1
|
Hu C, Fang K, Du Q, Chen J, Wang L, Zhang J, Bai R, Wang Y. Diffusion-weighted MRI precisely predicts telomerase reverse transcriptase promoter mutation status in World Health Organization grade IV gliomas using a residual convolutional neural network. Br J Radiol 2024; 97:1806-1815. [PMID: 39152999 DOI: 10.1093/bjr/tqae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVES Telomerase reverse transcriptase promoter (pTERT) mutation status plays a key role in making decisions and predicting prognoses for patients with World Health Organization (WHO) grade IV glioma. This study was conducted to assess the value of diffusion-weighted imaging (DWI) for predicting pTERT mutation status in WHO grade IV glioma. METHODS MRI data and molecular information were obtained for 266 patients with WHO grade IV glioma at the hospital and divided into training and validation sets. The ratio of training to validation set was approximately 10:3. We trained the same residual convolutional neural network (ResNet) for each MR modality, including structural MRIs (T1-weighted, T2-weighted, and contrast-enhanced T1-weighted) and DWI*, to compare the predictive capacities between DWI and conventional structural MRI. We also explored the effects of different regions of interest on pTERT mutation status prediction outcomes. RESULTS Structural MRI modalities poorly predicted the pTERT mutation status (accuracy = 51%-54%; area under the curve [AUC]=0.545-0.571), whereas DWI combined with its apparent diffusive coefficient maps yielded the best predictive performance (accuracy = 85.2%, AUC = 0.934). Including the radiological and clinical characteristics did not further improve the performance for predicting pTERT mutation status. The entire tumour volume yielded the best prediction performance. CONCLUSIONS DWI technology shows promising potential for predicting pTERT mutations in WHO grade IV glioma and should be included in the MRI protocol for WHO grade IV glioma in clinical practice. ADVANCES IN KNOWLEDGE This is the first large-scale model study to validate the predictive value of DWI for pTERT in WHO grade IV glioma.
Collapse
Affiliation(s)
- Congman Hu
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Ke Fang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310020, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiarui Chen
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Lin Wang
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310020, China
- Department of Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, China
| | - Yongjie Wang
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
2
|
Villanueva-Meyer JE, Bakas S, Tiwari P, Lupo JM, Calabrese E, Davatzikos C, Bi WL, Ismail M, Akbari H, Lohmann P, Booth TC, Wiestler B, Aerts HJWL, Rasool G, Tonn JC, Nowosielski M, Jain R, Colen RR, Pati S, Baid U, Vollmuth P, Macdonald D, Vogelbaum MA, Chang SM, Huang RY, Galldiks N. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements. Lancet Oncol 2024; 25:e581-e588. [PMID: 39481414 DOI: 10.1016/s1470-2045(24)00316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
Collapse
Affiliation(s)
- Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Evan Calabrese
- Duke University Center for Artificial Intelligence in Radiology, Department of Radiology, Duke University, Durham, NC, USA
| | - Christos Davatzikos
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Marwa Ismail
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas C Booth
- Department of Neuroradiology, Ruskin Wing, King's College Hospital NHS Foundation Trust, London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; London Regional Cancer Program, London, UK
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Hugo J W L Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, New York University Langone Health, New York, NY, USA
| | - Rivka R Colen
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Sarthak Pati
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ujjwal Baid
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Macdonald
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
3
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Chen M, Zhang M, Yin L, Ma L, Ding R, Zheng T, Yue Q, Lui S, Sun H. Medical image foundation models in assisting diagnosis of brain tumors: a pilot study. Eur Radiol 2024; 34:6667-6679. [PMID: 38627290 DOI: 10.1007/s00330-024-10728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES To build self-supervised foundation models for multicontrast MRI of the whole brain and evaluate their efficacy in assisting diagnosis of brain tumors. METHODS In this retrospective study, foundation models were developed using 57,621 enhanced head MRI scans through self-supervised learning with a pretext task of cross-contrast context restoration with two different content dropout schemes. Downstream classifiers were constructed based on the pretrained foundation models and fine-tuned for brain tumor detection, discrimination, and molecular status prediction. Metrics including accuracy, sensitivity, specificity, and area under the ROC curve (AUC) were used to evaluate the performance. Convolutional neural networks trained exclusively on downstream task data were employed for comparative analysis. RESULTS The pretrained foundation models demonstrated their ability to extract effective representations from multicontrast whole-brain volumes. The best classifiers, endowed with pretrained weights, showed remarkable performance with accuracies of 94.9, 92.3, and 80.4%, and corresponding AUC values of 0.981, 0.972, and 0.852 on independent test datasets in brain tumor detection, discrimination, and molecular status prediction, respectively. The classifiers with pretrained weights outperformed the convolutional classifiers trained from scratch by approximately 10% in terms of accuracy and AUC across all tasks. The saliency regions in the correctly predicted cases are mainly clustered around the tumors. Classifiers derived from the two dropout schemes differed significantly only in the detection of brain tumors. CONCLUSIONS Foundation models obtained from self-supervised learning have demonstrated encouraging potential for scalability and interpretability in downstream brain tumor-related tasks and hold promise for extension to neurological diseases with diffusely distributed lesions. CLINICAL RELEVANCE STATEMENT The application of our proposed method to the prediction of key molecular status in gliomas is expected to improve treatment planning and patient outcomes. Additionally, the foundation model we developed could serve as a cornerstone for advancing AI applications in the diagnosis of brain-related diseases.
Collapse
Affiliation(s)
- Mengyao Chen
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | | | - Lijuan Yin
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Renxing Ding
- IT center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zheng
- IT center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Ji X, Cheng J, Su J, Wen R, Zhang Q, Liu G, Peng Y, Mao J. PTPN7 mediates macrophage-polarization and determines immunotherapy in gliomas: A single-cell sequencing analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4562-4580. [PMID: 38581214 DOI: 10.1002/tox.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor type 7 (PTPN7) is a signaling molecule that regulates a multitude of cellular processes, spanning cell proliferation, cellular differentiation, the mitotic cycle, and oncogenic metamorphosis. However, the characteristic of PTPN7 in the glioma microenvironment has yet to be elucidated. METHODS The prognostic value, genomic features, immune characteristics, chemotherapy prediction, and immunotherapy prediction of PTPN7 were systematically explored at the bulk sequencing level. The cell evolution trajectory, cell communication pattern, and cell metabolic activity related to PTPN7 were systematically explored at the single-cell sequencing level. HMC3 and M0 cells were cocultured with U251 and T98G cells, and flow cytometry was carried out to investigate the polarization of HMC3 and M0. Transwell assay and CCK-8 assay were performed to explore the migration and proliferation activity of U251 and T98G. RESULTS The expression level of PTPN7 is significantly elevated in glioma and indicates malignant features. PTPN7 expression predicts worse prognosis of glioma patients. PTPN7 is associated with genome alteration and immune infiltration. Besides, PTPN7 plays a crucial role in modulating metabolic and immunogenic processes, particularly by influencing the activity of microglia and macrophages through multiple signaling pathways involved in cellular communication. Specifically, PTPN7 actively mediates inflammation-resolving-polarization of macrophages and microglia and protects glioma from immune attack. PTPN7 could also predict the response of immunotherapy. CONCLUSIONS PTPN7 is critically involved in inflammation-resolving-polarization mediated by macrophage and microglia and promotes the immune escape of glioma cells.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingsong Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Su
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rong Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Zhang
- Department of Neurosurgery, Tongnan Hospital of TCM, Chongqing, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinning Mao
- Health Management Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Yang P, Wu J, Liu M, Zheng Y, Zhao X, Mao Y. Preoperative CT-based radiomics and deep learning model for predicting risk stratification of gastric gastrointestinal stromal tumors. Med Phys 2024; 51:7257-7268. [PMID: 38935330 DOI: 10.1002/mp.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are clinically heterogeneous with various malignant potential in different individuals. It is crucial to explore a reliable method for preoperative risk stratification of gastric GISTs noninvasively. PURPOSE To establish and evaluate a machine learning model using the combination of computed tomography (CT) morphology, radiomics, and deep learning features to predict the risk stratification of primary gastric GISTs preoperatively. METHODS The 193 gastric GISTs lesions were randomly divided into training set, validation set, and test set in a ratio of 6:2:2. The qualitative and quantitative CT morphological features were assessed by two radiologists. The tumors were segmented manually, and then radiomic features were extracted using PyRadiomics and the deep learning features were extracted using pre-trained Resnet50 from arterial phase and venous phase CT images, respectively. Pearson correlation analysis and recursive feature elimination were used for feature selection. Support vector machines were employed to build a classifier for predicting the risk stratification of GISTs. This study compared the performance of models using different pre-trained convolutional neural networks (CNNs) to extract deep features for classification, as well as the performance of modeling features from single-phase and dual-phase images. The arterial phase, venous phase and dual-phase machine learning models were built, respectively, and the morphological features were added to the dual-phase machine learning model to construct a combined model. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of each model. The clinical application value of the combined model was determined through the decision curve analysis (DCA) and the net reclassification index (NRI) was analyzed. RESULTS The area under the curve (AUC) of the dual-phase machine learning model was 0.876, which was higher than that of the arterial phase model or venous phase model (0.813, 0.838, respectively). The combined model had best predictive performance than the above models with an AUC of 0.941 (95% CI: 0.887-0.974) (p = 0.012, Delong test). DCA demonstrated that the combined model had good clinical application value with an NRI of 0.575 (95% CI: 0.357-0.891). CONCLUSION In this study, we established a combined model that incorporated dual-phase morphology, radiomics, and deep learning characteristics, which can be used to predict the preoperative risk stratification of gastric GISTs.
