1
|
Isomura Y, Ohno M, Sudo S, Ono M, Kaminishi Y, Sumi Y, Yoshimura A, Fujii K, Akiyama K, Nishi E, Ozeki Y. Associations among plasma markers for N-methyl-d-aspartate receptor hypofunction, redox dysregulation, and insufficient myelination in patients with schizophrenia. Heliyon 2024; 10:e30193. [PMID: 38694089 PMCID: PMC11061757 DOI: 10.1016/j.heliyon.2024.e30193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Background Several hypotheses regarding the pathomechanisms of schizophrenia have been proposed. If schizophrenia is a unitary disease, then these pathological processes must be linked; however, if such links do not exist, schizophrenia may best be considered a group of disorders. Only a few studies have examined the relationships among these pathomechanisms. Herein, we examined the relationships among deficient myelination, NMDA receptor hypofunction, and metabolic dysregulation by measuring various plasma markers and examining their correlations. Methods Plasma samples were collected from 90 patients with schizophrenia and 68 healthy controls. Concentrations of nardilysin (N-arginine dibasic convertase, NRDC), a positive regulator of myelination, the NMDA receptor co-agonist d-serine and glycine, various additional amino acids related to NMDA receptor transmission (glutamate, glutamine, and l-serine), and homocysteine (Hcy), were measured. Concentrations were compared using independent samples t-test or logistic regression, and associations were evaluated using Pearson's correlation coefficients. Results Plasma glycine (t = 2.05, p = 0.042), l-serine (t = 2.25, p = 0.027), and homocysteine (t = 3.71, p < 0.001) concentrations were significantly higher in patients with schizophrenia compared to those in healthy controls. Logistic regression models using age, sex, smoking status, glutamine, glutamate, glycine, l-serine, d-serine, homocysteine, and NRDC as independent variables revealed significantly lower plasma d-serine (p = 0.024) and NRDC (p = 0.028), but significantly higher l-serine (p = 0.024) and homocysteine (p = 0.001) in patients with schizophrenia. Several unique correlations were found between NMDA receptor-related amino acids and NRDC in patients with schizophrenia compared to those in healthy controls, while no correlations were found between plasma homocysteine and other markers. No associations were found between plasma marker concentrations and disease status or cognitive function in patients with schizophrenia, except for a significant correlation between plasma glycine and full intelligence quotient. Conclusion Reduced myelination and NMDA receptor hypofunction may be related to pathological mechanisms in schizophrenia, while homocysteine dysregulation appears to be an independent pathological process. These results suggest that schizophrenia may be a group of disorders with unique or partially overlapping etiologies.
Collapse
Affiliation(s)
- Yoshiaki Isomura
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Japan
| | - Satoshi Sudo
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Mayuko Ono
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Yuki Kaminishi
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Yukiyoshi Sumi
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Atsushi Yoshimura
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Kumiko Fujii
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Japan
| | - Yuji Ozeki
- Department of Psychiatry, Shiga University of Medical Science, Japan
| |
Collapse
|
2
|
Ohno M, Shiomi H, Baba O, Yano M, Aizawa T, Nakano-Matsumura Y, Yamagami S, Kato M, Ohya M, Chen PM, Nagao K, Ando K, Yokomatsu T, Kadota K, Kouchi I, Inada T, Valentine C, Kitagawa T, Kurokawa M, Ohtsuru S, Morimoto T, Kimura T, Nishi E. Auxiliary roles of nardilysin in the early diagnosis of acute coronary syndrome: a prospective cohort study, the Nardi-ACS study. Intern Emerg Med 2024; 19:649-659. [PMID: 38233578 PMCID: PMC11039555 DOI: 10.1007/s11739-023-03508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Acute coronary syndrome (ACS) includes myocardial infarction (MI) and unstable angina (UA). MI is defined by elevated necrosis markers, preferably high-sensitivity cardiac troponins (hs-cTn). However, it takes hours for cTn to become elevated after coronary