration 48 ng/mL; range 4-442 ng/mL) and matched tumor genomic DNA were sequenced by WES and/or a targeted sequencing approach to determine single-nucleotide variations (SNVs) and copy number alterations (CNA). A specific capture covering transcription start sites (TSS) of genes of interest was also used for nucleosome footprinting in CSF cfDNA. RESULTS 15/25 CSF cfDNA samples yielded informative results, with informative CNA and SNVs in 11 and 15 cases, respectively. For cases with paired tumor and CSF cfDNA WES (n = 15), a mean of 83 (range 1-160) shared SNVs were observed, including SNVs in classical medulloblastoma genes such as SMO and KMT2D. Interestingly, tumor-specific SNVs (mean 18; range 1-62) or CSF-specific SNVs (mean 5; range 0-25) were also observed, suggesting clonal heterogeneity. The TSS panel resulted in differential coverage profiles across all 112 studied genes in 7 cases, indicating distinct promoter accessibility. CONCLUSION CSF cfDNA sequencing yielded informative results in 60% (15/25) of all cases, with informative results in 83% (15/18) of all cases analyzed by WES. These results pave the way for the implementation of these novel approaches for molecular diagnosis and minimal residual disease monitoring.
Collapse
Affiliation(s)
- Mathieu Chicard
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Yasmine Iddir
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Julien Masliah Planchon
- Unité de Génétique Somatique, Service de Génétique, Institut Curie Hospital Group, 75005 Paris, France
| | - Valérie Combaret
- Plateforme de Génomique des Cancers, Centre Léon Bérard, 69008 Lyon, France
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, 69373 Lyon, France
| | - Valéry Attignon
- Plateforme de Génomique des Cancers, Centre Léon Bérard, 69008 Lyon, France
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, 69373 Lyon, France
| | - Alexandra Saint-Charles
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Didier Frappaz
- Department of Pediatric Clinical Trials and Department of Pediatric Neuro-Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, 69008 Lyon, France
| | - Cécile Faure-Conter
- Department of Pediatric Clinical Trials and Department of Pediatric Neuro-Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, 69008 Lyon, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris-Université Paris Cité, 75015 Paris, France
| | - Pascale Varlet
- GHU Psychiatrie et Neurosciences, Site Sainte-Anne, 75014 Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service de Génétique, Institut Curie Hospital Group, 75005 Paris, France
| | - Yassine Bouchoucha
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| | - François Doz
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
- Faculty of Medicine, Université Paris Cité, 75005 Paris, France
| | - Olivier Delattre
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
- Diversity and Plasticity of Childhood Tumors Laboratory, INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Joshua J Waterfall
- Integrative Functional Genomics of Cancer Laboratory, INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, PSL Research University, 75005 Paris, France
- Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
| | - Franck Bourdeaut
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| | - Gudrun Schleiermacher
- Recherche Translationelle en Oncologie Pédiatrique (RTOP), INSERM U830 Cancer, Heterogeneity, Instability and Plasticity, Department of Translational Research, Institut Curie Research Center, PSL Research University, 75005 Paris, France
- SIREDO Integrated Pediatric Oncology Center, Institut Curie Hospital Group, 75005 Paris, France
| |
Collapse
|
13
|
Mangum R, Reuther J, Baksi KS, Gandhi I, Zabriskie RC, Recinos A, Raesz-Martinez R, Lin FY, Potter SL, Sher AC, Kralik SF, Mohila CA, Chintagumpala MM, Muzny D, Hu J, Gibbs RA, Fisher KE, Bernini JC, Gill J, Griffin TC, Tomlinson GE, Vallance KL, Plon SE, Roy A, Parsons DW. Circulating tumor DNA sequencing of pediatric solid and brain tumor patients: An institutional feasibility study. Pediatr Hematol Oncol 2023; 40:719-738. [PMID: 37366551 PMCID: PMC10592361 DOI: 10.1080/08880018.2023.2228837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
The potential of circulating tumor DNA (ctDNA) analysis to serve as a real-time "liquid biopsy" for children with central nervous system (CNS) and non-CNS solid tumors remains to be fully elucidated. We conducted a study to investigate the feasibility and potential clinical utility of ctDNA sequencing in pediatric patients enrolled on an institutional clinical genomics trial. A total of 240 patients had tumor DNA profiling performed during the study period. Plasma samples were collected at study enrollment from 217 patients and then longitudinally from a subset of patients. Successful cell-free DNA extraction and quantification occurred in 216 of 217 (99.5%) of these initial samples. Twenty-four patients were identified whose tumors harbored 30 unique variants that were potentially detectable on a commercially-available ctDNA panel. Twenty of these 30 mutations (67%) were successfully detected by next-generation sequencing in the ctDNA from at least one plasma sample. The rate of ctDNA mutation detection was higher in patients with non-CNS solid tumors (7/9, 78%) compared to those with CNS tumors (9/15, 60%). A higher ctDNA mutation detection rate was also observed in patients with metastatic disease (9/10, 90%) compared to non-metastatic disease (7/14, 50%), although tumor-specific variants were detected in a few patients in the absence of radiographic evidence of disease. This study illustrates the feasibility of incorporating longitudinal ctDNA analysis into the management of relapsed or refractory patients with childhood CNS or non-CNS solid tumors.
Collapse
Affiliation(s)
- Ross Mangum
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, Arizona
| | - Jacquelyn Reuther
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Koel Sen Baksi
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Ilavarasi Gandhi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Ryan C. Zabriskie
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Alva Recinos
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Robin Raesz-Martinez
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Frank Y. Lin
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Samara L. Potter
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Andrew C. Sher
- Department of Radiology, Texas Children’s Hospital, Houston, Texas
| | | | - Carrie A. Mohila
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Murali M. Chintagumpala
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Jianhong Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Kevin E. Fisher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Juan Carlos Bernini
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jonathan Gill
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C. Griffin
- Department of Hematology Oncology, The Children’s Hospital of San Antonio, Baylor College of Medicine, San Antonio, Texas
| | - Gail E Tomlinson
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Kelly L. Vallance
- Hematology and Oncology, Cook Children’s Medical Center, Fort Worth, Texas
| | - Sharon E. Plon
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Angshumoy Roy
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - D. Williams Parsons
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children’s Hospital, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Gundem G, Levine MF, Roberts SS, Cheung IY, Medina-Martínez JS, Feng Y, Arango-Ossa JE, Chadoutaud L, Rita M, Asimomitis G, Zhou J, You D, Bouvier N, Spitzer B, Solit DB, Dela Cruz F, LaQuaglia MP, Kushner BH, Modak S, Shukla N, Iacobuzio-Donahue CA, Kung AL, Cheung NKV, Papaemmanuil E. Clonal evolution during metastatic spread in high-risk neuroblastoma. Nat Genet 2023; 55:1022-1033. [PMID: 37169874 PMCID: PMC11481711 DOI: 10.1038/s41588-023-01395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.
Collapse
Affiliation(s)
- Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Max F Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Y Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan S Medina-Martínez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Feng
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan E Arango-Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Loic Chadoutaud
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathieu Rita
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Georgios Asimomitis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joe Zhou
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, New York, NY, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael P LaQuaglia
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Trinidad EM, Juan-Ribelles A, Pisano G, Castel V, Cañete A, Gut M, Heath S, Font de Mora J. Evaluation of circulating tumor DNA by electropherogram analysis and methylome profiling in high-risk neuroblastomas. Front Oncol 2023; 13:1037342. [PMID: 37251933 PMCID: PMC10213460 DOI: 10.3389/fonc.2023.1037342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background Liquid biopsy has emerged as a promising, non-invasive diagnostic approach in oncology because the analysis of circulating tumor DNA (ctDNA) reflects the precise status of the disease at diagnosis, progression, and response to treatment. DNA methylation profiling is also a potential solution for sensitive and specific detection of many cancers. The combination of both approaches, DNA methylation analysis from ctDNA, provides an extremely useful and minimally invasive tool with high relevance in patients with childhood cancer. Neuroblastoma is an extracranial solid tumor most common in children and responsible for up to 15% of cancer-related deaths. This high death rate has prompted the scientific community to search for new therapeutic targets. DNA methylation also offers a new source for identifying these molecules. However, the limited blood sample size which can be obtained from children with cancer and the fact that ctDNA content may occasionally be diluted by non-tumor cell-free DNA (cfDNA) complicate optimal quantities of material for high-throughput sequencing studies. Methods In this article, we present an improved method for ctDNA methylome studies of blood-derived plasma from high-risk neuroblastoma patients. We assessed the electropherogram profiles of ctDNA-containing samples suitable for methylome studies, using 10 ng of plasma-derived ctDNA from 126 samples of 86 high-risk neuroblastoma patients, and evaluated several bioinformatic approaches to analyze DNA methylation sequencing data. Results We demonstrated that enzymatic methyl-sequencing (EM-seq) outperformed bisulfite conversion-based method, based on the lower proportion of PCR duplicates and the higher percentage of unique mapping reads, mean coverage, and genome coverage. The analysis of the electropherogram profiles revealed the presence of nucleosomal multimers, and occasionally high molecular weight DNA. We established that 10% content of the mono-nucleosomal peak is sufficient ctDNA for successful detection of copy number variations and methylation profiles. Quantification of mono-nucleosomal peak also showed that samples at diagnosis contained a higher amount of ctDNA than relapse samples. Conclusions Our results refine the use of electropherogram profiles to optimize sample selection for subsequent high-throughput analysis and support the use of liquid biopsy followed by enzymatic conversion of unmethylated cysteines to assess the methylomes of neuroblastoma patients.