Collapse
Affiliation(s)
- Ping Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiamei Wu
- Department of Radiology, Chongqing Dongnan Hospital, Chongqing, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofang Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Mao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Harris L, Shankar LK, Hildebrandt C, Rubinstein WS, Langlais K, Rodriguez H, Berger A, Freymann J, Huang EP, Williams PM, Zenklusen JC, Ochs R, Tezak Z, Sahiner B. Resource requirements to accelerate clinical applications of next-generation sequencing and radiomics: workshop commentary and review. J Natl Cancer Inst 2024; 116:1562-1570. [PMID: 38867688 DOI: 10.1093/jnci/djae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
The National Institutes of Health-US Food and Drug Administration Joint Leadership Council Next-Generation Sequencing and Radiomics Working Group was formed by the National Institutes of Health-Food and Drug Administration Joint Leadership Council to promote the development and validation of innovative next-generation sequencing tests, radiomic tools, and associated data analysis and interpretation enhanced by artificial intelligence and machine learning technologies. A 2-day workshop was held on September 29-30, 2021, to convene members of the scientific community to discuss how to overcome the "ground truth" gap that has frequently been acknowledged as 1 of the limiting factors impeding high-quality research, development, validation, and regulatory science in these fields. This report provides a summary of the resource gaps identified by the working group and attendees, highlights existing resources and the ways they can potentially be employed to accelerate growth in these fields, and presents opportunities to support next-generation sequencing and radiomic tool development and validation using technologies such as artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Lyndsay Harris
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalitha K Shankar
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claire Hildebrandt
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy S Rubinstein
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristofor Langlais
- Office of In Vitro Diagnostics (OHT7), Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adam Berger
- Division of Clinical and Healthcare Research Policy, Office of Science Policy, National Institutes of Health, Bethesda, MD, USA
| | - John Freymann
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich P Huang
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P Mickey Williams
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jean Claude Zenklusen
- The Cancer Genome Atlas, Center for Cancer Genomics, Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Ochs
- Office of Health Technology 8, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Zivana Tezak
- Office of In Vitro Diagnostics (OHT7), Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Berkman Sahiner
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
8
|
Shams A. Leveraging State-of-the-Art AI Algorithms in Personalized Oncology: From Transcriptomics to Treatment. Diagnostics (Basel) 2024; 14:2174. [PMID: 39410578 PMCID: PMC11476216 DOI: 10.3390/diagnostics14192174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Continuous breakthroughs in computational algorithms have positioned AI-based models as some of the most sophisticated technologies in the healthcare system. AI shows dynamic contributions in advancing various medical fields involving data interpretation and monitoring, imaging screening and diagnosis, and treatment response and survival prediction. Despite advances in clinical oncology, more effort must be employed to tailor therapeutic plans based on each patient's unique transcriptomic profile within the precision/personalized oncology frame. Furthermore, the standard analysis method is not compatible with the comprehensive deciphering of significant data streams, thus precluding the prediction of accurate treatment options. METHODOLOGY We proposed a novel approach that includes obtaining different tumour tissues and preparing RNA samples for comprehensive transcriptomic interpretation using specifically trained, programmed, and optimized AI-based models for extracting large data volumes, refining, and analyzing them. Next, the transcriptomic results will be scanned against an expansive drug library to predict the response of each target to the tested drugs. The obtained target-drug combination/s will be then validated using in vitro and in vivo experimental models. Finally, the best treatment combination option/s will be introduced to the patient. We also provided a comprehensive review discussing AI models' recent innovations and implementations to aid in molecular diagnosis and treatment planning. RESULTS The expected transcriptomic analysis generated by the AI-based algorithms will provide an inclusive genomic profile for each patient, containing statistical and bioinformatics analyses, identification of the dysregulated pathways, detection of the targeted genes, and recognition of molecular biomarkers. Subjecting these results to the prediction and pairing AI-based processes will result in statistical graphs presenting each target's likely response rate to various treatment options. Different in vitro and in vivo investigations will further validate the selection of the target drug/s pairs. CONCLUSIONS Leveraging AI models will provide more rigorous manipulation of large-scale datasets on specific cancer care paths. Such a strategy would shape treatment according to each patient's demand, thus fortifying the avenue of personalized/precision medicine. Undoubtedly, this will assist in improving the oncology domain and alleviate the burden of clinicians in the coming decade.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; or ; Tel.: +00966-548638099
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif 26432, Saudi Arabia
- High Altitude Research Center, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Cao S, Hu Z, Xie X, Wang Y, Yu J, Yang B, Shi Z, Wu G. Integrated diagnosis of glioma based on magnetic resonance images with incomplete ground truth labels. Comput Biol Med 2024; 180:108968. [PMID: 39106670 DOI: 10.1016/j.compbiomed.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Since the 2016 WHO guidelines, glioma diagnosis has entered an era of integrated diagnosis, combining tissue pathology and molecular pathology. The WHO has focused on promoting the application of molecular diagnosis in the classification of central nervous system tumors. Genetic information such as IDH1 and 1p/19q are important molecular markers, and pathological grading is also a key clinical indicator. However, obtaining genetic pathology labels is more costly than conventional MRI images, resulting in a large number of missing labels in realistic modeling. METHOD We propose a training strategy based on label encoding and a corresponding loss function to enable the model to effectively utilize data with missing labels. Additionally, we integrate a graph model with genes and pathology-related clinical prior knowledge into the ResNet backbone to further improve the efficacy of diagnosis. Ten-fold cross-validation experiments were conducted on a large dataset of 1072 patients. RESULTS The classification area under the curve (AUC) values are 0.93, 0.91, and 0.90 for IDH1, 1p/19q status, and grade (LGG/HGG), respectively. When the label miss rate reached 59.3 %, the method improved the AUC by 0.09, 0.10, and 0.04 for IDH1, 1p/19q, and pathological grade, respectively, compared to the same backbone without the missing label strategy. CONCLUSIONS Our method effectively utilizes data with missing labels and integrates clinical prior knowledge, resulting in improved diagnostic performance for glioma genetic and pathological markers, even with high rates of missing labels.
Collapse
Affiliation(s)
- Shiwen Cao
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhaoyu Hu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xuan Xie
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Bojie Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Sun C, Jiang C, Wang X, Ma S, Zhang D, Jia W. MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma. Acad Radiol 2024:S1076-6332(24)00364-7. [PMID: 38964985 DOI: 10.1016/j.acra.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to assess the prognostic value of Cyclin-dependent kinases 6 (CDK6) expression levels and establish a machine learning-based radiomics model for predicting the expression levels of CDK6 in high-grade gliomas (HGG). MATERIALS AND METHODS Clinical parameters and genomic data were extracted from 310 HGG patients in the Cancer Genome Atlas (TCGA) database and 27 patients in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database. Univariate and multivariate Cox regression, as well as Kaplan-Meier analysis, were performed for prognosis analysis. The correlation between immune cell Infiltration with CDK6 was assessed using spearman correlation analysis. Radiomic features were extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) in the Cancer Imaging Archive (TCIA) database (n = 82) and REMBRANDT database (n = 27). Logistic regression (LR) and support vector machine (SVM) were employed to establish the radiomics model for predicting CDK6 expression. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were utilized to assess the predictive performance of the radiomics model. Generate radiomic scores (RS) based on the LR model. An RS-based nomogram was constructed to predict the prognosis of HGG. RESULTS CDK6 was significantly overexpressed in HGG tissues and was related to lower overall survival. A significant elevation in infiltrating M0 macrophages was observed in the CDK6 high group (P < 0.001). The LR radiomics model for the prediction of CDK6 expression levels (AUC=0.810 in the training cohort, AUC = 0.784 after cross-validation, AUC=0.750 in the testing cohort) was established utilizing three radiomic features. The predictive efficiencies of the RS-based nomogram, as measured by AUC, were 0.769 for 1-year, 0.815 for 3-year, and 0.780 for 5-year, respectively. CONCLUSION The expression level of CDK6 can impact the prognosis of patients with HGG. The expression level of HGG can be noninvasively prognosticated utilizing a radiomics model.
Collapse
Affiliation(s)
- Chen Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|
11
|
Lorenzo G, Ahmed SR, Hormuth DA, Vaughn B, Kalpathy-Cramer J, Solorio L, Yankeelov TE, Gomez H. Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data. Annu Rev Biomed Eng 2024; 26:529-560. [PMID: 38594947 DOI: 10.1146/annurev-bioeng-081623-025834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Despite the remarkable advances in cancer diagnosis, treatment, and management over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires the integration of patient-specific information with an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous yet practical mathematical theory of tumor initiation, development, invasion, and response to therapy. We begin this review with an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on big data and artificial intelligence. We then present illustrative examples of mathematical models manifesting their utility and discuss the limitations of stand-alone mechanistic and data-driven models. We then discuss the potential of mechanistic models for not only predicting but also optimizing response to therapy on a patient-specific basis. We describe current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Syed Rakin Ahmed
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Hormuth
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Brenna Vaughn
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | | | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Thomas E Yankeelov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biomedical Engineering, Department of Oncology, and Department of Diagnostic Medicine, University of Texas, Austin, Texas, USA
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Hector Gomez
- School of Mechanical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
12
|
Lee MD, Jain R. Harnessing generative AI for glioma diagnosis: A step forward in neuro-oncologic imaging. Neuro Oncol 2024; 26:1136-1137. [PMID: 38442275 PMCID: PMC11145459 DOI: 10.1093/neuonc/noae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Matthew D Lee
- Department of Radiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Rajan Jain
- Department of Radiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Moon HH, Jeong J, Park JE, Kim N, Choi C, Kim Y, Song SW, Hong CK, Kim JH, Kim HS. Generative AI in glioma: Ensuring diversity in training image phenotypes to improve diagnostic performance for IDH mutation prediction. Neuro Oncol 2024; 26:1124-1135. [PMID: 38253989 PMCID: PMC11145451 DOI: 10.1093/neuonc/noae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND This study evaluated whether generative artificial intelligence (AI)-based augmentation (GAA) can provide diverse and realistic imaging phenotypes and improve deep learning-based classification of isocitrate dehydrogenase (IDH) type in glioma compared with neuroradiologists. METHODS For model development, 565 patients (346 IDH-wildtype, 219 IDH-mutant) with paired contrast-enhanced T1 and FLAIR MRI scans were collected from tertiary hospitals and The Cancer Imaging Archive. Performance was tested on internal (119, 78 IDH-wildtype, 41 IDH-mutant [IDH1 and 2]) and external test sets (108, 72 IDH-wildtype, 36 IDH-mutant). GAA was developed using a score-based diffusion model and ResNet50 classifier. The optimal GAA was selected in comparison with the null model. Two neuroradiologists (R1, R2) assessed realism, diversity of imaging phenotypes, and predicted IDH mutation. The performance of a classifier trained with optimal GAA was compared with that of neuroradiologists using the area under the receiver operating characteristics curve (AUC). The effect of tumor size and contrast enhancement on GAA performance was tested. RESULTS Generated images demonstrated realism (Turing's test: 47.5-50.5%) and diversity indicating IDH type. Optimal GAA was achieved with augmentation with 110 000 generated slices (AUC: 0.938). The classifier trained with optimal GAA demonstrated significantly higher AUC values than neuroradiologists in both the internal (R1, P = .003; R2, P < .001) and external test sets (R1, P < .01; R2, P < .001). GAA with large-sized tumors or predominant enhancement showed comparable performance to optimal GAA (internal test: AUC 0.956 and 0.922; external test: 0.810 and 0.749). CONCLUSIONS The application of generative AI with realistic and diverse images provided better diagnostic performance than neuroradiologists for predicting IDH type in glioma.