occlusion; therefore, difficulties are associated with diagnosing early post-onset MI or UA. The aim of this prospective cohort study was to examine the diagnostic ability of serum nardilysin (NRDC) for the early detection of ACS. This study consisted of two sequential cohorts, the Phase I cohort, 435 patients presenting to the emergency room (ER) with chest pain, and the Phase II cohort, 486 patients with chest pain who underwent coronary angiography. The final diagnosis was ACS in 155 out of 435 patients (35.6%) in the phase I and 418 out of 486 (86.0%) in the phase II cohort. Among 680 patients who presented within 24 h of onset, 466 patients (68.5%) were diagnosed with ACS. Serum NRDC levels were significantly higher in patients with ACS than in those without ACS. The sensitivity of NRDC in patients who presented within 6 h after the onset was higher than that of hsTnI, and the AUC of NRDC within 1 h of the onset was higher than that of hsTnI (0.718 versus 0.633). Among hsTnI-negative patients (300 of 680 patients: 44.1%), 136 of whom (45.3%) were diagnosed with ACS, the sensitivity and the NPV of NRDC were 73.5 and 65.7%, respectively. When measured in combination with hsTnI, NRDC plays auxiliary roles in the early diagnosis of ACS.
Collapse
Affiliation(s)
- Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, 54 Shogoinkawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mariko Yano
- Kokura Memorial Hospital, 3-2-1 Asano, Kita-Ku, Kokura, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Takanori Aizawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yukiko Nakano-Matsumura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shintaro Yamagami
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masashi Kato
- Mitsubishi Kyoto Hospital, 1, Katsuragoshomachi, Nishikyo-Ku, Kyoto, 615-8087, Japan
| | - Masanobu Ohya
- Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Po-Min Chen
- Saiseikai Noe Hospital, 1-3-25, Furuichi, Joto-Ku, Osaka, 536-0001, Japan
| | - Kazuya Nagao
- Osaka Red-Cross Hospital, 5-30 Fudegasakicho, Tennoji-Ku, Osaka, 543-8555, Japan
| | - Kenji Ando
- Kokura Memorial Hospital, 3-2-1 Asano, Kita-Ku, Kokura, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Takafumi Yokomatsu
- Mitsubishi Kyoto Hospital, 1, Katsuragoshomachi, Nishikyo-Ku, Kyoto, 615-8087, Japan
| | - Kazushige Kadota
- Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Ichiro Kouchi
- Saiseikai Noe Hospital, 1-3-25, Furuichi, Joto-Ku, Osaka, 536-0001, Japan
| | - Tsukasa Inada
- Osaka Red-Cross Hospital, 5-30 Fudegasakicho, Tennoji-Ku, Osaka, 543-8555, Japan
| | - Cindy Valentine
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Takahiro Kitagawa
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Masato Kurokawa
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Shigeru Ohtsuru
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takeshi Morimoto
- Hyogo College of Medicine, 1-1, Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Hirakata Kosai Hospital, 1-2-1, Fujibanto-Cho, Hirakata, Osaka, 573-0153, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
3
|
Saengboonmee C, Obchoei S, Sawanyawisuth K, Wongkham S. Revision of potential prognostic markers of cholangiocarcinoma for clinical practice. Expert Rev Anticancer Ther 2023; 23:517-530. [PMID: 37052887 DOI: 10.1080/14737140.2023.2203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an aggressive cancer arising from any part of the biliary system. Effective treatment of CCA remains limited, resulting in the poor overall prognosis of patients. The effective prognostic biomarkers for CCA remain lacking, and most are at the research level. AREAS COVERED The incidences of CCAs, classification, genetic and molecular characteristics, and distinct clinical outcomes in each subtype are introduced. The prognostic markers currently used in clinical practice are reviewed. Studies of biomarkers in defining the aggressiveness of CCA, identifying patients with a potential tumor recurrence, and predicting the survival time, are reviewed. Emerging biomarkers discovered from advanced high throughput technology over the past five years are updated and summarized. Finally, in-depth and critical revision on the prognostic biomarkers for CCA reported from various sources of specimens, e.g. tissues, blood, bile, etc. are discussed. CONCLUSION Many prognostic biomarkers for CCA have been proposed and hold promising clinical value. However, these markers are rarely used in the real clinical world due to several factors. Understanding the roles and importance of these prognostic markers may fundamentally impact the therapeutic management of CCA, and hopefully, improve the development of custom and patient-directed therapies for CCA.