Collapse
Affiliation(s)
- Eva María Trinidad
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Antonio Juan-Ribelles
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Giulia Pisano
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Victoria Castel
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
- School of Medicine, University of Valencia, Valencia, Spain
| | - Marta Gut
- National Center for Genomic Analysis – Centre for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Heath
- National Center for Genomic Analysis – Centre for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
16
|
Abbou S, Klega K, Tsuji J, Tanhaemami M, Hall D, Barkauskas DA, Krailo MD, Cibulskis C, Nag A, Thorner AR, Pollock S, Imamovic-Tuco A, Shern JF, DuBois SG, Venkatramani R, Hawkins DS, Crompton BD. Circulating Tumor DNA Is Prognostic in Intermediate-Risk Rhabdomyosarcoma: A Report From the Children's Oncology Group. J Clin Oncol 2023; 41:2382-2393. [PMID: 36724417 PMCID: PMC10150913 DOI: 10.1200/jco.22.00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Novel biomarkers are needed to differentiate outcomes in intermediate-risk rhabdomyosarcoma (IR RMS). We sought to evaluate strategies for identifying circulating tumor DNA (ctDNA) in IR RMS and to determine whether ctDNA detection before therapy is associated with outcome. PATIENTS AND METHODS Pretreatment serum and tumor samples were available from 124 patients with newly diagnosed IR RMS from the Children's Oncology Group biorepository, including 75 patients with fusion-negative rhabdomyosarcoma (FN-RMS) and 49 with fusion-positive rhabdomyosarcoma (FP-RMS) disease. We used ultralow passage whole-genome sequencing to detect copy number alterations and a new custom sequencing assay, Rhabdo-Seq, to detect rearrangements and single-nucleotide variants. RESULTS We found that ultralow passage whole-genome sequencing was a method applicable to ctDNA detection in all patients with FN-RMS and that ctDNA was detectable in 13 of 75 serum samples (17%). However, the use of Rhabdo-Seq in FN-RMS samples also identified single-nucleotide variants, such as MYOD1L122R, previously associated with prognosis. Identification of pathognomonic translocations between PAX3 or PAX7 and FOXO1 by Rhabdo-Seq was the best method for measuring ctDNA in FP-RMS and detected ctDNA in 27 of 49 cases (55%). Patients with FN-RMS with detectable ctDNA at diagnosis had significantly worse outcomes than patients without detectable ctDNA (event-free survival, 33.3% v 68.9%; P = .0028; overall survival, 33.3% v 83.2%; P < .0001) as did patients with FP-RMS (event-free survival, 37% v 70%; P = .045; overall survival, 39.2% v 75%; P = .023). In multivariable analysis, ctDNA was independently associated with worse prognosis in FN-RMS but not in the smaller FP-RMS cohort. CONCLUSION Our study demonstrates that baseline ctDNA detection is feasible and is prognostic in IR RMS.
Collapse
Affiliation(s)
- Samuel Abbou
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Children and Adolescent Oncology Department, INSERM U1015, Paris-Saclay University, Villejuif, France
| | - Kelly Klega
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Junko Tsuji
- Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - David Hall
- QuadW-COG Childhood Sarcoma Biostatistics and Annotation Office, Children's Oncology Group, Monrovia, CA
| | - Donald A. Barkauskas
- QuadW-COG Childhood Sarcoma Biostatistics and Annotation Office, Children's Oncology Group, Monrovia, CA
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Mark D. Krailo
- QuadW-COG Childhood Sarcoma Biostatistics and Annotation Office, Children's Oncology Group, Monrovia, CA
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | | | - Anwesha Nag
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Aaron R. Thorner
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | | | - Alma Imamovic-Tuco
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jack F. Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD
- Pediatric Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - Steven G. DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | | | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
17
|
Van Goethem A, Deleu J, Yigit N, Everaert C, Moreno-Smith M, Vasudevan S, Zeka F, Demuynck F, Barbieri E, Speleman F, Mestdagh P, Shohet J, Vandesompele J, Van Maerken T. Longitudinal evaluation of serum microRNAs as biomarkers for neuroblastoma burden and therapeutic p53 reactivation. NAR Cancer 2023; 5:zcad002. [PMID: 36683916 PMCID: PMC9846426 DOI: 10.1093/narcan/zcad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Accurate assessment of treatment response and residual disease is indispensable for the evaluation of cancer treatment efficacy. However, performing tissue biopsies for longitudinal follow-up poses a major challenge in the management of solid tumours like neuroblastoma. In the present study, we evaluated whether circulating miRNAs are suitable to monitor neuroblastoma tumour burden and whether treatment-induced changes of miRNA abundance in the tumour are detectable in serum. We performed small RNA sequencing on longitudinally collected serum samples from mice carrying orthotopic neuroblastoma xenografts that were exposed to treatment with idasanutlin or temsirolimus. We identified 57 serum miRNAs to be differentially expressed upon xenograft tumour manifestation, out of which 21 were also found specifically expressed in the serum of human high-risk neuroblastoma patients. The murine serum levels of these 57 miRNAs correlated with tumour tissue expression and tumour volume, suggesting potential utility for monitoring tumour burden. In addition, we describe serum miRNAs that dynamically respond to p53 activation following treatment of engrafted mice with idasanutlin. We identified idasanutlin-induced serum miRNA expression changes upon one day and 11 days of treatment. By limiting to miRNAs with a tumour-related induction, we put forward hsa-miR-34a-5p as a potential pharmacodynamic biomarker of p53 activation in serum.
Collapse
Affiliation(s)
- Alan Van Goethem
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jill Deleu
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Celine Everaert
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Myrthala Moreno-Smith
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fjoralba Zeka
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fleur Demuynck
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- PPOL, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jason Shohet
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tom Van Maerken
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, AZ Groeninge, Kortrijk, Belgium
| |
Collapse
|
18
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
19
|
Lak NS, van Zogchel LM, Zappeij-Kannegieter L, Javadi A, van Paemel R, Vandeputte C, De Preter K, De Wilde B, Chicard M, Iddir Y, Schleiermacher G, Ruhen O, Shipley J, Fiocco M, Merks JH, van Noesel MM, van der Schoot CE, Tytgat GA, Stutterheim J. Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Pediatric Rhabdomyosarcoma. JCO Precis Oncol 2023; 7:e2200113. [PMID: 36652664 PMCID: PMC9928631 DOI: 10.1200/po.22.00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma. METHODS cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital polymerase chain reaction to detect methylated RASSF1A (RASSF1A-M). Correlation with outcome was studied by combining cfDNA RASSF1A-M detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions and survival analysis in 56 patients. RESULTS At diagnosis, ctDNA was detected in 16 of 30 and 24 of 26 patients using shallow whole genome sequencing and cfRRBS, respectively. Furthermore, 21 of 25 samples were correctly classified as embryonal by cfRRBS. RASSF1A-M was detected in 21 of 57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival [EFS] rate was 46.2% for 21 RASSF1A-M‒positive patients, compared with 84.9% for 36 RASSF1A-M‒negative patients [P < .001]). RASSF1A-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for RASSF1A-M and the rhabdomyosarcoma-specific RNA panel (28 of 56 patients) had excellent outcome (5-year EFS 92.9%), while double-positive patients (11/56) had poor outcome (5-year EFS 13.6%, P < .001). CONCLUSION Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel.
Collapse
Affiliation(s)
- Nathalie S.M. Lak
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands
| | - Lieke M.J. van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands
| | | | - Ahmad Javadi
- Sanquin Research Department, Amsterdam, the Netherlands
| | - Ruben van Paemel
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Charlotte Vandeputte
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Katleen De Preter
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bram De Wilde
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Mathieu Chicard
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, and INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Yasmine Iddir
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, and INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Olivia Ruhen
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Mathematical Institute, Leiden University, Leiden, the Netherlands,Department of Biomedical Data Science, Medical Statistics Section, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,UMC Utrecht, Division Oncology & Cancer, Utrecht, the Netherlands
| | | | - Godelieve A.M. Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands
| | - Janine Stutterheim
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands,Janine Stutterheim, Princess Máxima Center, Heidelberglaan 25, 3435 CS, Utrecht, the Netherlands; e-mail:
| |
Collapse
|
20
|
Bosse KR, Giudice AM, Lane MV, McIntyre B, Schürch PM, Pascual-Pasto G, Buongervino SN, Suresh S, Fitzsimmons A, Hyman A, Gemino-Borromeo M, Saggio J, Berko ER, Daniels AA, Stundon J, Friedrichsen M, Liu X, Margolis ML, Li MM, Tierno MB, Oxnard GR, Maris JM, Mossé YP. Serial Profiling of Circulating Tumor DNA Identifies Dynamic Evolution of Clinically Actionable Genomic Alterations in High-Risk Neuroblastoma. Cancer Discov 2022; 12:2800-2819. [PMID: 36108156 PMCID: PMC9722579 DOI: 10.1158/2159-8290.cd-22-0287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Neuroblastoma evolution, heterogeneity, and resistance remain inadequately defined, suggesting a role for circulating tumor DNA (ctDNA) sequencing. To define the utility of ctDNA profiling in neuroblastoma, 167 blood samples from 48 high-risk patients were evaluated for ctDNA using comprehensive genomic profiling. At least one pathogenic genomic alteration was identified in 56% of samples and 73% of evaluable patients, including clinically actionable ALK and RAS-MAPK pathway variants. Fifteen patients received ALK inhibition (ALKi), and ctDNA data revealed dynamic genomic evolution under ALKi therapeutic pressure. Serial ctDNA profiling detected disease evolution in 15 of 16 patients with a recurrently identified variant-in some cases confirming disease progression prior to standard surveillance methods. Finally, ctDNA-defined ERRFI1 loss-of-function variants were validated in neuroblastoma cellular models, with the mutant proteins exhibiting loss of wild-type ERRFI1's tumor-suppressive functions. Taken together, ctDNA is prevalent in children with high-risk neuroblastoma and should be followed throughout neuroblastoma treatment. SIGNIFICANCE ctDNA is prevalent in children with neuroblastoma. Serial ctDNA profiling in patients with neuroblastoma improves the detection of potentially clinically actionable and functionally relevant variants in cancer driver genes and delineates dynamic tumor evolution and disease progression beyond that of standard tumor sequencing and clinical surveillance practices. See related commentary by Deubzer et al., p. 2727. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104; USA
| | - Anna Maria Giudice
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Maria V. Lane
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Patrick M. Schürch
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Samantha N. Buongervino
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Sriyaa Suresh
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Alana Fitzsimmons
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Adam Hyman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Maria Gemino-Borromeo
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Jennifer Saggio
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Esther R. Berko
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Alexander A. Daniels
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Jennifer Stundon
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | | | - Xin Liu
- Foundation Medicine, Inc. Cambridge, MA 02141; USA
| | | | - Marilyn M. Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania and the Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | | | | | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104; USA
| | - Yael P. Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104; USA
| |
Collapse
|
21
|
Crescitelli R, Filges S, Karimi N, Urzì O, Alonso-Agudo T, Ståhlberg A, Lötvall J, Lässer C, Olofsson Bagge R. Extracellular vesicle DNA from human melanoma tissues contains cancer-specific mutations. Front Cell Dev Biol 2022; 10:1028854. [PMID: 36531960 PMCID: PMC9751452 DOI: 10.3389/fcell.2022.1028854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/18/2022] [Indexed: 10/19/2023] Open
Abstract
Liquid biopsies are promising tools for early diagnosis and residual disease monitoring in patients with cancer, and circulating tumor DNA isolated from plasma has been extensively studied as it has been shown to contain tumor-specific mutations. Extracellular vesicles (EVs) present in tumor tissues carry tumor-derived molecules such as proteins and nucleic acids, and thus EVs can potentially represent a source of cancer-specific DNA. Here we identified the presence of tumor-specific DNA mutations in EVs isolated from six human melanoma metastatic tissues and compared the results with tumor tissue DNA and plasma DNA. Tumor tissue EVs were isolated using enzymatic treatment followed by ultracentrifugation and iodixanol density cushion isolation. A panel of 34 melanoma-related genes was investigated using ultra-sensitive sequencing (SiMSen-seq). We detected mutations in six genes in the EVs (BRAF, NRAS, CDKN2A, STK19, PPP6C, and RAC), and at least one mutation was detected in all melanoma EV samples. Interestingly, the mutant allele frequency was higher in DNA isolated from tumor-derived EVs compared to total DNA extracted directly from plasma DNA, supporting the potential role of tumor EVs as future biomarkers in melanoma.