Collapse
Affiliation(s)
- Hye Hyeon Moon
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jiheon Jeong
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science of Technology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Changyong Choi
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science of Technology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Young‑Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Woo Song
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
14
|
Zhang J, Wang Y, Yang Y, Han Y, Yu Y, Hu Y, Liang S, Sun Q, Shang D, Bi J, Cui G, Yan L. Noninvasive Isocitrate Dehydrogenase 1 Status Prediction in Grade II/III Glioma Based on Magnetic Resonance Images: A Transfer Learning Strategy. J Comput Assist Tomogr 2024; 48:449-458. [PMID: 38271541 DOI: 10.1097/rct.0000000000001575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate transfer learning combined with various convolutional neural networks (TL-CNNs) in predicting isocitrate dehydrogenase 1 ( IDH1 ) status of grade II/III gliomas. METHODS Grade II/III glioma patients diagnosed at the Tangdu Hospital (August 2009 to May 2017) were retrospectively enrolled, including 54 patients with IDH1 mutant and 56 patients with wild-type IDH1 . Convolutional neural networks, AlexNet, GoogLeNet, ResNet, and VGGNet were fine-tuned with T2-weighted imaging (T2WI), fluid attenuation inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (T1CE) images. The single-modal networks were integrated with averaged sigmoid probabilities, logistic regression, and support vector machine. FLAIR-T1CE-fusion (FC-fusion), T2WI-T1CE-fusion (TC-fusion), and FLAIR-T2WI-T1CE-fusion (FTC-fusion) were used for fine-tuning TL-CNNs. RESULTS IDH1 -mutant prediction accuracies using AlexNet, GoogLeNet, ResNet, and VGGNet achieved 70.0% (AUC = 0.660), 65.0% (AUC = 0.600), 70.0% (AUC = 0.700), and 80.0% (AUC = 0.730) for T2WI images, 70.0% (AUC = 0.660), 70.0% (AUC = 0.620), 70.0% (AUC = 0.710), and 80.0% (AUC = 0.720) for FLAIR images, and 73.7% (AUC = 0.744), 73.7% (AUC = 0.656), 73.7% (AUC = 0.633), and 73.7% (AUC = 0.700) for T1CE images, respectively. The highest AUC (0.800) was achieved using VGGNet and FC-fusion images. CONCLUSIONS TL-CNNs (especially VGGNet) had a potential predictive value for IDH1 -mutant status of grade II/III gliomas.
Collapse
Affiliation(s)
- Jin Zhang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yuyao Wang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yang Yang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yu Han
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Ying Yu
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yuchuan Hu
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Shouheng Liang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Qian Sun
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Danting Shang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Jiajun Bi
- College of Basic Medicine, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi, China
| | - Guangbin Cui
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Linfeng Yan
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| |
Collapse
|
15
|
Zhang W, Zhang L, Dong H, Peng H. TGIF2 is a potential biomarker for diagnosis and prognosis of glioma. Front Immunol 2024; 15:1356833. [PMID: 38629068 PMCID: PMC11020094 DOI: 10.3389/fimmu.2024.1356833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024] Open
Abstract
Background TGFB-induced factor homeobox 2 (TGIF2), a member of the Three-Amino-acid-Loop-Extension (TALE) superfamily, has been implicated in various malignant tumors. However, its prognostic significance in glioma, impact on tumor immune infiltration, and underlying mechanisms in glioma development remain elusive. Methods The expression of TGIF2 in various human normal tissues, normal brain tissues, and gliomas was investigated using HPA, TCGA, GTEx, and GEO databases. The study employed several approaches, including Kaplan-Meier analysis, ROC analysis, logistic regression, Cox regression, GO analysis, KEGG analysis, and GSEA, to explore the relationship between TGIF2 expression and clinicopathologic features, prognostic value, and potential biological functions in glioma patients. The impact of TGIF2 on tumor immune infiltration was assessed through Estimate, ssGSEA, and Spearman analysis. Genes coexpressed with TGIF2 were identified, and the protein-protein interaction (PPI) network of these coexpressed genes were constructed using the STRING database and Cytoscape software. Hub genes were identified using CytoHubba plugin, and their clinical predictive value was explored. Furthermore, in vitro experiments were performed by knocking down and knocking out TGIF2 using siRNA and CRISPR/Cas9 gene editing, and the role of TGIF2 in glioma cell invasion and migration was analyzed using transwell assay, scratch wound-healing assay, RT-qPCR, and Western blot. Results TGIF2 mRNA was found to be upregulated in 21 cancers, including glioma. High expression of TGIF2 was associated with malignant phenotypes and poor prognosis in glioma patients, indicating its potential as an independent prognostic factor. Furthermore, elevated TGIF2 expression positively correlated with cell cycle regulation, DNA synthesis and repair, extracellular matrix (ECM) components, immune response, and several signaling pathways that promote tumor progression. TGIF2 showed correlations with Th2 cells, macrophages, and various immunoregulatory genes. The hub genes coexpressed with TGIF2 demonstrated significant predictive value. Additionally, in vitro experiments revealed that knockdown and knockout of TGIF2 inhibited glioma cell invasion, migration and suppressed the epithelial-mesenchymal transition (EMT) phenotype. Conclusion TGIF2 emerges as a potential biomarker for glioma, possibly linked to tumor immune infiltration and EMT.
Collapse
Affiliation(s)
- Wan Zhang
- Health Science Center of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Bone and Joints Research Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huanhuan Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hang Peng
- Health Science Center of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
16
|
Wei R, Lu S, Lai S, Liang F, Zhang W, Jiang X, Zhen X, Yang R. A subregion-based RadioFusionOmics model discriminates between grade 4 astrocytoma and glioblastoma on multisequence MRI. J Cancer Res Clin Oncol 2024; 150:73. [PMID: 38305926 PMCID: PMC10837235 DOI: 10.1007/s00432-023-05603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore a subregion-based RadioFusionOmics (RFO) model for discrimination between adult-type grade 4 astrocytoma and glioblastoma according to the 2021 WHO CNS5 classification. METHODS 329 patients (40 grade 4 astrocytomas and 289 glioblastomas) with histologic diagnosis was retrospectively collected from our local institution and The Cancer Imaging Archive (TCIA). The volumes of interests (VOIs) were obtained from four multiparametric MRI sequences (T1WI, T1WI + C, T2WI, T2-FLAIR) using (1) manual segmentation of the non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE), and (2) K-means clustering of four habitats (H1: high T1WI + C, high T2-FLAIR; (2) H2: high T1WI + C, low T2-FLAIR; (3) H3: low T1WI + C, high T2-FLAIR; and (4) H4: low T1WI + C, low T2-FLAIR). The optimal VOI and best MRI sequence combination were determined. The performance of the RFO model was evaluated using the area under the precision-recall curve (AUPRC) and the best signatures were identified. RESULTS The two best VOIs were manual VOI3 (putative peritumoral edema) and clustering H34 (low T1WI + C, high T2-FLAIR (H3) combined with low T1WI + C and low T2-FLAIR (H4)). Features fused from four MRI sequences ([Formula: see text]) outperformed those from either a single sequence or other sequence combinations. The RFO model that was trained using fused features [Formula: see text] achieved the AUPRC of 0.972 (VOI3) and 0.976 (H34) in the primary cohort (p = 0.905), and 0.971 (VOI3) and 0.974 (H34) in the testing cohort (p = 0.402). CONCLUSION The performance of subregions defined by clustering was comparable to that of subregions that were manually defined. Fusion of features from the edematous subregions of multiple MRI sequences by the RFO model resulted in differentiation between grade 4 astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Songlin Lu
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Fangrong Liang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China.
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China.
| |
Collapse
|
17
|
Wamelink IJHG, Azizova A, Booth TC, Mutsaerts HJMM, Ogunleye A, Mankad K, Petr J, Barkhof F, Keil VC. Brain Tumor Imaging without Gadolinium-based Contrast Agents: Feasible or Fantasy? Radiology 2024; 310:e230793. [PMID: 38319162 PMCID: PMC10902600 DOI: 10.1148/radiol.230793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 02/07/2024]
Abstract
Gadolinium-based contrast agents (GBCAs) form the cornerstone of current primary brain tumor MRI protocols at all stages of the patient journey. Though an imperfect measure of tumor grade, GBCAs are repeatedly used for diagnosis and monitoring. In practice, however, radiologists will encounter situations where GBCA injection is not needed or of doubtful benefit. Reducing GBCA administration could improve the patient burden of (repeated) imaging (especially in vulnerable patient groups, such as children), minimize risks of putative side effects, and benefit costs, logistics, and the environmental footprint. On the basis of the current literature, imaging strategies to reduce GBCA exposure for pediatric and adult patients with primary brain tumors will be reviewed. Early postoperative MRI and fixed-interval imaging of gliomas are examples of GBCA exposure with uncertain survival benefits. Half-dose GBCAs for gliomas and T2-weighted imaging alone for meningiomas are among options to reduce GBCA use. While most imaging guidelines recommend using GBCAs at all stages of diagnosis and treatment, non-contrast-enhanced sequences, such as the arterial spin labeling, have shown a great potential. Artificial intelligence methods to generate synthetic postcontrast images from decreased-dose or non-GBCA scans have shown promise to replace GBCA-dependent approaches. This review is focused on pediatric and adult gliomas and meningiomas. Special attention is paid to the quality and real-life applicability of the reviewed literature.