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Xu Y, Xiong Q, Yang Y, Weng N, Li J, Liu J, Yang X, Zeng Z, Zhang Z, Zhu Q. Serum Nardilysin as a Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma. J Clin Med 2022; 11:jcm11113101. [PMID: 35683488 PMCID: PMC9181681 DOI: 10.3390/jcm11113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Nardilysin, (N-arginine dibasic convertase, NRDC) has been reported to play an important role in cancer progression, and is associated with tumor proliferation signals and inflammatory signals, such as tumor necrosis factor-a (TNF-a) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), through the activation of disintegrin and metalloproteinase (ADAM) proteases. NRDC has recently been revealed to be involved in the tumorigenesis of various types of cancer, including intrahepatic cholangiocarcinoma, malignant cerebral infarction, esophageal squamous cell carcinoma, and gastric cancer. However, the expression profiles and biological relevance of NRDC in pancreatic ductal adenocarcinoma have rarely been reported. Methods: We analyzed the NRDC expression profile in pancreatic ductal adenocarcinoma by enzyme-linked immunosorbent assay (ELISA) and identified NRDC as a circulating biomarker in the serum of 112 pancreatic ductal adenocarcinoma patients. The diagnostic value of NRDC was analyzed by the area under the curve (AUC) and the receiver operating characteristic (ROC) test. Results: Our results demonstrated that the clinical prognosis significance of NRDC with the clinical characteristics in pancreatic ductal adenocarcinoma (PDAC). NRDC was notably decreased in PDAC patient serum compared with the control group (p < 0.001). Furthermore, the present study found that the NRDC expression level was correlated with T grade (p < 0.001), metastasis(p < 0.001), differentiation(p < 0.001), and TNM stage (p = 0.011). Further bioinformatics analysis revealed that NRDC correlated with proliferation and migration pathways; in particular, it mediated cell-matrix adhesion-dependent activation in pancreatic ductal adenocarcinoma. Conclusions: Serum NRDC may play a useful diagnostic biomarker to evaluate the aggressive clinical features in PAAD patients.
Collapse
|
5
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|
6
|
Yasuda D, Hiraoka Y, Ohno M, Nishi K, Iwasaki H, Kita T, Nishi E, Kume N. Deficiency of Nardilysin in the Liver Reduces Serum Cholesterol Levels. Biol Pharm Bull 2021; 44:363-371. [PMID: 33642545 DOI: 10.1248/bpb.b20-00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nardilysin (NRDC) has been shown to be involved in post-translational histone modifications, in addition to enhancement in ectodomain shedding of membrane-anchored protein, which play significant roles in various pathophysiology, including glucose homeostasis, inflammatory diseases and cancer. The present study sought to determine roles of NRDC in the liver on lipid and lipoprotein metabolism. We established liver-specific NRDC deficient mice by use of NRD1 floxed mice and albumin promoter-Cre recombinase (Cre) transgenic mice, and found that their serum low-density lipoprotein (LDL) cholesterol levels were significantly lower than those in control littermate mice. In the liver, LDL receptor (LDLR) mRNA expression was significantly upregulated, while inducible degrader of LDLR (IDOL) and microsomal triglyceride transfer protein (MTP) mRNA expression was significantly downregulated, in liver-specific NRDC deficient mice. Hepatic cell-surface LDLR expression levels were significantly elevated and serum pro-protein convertase subtilisin-kexin type 9 (PCSK9) levels were significantly reduced in mice with hepatic NRDC deficiency. In cultured hepatocytes, NRDC deficiency significantly reduced secreted PCSK9 and increased cell-surface LDLR expression. On the other hand, NRDC overexpression in cultured hepatocytes significantly increased secreted PCSK9 and lowered cell-surface LDLR expression. Thus, NRDC in murine hepatocytes appears to play key roles in cholesterol homeostasis, although the precise molecular mechanisms remain to be determined.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Sciences