Collapse
Affiliation(s)
- Rossella Crescitelli
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nasibeh Karimi
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ornella Urzì
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Gothenburg, Italy
| | - Tamara Alonso-Agudo
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
22
|
Stankunaite R, Marshall LV, Carceller F, Chesler L, Hubank M, George SL. Liquid biopsy for children with central nervous system tumours: Clinical integration and technical considerations. Front Pediatr 2022; 10:957944. [PMID: 36467471 PMCID: PMC9709284 DOI: 10.3389/fped.2022.957944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) analysis has the potential to revolutionise the care of patients with cancer and is already moving towards standard of care in some adult malignancies. Evidence for the utility of cfDNA analysis in paediatric cancer patients is also accumulating. In this review we discuss the limitations of blood-based assays in patients with brain tumours and describe the evidence supporting cerebrospinal fluid (CSF) cfDNA analysis. We make recommendations for CSF cfDNA processing to aid the standardisation and technical validation of future assays. We discuss the considerations for interpretation of cfDNA analysis and highlight promising future directions. Overall, cfDNA profiling shows great potential as an adjunct to the analysis of biopsy tissue in paediatric cancer patients, with the potential to provide a genetic molecular profile of the tumour when tissue biopsy is not feasible. However, to fully realise the potential of cfDNA analysis for children with brain tumours larger prospective studies incorporating serial CSF sampling are required.
Collapse
Affiliation(s)
- Reda Stankunaite
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Evolutionary Genomics and Modelling, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Lynley V. Marshall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fernando Carceller
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Michael Hubank
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sally L. George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Zhuo Z, Lin L, Miao L, Li M, He J. Advances in liquid biopsy in neuroblastoma. FUNDAMENTAL RESEARCH 2022; 2:903-917. [PMID: 38933377 PMCID: PMC11197818 DOI: 10.1016/j.fmre.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Even with intensive treatment of high-risk neuroblastoma (NB) patients, half of high-risk NB patients still relapse. New therapies targeting the biological characteristics of NB have important clinical value for the personalized treatment of NB. However, the current biological markers for NB are mainly analyzed by tissue biopsy. In recent years, circulating biomarkers of NB based on liquid biopsy have attracted more and more attention. This review summarizes the analytes and methods for liquid biopsy of NB. We focus on the application of liquid biopsy in the diagnosis, prognosis assessment, and monitoring of NB. Finally, we discuss the prospects and challenges of liquid biopsy in NB.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
24
|
Read Count Patterns and Detection of Cancerous Copy Number Alterations in Plasma Cell-Free DNA Whole Exome Sequencing Data for Advanced Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms232112932. [DOI: 10.3390/ijms232112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma cell-free DNA (cfDNA) sequencing data have been widely studied for early diagnosis and treatment response or recurrence monitoring of cancers because of the non-invasive benefits. In cancer studies, whole exome sequencing (WES) is mostly used for discovering single nucleotide variants (SNVs), but it also has the potential to detect copy number alterations (CNAs) that are mostly discovered by whole genome sequencing or microarray. In clinical settings where the quantity of the acquired blood from the patients is limited and where various sequencing experiments are not possible, providing various types of mutation information such as CNAs and SNVs using only WES will be helpful in the treatment decision. Here, we questioned whether the plasma cfDNA WES data for patients with advanced non-small cell lung cancer (NSCLC) could be exploited for CNA detection. When the read count (RC) signals of the WES data were investigated, a similar fluctuation pattern was observed among the signals of different samples, and it can be a major challenge hindering CNA detection. When these RC patterns among cfDNA were suppressed by the method we proposed, the cancerous CNAs were more distinguishable in some samples with higher cfDNA quantity. Although the potential to detect CNAs using the plasma cfDNA WES data for NSCLC patients was studied here, further studies with other cancer types, with more samples, and with more sophisticated techniques for bias correction are required to confirm our observation. In conclusion, the detection performance for cancerous CNAs can be improved by controlling RC bias, but it depends on the quantity of cfDNA in plasma.
Collapse
|
25
|
Ruhen O, Lak NS, Stutterheim J, Danielli SG, Chicard M, Iddir Y, Saint-Charles A, Di Paolo V, Tombolan L, Gatz SA, Aladowicz E, Proszek P, Jamal S, Stankunaite R, Hughes D, Carter P, Izquierdo E, Wasti A, Chisholm JC, George SL, Pace E, Chesler L, Aerts I, Pierron G, Zaidi S, Delattre O, Surdez D, Kelsey A, Hubank M, Bonvini P, Bisogno G, Di Giannatale A, Schleiermacher G, Schäfer BW, Tytgat GA, Shipley J. Molecular Characterization of Circulating Tumor DNA in Pediatric Rhabdomyosarcoma: A Feasibility Study. JCO Precis Oncol 2022; 6:e2100534. [PMID: 36265118 PMCID: PMC9616639 DOI: 10.1200/po.21.00534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/17/2022] [Accepted: 08/26/2022] [Indexed: 05/24/2023] Open
Abstract
PURPOSE Rhabdomyosarcomas (RMS) are rare neoplasms affecting children and young adults. Efforts to improve patient survival have been undermined by a lack of suitable disease markers. Plasma circulating tumor DNA (ctDNA) has shown promise as a potential minimally invasive biomarker and monitoring tool in other cancers; however, it remains underexplored in RMS. We aimed to determine the feasibility of identifying and quantifying ctDNA in plasma as a marker of disease burden and/or treatment response using blood samples from RMS mouse models and patients. METHODS We established mouse models of RMS and applied quantitative polymerase chain reaction (PCR) and droplet digital PCR (ddPCR) to detect ctDNA within the mouse plasma. Potential driver mutations, copy-number alterations, and DNA breakpoints associated with PAX3/7-FOXO1 gene fusions were identified in the RMS samples collected at diagnosis. Patient-matched plasma samples collected from 28 patients with RMS before, during, and after treatment were analyzed for the presence of ctDNA via ddPCR, panel sequencing, and/or whole-exome sequencing. RESULTS Human tumor-derived DNA was detectable in plasma samples from mouse models of RMS and correlated with tumor burden. In patients, ctDNA was detected in 14/18 pretreatment plasma samples with ddPCR and 7/7 cases assessed by sequencing. Levels of ctDNA at diagnosis were significantly higher in patients with unfavorable tumor sites, positive nodal status, and metastasis. In patients with serial plasma samples (n = 18), fluctuations in ctDNA levels corresponded to treatment response. CONCLUSION Comprehensive ctDNA analysis combining high sensitivity and throughput can identify key molecular drivers in RMS models and patients, suggesting potential as a minimally invasive biomarker. Preclinical assessment of treatments using mouse models and further patient testing through prospective clinical trials are now warranted.