Collapse
Affiliation(s)
- Ivar J. H. G. Wamelink
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Aynur Azizova
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Thomas C. Booth
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Henk J. M. M. Mutsaerts
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Afolabi Ogunleye
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Kshitij Mankad
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Jan Petr
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Frederik Barkhof
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Vera C. Keil
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| |
Collapse
|
18
|
Cheng D, Zhuo Z, Du J, Weng J, Zhang C, Duan Y, Sun T, Wu M, Guo M, Hua T, Jin Y, Peng B, Li Z, Zhu M, Imami M, Bettegowda C, Sair H, Bai HX, Barkhof F, Liu X, Liu Y. A Fully Automated Deep-Learning Model for Predicting the Molecular Subtypes of Posterior Fossa Ependymomas Using T2-Weighted Images. Clin Cancer Res 2024; 30:150-158. [PMID: 37916978 DOI: 10.1158/1078-0432.ccr-23-1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE We aimed to develop and validate a deep learning (DL) model to automatically segment posterior fossa ependymoma (PF-EPN) and predict its molecular subtypes [Group A (PFA) and Group B (PFB)] from preoperative MR images. EXPERIMENTAL DESIGN We retrospectively identified 227 PF-EPNs (development and internal test sets) with available preoperative T2-weighted (T2w) MR images and molecular status to develop and test a 3D nnU-Net (referred to as T2-nnU-Net) for tumor segmentation and molecular subtype prediction. The network was externally tested using an external independent set [n = 40; subset-1 (n = 31) and subset-2 (n =9)] and prospectively enrolled cases [prospective validation set (n = 27)]. The Dice similarity coefficient was used to evaluate the segmentation performance. Receiver operating characteristic analysis for molecular subtype prediction was performed. RESULTS For tumor segmentation, the T2-nnU-Net achieved a Dice score of 0.94 ± 0.02 in the internal test set. For molecular subtype prediction, the T2-nnU-Net achieved an AUC of 0.93 and accuracy of 0.89 in the internal test set, an AUC of 0.99 and accuracy of 0.93 in the external test set. In the prospective validation set, the model achieved an AUC of 0.93 and an accuracy of 0.89. The predictive performance of T2-nnU-Net was superior or comparable to that of demographic and multiple radiologic features (AUCs ranging from 0.87 to 0.95). CONCLUSIONS A fully automated DL model was developed and validated to accurately segment PF-EPNs and predict molecular subtypes using only T2w MR images, which could help in clinical decision-making.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Jiang Du
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jinyuan Weng
- Department of Medical Imaging Product, Neusoft, Group Ltd., Shenyang, P.R. China
| | - Chengzhou Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong, P.R. China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Ting Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Minghao Wu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Tiantian Hua
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Ying Jin
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Boyang Peng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | | | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, Beijing, P.R. China
| | - Maliha Imami
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haris Sair
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harrison X Bai
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frederik Barkhof
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, the Netherlands
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
19
|
Herr J, Stoyanova R, Mellon EA. Convolutional Neural Networks for Glioma Segmentation and Prognosis: A Systematic Review. Crit Rev Oncog 2024; 29:33-65. [PMID: 38683153 DOI: 10.1615/critrevoncog.2023050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.
Collapse
Affiliation(s)
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Fl 33136, USA
| | - Eric Albert Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Fl 33136, USA
| |
Collapse
|
20
|
Wu M, Luan J, Zhang D, Fan H, Qiao L, Zhang C. Development and validation of a clinical prediction model for glioma grade using machine learning. Technol Health Care 2024; 32:1977-1990. [PMID: 38306068 DOI: 10.3233/thc-231645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND Histopathological evaluation is currently the gold standard for grading gliomas; however, this technique is invasive. OBJECTIVE This study aimed to develop and validate a diagnostic prediction model for glioma by employing multiple machine learning algorithms to identify risk factors associated with high-grade glioma, facilitating the prediction of glioma grading. METHODS Data from 1114 eligible glioma patients were obtained from The Cancer Genome Atlas (TCGA) database, which was divided into a training set (n= 781) and a test set (n= 333). Fifty machine learning algorithms were employed, and the optimal algorithm was selected to construct a prediction model. The performance of the machine learning prediction model was compared to the clinical prediction model in terms of discrimination, calibration, and clinical validity to assess the performance of the prediction model. RESULTS The area under the curve (AUC) values of the machine learning prediction models (training set: 0.870 vs. 0.740, test set: 0.863 vs. 0.718) were significantly improved from the clinical prediction models. Furthermore, significant improvement in discrimination was observed for the Integrated Discrimination Improvement (IDI) (training set: 0.230, test set: 0.270) and Net Reclassification Index (NRI) (training set: 0.170, test set: 0.170) from the clinical prognostic model. Both models showed a high goodness of fit and an increased net benefit. CONCLUSION A strong prediction accuracy model can be developed using machine learning algorithms to screen for high-grade glioma risk predictors, which can serve as a non-invasive prediction tool for preoperative diagnostic grading of glioma.
Collapse
Affiliation(s)
- Mingzhen Wu
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Di Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Hua Fan
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Lishan Qiao
- School of Mathematics, Liaocheng University, Shandong, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| |
Collapse
|
21
|
Di Ieva A. Fractals, Pattern Recognition, Memetics, and AI: A Personal Journal in the Computational Neurosurgery. ADVANCES IN NEUROBIOLOGY 2024; 36:273-283. [PMID: 38468038 DOI: 10.1007/978-3-031-47606-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In this chapter, the personal journey of the author in many countries, including Italy, Germany, Austria, the United Kingdom, Switzerland, the United States, Canada, and Australia, is summarized, aimed to merge different translational fields (such as neurosurgery and the clinical neurosciences in general, biomedical engineering, mathematics, computer science, and cognitive sciences) and lay the foundations of a new field defined computational neurosurgery, with fractals, pattern recognition, memetics, and artificial intelligence as the common key words of the journey.
Collapse
Affiliation(s)
- Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab & Macquarie Neurosurgery, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Guillevin R, Naudin M, Fayolle P, Giraud C, Le Guillou X, Thomas C, Herpe G, Miranville A, Fernandez-Maloigne C, Pellerin L, Guillevin C. Diagnostic and Therapeutic Issues in Glioma Using Imaging Data: The Challenge of Numerical Twinning. J Clin Med 2023; 12:7706. [PMID: 38137775 PMCID: PMC10744312 DOI: 10.3390/jcm12247706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glial tumors represent the leading etiology of primary brain tumors. Their particularities lie in (i) their location in a highly functional organ that is difficult to access surgically, including for biopsy, and (ii) their rapid, anisotropic mode of extension, notably via the fiber bundles of the white matter, which further limits the possibilities of resection. The use of mathematical tools enables the development of numerical models representative of the oncotype, genotype, evolution, and therapeutic response of lesions. The significant development of digital technologies linked to high-resolution NMR exploration, coupled with the possibilities offered by AI, means that we can envisage the creation of digital twins of tumors and their host organs, thus reducing the use of physical sampling.
Collapse
Affiliation(s)
- Rémy Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Mathieu Naudin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Pierre Fayolle
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Clément Giraud
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Xavier Le Guillou
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
- Department of Genetic, University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Clément Thomas
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Guillaume Herpe
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Alain Miranville
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | | | - Luc Pellerin
- IRMETIST Laboratory, INSERM U1313, University of Poitiers and University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Carole Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| |
Collapse
|
23
|
Nakhate V, Gonzalez Castro LN. Artificial intelligence in neuro-oncology. Front Neurosci 2023; 17:1217629. [PMID: 38161802 PMCID: PMC10755952 DOI: 10.3389/fnins.2023.1217629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Artificial intelligence (AI) describes the application of computer algorithms to the solution of problems that have traditionally required human intelligence. Although formal work in AI has been slowly advancing for almost 70 years, developments in the last decade, and particularly in the last year, have led to an explosion of AI applications in multiple fields. Neuro-oncology has not escaped this trend. Given the expected integration of AI-based methods to neuro-oncology practice over the coming years, we set to provide an overview of existing technologies as they are applied to the neuropathology and neuroradiology of brain tumors. We highlight current benefits and limitations of these technologies and offer recommendations on how to appraise novel AI-tools as they undergo consideration for integration into clinical workflows.
Collapse
Affiliation(s)
- Vihang Nakhate
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - L. Nicolas Gonzalez Castro
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- The Center for Neuro-Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
24
|
Pan I, Huang RY. Artificial intelligence in neuroimaging of brain tumors: reality or still promise? Curr Opin Neurol 2023; 36:549-556. [PMID: 37973024 DOI: 10.1097/wco.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW To provide an updated overview of artificial intelligence (AI) applications in neuro-oncologic imaging and discuss current barriers to wider clinical adoption. RECENT FINDINGS A wide variety of AI applications in neuro-oncologic imaging have been developed and researched, spanning tasks from pretreatment brain tumor classification and segmentation, preoperative planning, radiogenomics, prognostication and survival prediction, posttreatment surveillance, and differentiating between pseudoprogression and true disease progression. While earlier studies were largely based on data from a single institution, more recent studies have demonstrated that the performance of these algorithms are also effective on external data from other institutions. Nevertheless, most of these algorithms have yet to see widespread clinical adoption, given the lack of prospective studies demonstrating their efficacy and the logistical difficulties involved in clinical implementation. SUMMARY While there has been significant progress in AI and neuro-oncologic imaging, clinical utility remains to be demonstrated. The next wave of progress in this area will be driven by prospective studies measuring outcomes relevant to clinical practice and go beyond retrospective studies which primarily aim to demonstrate high performance.
Collapse
Affiliation(s)
- Ian Pan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School
| | | |
Collapse
|
25
|
Chen Q, Wang L, Xing Z, Wang L, Hu X, Wang R, Zhu YM. Deep wavelet scattering orthogonal fusion network for glioma IDH mutation status prediction. Comput Biol Med 2023; 166:107493. [PMID: 37774558 DOI: 10.1016/j.compbiomed.2023.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Accurately predicting the isocitrate dehydrogenase (IDH) mutation status of gliomas is greatly significant for formulating appropriate treatment plans and evaluating the prognoses of gliomas. Although existing studies can accurately predict the IDH mutation status of gliomas based on multimodal magnetic resonance (MR) images and machine learning methods, most of these methods cannot fully explore multimodal information and effectively predict IDH status for datasets acquired from multiple centers. To address this issue, a novel wavelet scattering (WS)-based orthogonal fusion network (WSOFNet) was proposed in this work to predict the IDH mutation status of gliomas from multiple centers. First, transformation-invariant features were extracted from multimodal MR images with a WS network, and then the multimodal WS features were used instead of the original images as the inputs of WSOFNet and were fully fused through an adaptive multimodal feature fusion module (AMF2M) and an orthogonal projection module (OPM). Finally, the fused features were input into a fully connected classifier to predict IDH mutation status. In addition, to achieve improved prediction accuracy, four auxiliary losses were also used in the feature extraction modules. The comparison results showed that the prediction area under the curve (AUC) of WSOFNet on a single-center dataset was 0.9966 and that on a multicenter dataset was approximately 0.9655, which was at least 3.9% higher than that of state-of-the-art methods. Moreover, the ablation experimental results also proved that the adaptive multimodal feature fusion strategy based on orthogonal projection could effectively improve the prediction performance of the model, especially for an external validation dataset.
