1
|
Bettazova N, Senavova J, Kupcova K, Sovilj D, Rajmonova A, Andera L, Svobodova K, Berkova A, Zemanova Z, Daumova L, Herman V, Dolníkova A, Davis RE, Trneny M, Klener P, Havranek O. Impact of PIK3CA gain and PTEN loss on mantle cell lymphoma biology and sensitivity to targeted therapies. Blood Adv 2024; 8:5279-5289. [PMID: 39158100 PMCID: PMC11497468 DOI: 10.1182/bloodadvances.2024013205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT Besides many other mutations in known cancer driver genes, mantle cell lymphoma (MCL) is characterized by recurrent genetic alterations of important regulators of the phosphoinositol-3-kinase (PI3K) cascade including PIK3CA gains and PTEN losses. To evaluate the biological and functional consequences of these aberrations in MCL, we have introduced transgenic expression of PIK3CA (PIK3CA UP) and performed knockout/knockdown of PTEN gene (PTEN KO/KD) in 5 MCL cell lines. The modified cell lines were tested for associated phenotypes including dependence on upstream B-cell receptor (BCR) signaling (by an additional BCR knockout). PIK3CA overexpression decreased the dependence of the tested MCL on prosurvival signaling from BCR, decreased levels of oxidative phosphorylation, and increased resistance to 2-deoxy-glucose, a glycolysis inhibitor. Unchanged protein kinase B (AKT) phosphorylation status and unchanged sensitivity to a battery of PI3K inhibitors suggested that PIK3CA gain might affect MCL cells in AKT-independent manner. PTEN KO was associated with a more distinct phenotype: AKT hyperphosphorylation and overactivation, increased resistance to multiple inhibitors (most of the tested PI3K inhibitors, Bruton tyrosine kinase inhibitor ibrutinib, and BCL2 inhibitor venetoclax), increased glycolytic rates with resistance to 2-deoxy-glucose, and significantly decreased dependence on prosurvival BCR signaling. Our results suggest that the frequent aberrations of the PI3K pathway may rewire associated signaling with lower dependence on BCR signaling, better metabolic and hypoxic adaptation, and targeted therapy resistance in MCL.
Collapse
Affiliation(s)
- Nardjas Bettazova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Senavova
- First Department of Medicine-Department of Hematology, Charles University General Hospital, Prague, Czech Republic
- BIOCEV LF1- Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Kupcova
- First Department of Medicine-Department of Hematology, Charles University General Hospital, Prague, Czech Republic
- BIOCEV LF1- Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Sovilj
- Institute of Biotechnology BIOCEV, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Anezka Rajmonova
- BIOCEV LF1- Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Andera
- Institute of Biotechnology BIOCEV, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Karla Svobodova
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - Adela Berkova
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - Zuzana Zemanova
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Daumova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vaclav Herman
- First Department of Medicine-Department of Hematology, Charles University General Hospital, Prague, Czech Republic
- BIOCEV LF1- Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexandra Dolníkova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - R. Eric Davis
- Department of Lymphoma and Myeloma, The UT MD Anderson Cancer Center, Houston, TX
| | - Marek Trneny
- First Department of Medicine-Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine-Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Ondrej Havranek
- First Department of Medicine-Department of Hematology, Charles University General Hospital, Prague, Czech Republic
- BIOCEV LF1- Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Ueda H, Ishiguro T, Mori Y, Yamawaki K, Okamoto K, Enomoto T, Yoshihara K. Glycolysis-mTORC1 crosstalk drives proliferation of patient-derived endometrial cancer spheroid cells with ALDH activity. Cell Death Discov 2024; 10:435. [PMID: 39394200 PMCID: PMC11470041 DOI: 10.1038/s41420-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Cancer stem cells are associated with aggressive phenotypes of malignant tumors. A prominent feature of uterine endometrial cancer is the activation of the PI3K-Akt-mTOR pathway. In this study, we present variations in sensitivities to a PI3K-Akt-mTORC1 inhibitor among in vitro endometrial cancer stem cell-enriched spheroid cells from clinical specimens. The in vitro sensitivity was consistent with the effects observed in in vivo spheroid-derived xenograft tumor models. Our findings revealed a complementary suppressive effect on endometrial cancer spheroid cell growth with the combined use of aldehyde dehydrogenase (ALDH) and PI3K-Akt inhibitors. In the PI3K-Akt-mTORC1 signaling cascade, the influence of ALDH on mTORC1 was partially channeled through retinoic acid-induced lactate dehydrogenase A (LDHA) activation. LDHA inhibition was found to reduce endometrial cancer cell growth, aligning with the effects of mTORC1 inhibition. Building upon our previous findings highlighting ALDH-driven glycolysis through GLUT1 in uterine endometrial cancer spheroid cells, curbing mTORC1 enhanced glucose transport via GLUT1 activation. Notably, elevated LDHA expression correlated with adverse clinical survival and escalated tumor grade, especially in advanced stages. Collectively, our findings emphasize the pivotal role of ALDH-LDHA-mTORC1 cascade in the proliferation of endometrial cancer. Targeting the interaction between mTORC1 and ALDH-influenced glycolysis holds promise for developing novel strategies to combat this aggressive cancer.