Collapse
Affiliation(s)
- Olivia Ruhen
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nathalie S.M. Lak
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Experimental Immunohematology, Sanquin, Amsterdam, the Netherlands
| | - Janine Stutterheim
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Experimental Immunohematology, Sanquin, Amsterdam, the Netherlands
| | - Sara G. Danielli
- Department of Oncology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Mathieu Chicard
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), Institut Curie, Paris, France
| | - Yasmine Iddir
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), Institut Curie, Paris, France
| | - Alexandra Saint-Charles
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), Institut Curie, Paris, France
| | - Virginia Di Paolo
- Department of Pediatric Haematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Tombolan
- Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy
| | - Susanne A. Gatz
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ewa Aladowicz
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Paula Proszek
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sabri Jamal
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Reda Stankunaite
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Deborah Hughes
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul Carter
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Elisa Izquierdo
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ajla Wasti
- Children & Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Julia C. Chisholm
- Children & Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Sally L. George
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Erika Pace
- Children & Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Diagnostic Radiology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Louis Chesler
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Isabelle Aerts
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), Institut Curie, Paris, France
| | - Gaelle Pierron
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), Institut Curie, Paris, France
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, Paris, France
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Anna Kelsey
- Department of Pediatric Histopathology, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Michael Hubank
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paolo Bonvini
- Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy
| | - Gianni Bisogno
- Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padova, Padova, Italy
| | - Angela Di Giannatale
- Department of Pediatric Haematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), Institut Curie, Paris, France
- Department of Pediatric Oncology, Hospital Group, Institut Curie, Paris, France
| | - Beat W. Schäfer
- Department of Oncology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Godelieve A.M. Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Experimental Immunohematology, Sanquin, Amsterdam, the Netherlands
| | - Janet Shipley
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
26
|
Gomez RL, Ibragimova S, Ramachandran R, Philpott A, Ali FR. Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188805. [PMID: 36162542 DOI: 10.1016/j.bbcan.2022.188805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates.
| |
Collapse
|
27
|
Zeineldin M, Patel AG, Dyer MA. Neuroblastoma: When differentiation goes awry. Neuron 2022; 110:2916-2928. [PMID: 35985323 PMCID: PMC9509448 DOI: 10.1016/j.neuron.2022.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/21/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Neuroblastoma is a leading cause of cancer-related death in children. Accumulated data suggest that differentiation arrest of the neural-crest-derived sympathoadrenal lineage contributes to neuroblastoma formation. The developmental arrest of these cell types explains many biological features of the disease, including its cellular heterogeneity, mutational spectrum, spontaneous regression, and response to drugs that induce tumor cell differentiation. In this review, we provide evidence that supports the notion that arrested neural-crest-derived progenitor cells give rise to neuroblastoma and discuss how this concept could be exploited for clinical management of the disease.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anand G Patel
- Departments of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, MS-323, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
28
|
Madanat-Harjuoja LM, Renfro LA, Klega K, Tornwall B, Thorner AR, Nag A, Dix D, Dome JS, Diller LR, Fernandez CV, Mullen EA, Crompton BD. Circulating Tumor DNA as a Biomarker in Patients With Stage III and IV Wilms Tumor: Analysis From a Children's Oncology Group Trial, AREN0533. J Clin Oncol 2022; 40:3047-3056. [PMID: 35580298 PMCID: PMC9462535 DOI: 10.1200/jco.22.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The utility of circulating tumor DNA (ctDNA) analyses has not been established in the risk stratification of Wilms tumor (WT). We evaluated the detection of ctDNA and selected risk markers in the serum and urine of patients with WT and compared findings with those of matched diagnostic tumor samples. PATIENTS AND METHODS Fifty of 395 children with stage III or IV WT enrolled on Children's Oncology Group trial AREN0533 had banked pretreatment serum, urine, and tumor available. Next-generation sequencing was used to detect ctDNA. Copy-number changes in 1q, 16q, and 1p, and single-nucleotide variants in serum and urine were compared with tumor biopsy data. Event-free survival (EFS) was compared between patients with and without ctDNA detection. RESULTS ctDNA was detected in the serum of 41/50 (82%) and in the urine in 13/50 (26%) patients. Agreement between serum ctDNA detection and tumor sequencing results was as follows: 77% for 1q gain, 88% for 16q deletions, and 70% for 1p deletions, with ĸ-coefficients of 0.56, 0.74, and 0.29, respectively. Sequencing also demonstrated that single-nucleotide variants detected in tumors could be identified in the ctDNA. There was a trend toward worse EFS in patients with ctDNA detected in the serum (4-year EFS 80% v 100%, P = .14). CONCLUSION ctDNA demonstrates promise as an easily accessible prognostic biomarker with potential to detect tumor heterogeneity. The observed trend toward more favorable outcome in patients with undetectable ctDNA requires validation. ctDNA profiling should be further explored as a noninvasive diagnostic and prognostic tool in the risk-adapted treatment of patients with WT.
Collapse
Affiliation(s)
| | | | - Kelly Klega
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Brett Tornwall
- Children's Oncology Group Statistics and Data Center, Monrovia, CA
| | - Aaron R. Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA
| | - David Dix
- BC Children's Hospital, Vancouver, BC, Canada
| | - Jeffrey S. Dome
- Children's National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Lisa R. Diller
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | | | | | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
29
|
Ghani M, Liau J, Eskander R, Mell L, Yusufaly T, Obrzut S. Imaging Biomarkers and Liquid Biopsy in Assessment of Cervical Cancer. J Comput Assist Tomogr 2022; 46:707-715. [PMID: 35995483 PMCID: PMC9474655 DOI: 10.1097/rct.0000000000001358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The role of imaging has been increasing in pretherapy planning and response assessment in cervical cancer, particularly in high-resource settings that provide access to computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). In 2018, imaging was incorporated into the International Federation of Gynecology and Obstetrics staging system for cervical cancer. Magnetic resonance imaging is advantageous over CT for evaluation of the primary cervical cancer size and extent, because of superior contrast resolution. Furthermore, quantitative methods, including diffusion-weighted and dynamic contrast-enhanced MRI, show promise in improving treatment response and prognosis evaluation. Molecular imaging with fluorodeoxyglucose-PET/CT and PET/MRI can be particularly helpful in the detection of nodal disease and distant metastases. Semiautomated delineation of 3-dimensional tumor regions of interest has facilitated the development of novel PET-derived biomarkers that include metabolic volume and radiomics textural analysis features for prediction of outcomes. However, posttreatment inflammatory changes can be a confounder and lymph node evaluation is challenging, even with the use of PET/CT. Liquid biopsy has emerged as a promising tool that may be able to overcome some of the drawbacks inherent with imaging, such as limited ability to detect microscopic metastases or to distinguish between postchemoradiotherapy changes and residual tumor. Preliminary evidence suggests that liquid biopsy may be able to identify cervical cancer treatment response and resistance earlier than traditional methods. Future work should prioritize how to best synergize imaging and liquid biopsy as an integrated approach for optimal cervical cancer management.
Collapse
Affiliation(s)
- Mansur Ghani
- Department of Radiology, University of California San Diego, CA, USA
| | - Joy Liau
- Department of Radiology, University of California San Diego, CA, USA
| | - Ramez Eskander
- Division of Hematology/Oncology, University of California San Diego, CA, USA
| | - Loren Mell
- Department of Radiation Oncology, University of California San Diego, CA, USA
| | - Tahir Yusufaly
- Department of Radiology, Johns Hopkins University, MD, USA
| | - Sebastian Obrzut
- Department of Radiology, University of California San Diego, CA, USA
| |
Collapse
|
30
|
Madanat-Harjuoja LM, Klega K, Lu Y, Shulman DS, Thorner AR, Nag A, Tap WD, Reinke DK, Diller L, Ballman KV, George S, Crompton BD. Circulating Tumor DNA Is Associated with Response and Survival in Patients with Advanced Leiomyosarcoma. Clin Cancer Res 2022; 28:2579-2586. [PMID: 35561344 PMCID: PMC9359745 DOI: 10.1158/1078-0432.ccr-21-3951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE We sought to determine whether the detection of circulating tumor DNA (ctDNA) in samples of patients undergoing chemotherapy for advanced leiomyosarcoma (LMS) is associated with objective response or survival. EXPERIMENTAL DESIGN Using ultra-low-passage whole-genome sequencing (ULP-WGS) of plasma cell-free DNA from patients treated on a prospective clinical trial, we tested whether detection of ctDNA evaluated prior to the start of therapy and after two cycles of chemotherapy was associated with treatment response and outcome. Associations between detection of ctDNA and pathologic measures of disease burden were evaluated. RESULTS We found that ctDNA was detectable by ULP-WGS in 49% patients prior to treatment and in 24.6% patients after two cycles of chemotherapy. Detection of pretreatment ctDNA was significantly associated with a lower overall survival [HR, 1.55; 95% confidence interval (CI), 1.03-2.31; P = 0.03] and a significantly lower likelihood of objective response [odds ratio (OR), 0.21; 95% CI, 0.06-0.59; P = 0.005]. After two cycles of chemotherapy, patients who continued to have detectable levels of ctDNA experienced a significantly worse overall survival (HR, 1.77; 95% CI, 1-3.14; P = 0.05) and were unlikely to experience an objective response (OR, 0.05; 95% CI, 0-0.39; P = 0.001). CONCLUSIONS Our results demonstrate that detection of ctDNA is associated with outcome and objective response to chemotherapy in patients with advanced LMS. These results suggest that liquid biopsy assays could be used to inform treatment decisions by recognizing patients who are likely and unlikely to benefit from chemotherapy. See related commentary by Kasper and Wilky, p. 2480.
Collapse
Affiliation(s)
| | - Kelly Klega
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Yao Lu
- Weill Cornell Medicine, New York, New York
| | - David S. Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Aaron R. Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William D. Tap
- Weill Cornell Medicine, New York, New York.,Memorial Sloan Kettering Cancer Center, New York, New York
| | - Denise K. Reinke
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan
| | - Lisa Diller
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Suzanne George
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Corresponding Author: Brian D. Crompton, Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215. E-mail:
| |
Collapse
|
31
|
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM, Tytgat GAM. Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Front Oncol 2022; 12:887210. [PMID: 35686092 PMCID: PMC9173703 DOI: 10.3389/fonc.2022.887210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cees Otto
- Medical Cell Biophysics Group, University of Twente, Enschede, Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Godelieve A M Tytgat
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
32
|
Ognibene M, De Marco P, Parodi S, Meli M, Di Cataldo A, Zara F, Pezzolo A. Genomic Analysis Made It Possible to Identify Gene-Driver Alterations Covering the Time Window between Diagnosis of Neuroblastoma 4S and the Progression to Stage 4. Int J Mol Sci 2022; 23:ijms23126513. [PMID: 35742955 PMCID: PMC9224358 DOI: 10.3390/ijms23126513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroblastoma (NB) is a tumor of the developing sympathetic nervous system. Despite recent advances in understanding the complexity of NB, the mechanisms that determine its regression or progression are still largely unknown. Stage 4S NB is characterized by a favorable course of disease and often by spontaneous regression, while progression to true stage 4 is a very rare event. Here, we focused on genomic analysis of an NB case that progressed from stage 4S to stage 4 with a very poor outcome. Array-comparative genomic hybridization (a-CGH) on tumor-tissue DNA, and whole-exome sequencing (WES) on exosomes DNA derived from plasma collected at the onset and at the tumor progression, pointed out relevant genetic changes that can explain this clinical worsening. The combination of a-CGH and WES data allowed for the identification iof somatic copy number aberrations and single-nucleotide variants in genes known to be responsible for aggressive NB. KLRB1, MAPK3 and FANCA genes, which were lost at the time of progression, were studied for their possible role in this event by analyzing in silico the impact of their expression on the outcome of 786 NB patients.