Collapse
Affiliation(s)
- Qijian Chen
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Lihui Wang
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China.
| | - Zhiyang Xing
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Li Wang
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Xubin Hu
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Rongpin Wang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yue-Min Zhu
- University Lyon, INSA Lyon, CNRS, Inserm, IRP Metislab CREATIS UMR5220, U1206, Lyon 69621, France
| |
Collapse
|
26
|
Wei Y, Chen X, Zhu L, Zhang L, Schonlieb CB, Price S, Li C. Multi-Modal Learning for Predicting the Genotype of Glioma. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3167-3178. [PMID: 37022918 DOI: 10.1109/tmi.2023.3244038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The isocitrate dehydrogenase (IDH) gene mutation is an essential biomarker for the diagnosis and prognosis of glioma. It is promising to better predict glioma genotype by integrating focal tumor image and geometric features with brain network features derived from MRI. Convolutional neural networks show reasonable performance in predicting IDH mutation, which, however, cannot learn from non-Euclidean data, e.g., geometric and network data. In this study, we propose a multi-modal learning framework using three separate encoders to extract features of focal tumor image, tumor geometrics and global brain networks. To mitigate the limited availability of diffusion MRI, we develop a self-supervised approach to generate brain networks from anatomical multi-sequence MRI. Moreover, to extract tumor-related features from the brain network, we design a hierarchical attention module for the brain network encoder. Further, we design a bi-level multi-modal contrastive loss to align the multi-modal features and tackle the domain gap at the focal tumor and global brain. Finally, we propose a weighted population graph to integrate the multi-modal features for genotype prediction. Experimental results on the testing set show that the proposed model outperforms the baseline deep learning models. The ablation experiments validate the performance of different components of the framework. The visualized interpretation corresponds to clinical knowledge with further validation. In conclusion, the proposed learning framework provides a novel approach for predicting the genotype of glioma.
Collapse
|
27
|
Gultekin MA, Peker AA, Oktay AB, Turk HM, Cesme DH, Shbair ATM, Yilmaz TF, Kaya A, Yasin AI, Seker M, Mayadagli A, Alkan A. Differentiation of lung and breast cancer brain metastases: Comparison of texture analysis and deep convolutional neural networks. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1579-1586. [PMID: 37688435 DOI: 10.1002/jcu.23558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
PURPOSE Metastases are the most common neoplasm in the adult brain. In order to initiate the treatment, an extensive diagnostic workup is usually required. Radiomics is a discipline aimed at transforming visual data in radiological images into reliable diagnostic information. We aimed to examine the capability of deep learning methods to classify the origin of metastatic lesions in brain MRIs and compare the deep Convolutional Neural Network (CNN) methods with image texture based features. METHODS One hundred forty three patients with 157 metastatic brain tumors were included in the study. The statistical and texture based image features were extracted from metastatic tumors after manual segmentation process. Three powerful pre-trained CNN architectures and the texture-based features on both 2D and 3D tumor images were used to differentiate lung and breast metastases. Ten-fold cross-validation was used for evaluation. Accuracy, precision, recall, and area under curve (AUC) metrics were calculated to analyze the diagnostic performance. RESULTS The texture-based image features on 3D volumes achieved better discrimination results than 2D image features. The overall performance of CNN architectures with 3D inputs was higher than the texture-based features. Xception architecture, with 3D volumes as input, yielded the highest accuracy (0.85) while the AUC value was 0.84. The AUC values of VGG19 and the InceptionV3 architectures were 0.82 and 0.81, respectively. CONCLUSION CNNs achieved superior diagnostic performance in differentiating brain metastases from lung and breast malignancies than texture-based image features. Differentiation using 3D volumes as input exhibited a higher success rate than 2D sagittal images.
Collapse
Affiliation(s)
- Mehmet Ali Gultekin
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdusselim Adil Peker
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayse Betul Oktay
- Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Dilek Hacer Cesme
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdallah T M Shbair
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Temel Fatih Yilmaz
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet Kaya
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayse Irem Yasin
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mesut Seker
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Alpaslan Mayadagli
- Department of Radiation Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
28
|
Sufyan M, Shokat Z, Ashfaq UA. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective. Comput Biol Med 2023; 165:107356. [PMID: 37688994 DOI: 10.1016/j.compbiomed.2023.107356] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 09/11/2023]
Abstract
Artificial intelligence (AI) in healthcare plays a pivotal role in combating many fatal diseases, such as skin, breast, and lung cancer. AI is an advanced form of technology that uses mathematical-based algorithmic principles similar to those of the human mind for cognizing complex challenges of the healthcare unit. Cancer is a lethal disease with many etiologies, including numerous genetic and epigenetic mutations. Cancer being a multifactorial disease is difficult to be diagnosed at an early stage. Therefore, genetic variations and other leading factors could be identified in due time through AI and machine learning (ML). AI is the synergetic approach for mining the drug targets, their mechanism of action, and drug-organism interaction from massive raw data. This synergetic approach is also facing several challenges in data mining but computational algorithms from different scientific communities for multi-target drug discovery are highly helpful to overcome the bottlenecks in AI for drug-target discovery. AI and ML could be the epicenter in the medical world for the diagnosis, treatment, and evaluation of almost any disease in the near future. In this comprehensive review, we explore the immense potential of AI and ML when integrated with the biological sciences, specifically in the context of cancer research. Our goal is to illuminate the many ways in which AI and ML are being applied to the study of cancer, from diagnosis to individualized treatment. We highlight the prospective role of AI in supporting oncologists and other medical professionals in making informed decisions and improving patient outcomes by examining the intersection of AI and cancer control. Although AI-based medical therapies show great potential, many challenges must be overcome before they can be implemented in clinical practice. We critically assess the current hurdles and provide insights into the future directions of AI-driven approaches, aiming to pave the way for enhanced cancer interventions and improved patient care.
Collapse
Affiliation(s)
- Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| |
Collapse
|
29
|
Liu Z, Hong X, Wang L, Ma Z, Guan F, Wang W, Qiu Y, Zhang X, Duan W, Wang M, Sun C, Zhao Y, Duan J, Sun Q, Liu L, Ding L, Ji Y, Yan D, Liu X, Cheng J, Zhang Z, Li ZC, Yan J. Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas. BMC Cancer 2023; 23:848. [PMID: 37697238 PMCID: PMC10496393 DOI: 10.1186/s12885-023-11338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND We aimed to develop machine learning models for prediction of molecular subgroups (low-risk group and intermediate/high-risk group) and molecular marker (KIAA1549-BRAF fusion) of pediatric low-grade gliomas (PLGGs) based on radiomic features extracted from multiparametric MRI. METHODS 61 patients with PLGGs were included in this retrospective study, which were divided into a training set and an internal validation set at a ratio of 2:1 based on the molecular subgroups or the molecular marker. The patients were classified into low-risk and intermediate/high-risk groups, BRAF fusion positive and negative groups, respectively. We extracted 5929 radiomic features from multiparametric MRI. Thereafter, we removed redundant features, trained random forest models on the training set for predicting the molecular subgroups or the molecular marker, and validated their performance on the internal validation set. The performance of the prediction model was verified by 3-fold cross-validation. RESULTS We constructed the classification model differentiating low-risk PLGGs from intermediate/high-risk PLGGs using 4 relevant features, with an AUC of 0.833 and an accuracy of 76.2% in the internal validation set. In the prediction model for predicting KIAA1549-BRAF fusion using 4 relevant features, an AUC of 0.818 and an accuracy of 81.0% were achieved in the internal validation set. CONCLUSIONS The current study demonstrates that MRI radiomics is able to predict molecular subgroups of PLGGs and KIAA1549-BRAF fusion with satisfying sensitivity. TRIAL REGISTRATION This study was retrospectively registered at clinicaltrials.gov (NCT04217018).
Collapse
Grants
- 2019YFC0117704 the National Key R&D Program of China
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 2021B0101420006 the Key-Area Research and Development Program of Guangdong Province
- YXKC2022061 the Excellent Youth Talent Cultivation Program of Innovation in Health Science and Technology of Henan Province
- SBGJ202002062 the Key Program of Medical Science and Technique Foundation of Henan Province
- the National Key R&D Program of China
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xuanke Hong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Linglong Wang
- Yanjing Medical College of Capital Medical University, Beijing, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Fangzhan Guan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xueping Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Chen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Ding
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518045, China.
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China.
| |
Collapse
|
30
|
Lee MD, Patel SH, Mohan S, Akbari H, Bakas S, Nasrallah MP, Calabrese E, Rudie J, Villanueva-Meyer J, LaMontagne P, Marcus DS, Colen RR, Balana C, Choi YS, Badve C, Barnholtz-Sloan JS, Sloan AE, Booth TC, Palmer JD, Dicker AP, Flanders AE, Shi W, Griffith B, Poisson LM, Chakravarti A, Mahajan A, Chang S, Orringer D, Davatzikos C, Jain R. Association of partial T2-FLAIR mismatch sign and isocitrate dehydrogenase mutation in WHO grade 4 gliomas: results from the ReSPOND consortium. Neuroradiology 2023; 65:1343-1352. [PMID: 37468750 PMCID: PMC11058040 DOI: 10.1007/s00234-023-03196-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.