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences
| | - Noriaki Kume
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
7
|
Ohno M, Nishi K, Hiraoka Y, Niizuma S, Matsuda S, Iwasaki H, Kimura T, Nishi E. Nardilysin controls cardiac sympathetic innervation patterning through regulation of p75 neurotrophin receptor. FASEB J 2020; 34:11624-11640. [PMID: 32683751 DOI: 10.1096/fj.202000604r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Cardiac sympathetic innervation is critically involved in the regulation of circulatory dynamics. However, the molecular mechanism for the innervation patterning has remained elusive. Here, we demonstrate that nardilysin (NRDC, Nrdc), an enhancer of ectodomain shedding, regulates cardiac sympathetic innervation. Nardilysin-deficient (Nrdc-/- ) mice show hypoplastic hearts, hypotension, bradycardia, and abnormal sympathetic innervation patterning. While the innervation of left ventricle (LV) of wild-type mice is denser in the subepicardium than in the subendocardium, Nrdc-/- LV lacks such a polarity and is uniformly and more abundantly innervated. At the molecular level, the full-length form of p75 neurotrophin receptor (p75NTR , Ngfr) is increased in Nrdc-/- LV due to the reduced ectodomain shedding of p75NTR . Importantly, the reduction of p75NTR rescued the abnormal innervation phenotype of Nrdc-/- mice. Moreover, sympathetic neuron-specific, but not cardiomyocyte-specific deletion of Nrdc recapitulated the abnormal innervation patterning of Nrdc-/- mice. In conclusion, neuronal nardilysin critically regulates cardiac sympathetic innervation and circulatory dynamics via modulation of p75NTR .
Collapse
Affiliation(s)
- Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Hyogo, Japan
| | - Shinichiro Niizuma
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
8
|
Chen FH, Wang Y, Jiang YX, Zhang GH, Wang ZM, Yang H. Clinical determination of serum nardilysin levels in predicting 30-day mortality among adults with malignant cerebral infarction. Clin Chim Acta 2019; 494:8-13. [PMID: 30871973 DOI: 10.1016/j.cca.2019.03.1608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nardilysin, a kind of metalloendopeptidase, plays an important role in numerous inflammatory diseases. Malignant cerebral infarction (Glasgow coma scale score of <9) is associated with a high mortality risk. Here, we intended to investigate the relationship between serum nardilysin levels and prognosis of patients with malignant cerebral infarction. METHODS Serum nardilysin concentrations were quantified at malignant cerebral infarction diagnosis moment in 105 patients and at study entrance in 105 healthy controls. Association of nardilysin concentrations with 30-day mortality and overall survival was estimated using multivariate analyses. RESULTS The patients exhibited substantially increased serum nardilysin concentrations, as compared to the controls. Nardilysin concentrations were in pronounced correlation with Glasgow coma scale scores and serum C-reactive protein concentrations. Serum nardilysin was independently predictive of 30-day mortality and overall survival. Under receiver operating characteristic curve, its high discriminatory ability was found. CONCLUSIONS Rising serum nardilysin concentrations following malignant cerebral infarction are strongly related to stroke severity, inflammatory extent and a higher risk of mortality, substantializing serum nardilysin as a potential prognostic biomarker for malignant cerebral infarction.
Collapse
Affiliation(s)
- Fang-Hui Chen
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China.
| | - Yi Wang
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China
| | - Yi-Xiang Jiang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Gui-Hong Zhang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Zhi-Min Wang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Hui Yang
- Department of Neurologic Intensive Care Unit, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| |
Collapse
|