Collapse
Affiliation(s)
- Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
- Correspondence: ; Tel.: +39-010-5636-2601
| | - Patrizia De Marco
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Stefano Parodi
- Scientific Directorate, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Mariaclaudia Meli
- U.O.C. Ematologia e Oncologia Pediatrica, Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, 95123 Catania, Italy; (M.M.); (A.D.C.)
| | - Andrea Di Cataldo
- U.O.C. Ematologia e Oncologia Pediatrica, Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, 95123 Catania, Italy; (M.M.); (A.D.C.)
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | | |
Collapse
|
33
|
Shirai R, Osumi T, Sato-Otsubo A, Nakabayashi K, Ishiwata K, Yamada Y, Yoshida M, Yoshida K, Shioda Y, Kiyotani C, Terashima K, Tomizawa D, Takasugi N, Takita J, Miyazaki O, Kiyokawa N, Yoneda A, Kanamori Y, Hishiki T, Matsumoto K, Hata K, Yoshioka T, Kato M. Quantitative assessment of copy number alterations by liquid biopsy for neuroblastoma. Genes Chromosomes Cancer 2022; 61:662-669. [PMID: 35655408 DOI: 10.1002/gcc.23073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Liquid biopsy, a method of detecting genomic alterations using blood specimens, has recently attracted attention as a non-invasive alternative to surgical tissue biopsy. We attempted quantitative analysis to detect amplification of MYCN (MYCNamp) and loss of heterozygosity at 11q (11qLOH), which are clinical requisites as prognostic factors of neuroblastoma. In this study, cell-free DNA (cfDNA) was extracted from plasma samples from 24 neuroblastoma patients at diagnosis. Copy numbers of MYCN and NAGK genes were quantitatively analyzed by droplet digital PCR (ddPCR). 11qLOH was also assessed by detecting allelic imbalances of heterozygous single nucleotide polymorphisms in the 11q region. The results obtained were compared to those of specimens from tumor tissues. The correlation coefficient of MYCN copy number of cfDNA and tumor DNA was 0.88 (P < 0.00001). 11qLOH was also accurately detected from cfDNA, except for one case with localized NB. Given the high accuracy of liquid biopsy, to investigate components of cfDNA, the proportion of tumor-derived DNA was estimated by examining the variant allele frequency of tumor-specific mutations in cfDNA. The proportion of tumor-derived DNA in cfDNA was 42.5% (range, 16.9%-55.9%), suggesting sufficient sensitivity of liquid biopsy for neuroblastoma. In conclusion, MYCN copy number and 11qLOH could be quantitatively analyzed in plasma cfDNA by ddPCR assay. These results suggest that plasma cfDNA can be substituted for tumor DNA and can also be applied for comprehensive genomic profiling analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuji Yamada
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kaoru Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Shioda
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Chikako Kiyotani
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Keita Terashima
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nao Takasugi
- Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto City, Japan
| | - Osamu Miyazaki
- Department of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Yoneda
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yutaka Kanamori
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoro Hishiki
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Yang R, Zheng S, Dong R. Circulating tumor cells in neuroblastoma: Current status and future perspectives. Cancer Med 2022; 12:7-19. [PMID: 35632981 PMCID: PMC9844658 DOI: 10.1002/cam4.4893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children, accounting for 10% to 20% of deaths of pediatric malignancies. Due to the poor prognosis and significant biological heterogeneity of neuroblastoma, it is essential to develop personalized therapeutics and monitor treatment response. Circulating tumor cells (CTCs), as one of the important analytes for liquid biopsy, could facilitate response assessment and outcome prediction for patients in a non-invasive way. Several methods and platforms have been used for the enrichment and detection of CTCs. The enumeration of CTCs counts and evaluation of tumor-specific mRNA transcript levels could provide prognostic information at diagnosis, during or after chemotherapy, and during the process of disease progression. So far, studies into neuroblastoma CTCs are only in the preliminary stages. The quality-controlled large prospective cohort studies are needed to evaluate the clinical significance and statistical rigor of CTC detection methods. Moreover, there remains a lot to be explored and investigated in genotyping characterization of neuroblastoma (NB) CTCs and construction of in-vitro or in-vivo functional models. CTCs and circulating tumor DNA (ctDNA) analysis will be complementary in understanding tumor heterogeneity and evolution over the course of therapy for patients with NB in the future.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pediatric SurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| | - Shan Zheng
- Department of Pediatric SurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| | - Rui Dong
- Department of Pediatric SurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
35
|
Berlanga P, Pierron G, Lacroix L, Chicard M, Adam de Beaumais T, Marchais A, Harttrampf AC, Iddir Y, Larive A, Soriano Fernandez A, Hezam I, Chevassus C, Bernard V, Cotteret S, Scoazec JY, Gauthier A, Abbou S, Corradini N, André N, Aerts I, Thebaud E, Casanova M, Owens C, Hladun-Alvaro R, Michiels S, Delattre O, Vassal G, Schleiermacher G, Geoerger B. The European MAPPYACTS Trial: Precision Medicine Program in Pediatric and Adolescent Patients with Recurrent Malignancies. Cancer Discov 2022; 12:1266-1281. [PMID: 35292802 PMCID: PMC9394403 DOI: 10.1158/2159-8290.cd-21-1136] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT MAPPYACTS (NCT02613962) is an international prospective precision medicine trial aiming to define tumor molecular profiles in pediatric patients with recurrent/refractory malignancies in order to suggest the most adapted salvage treatment. From February 2016 to July 2020, 787 patients were included in France, Italy, Ireland, and Spain. At least one genetic alteration leading to a targeted treatment suggestion was identified in 436 patients (69%) with successful sequencing; 10% of these alterations were considered "ready for routine use." Of 356 patients with follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies-56% of them within early clinical trials-mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, matched treatment resulted in a 17% objective response rate, and of those patients with ready for routine use alterations, it was 38%. In patients with extracerebral tumors, 76% of actionable alterations detected in tumor tissue were also identified in circulating cell-free DNA (cfDNA). SIGNIFICANCE MAPPYACTS underlines the feasibility of molecular profiling at cancer recurrence in children on a multicenter, international level and demonstrates benefit for patients with selected key drivers. The use of cfDNA deserves validation in prospective studies. Our study highlights the need for innovative therapeutic proof-of-concept trials that address the underlying cancer complexity. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service de Génétique, Hospital Group, Institut Curie, Paris, France
| | - Ludovic Lacroix
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Mathieu Chicard
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France
| | - Tiphaine Adam de Beaumais
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Anne C. Harttrampf
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Yasmine Iddir
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France.,Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France
| | - Alicia Larive
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Aroa Soriano Fernandez
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Imene Hezam
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Cecile Chevassus
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Virginie Bernard
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France
| | - Sophie Cotteret
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Arnaud Gauthier
- Department of Pathology, PSL Research University, Institut Curie, Paris, France
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Nadege Corradini
- Department of Pediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique/Centre Léon Bérard, Lyon, France
| | - Nicolas André
- Department of Pediatric Hematology and Oncology, Hôpital de La Timone, AP-HM, Marseille, France.,UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Isabelle Aerts
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Estelle Thebaud
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Nantes, France
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Cormac Owens
- Paediatric Haematology/Oncology, Children's Health Ireland, Crumlin, Dublin, Republic of Ireland
| | - Raquel Hladun-Alvaro
- Division of Paediatric Haematology and Oncology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Stefan Michiels
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Olivier Delattre
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France.,Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.,SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Gilles Vassal
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France.,SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Corresponding Author: Birgit Geoerger, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, 114 Rue Eduard Vaillant, 94805 Villejuif, France. Phone: 33-1-42-11-46-61; Fax: 33-1-42-11-52-75; E-mail:
| |
Collapse
|
36
|
Lodrini M, Graef J, Thole-Kliesch TM, Astrahantseff K, Sprüssel A, Grimaldi M, Peitz C, Linke RB, Hollander JF, Lankes E, Künkele A, Oevermann L, Schwabe G, Fuchs J, Szymansky A, Schulte JH, Hundsdörfer P, Eckert C, Amthauer H, Eggert A, Deubzer HE. Targeted Analysis of Cell-free Circulating Tumor DNA is Suitable for Early Relapse and Actionable Target Detection in Patients with Neuroblastoma. Clin Cancer Res 2022; 28:1809-1820. [PMID: 35247920 DOI: 10.1158/1078-0432.ccr-21-3716] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Treating refractory or relapsed neuroblastoma remains challenging. Monitoring body fluids for tumor-derived molecular information indicating minimal residual disease supports more frequent diagnostic surveillance and may have the power to detect resistant subclones before they give rise to relapses. If actionable targets are identified from liquid biopsies, targeted treatment options can be considered earlier. EXPERIMENTAL DESIGN Droplet digital PCR assays assessing MYCN and ALK copy numbers and allelic frequencies of ALK p.F1174L and ALK p.R1275Q mutations were applied to longitudinally collected liquid biopsies and matched tumor tissue samples from 31 patients with high-risk neuroblastoma. Total cell-free DNA (cfDNA) levels and marker detection were compared with data from routine clinical diagnostics. RESULTS Total cfDNA concentrations in blood plasma from patients with high-risk neuroblastoma were higher than in healthy controls and consistently correlated with neuron-specific enolase levels and lactate dehydrogenase activity but not with 123I-meta-iodobenzylguanidine scores at relapse diagnosis. Targeted cfDNA diagnostics proved superior for early relapse detection to all current diagnostics in 2 patients. Marker analysis in cfDNA indicated intratumor heterogeneity for cell clones harboring MYCN amplifications and druggable ALK alterations that were not detectable in matched tumor tissue samples in 17 patients from our cohort. Proof of concept is provided for molecular target detection in cerebrospinal fluid from patients with isolated central nervous system relapses. CONCLUSIONS Tumor-specific alterations can be identified and monitored during disease course in liquid biopsies from pediatric patients with high-risk neuroblastoma. This approach to cfDNA surveillance warrants further prospective validation and exploitation for diagnostic purposes and to guide therapeutic decisions.