Collapse
Affiliation(s)
- Matthew D Lee
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Sohil H Patel
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Suyash Mohan
- Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Multiforme Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Evan Calabrese
- Department of Radiology, Division of Neuroradiology, Duke University, Durham, NC, USA
| | - Jeffrey Rudie
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pamela LaMontagne
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rivka R Colen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carmen Balana
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Yoon Seong Choi
- Department of Radiology, Section of Neuroradiology, Yonsei University Health System, Seoul, South Korea
| | - Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Andrew E Sloan
- Department of Neurosurgery, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
- Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Thomas C Booth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, Ruskin WingLondon, UK
| | - Joshua D Palmer
- Department of Radiation Oncology and Neurosurgery, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Flanders
- Department of Radiology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brent Griffith
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - Laila M Poisson
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health, Detroit, MI, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology and Neurosurgery, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Abhishek Mahajan
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Orringer
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
31
|
Li J, Zhang P, Qu L, Sun T, Duan Y, Wu M, Weng J, Li Z, Gong X, Liu X, Wang Y, Jia W, Su X, Yue Q, Li J, Zhang Z, Barkhof F, Huang RY, Chang K, Sair H, Ye C, Zhang L, Zhuo Z, Liu Y. Deep Learning for Noninvasive Assessment of H3 K27M Mutation Status in Diffuse Midline Gliomas Using MR Imaging. J Magn Reson Imaging 2023; 58:850-861. [PMID: 36692205 DOI: 10.1002/jmri.28606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Determination of H3 K27M mutation in diffuse midline glioma (DMG) is key for prognostic assessment and stratifying patient subgroups for clinical trials. MRI can noninvasively depict morphological and metabolic characteristics of H3 K27M mutant DMG. PURPOSE This study aimed to develop a deep learning (DL) approach to noninvasively predict H3 K27M mutation in DMG using T2-weighted images. STUDY TYPE Retrospective and prospective. POPULATION For diffuse midline brain gliomas, 341 patients from Center-1 (27 ± 19 years, 184 males), 42 patients from Center-2 (33 ± 19 years, 27 males) and 35 patients (37 ± 18 years, 24 males). For diffuse spinal cord gliomas, 133 patients from Center-1 (30 ± 15 years, 80 males). FIELD STRENGTH/SEQUENCE 5T and 3T, T2-weighted turbo spin echo imaging. ASSESSMENT Conventional radiological features were independently reviewed by two neuroradiologists. H3 K27M status was determined by histopathological examination. The Dice coefficient was used to evaluate segmentation performance. Classification performance was evaluated using accuracy, sensitivity, specificity, and area under the curve. STATISTICAL TESTS Pearson's Chi-squared test, Fisher's exact test, two-sample Student's t-test and Mann-Whitney U test. A two-sided P value <0.05 was considered statistically significant. RESULTS In the testing cohort, Dice coefficients of tumor segmentation using DL were 0.87 for diffuse midline brain and 0.81 for spinal cord gliomas. In the internal prospective testing dataset, the predictive accuracies, sensitivities, and specificities of H3 K27M mutation status were 92.1%, 98.2%, 82.9% in diffuse midline brain gliomas and 85.4%, 88.9%, 82.6% in spinal cord gliomas. Furthermore, this study showed that the performance generalizes to external institutions, with predictive accuracies of 85.7%-90.5%, sensitivities of 90.9%-96.0%, and specificities of 82.4%-83.3%. DATA CONCLUSION In this study, an automatic DL framework was developed and validated for accurately predicting H3 K27M mutation using T2-weighted images, which could contribute to the noninvasive determination of H3 K27M status for clinical decision-making. EVIDENCE LEVEL 2 Technical Efficacy: Stage 2.
Collapse
Affiliation(s)
- Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liying Qu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ting Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Minghao Wu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jinyuan Weng
- Department of Medical Imaging Product, Neusoft, Group Ltd., Shenyang, People's Republic of China
| | - Zhaohui Li
- BioMind Inc., Beijing, People's Republic of China
| | - Xiaodong Gong
- Department of Medical Imaging Product, Neusoft, Group Ltd., Shenyang, People's Republic of China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongzhi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaorui Su
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jianrui Li
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Frederik Barkhof
- UCL Institutes of Neurology and Healthcare Engineering, London, UK
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ken Chang
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Haris Sair
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuyang Ye
- School of Information and Electronics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
32
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Zhang H, Fan X, Zhang J, Wei Z, Feng W, Hu Y, Ni J, Yao F, Zhou G, Wan C, Zhang X, Wang J, Liu Y, You Y, Yu Y. Deep-learning and conventional radiomics to predict IDH genotyping status based on magnetic resonance imaging data in adult diffuse glioma. Front Oncol 2023; 13:1143688. [PMID: 37711207 PMCID: PMC10499353 DOI: 10.3389/fonc.2023.1143688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Objectives In adult diffuse glioma, preoperative detection of isocitrate dehydrogenase (IDH) status helps clinicians develop surgical strategies and evaluate patient prognosis. Here, we aim to identify an optimal machine-learning model for prediction of IDH genotyping by combining deep-learning (DL) signatures and conventional radiomics (CR) features as model predictors. Methods In this study, a total of 486 patients with adult diffuse gliomas were retrospectively collected from our medical center (n=268) and the public database (TCGA, n=218). All included patients were randomly divided into the training and validation sets by using nested 10-fold cross-validation. A total of 6,736 CR features were extracted from four MRI modalities in each patient, namely T1WI, T1CE, T2WI, and FLAIR. The LASSO algorithm was performed for CR feature selection. In each MRI modality, we applied a CNN+LSTM-based neural network to extract DL features and integrate these features into a DL signature after the fully connected layer with sigmoid activation. Eight classic machine-learning models were analyzed and compared in terms of their prediction performance and stability in IDH genotyping by combining the LASSO-selected CR features and integrated DL signatures as model predictors. In the validation sets, the prediction performance was evaluated by using accuracy and the area under the curve (AUC) of the receiver operating characteristics, while the model stability was analyzed by using the relative standard deviation of the AUC (RSDAUC). Subgroup analyses of DL signatures and CR features were also individually conducted to explore their independent prediction values. Results Logistic regression (LR) achieved favorable prediction performance (AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044), whereas support vector machine with the linear kernel (l-SVM) displayed low prediction performance (AUC: 0.812 ± 0.052, accuracy: 0.821 ± 0.050). With regard to stability, LR also showed high robustness against data perturbation (RSDAUC: 4.7%). Subgroup analyses showed that DL signatures outperformed CR features (DL, AUC: 0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%; CR, AUC: 0.830 ± 0.066, accuracy: 0.771 ± 0.051, RSDAUC: 8.0%), while DL and DL+CR achieved similar prediction results. Conclusion In IDH genotyping, LR is a promising machine-learning classification model. Compared with CR features, DL signatures exhibit markedly superior prediction values and discriminative capability.
Collapse
Affiliation(s)
- Hongjian Zhang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyuan Wei
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Feng
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaying Ni
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fushen Yao
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gaoxin Zhou
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wan
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Liu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Yu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Kazemzadeh K, Akhlaghdoust M, Zali A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Front Surg 2023; 10:1241923. [PMID: 37693641 PMCID: PMC10483402 DOI: 10.3389/fsurg.2023.1241923] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Neurosurgical practitioners undergo extensive and prolonged training to acquire diverse technical proficiencies, while neurosurgical procedures necessitate a substantial amount of pre-, post-, and intraoperative clinical data acquisition, making decisions, attention, and convalescence. The past decade witnessed an appreciable escalation in the significance of artificial intelligence (AI) in neurosurgery. AI holds significant potential in neurosurgery as it supplements the abilities of neurosurgeons to offer optimal interventional and non-interventional care to patients by improving prognostic and diagnostic outcomes in clinical therapy and assisting neurosurgeons in making decisions while surgical interventions to enhance patient outcomes. Other technologies including augmented reality, robotics, and virtual reality can assist and promote neurosurgical methods as well. Moreover, they play a significant role in generating, processing, as well as storing experimental and clinical data. Also, the usage of these technologies in neurosurgery is able to curtail the number of costs linked with surgical care and extend high-quality health care to a wider populace. This narrative review aims to integrate the results of articles that elucidate the role of the aforementioned technologies in neurosurgery.
Collapse
Affiliation(s)
- Kimia Kazemzadeh
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Meisam Akhlaghdoust
- Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Kalaroopan D, Lasocki A. MRI-based deep learning techniques for the prediction of isocitrate dehydrogenase and 1p/19q status in grade 2-4 adult gliomas. J Med Imaging Radiat Oncol 2023; 67:492-498. [PMID: 36919468 DOI: 10.1111/1754-9485.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Molecular biomarkers are becoming increasingly important in the classification of intracranial gliomas. While tissue sampling remains the gold standard, there is growing interest in the use of deep learning (DL) techniques to predict these markers. This narrative review with a systematic approach identifies and synthesises the current published data on DL techniques using conventional MRI sequences for predicting isocitrate dehydrogenase (IDH) and 1p/19q-codeletion status in World Health Organisation grade 2-4 gliomas. Three databases were searched for relevant studies. In all, 13 studies met the inclusion criteria after exclusions. Key results, limitations and discrepancies between studies were synthesised. High accuracy has been reported in some studies, but the existing literature has several limitations, including generally small cohort sizes, a paucity of studies with independent testing cohorts and a lack of studies assessing IDH and 1p/19q together. While DL shows promise as a non-invasive means of predicting glioma genotype, addressing these limitations in future research will be important for facilitating clinical translation.
Collapse
Affiliation(s)
- Dinusha Kalaroopan
- Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Zhong S, Ren JX, Yu ZP, Peng YD, Yu CW, Deng D, Xie Y, He ZQ, Duan H, Wu B, Li H, Yang WZ, Bai Y, Sai K, Chen YS, Guo CC, Li DP, Cheng Y, Zhang XH, Mou YG. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. J Neurosurg 2023; 139:305-314. [PMID: 36461822 DOI: 10.3171/2022.10.jns22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.