Collapse
Affiliation(s)
- Marco Lodrini
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Josefine Graef
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Theresa M Thole-Kliesch
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Sprüssel
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maddalena Grimaldi
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Constantin Peitz
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Rasmus B Linke
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jan F Hollander
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Erwin Lankes
- Department of Pediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Lena Oevermann
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Schwabe
- Children's Hospital, Carl-Thiem-Klinikum, Cottbus, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Annabell Szymansky
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Hundsdörfer
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Oncology, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Cornelia Eckert
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Amthauer
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Circulating Cell-Free DNA Assessment in Biofluids from Children with Neuroblastoma Demonstrates Feasibility and Potential for Minimally Invasive Molecular Diagnostics. Cancers (Basel) 2022; 14:cancers14092080. [PMID: 35565208 PMCID: PMC9099910 DOI: 10.3390/cancers14092080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The invasive nature of surgical biopsies prevents their sequential application to monitor disease. Single biopsies fail to reflect cancer dynamics, intratumor heterogeneity, and drug sensitivities that change over time. Detection and characterization of cell-free circulating tumor DNA in biofluids from patients with solid tumors may better support disease monitoring and provide advanced molecular information for clinical decision-making toward personalized medicine. Here, we investigated the cell-free DNA characteristics in blood, bone marrow, cerebrospinal fluid, and urine provided from 84 infants and children with low-, intermediate-, or high-risk neuroblastoma. We report characteristic size distribution and concentration patterns for each biofluid to provide information to support the development of successful liquid biopsy biobanking strategies. We investigate potential correlations between disease activity and cfDNA concentration and provide strong evidence that markers specific for neuroblastoma can be detected in very small blood volumes from infants. Abstract Liquid biopsy strategies in pediatric patients are challenging due to low body weight. This study investigated cfDNA size distribution and concentration in blood, bone marrow, cerebrospinal fluid, and urine from 84 patients with neuroblastoma classified as low (n = 28), intermediate (n = 6), or high risk (n = 50) to provide key data for liquid biopsy biobanking strategies. The average volume of blood and bone marrow plasma provided ranged between 1 and 2 mL. Analysis of 637 DNA electropherograms obtained by Agilent TapeStation measurement revealed five different major profiles and characteristic DNA size distribution patterns for each of the biofluids. The proportion of samples containing primarily cfDNA was, at 85.5%, the highest for blood plasma. The median cfDNA concentration amounted to 6.28 ng/mL (blood plasma), 58.2 ng/mL (bone marrow plasma), 0.08 ng/mL (cerebrospinal fluid), and 0.49 ng/mL (urine) in samples. Meta-analysis of the dataset demonstrated that multiple cfDNA-based assays employing the same biofluid sample optimally require sampling volumes of 1 mL for blood and bone marrow plasma, 2 mL for cerebrospinal fluid, and as large as possible for urine samples. A favorable response to treatment was associated with a rapid decrease in blood-based cfDNA concentration in patients with high-risk neuroblastoma. Blood-based cfDNA concentration was not sufficient as a single parameter to indicate high-risk disease recurrence. We provide proof of concept that monitoring neuroblastoma-specific markers in very small blood volumes from infants is feasible.
Collapse
|
38
|
Sivapalan L, Thorn GJ, Gadaleta E, Kocher HM, Ross-Adams H, Chelala C. Longitudinal profiling of circulating tumour DNA for tracking tumour dynamics in pancreatic cancer. BMC Cancer 2022; 22:369. [PMID: 35392854 PMCID: PMC8991893 DOI: 10.1186/s12885-022-09387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The utility of circulating tumour DNA (ctDNA) for longitudinal tumour monitoring in pancreatic ductal adenocarcinoma (PDAC) has not been explored beyond mutations in the KRAS proto-oncogene. Here, we aimed to characterise and track patient-specific somatic ctDNA variants, to assess longitudinal changes in disease burden and explore the landscape of actionable alterations. METHODS We followed 3 patients with resectable disease and 4 patients with unresectable disease, including 4 patients with ≥ 3 serial follow-up samples, of whom 2 were rare long survivors (> 5 years). We performed whole exome sequencing of tumour gDNA and plasma ctDNA (n = 20) collected over a ~ 2-year period from diagnosis through treatment to death or final follow-up. Plasma from 3 chronic pancreatitis cases was used as a comparison for analysis of ctDNA mutations. RESULTS We detected > 55% concordance between somatic mutations in tumour tissues and matched serial plasma. Mutations in ctDNA were detected within known PDAC driver genes (KRAS, TP53, SMAD4, CDKN2A), in addition to patient-specific variants within alternative cancer drivers (NRAS, HRAS, MTOR, ERBB2, EGFR, PBRM1), with a trend towards higher overall mutation loads in advanced disease. ctDNA alterations with potential for therapeutic actionability were identified in all 7 patients, including DNA damage response (DDR) variants co-occurring with hypermutation signatures predictive of response to platinum chemotherapy. Longitudinal tracking in 4 patients with follow-up > 2 years demonstrated that ctDNA mutant allele fractions and clonal trends were consistent with CA19-9 measurements and/or clinically reported disease burden. The estimated prevalence of 'stem clones' was highest in an unresectable patient where changes in ctDNA dynamics preceded CA19-9 levels. Longitudinal evolutionary trajectories revealed ongoing subclonal evolution following chemotherapy. CONCLUSION These results provide proof-of-concept for the use of exome sequencing of serial plasma to characterise patient-specific ctDNA profiles, and demonstrate the sensitivity of ctDNA in monitoring disease burden in PDAC even in unresectable cases without matched tumour genotyping. They reveal the value of tracking clonal evolution in serial ctDNA to monitor treatment response, establishing the potential of applied precision medicine to guide stratified care by identifying and evaluating actionable opportunities for intervention aimed at optimising patient outcomes for an otherwise intractable disease.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Graeme J Thorn
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Helen Ross-Adams
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
39
|
Lee JW, Park YS, Choi JY, Chang WJ, Lee S, Sung JS, Kim B, Lee SB, Lee SY, Choi J, Kim YH. Genetic Characteristics Associated With Drug Resistance in Lung Cancer and Colorectal Cancer Using Whole Exome Sequencing of Cell-Free DNA. Front Oncol 2022; 12:843561. [PMID: 35402275 PMCID: PMC8987589 DOI: 10.3389/fonc.2022.843561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) can be used to characterize tumor genomes through next-generation sequencing (NGS)-based approaches. We aim to identify novel genetic alterations associated with drug resistance in lung cancer and colorectal cancer patients who were treated with EGFR-targeted therapy and cytotoxic chemotherapy through whole exome sequencing (WES) of cfDNA. A cohort of 18 lung cancer patients was treated with EGFR TKI or cytotoxic chemotherapy, and a cohort of 37 colorectal cancer patients was treated with EGFR monoclonal antibody or cytotoxic chemotherapy alone. Serum samples were drawn before and after development of drug resistance, and the genetic mutational profile was analyzed with WES data. For 110 paired cfDNA and matched germline DNA WES samples, mean coverage of 138x (range, 52–208.4x) and 47x (range, 30.5–125.1x) was achieved, respectively. After excluding synonymous variants, mutants identified in more than two patients at the time of acquired resistance were selected. Seven genes in lung cancer and 16 genes in colorectal cancer were found, namely, APC, TP53, KRAS, SMAD4, and EGFR. In addition, the GPR155 I357S mutation in lung cancer and ADAMTS20 S1597P and TTN R7415H mutations in colorectal cancer were frequently detected at the time of acquired resistance, indicating that these mutations have an important function in acquired resistance to chemotherapy. Our data suggest that novel genetic variants associated with drug resistance can be identified using cfDNA WES. Further validation is necessary, but these candidate genes are promising therapeutic targets for overcoming drug resistance in lung cancer and colorectal cancer.
Collapse
Affiliation(s)
- Jong Won Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Young Soo Park
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
| | - Jung Yoon Choi
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, South Korea
| | - Won Jin Chang
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Soohyeon Lee
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jae Sook Sung
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
| | - Boyeon Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Saet Byeol Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Yeul Hong Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Division of Hematology–Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Yeul Hong Kim,
| |
Collapse
|
40
|
刘 思, 文 飞. Recent clinical research on the application of liquid biopsy in neuroblastoma. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:339-344. [PMID: 35351268 PMCID: PMC8974650 DOI: 10.7499/j.issn.1008-8830.2112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children and has the features of high recurrence rate and low survival rate, and therefore, early diagnosis, treatment response evaluation, and recurrence monitoring are of great significance for NB patients. Liquid biopsy refers to the detection of cells and nucleic acids in fluid specimens, mainly blood. It is noninvasive and can overcome tumor heterogeneity, thus making it possible to achieve the early diagnosis and dynamic detection of NB. This review introduces the latest advances in clinical research on the application of liquid biopsy in NB.
Collapse
|
41
|
Tombolan L, Rossi E, Binatti A, Zin A, Manicone M, Facchinetti A, Lucchetta S, Carmen Affinita M, Bonvini P, Bortoluzzi S, Zamarchi R, Bisogno G. Clinical significance of circulating tumor cells and cell-free DNA in pediatric rhabdomyosarcoma. Mol Oncol 2022; 16:2071-2085. [PMID: 35212153 PMCID: PMC9120897 DOI: 10.1002/1878-0261.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Liquid biopsy analysis represents a powerful and noninvasive tool to uncover biomarkers for disseminated disease assessment and longitudinal monitoring of patients. Herein, we explored the value of circulating and disseminated tumor cells (CTC and DTC, respectively) and cell‐free DNA (cfDNA) in pediatric rhabdomyosarcoma (RMS). Peripheral blood and bone marrow samples were analyzed to detect and enumerate CTC and DTC, respectively. We used the epithelial cellular adhesion molecule (EpCAM)‐based CellSearch platform coupled with an automatic device to collect both EpCAM‐positive and EpCAM‐low/negative CTCs. The standard assay was implemented, including the mesenchymal marker desmin. For selected cases, we molecularly profiled primary tumors and liquid biopsy biomarkers using whole‐exome sequencing and droplet digital PCR, respectively. RMS patients with metastatic disease had a significantly higher number of CTCs compared to those with localized disease, whereas DTCs were detected independently of disease presentation. The use of the desmin marker remarkably increased the identification of CTCs and DTCs in RMS samples. Of note, CTC clusters were detected in RMS patients with disseminated disease. Further, cfDNA and CTC molecular features closely reflected the molecular makeup of primary tumors and informed of disease course.