Collapse
Affiliation(s)
- Sheng Zhong
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- 3Department of Bioinformatics, Harvard Medical School, Boston, Massachusetts
| | - Jia-Xin Ren
- 4Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Ze-Peng Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Da Peng
- 5College of Computer Science and Technology, Jilin University, Changchun, China
| | - Cheng-Wei Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Davy Deng
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - YangYiran Xie
- 6Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhen-Qiang He
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Wu
- Departments of7Orthopaedics
| | | | - Wen-Zhuo Yang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Bai
- 9Neurosurgery, The First Hospital of Jilin University, Changchun, China; and
| | - Ke Sai
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yin-Sheng Chen
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng-Cheng Guo
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Pei Li
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Cheng
- 10Department of Neurosurgery, The Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiang-Heng Zhang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Gao Mou
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
37
|
Pan R, Yang C, Li Z, Ren J, Duan Y. Magnetoencephalography-based approaches to epilepsy classification. Front Neurosci 2023; 17:1183391. [PMID: 37502686 PMCID: PMC10368885 DOI: 10.3389/fnins.2023.1183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
Epilepsy is a chronic central nervous system disorder characterized by recurrent seizures. Not only does epilepsy severely affect the daily life of the patient, but the risk of premature death in patients with epilepsy is three times higher than that of the normal population. Magnetoencephalography (MEG) is a non-invasive, high temporal and spatial resolution electrophysiological data that provides a valid basis for epilepsy diagnosis, and used in clinical practice to locate epileptic foci in patients with epilepsy. It has been shown that MEG helps to identify MRI-negative epilepsy, contributes to clinical decision-making in recurrent seizures after previous epilepsy surgery, that interictal MEG can provide additional localization information than scalp EEG, and complete excision of the stimulation area defined by the MEG has prognostic significance for postoperative seizure control. However, due to the complexity of the MEG signal, it is often difficult to identify subtle but critical changes in MEG through visual inspection, opening up an important area of research for biomedical engineers to investigate and implement intelligent algorithms for epilepsy recognition. At the same time, the use of manual markers requires significant time and labor costs, necessitating the development and use of computer-aided diagnosis (CAD) systems that use classifiers to automatically identify abnormal activity. In this review, we discuss in detail the results of applying various different feature extraction methods on MEG signals with different classifiers for epilepsy detection, subtype determination, and laterality classification. Finally, we also briefly look at the prospects of using MEG for epilepsy-assisted localization (spike detection, high-frequency oscillation detection) due to the unique advantages of MEG for functional area localization in epilepsy, and discuss the limitation of current research status and suggestions for future research. Overall, it is hoped that our review will facilitate the reader to quickly gain a general understanding of the problem of MEG-based epilepsy classification and provide ideas and directions for subsequent research.
Collapse
Affiliation(s)
- Ruoyao Pan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chunlan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhimei Li
- Department of Internal Neurology, Tiantan Hospital, Beijing, China
| | - Jiechuan Ren
- Department of Internal Neurology, Tiantan Hospital, Beijing, China
| | - Ying Duan
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| |
Collapse
|
38
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
39
|
Shi X, Li Y, Cheng J, Bai J, Zhao G, Chen YW. Multi-task Model for Glioma Segmentation and Isocitrate Dehydrogenase Status Prediction Using Global and Local Features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083206 DOI: 10.1109/embc40787.2023.10340355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
According to the 2021 World Health Organization IDH status prediction scheme for gliomas, isocitrate dehydrogenase (IDH) is a particularly important basis for glioma diagnosis. In general, 3D multimodal brain MRI is an effective diagnostic tool. However, only using brain MRI data is difficult for experienced doctors to predict the IDH status. Surgery is necessary to be performed for confirming the IDH. Previous studies have shown that brain MRI images of glioma areas contain a lot of useful information for diagnosis. These studies usually need to mark the glioma area in advance to complete the prediction of IDH status, which takes a long time and has high computational cost. The tumor segmentation task model can automatically segment and locate the tumor region, which is exactly the information needed for the IDH prediction task. In this study, we proposed a multi-task deep learning model using 3D multimodal brain MRI images to achieve glioma segmentation and IDH status prediction simultaneously, which improved the accuracy of both tasks effectively. Firstly, we used a segmentation model to segment the tumor region. Also, the whole MRI image and the segmented glioma region features as the global and local features were used to predict IDH status. The effectiveness of the proposed method was validated via a public glioma dataset from the BraTS2020. Our experimental results show that our proposed method outperformed state-of-the-art methods with a prediction accuracy of 88.5% and average dice of 79.8%. The improvements in prediction and segmentation are 3% and 1% compared with the state-of-the-art method, respectively.
Collapse
|
40
|
Nacul Mora NG, Akkurt BH, Kasap D, Blömer D, Heindel W, Mannil M, Musigmann M. Comparison of MRI Sequences to Predict ATRX Status Using Radiomics-Based Machine Learning. Diagnostics (Basel) 2023; 13:2216. [PMID: 37443610 DOI: 10.3390/diagnostics13132216] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
ATRX is an important molecular marker according to the 2021 WHO classification of adult-type diffuse glioma. We aim to predict the ATRX mutation status non-invasively using radiomics-based machine learning models on MRI and to determine which MRI sequence is best suited for this purpose. In this retrospective study, we used MRI images of patients with histologically confirmed glioma, including the sequences T1w without and with the administration of contrast agent, T2w, and the FLAIR. Radiomics features were extracted from the corresponding MRI images by hand-delineated regions of interest. Data partitioning into training data and independent test data was repeated 100 times to avoid random effects. Feature preselection and subsequent model development were performed using Lasso regression. The T2w sequence was found to be the most suitable and the FLAIR sequence the least suitable for predicting ATRX mutations using radiomics-based machine learning models. For the T2w sequence, our seven-feature model developed with Lasso regression achieved a mean AUC of 0.831, a mean accuracy of 0.746, a mean sensitivity of 0.772, and a mean specificity of 0.697. In conclusion, for the prediction of ATRX mutation using radiomics-based machine learning models, the T2w sequence is the most suitable among the commonly used MRI sequences.
Collapse
Affiliation(s)
- Nabila Gala Nacul Mora
- Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Burak Han Akkurt
- Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Dilek Kasap
- Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - David Blömer
- Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Walter Heindel
- Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Manoj Mannil
- Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Manfred Musigmann
- Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| |
Collapse
|
41
|
Yuan Y, Yu Y, Chang J, Chu YH, Yu W, Hsu YC, Patrick LA, Liu M, Yue Q. Convolutional neural network to predict IDH mutation status in glioma from chemical exchange saturation transfer imaging at 7 Tesla. Front Oncol 2023; 13:1134626. [PMID: 37223677 PMCID: PMC10200907 DOI: 10.3389/fonc.2023.1134626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Background and goal Noninvasive prediction of isocitrate dehydrogenase (IDH) mutation status in glioma guides surgical strategies and individualized management. We explored the capability on preoperatively identifying IDH status of combining a convolutional neural network (CNN) and a novel imaging modality, ultra-high field 7.0 Tesla (T) chemical exchange saturation transfer (CEST) imaging. Method We enrolled 84 glioma patients of different tumor grades in this retrospective study. Amide proton transfer CEST and structural Magnetic Resonance (MR) imaging at 7T were performed preoperatively, and the tumor regions are manually segmented, leading to the "annotation" maps that offers the location and shape information of the tumors. The tumor region slices in CEST and T1 images were further cropped out as samples and combined with the annotation maps, which were inputted to a 2D CNN model for generating IDH predictions. Further comparison analysis to radiomics-based prediction methods was performed to demonstrate the crucial role of CNN for predicting IDH based on CEST and T1 images. Results A fivefold cross-validation was performed on the 84 patients and 4090 slices. We observed a model based on only CEST achieved accuracy of 74.01% ± 1.15%, and the area under the curve (AUC) of 0.8022 ± 0.0147. When using T1 image only, the prediction performances dropped to accuracy of 72.52% ± 1.12% and AUC of 0.7904 ± 0.0214, which indicates no superiority of CEST over T1. However, when we combined CEST and T1 together with the annotation maps, the performances of the CNN model were further boosted to accuracy of 82.94% ± 1.23% and AUC of 0.8868 ± 0.0055, suggesting the importance of a joint analysis of CEST and T1. Finally, using the same inputs, the CNN-based predictions achieved significantly improved performances above those from radiomics-based predictions (logistic regression and support vector machine) by 10% to 20% in all metrics. Conclusion 7T CEST and structural MRI jointly offer improved sensitivity and specificity of preoperative non-invasive imaging for the diagnosis of IDH mutation status. As the first study of CNN model on imaging acquired at ultra-high field MR, our results could demonstrate the potential of combining ultra-high-field CEST and CNN for facilitating decision-making in clinical practice. However, due to the limited cases and B1 inhomogeneities, the accuracy of this model will be improved in our further study.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Research Units of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences (CAMS), Shanghai, China
| | - Yang Yu
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Research Units of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences (CAMS), Shanghai, China
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Chang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Ying-Hua Chu
- Magnetic Resonance (MR) Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Wenwen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yi-Cheng Hsu
- Magnetic Resonance (MR) Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | | | - Mianxin Liu
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Research Units of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences (CAMS), Shanghai, China
| |
Collapse
|
42
|
Anagun Y. Smart brain tumor diagnosis system utilizing deep convolutional neural networks. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-27. [PMID: 37362644 PMCID: PMC10140727 DOI: 10.1007/s11042-023-15422-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis.
Collapse
Affiliation(s)
- Yildiray Anagun
- Department of Computer Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
43
|
Nishikawa T, Ohka F, Aoki K, Suzuki H, Motomura K, Yamaguchi J, Maeda S, Kibe Y, Shimizu H, Natsume A, Innan H, Saito R. Easy-to-use machine learning system for the prediction of IDH mutation and 1p/19q codeletion using MRI images of adult-type diffuse gliomas. Brain Tumor Pathol 2023; 40:85-92. [PMID: 36991274 DOI: 10.1007/s10014-023-00459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Adult-type diffuse gliomas are divided into Astrocytoma, IDH-mutant, Oligodendroglioma, IDH-mutant and 1p/19q-codeleted and Glioblastoma, IDH-wildtype based on the IDH mutation, and 1p/19q codeletion status. To determine the treatment strategy for these tumors, pre-operative prediction of IDH mutation and 1p/19q codeletion status might be effective. Computer-aided diagnosis (CADx) systems using machine learning have been noted as innovative diagnostic methods. However, it is difficult to promote the clinical application of machine learning systems at each institute because the support of various specialists is essential. In this study, we established an easy-to-use computer-aided diagnosis system using Microsoft Azure Machine Learning Studio (MAMLS) to predict these statuses. We constructed an analysis model using 258 adult-type diffuse glioma cases from The Cancer Genome Atlas (TCGA) cohort. Using MRI T2-weighted images, the overall accuracy, sensitivity, and specificity for the prediction of IDH mutation and 1p/19q codeletion were 86.9%, 80.9%, and 92.0%, and 94.7%, 94.1%, and 95.1%, respectively. We also constructed an reliable analysis model for the prediction of IDH mutation and 1p/19q codeletion using an independent Nagoya cohort including 202 cases. These analysis models were established within 30 min. This easy-to-use CADx system might be useful for the clinical application of CADx in various institutes.
Collapse
Affiliation(s)
- Tomohide Nishikawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiroki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Atsushi Natsume
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Hideki Innan
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
44
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
45
|
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology. Semin Cancer Biol 2023; 91:1-15. [PMID: 36801447 DOI: 10.1016/j.semcancer.2023.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Personalized treatment strategies for cancer frequently rely on the detection of genetic alterations which are determined by molecular biology assays. Historically, these processes typically required single-gene sequencing, next-generation sequencing, or visual inspection of histopathology slides by experienced pathologists in a clinical context. In the past decade, advances in artificial intelligence (AI) technologies have demonstrated remarkable potential in assisting physicians with accurate diagnosis of oncology image-recognition tasks. Meanwhile, AI techniques make it possible to integrate multimodal data such as radiology, histology, and genomics, providing critical guidance for the stratification of patients in the context of precision therapy. Given that the mutation detection is unaffordable and time-consuming for a considerable number of patients, predicting gene mutations based on routine clinical radiological scans or whole-slide images of tissue with AI-based methods has become a hot issue in actual clinical practice. In this review, we synthesized the general framework of multimodal integration (MMI) for molecular intelligent diagnostics beyond standard techniques. Then we summarized the emerging applications of AI in the prediction of mutational and molecular profiles of common cancers (lung, brain, breast, and other tumor types) pertaining to radiology and histology imaging. Furthermore, we concluded that there truly exist multiple challenges of AI techniques in the way of its real-world application in the medical field, including data curation, feature fusion, model interpretability, and practice regulations. Despite these challenges, we still prospect the clinical implementation of AI as a highly potential decision-support tool to aid oncologists in future cancer treatment management.
Collapse
|
46
|
Jordan JT, Gerstner ER. Imaging of Brain Tumors. Continuum (Minneap Minn) 2023; 29:171-193. [PMID: 36795877 DOI: 10.1212/con.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article focuses on neuroimaging as an essential tool for diagnosing brain tumors and monitoring response to treatment. LATEST DEVELOPMENTS Neuroimaging is useful at all stages of brain tumor care. Technologic advances have improved the clinical diagnostic capability of neuroimaging as a vital complement to history, examination, and pathologic assessment. Presurgical evaluations are enriched by novel imaging techniques, through improved differential diagnosis and better surgical planning using functional MRI (fMRI) and diffusion tensor imaging. The common clinical challenge of differentiating tumor progression from treatment-related inflammatory change is aided by novel uses of perfusion imaging, susceptibility-weighted imaging (SWI), spectroscopy, and new positron emission tomography (PET) tracers. ESSENTIAL POINTS Using the most up-to-date imaging techniques will facilitate high-quality clinical practice in the care of patients with brain tumors.
Collapse
|
47
|
Chakrabarty S, LaMontagne P, Shimony J, Marcus DS, Sotiras A. Non-invasive classification of IDH mutation status of gliomas from multi-modal MRI using a 3D convolutional neural network. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12465:124650W. [PMID: 39257452 PMCID: PMC11386985 DOI: 10.1117/12.2651391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Glioma is the most common form of brain tumor with a high degree of heterogeneity in imaging characteristics, treatment-response, and survival rate. An important factor causing this heterogeneity is the mutation of isocitrate dehydrogenase (IDH) enzyme. The current clinical gold-standard for identifying IDH mutation status involves invasive procedures that involve risk, may fail to capture intra-tumoral spatial heterogeneity or can be inaccessible in low-resource settings. In this study, we propose a deep learning-based method to non-invasively and pre-operatively determine IDH status of high- and low-grade gliomas by leveraging their phenotypical characteristics from volumetric MRI scans. For this purpose, we propose a 3D Mask R-CNN-based approach to simultaneously detect and segment glioma as well as classify its IDH status - thus obviating the requirement of any separate tumor segmentation step. The network can operate on routinely acquired MRI sequences and is agnostic to glioma grade. It was trained on patient-cases from publicly available datasets (n = 223) and tested on two hold-out datasets acquired from The Cancer Genome Atlas (TCGA; n = 62) and Washington University School of Medicine (WUSM; n = 261). The model achieved areas under the receiver operating characteristic of 0.83 and 0.87, and areas under the precision-recall curves of 0.78 and 0.79, on the TCGA and WUSM sets, respectively. The model can be used to perform a pre-operative 'virtual biopsy' of gliomas, thus facilitating treatment planning, potentially leading to better overall survival.
Collapse
Affiliation(s)
- Satrajit Chakrabarty
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
48
|
Chen Z, Zhang H, Zhang PJZ, Bai HX, Li X. Editorial: Advances of radiomics and artificial intelligence in the management of patients with central nervous system tumors. Front Oncol 2023; 13:1081301. [PMID: 36741005 PMCID: PMC9893481 DOI: 10.3389/fonc.2023.1081301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ziyan Chen
- Department of Neurosurgery, Xinagya hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Helen Zhang
- Department of Diagnostic Imaging, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
| | - Paul J. Z. Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Harrison X. Bai
- Department of Diagnostic Imaging, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xuejun Li
- Department of Neurosurgery, Xinagya hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Karami G, Pascuzzo R, Figini M, Del Gratta C, Zhang H, Bizzi A. Combining Multi-Shell Diffusion with Conventional MRI Improves Molecular Diagnosis of Diffuse Gliomas with Deep Learning. Cancers (Basel) 2023; 15:cancers15020482. [PMID: 36672430 PMCID: PMC9856805 DOI: 10.3390/cancers15020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
The WHO classification since 2016 confirms the importance of integrating molecular diagnosis for prognosis and treatment decisions of adult-type diffuse gliomas. This motivates the development of non-invasive diagnostic methods, in particular MRI, to predict molecular subtypes of gliomas before surgery. At present, this development has been focused on deep-learning (DL)-based predictive models, mainly with conventional MRI (cMRI), despite recent studies suggesting multi-shell diffusion MRI (dMRI) offers complementary information to cMRI for molecular subtyping. The aim of this work is to evaluate the potential benefit of combining cMRI and multi-shell dMRI in DL-based models. A model implemented with deep residual neural networks was chosen as an illustrative example. Using a dataset of 146 patients with gliomas (from grade 2 to 4), the model was trained and evaluated, with nested cross-validation, on pre-operative cMRI, multi-shell dMRI, and a combination of the two for the following classification tasks: (i) IDH-mutation; (ii) 1p/19q-codeletion; and (iii) three molecular subtypes according to WHO 2021. The results from a subset of 100 patients with lower grades gliomas (2 and 3 according to WHO 2016) demonstrated that combining cMRI and multi-shell dMRI enabled the best performance in predicting IDH mutation and 1p/19q codeletion, achieving an accuracy of 75 ± 9% in predicting the IDH-mutation status, higher than using cMRI and multi-shell dMRI separately (both 70 ± 7%). Similar findings were observed for predicting the 1p/19q-codeletion status, with the accuracy from combining cMRI and multi-shell dMRI (72 ± 4%) higher than from each modality used alone (cMRI: 65 ± 6%; multi-shell dMRI: 66 ± 9%). These findings remain when we considered all 146 patients for predicting the IDH status (combined: 81 ± 5% accuracy; cMRI: 74 ± 5%; multi-shell dMRI: 73 ± 6%) and for the diagnosis of the three molecular subtypes according to WHO 2021 (combined: 60 ± 5%; cMRI: 57 ± 8%; multi-shell dMRI: 56 ± 7%). Together, these findings suggest that combining cMRI and multi-shell dMRI can offer higher accuracy than using each modality alone for predicting the IDH and 1p/19q status and in diagnosing the three molecular subtypes with DL-based models.
Collapse
Affiliation(s)
- Golestan Karami
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D’Annunzio University, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, Gabriele D’Annunzio University, 66100 Chieti, Italy
| | - Riccardo Pascuzzo
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Correspondence:
| | - Matteo Figini
- Centre for Medical Image Computing and Department of Computer Science, University College London, London WC1V 6LJ, UK
| | - Cosimo Del Gratta
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D’Annunzio University, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, Gabriele D’Annunzio University, 66100 Chieti, Italy
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London WC1V 6LJ, UK
| | - Alberto Bizzi
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
50
|
Chao HS, Tsai CY, Chou CW, Shiao TH, Huang HC, Chen KC, Tsai HH, Lin CY, Chen YM. Artificial Intelligence Assisted Computational Tomographic Detection of Lung Nodules for Prognostic Cancer Examination: A Large-Scale Clinical Trial. Biomedicines 2023; 11:biomedicines11010147. [PMID: 36672655 PMCID: PMC9856020 DOI: 10.3390/biomedicines11010147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Low-dose computed tomography (LDCT) has emerged as a standard method for detecting early-stage lung cancer. However, the tedious computer tomography (CT) slide reading, patient-by-patient check, and lack of standard criteria to determine the vague but possible nodule leads to variable outcomes of CT slide interpretation. To determine the artificial intelligence (AI)-assisted CT examination, AI algorithm-assisted CT screening was embedded in the hospital picture archiving and communication system, and a 200 person-scaled clinical trial was conducted at two medical centers. With AI algorithm-assisted CT screening, the sensitivity of detecting nodules sized 4−5 mm, 6~10 mm, 11~20 mm, and >20 mm increased by 41%, 11.2%, 10.3%, and 18.7%, respectively. Remarkably, the overall sensitivity of detecting varied nodules increased by 20.7% from 67.7% to 88.4%. Furthermore, the sensitivity increased by 18.5% from 72.5% to 91% for detecting ground glass nodules (GGN), which is challenging for radiologists and physicians. The free-response operating characteristic (FROC) AI score was ≥0.4, and the AI algorithm standalone CT screening sensitivity reached >95% with an area under the localization receiver operating characteristic curve (LROC-AUC) of >0.88. Our study demonstrates that AI algorithm-embedded CT screening significantly ameliorates tedious LDCT practices for doctors.
Collapse
Affiliation(s)
- Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chiao-Yun Tsai
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chung-Wei Chou
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsu-Hui Shiao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsu-Chih Huang
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kun-Chieh Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou 545301, Taiwan
| | - Hao-Hung Tsai
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Tsuzuki Institute for Traditional Medicine, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Department for Biomedical Engineering, Collage of Biomedical Engineering, China Medical University, Taichung 40402, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-28712121 (ext. 7865)
| |
Collapse
|