Collapse
Affiliation(s)
- Lucia Tombolan
- Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy.,Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padova, Padova, Italy
| | - Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Andrea Binatti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Angelica Zin
- Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy
| | | | - Antonella Facchinetti
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Silvia Lucchetta
- Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padova, Padova, Italy
| | - Maria Carmen Affinita
- Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padova, Padova, Italy
| | - Paolo Bonvini
- Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy
| | | | - Rita Zamarchi
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Gianni Bisogno
- Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padova, Padova, Italy
| |
Collapse
|
42
|
Stankunaite R, George SL, Gallagher L, Jamal S, Shaikh R, Yuan L, Hughes D, Proszek PZ, Carter P, Pietka G, Heide T, James C, Tari H, Lynn C, Jain N, Portela LR, Rogers T, Vaidya SJ, Chisholm JC, Carceller F, Szychot E, Mandeville H, Angelini P, Jesudason AB, Jackson M, Marshall LV, Gatz SA, Anderson J, Sottoriva A, Chesler L, Hubank M. Circulating tumour DNA sequencing to determine therapeutic response and identify tumour heterogeneity in patients with paediatric solid tumours. Eur J Cancer 2022; 162:209-220. [PMID: 34933802 PMCID: PMC7617116 DOI: 10.1016/j.ejca.2021.09.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Clinical diagnostic sequencing of circulating tumour DNA (ctDNA) is well advanced for adult patients, but application to paediatric cancer patients lags behind. METHODS To address this, we have developed a clinically relevant (67 gene) NGS capture panel and accompanying workflow that enables sensitive and reliable detection of low-frequency genetic variants in cell-free DNA (cfDNA) from children with solid tumours. We combined gene panel sequencing with low pass whole-genome sequencing of the same library to inform on genome-wide copy number changes in the blood. RESULTS Analytical validity was evaluated using control materials, and the method was found to be highly sensitive (0.96 for SNVs and 0.97 for INDEL), specific (0.82 for SNVs and 0.978 for INDEL), repeatable (>0.93 [95% CI: 0.89-0.95]) and reproducible (>0.87 [95% CI: 0.87-0.95]). Potential for clinical application was demonstrated in 39 childhood cancer patients with a spectrum of solid tumours in which the single nucleotide variants expected from tumour sequencing were detected in cfDNA in 94.4% (17/18) of cases with active extracranial disease. In 13 patients, where serial samples were available, we show a close correlation between events detected in cfDNA and treatment response, demonstrate that cfDNA analysis could be a useful tool to monitor disease progression, and show cfDNA sequencing has the potential to identify targetable variants that were not detected in tumour samples. CONCLUSIONS This is the first pan-cancer DNA sequencing panel that we know to be optimised for cfDNA in children for blood-based molecular diagnostics in paediatric solid tumours.
Collapse
Affiliation(s)
- Reda Stankunaite
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK; Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Sally L George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, UK; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Lewis Gallagher
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Sabri Jamal
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Ridwan Shaikh
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Lina Yuan
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Debbie Hughes
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Paula Z Proszek
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Paul Carter
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Grzegorz Pietka
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| | - Timon Heide
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Chela James
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Haider Tari
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Glioma Lab, The Institute of Cancer Research, London, UK.
| | - Claire Lynn
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Neha Jain
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Laura Rey Portela
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Tony Rogers
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, UK.
| | - Sucheta J Vaidya
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, UK; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Julia C Chisholm
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, UK; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Fernando Carceller
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, UK; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Elwira Szychot
- Oak Centre for Children and Young People, Royal Marsden NHS Foundation Trust Hospital, Sutton, UK; Department of Paediatrics, Paediatric Oncology and Immunology, Pomeranian Medical University, Szczecin, Poland.
| | - Henry Mandeville
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Paola Angelini
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Angela B Jesudason
- Department of Paediatric Haematology and Oncology, Royal Hospital for Sick Children, Edinburgh, UK
| | - Michael Jackson
- Department of Paediatric Haematology and Oncology, Royal Hospital for Sick Children, Edinburgh, UK
| | - Lynley V Marshall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, UK; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Susanne A Gatz
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK; Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
| | - John Anderson
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK.
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, UK; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, UK.
| | - Michael Hubank
- Molecular Pathology Section, The Institute of Cancer Research, London, UK; Clinical Genomics, The Royal Marsden NHS Foundation, London, UK.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Liquid biopsies have emerged as a noninvasive alternative to tissue biopsy with potential applications during all stages of pediatric oncology care. The purpose of this review is to provide a survey of pediatric cell-free DNA (cfDNA) studies, illustrate their potential applications in pediatric oncology, and to discuss technological challenges and approaches to overcome these hurdles. RECENT FINDINGS Recent literature has demonstrated liquid biopsies' ability to inform treatment selection at diagnosis, monitor clonal evolution during treatment, sensitively detect minimum residual disease following local control, and provide sensitive posttherapy surveillance. Advantages include reduced procedural anesthesia, molecular profiling unbiased by tissue heterogeneity, and ability to track clonal evolution. Challenges to wider implementation in pediatric oncology, however, include blood volume restrictions and relatively low mutational burden in childhood cancers. Multiomic approaches address challenges presented by low-mutational burden, and novel bioinformatic analyses allow a single assay to yield increasing amounts of information, reducing blood volume requirements. SUMMARY Liquid biopsies hold tremendous promise in pediatric oncology, enabling noninvasive serial surveillance with adaptive care. Already integrated into adult care, recent advances in technologies and bioinformatics have improved applicability to the pediatric cancer landscape.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
44
|
Seidel MG, Kashofer K, Moser T, Thueringer A, Liegl-Atzwanger B, Leithner A, Szkandera J, Benesch M, El-Heliebi A, Heitzer E. Clinical implementation of plasma cell-free circulating tumor DNA quantification by digital droplet PCR for the monitoring of Ewing sarcoma in children and adolescents. Front Pediatr 2022; 10:926405. [PMID: 36046479 PMCID: PMC9420963 DOI: 10.3389/fped.2022.926405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Treatment stratification and response assessment in pediatric sarcomas has relied on imaging studies and surgical/histopathological evidence of vital tumor cells. Such studies and evidence collection processes often involve radiation and/or general anesthesia in children. Cell-free circulating tumor DNA (ctDNA) detection in blood plasma is one available method of so-called liquid biopsies that has been shown to correlate qualitatively and quantitatively with the existence of vital tumor cells in the body. Our clinical observational study focused on the utility and feasibility of ctDNA detection in pediatric Ewing sarcoma (EWS) as a marker of minimal residual disease (MRD). PATIENTS AND METHODS We performed whole genome sequencing (WGS) to identify the exact breakpoints in tumors known to carry the EWS-FLI1 fusion gene. Patient-specific fusion breakpoints were tracked in peripheral blood plasma using digital droplet PCR (ddPCR) before, during, and after therapy in six children and young adults with EWS. Presence and levels of fusion breakpoints were correlated with clinical disease courses. RESULTS We show that the detection of ctDNA in the peripheral blood of EWS patients (i) is feasible in the clinical routine and (ii) allows for the longitudinal real-time monitoring of MRD activity in children and young adults. Although changing ctDNA levels correlated well with clinical outcome within patients, between patients, a high variability was observed (inter-individually). CONCLUSION ctDNA detection by ddPCR is a highly sensitive, specific, feasible, and highly accurate method that can be applied in EWS for follow-up assessments as an additional surrogate parameter for clinical MRD monitoring and, potentially, also for treatment stratification in the near future.
Collapse
Affiliation(s)
- Markus G Seidel
- Division for Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Tina Moser
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria.,Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Andrea Thueringer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Benesch
- Division for Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Amin El-Heliebi
- BioTechMed-Graz, Graz, Austria.,Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria.,Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| |
Collapse
|
45
|
Fong C, Kushner BH, Di Giannatale A, Gundem G, Li S, Roberts SS, Basu EM, Price A, Cheung NKV, Modak S. Skeletal muscle metastases in neuroblastoma share common progenitors with primary tumor and biologically resemble stage MS disease. Front Oncol 2022; 12:1106597. [PMID: 36686814 PMCID: PMC9849794 DOI: 10.3389/fonc.2022.1106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction While subcutaneous metastases are often observed with stage MS neuroblastoma, an entity that usually resolves spontaneously, skeletal muscle metastases (SMM) have been rarely described. The purpose of this retrospective study was to investigate the significance of SMM in neuroblastoma. Patients and methods Seventeen patients with neuroblastoma SMM were diagnosed at a median age of 4.3 (0.1-15.6) months. All had SMM at diagnosis and metastases at other sites. Fifteen (88%) had ≥ 2 SMM in disparate muscle groups. One, 14, and 2 patients had low, intermediate, and high-risk disease respectively. Fifteen tumors had favorable histology without MYCN amplification, and 2 were MYCN-amplified. Most SMM (80%; n=12/15 evaluated) were MIBG-avid. Results Only 1 patient (with MYCN-non-amplified neuroblastoma) had disease progression. All survive at median follow-up of 47.9 (16.9-318.9) months post-diagnosis. Biological markers (histology, chromosomal and genetic aberrations) were not prognostic. Whole genome sequencing of 3 matched primary and SMM lesions suggested that both primary and metastatic tumors arose from the same progenitor. SMM completely resolved in 10 patients by 12 months post-diagnosis. Of 4 patients managed with watchful observation alone without any cytotoxic therapy, 3 maintain complete remission with SMM resolving by 5, 13, and 21 months post-diagnosis respectively. Conclusions Children with neuroblastoma SMM have an excellent prognosis, with a clinical course suggestive of stage MS disease. Based on these results, the initial management of infants with non-MYCN-amplified NB with SMM could be watchful observation, which could eliminate or reduce exposure to genotoxic therapy.
Collapse
Affiliation(s)
- Christina Fong
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, United States
| | - Gunes Gundem
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shanita Li
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Anita Price
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
46
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
47
|
van Zogchel LMJ, Lak NSM, Verhagen OJHM, Tissoudali A, Gussmalla Nuru M, Gelineau NU, Zappeij-Kannengieter L, Javadi A, Zijtregtop EAM, Merks JHM, van den Heuvel-Eibrink M, Schouten-van Meeteren AYN, Stutterheim J, van der Schoot CE, Tytgat GAM. Novel Circulating Hypermethylated RASSF1A ddPCR for Liquid Biopsies in Patients With Pediatric Solid Tumors. JCO Precis Oncol 2021; 5:PO.21.00130. [PMID: 34820594 PMCID: PMC8608265 DOI: 10.1200/po.21.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/06/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsies can be used to investigate tumor-derived DNA, circulating in the cell-free DNA (cfDNA) pool in blood. We aimed to develop a droplet digital polymerase chain reaction (ddPCR) assay detecting hypermethylation of tumor suppressor gene RASSF1A as a simple standard test to detect various pediatric tumor types in small volume blood samples and to evaluate this test for monitoring treatment response of patients with high-risk neuroblastoma. The circulating tumor marker hypermethylated RASSF1A can be detected in the plasma of pediatric patients with solid tumors![]()
Collapse
Affiliation(s)
- Lieke M J van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nathalie S M Lak
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Onno J H M Verhagen
- Department of Immunocytology, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Ahmed Tissoudali
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Mohammed Gussmalla Nuru
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nina U Gelineau
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Lily Zappeij-Kannengieter
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Department of Immunocytology, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Ahmad Javadi
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Eline A M Zijtregtop
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | | | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
48
|
Van Paemel R, Vandeputte C, Raman L, Van Thorre J, Willems L, Van Dorpe J, Van Der Linden M, De Wilde J, De Koker A, Menten B, Devalck C, Vicha A, Grega M, Schleiermacher G, Iddir Y, Chicard M, van Zogchel L, Stutterheim J, Lak NSM, Tytgat GAM, Laureys G, Speleman F, De Wilde B, Lammens T, De Preter K, Van Roy N. The feasibility of using liquid biopsies as a complementary assay for copy number aberration profiling in routinely collected paediatric cancer patient samples. Eur J Cancer 2021; 160:12-23. [PMID: 34794856 DOI: 10.1016/j.ejca.2021.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Paediatric tumours are often characterised by the presence of recurrent DNA copy number alterations (CNAs). These DNA copy number profiles, obtained from a tissue biopsy, can aid in the correct prognostic classification and therapeutic stratification of several paediatric cancer entities (e.g. MYCN amplification in neuroblastoma) and are part of the routine diagnostic practice. Liquid biopsies (LQBs) offer a potentially safer alternative for such invasive tumour tissue biopsies and can provide deeper insight into tumour heterogeneity. PROCEDURE The robustness and reliability of LQB CNA analyses was evaluated. We performed retrospective CNA profiling using shallow whole-genome sequencing (sWGS) on paired plasma circulating cell-free DNA (cfDNA) and tissue DNA samples from routinely collected samples from paediatric patients (n = 128) representing different tumour entities, including osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, Wilms tumour, brain tumours and neuroblastoma. RESULTS Overall, we observed a good concordance between CNAs in tissue DNA and cfDNA. The main cause of CNA discordance was found to be low cfDNA sample quality (i.e. the ratio of cfDNA (<700 bp) and high molecular weight DNA (>700 bp)). Furthermore, CNAs were observed that were present in cfDNA and not in tissue DNA, or vice-versa. In neuroblastoma samples, no false-positives or false-negatives were identified for the detection of the prognostic marker MYCN amplification. CONCLUSION In future prospective studies, CNA analysis on LQBs that are of sufficient quality can serve as a complementary assay for CNA analysis on tissue biopsies, as either cfDNA or tissue DNA can contain CNAs that cannot be identified in the other biomaterial.
Collapse
Affiliation(s)
- Ruben Van Paemel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Research Foundation Flanders, Belgium
| | - Charlotte Vandeputte
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Raman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jolien Van Thorre
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Leen Willems
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Malaïka Van Der Linden
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jilke De Wilde
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, Flemish Institute Biotechnology (VIB), Ghent, Belgium; Research Foundation Flanders, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Ales Vicha
- Department of Pediatric Hematology and Oncology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Gudrun Schleiermacher
- Translational Pediatric Oncology, Centre de recherche de l'Institut Curie, Paris, France
| | - Yasmine Iddir
- Translational Pediatric Oncology, Centre de recherche de l'Institut Curie, Paris, France
| | - Mathieu Chicard
- Translational Pediatric Oncology, Centre de recherche de l'Institut Curie, Paris, France
| | - Lieke van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | - Nathalie S M Lak
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - G A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Geneviève Laureys
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bram De Wilde
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
49
|
Yuan Z, Wang X, Geng X, Li Y, Tan F, Xue Q, Gao S, He J. Multi-region sequencing reveals genetic correlation between esophageal squamous cell carcinoma and matched cell-free DNA. Cancer Genet 2021; 258-259:93-100. [PMID: 34688997 DOI: 10.1016/j.cancergen.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to determine if both ubiquitous and heterogeneous somatic mutations could be detected in circulating cell-free DNA (cfDNA) in patients with esophageal squamous cell carcinoma (ESCC). METHODS Paired multi-regional tumor tissues, cfDNA, and white blood cells (WBCs) were collected from five ESCC patients before treatment, as part of an ongoing prospective study (NCT02395705). Samples from Cohort 1 were sequenced by whole-exome sequencing and samples from Cohort 2 were sequenced by targeted capture sequencing. Somatic single-nucleotide variations (SNVs) were detected by comparing solid tumor or cfDNA with matched WBCs, with a minimum variant allele frequency (VAF) of 0.1% and P value <0.05. RESULTS Genomic DNA (gDNA) and plasma-derived cfDNA from 26 samples were sequenced successfully. In Cohort 1, a significant linear relationship between the tumor and cfDNA VAFs (R2= 0.78, P < 0.0001) was found. In Cohort 2, cfDNA could recover an average of 60.7% (31/51; range, 35.7-76.2%) of somatic mutations present in matched solid tumors. There was a significant positive correlation in VAFs between cfDNA and matched solid tumor tissues (R2= 0.92, P < 0.0001). CONCLUSIONS Both sequencing approaches revealed high intratumoral heterogeneity in ESCC, and enabled the detection of both ubiquitous and heterogeneous mutations in cfDNA.
Collapse
Affiliation(s)
- Zuyang Yuan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Xiao Geng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China.
| |
Collapse
|
50
|
Lak NSM, Voormanns TL, Zappeij-Kannegieter L, van Zogchel LMJ, Fiocco M, van Noesel MM, Merks JHM, van der Schoot CE, Tytgat GAM, Stutterheim J. Improving Risk Stratification for Pediatric Patients with Rhabdomyosarcoma by Molecular Detection of Disseminated Disease. Clin Cancer Res 2021; 27:5576-5585. [PMID: 34285060 PMCID: PMC9401561 DOI: 10.1158/1078-0432.ccr-21-1083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Survival of children with rhabdomyosarcoma that suffer from recurrent or progressive disease is poor. Identifying these patients upfront remains challenging, indicating a need for improvement of risk stratification. Detection of tumor-derived mRNA in bone marrow (BM) and peripheral blood (PB) using reverse-transcriptase qPCR (RT-qPCR) is a more sensitive method to detect disseminated disease. We identified a panel of genes to optimize risk stratification by RT-qPCR. EXPERIMENTAL DESIGN Candidate genes were selected using gene expression data from rhabdomyosarcoma and healthy hematologic tissues, and a multiplexed RT-qPCR was developed. Significance of molecular disease was determined in a cohort of 99 Dutch patients with rhabdomyosarcoma (72 localized and 27 metastasized) treated according to the European pediatric Soft tissue sarcoma Study Group (EpSSG) RMS2005 protocol. RESULTS We identified the following 11 rhabdomyosarcoma markers: ZIC1, ACTC1, MEGF10, PDLIM3, SNAI2, CDH11, TMEM47, MYOD1, MYOG, and PAX3/7-FOXO1. RT-qPCR was performed for this 11-marker panel on BM and PB samples from the patient cohort. Five-year event-free survival (EFS) was 35.5% [95% confidence interval (CI), 17.5%-53.5%] for the 33/99 RNA-positive patients, versus 88.0% (95% CI, 78.9%-97.2%) for the 66/99 RNA-negative patients (P < 0.0001). Five-year overall survival (OS) was 54.8% (95% CI, 36.2%-73.4%) and 93.7% (95% CI, 86.6%-100.0%), respectively (P < 0.0001). RNA panel positivity was negatively associated with EFS (Hazard Ratio = 9.52; 95% CI, 3.23-28.02), whereas the RMS2005 risk group stratification was not, in the multivariate Cox regression model. CONCLUSIONS This study shows a strong association between PCR-based detection of disseminated disease at diagnosis with clinical outcome in pediatric patients with rhabdomyosarcoma, also compared with conventional risk stratification. This warrants further validation in prospective trials as additional technique for risk stratification.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Sanquin Research, Amsterdam, the Netherlands
| | | | | | - Lieke M J van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Sanquin Research, Amsterdam, the Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Mathematical Institute, University of Leiden, Leiden, the Netherlands
- Department of Data Science, Medical Statistics Section, Leiden University Medical Centre, University of Leiden, Leiden, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Sanquin Research, Amsterdam, the Netherlands
| | - Janine Stutterheim
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|