Collapse
Affiliation(s)
- Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
3
|
Huang X, Lian M, Li C. Copper homeostasis and cuproptosis in gynecological cancers. Front Cell Dev Biol 2024; 12:1459183. [PMID: 39386020 PMCID: PMC11461353 DOI: 10.3389/fcell.2024.1459183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Copper (Cu) is an essential trace element involved in a variety of biological processes, such as antioxidant defense, mitochondrial respiration, and bio-compound synthesis. In recent years, a novel theory called cuproptosis has emerged to explain how Cu induces programmed cell death. Cu targets lipoylated enzymes in the tricarboxylic acid cycle and subsequently triggers the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, leading to the loss of Fe-S clusters and induction of heat shock protein 70. Gynecological malignancies including cervical cancer, ovarian cancer and uterine corpus endometrial carcinoma significantly impact women's quality of life and even pose a threat to their lives. Excessive Cu can promote cancer progression by enhancing tumor growth, proliferation, angiogenesis and metastasis through multiple signaling pathways. However, there are few studies investigating gynecological cancers in relation to cuproptosis. Therefore, this review discusses Cu homeostasis and cuproptosis while exploring the potential use of cuproptosis for prognosis prediction as well as its implications in the progression and treatment of gynecological cancers. Additionally, we explore the application of Cu ionophore therapy in treating gynecological malignancies.
Collapse
Affiliation(s)
- Xiaodi Huang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Mengyi Lian
- Department of Obstetrics and Gynecology, Longquan People’s Hospital, Lishui, China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
4
|
Dugo E, Piva F, Giulietti M, Giannella L, Ciavattini A. Copy number variations in endometrial cancer: from biological significance to clinical utility. Int J Gynecol Cancer 2024; 34:1089-1097. [PMID: 38677776 DOI: 10.1136/ijgc-2024-005295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024] Open
Abstract
The molecular basis of endometrial cancer, which is the most common malignancy of the female reproductive organs, relies not only on onset of mutations but also on copy number variations, the latter consisting of gene gains or losses. In this review, we introduce copy number variations and discuss their involvement in endometrial cancer to determine the perspectives of clinical applicability. We performed a literature analysis on PubMed of publications over the past 30 years and annotated clinical information, including histological and molecular subtypes, adopted molecular techniques for identification of copy number variations, their locations, and the genes involved. We highlight correlations between the presence of some specific copy number variations and myometrial invasion, lymph node metastasis, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, high grade, drug response, and cancer progression. In particular, type I endometrial cancer cells have few copy number variations and are mainly located in 8q and 1q, while type II, high grade, and advanced FIGO stage endometrial cancer cells are aneuploid and have a greater number of copy number variations. As expected, the higher the number of copy number variations the worse the prognosis, especially if they amplify CCNE1, ERBB2, KRAS, MYC, and PIK3CA oncogenes. Great variability in copy number and location among patients with the same endometrial cancer histological or molecular subtype emerged, making them interesting candidates to be explored for the improvement of patient stratification. Copy number variations have a role in endometrial cancer progression, and therefore their detection may be useful for more accurate prediction of prognosis. Unfortunately, only a few studies have been carried out on the role of copy number variations according to the molecular classification of endometrial cancer, and even fewer have explored the correlation with drugs. For these reasons, further studies, also using single cell RNA sequencing, are needed before reaching a clinical application.
Collapse
Affiliation(s)
- Erica Dugo
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Giannella
- Woman's Health Sciences Department, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Ciavattini
- Woman's Health Sciences Department, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
5
|
Wang Y, Wang C, Guan X, Ma Y, Zhang S, Li F, Yin Y, Sun Z, Chen X, Yin H. PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303812. [PMID: 37973560 PMCID: PMC10754120 DOI: 10.1002/advs.202303812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Protein arginine methyltransferase (PRMT) plays essential roles in tumor initiation and progression, but its underlying mechanisms in the treatment sensitivity of endometrial cancer (EC) remain unclear and warrant further investigation. Here, a comprehensive analysis of the Cancer Genome Atlas database and Clinical Proteomic Tumor Analysis Consortium database identifies that PRMT3 plays an important role in EC. Specifically, further experiments show that PRMT3 inhibition enhances the susceptibility of EC cells to ferroptosis. Mechanistically, PRMT3 interacts with Methyltransferase 14 (METTL14) and is involved in its arginine methylation. In addition, PRMT3 inhibition-mediated METTL14 overexpression promotes methylation modification via an m6 A-YTHDF2-dependent mechanism, reducing Glutathione peroxidase 4 (GPX4) mRNA stability, increasing lipid peroxidation levels, and accelerating ferroptosis. Notably, combined PRMT3 blockade and anti-PD-1 therapy display more potent antitumor effects by accelerating ferroptosis in cell-derived xenograft models. The specific PRMT3 inhibitor SGC707 exerts the same immunotherapeutic sensitizing effect in a patient-derived xenograft model. Notably, blocking PRMT3 improves tumor suppression in response to cisplatin and radiation therapy. Altogether, this work demonstrates that PRMT3 depletion is a promising target for EC.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Can Wang
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Xue Guan
- Animal Laboratory CenterThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Ying Ma
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Shijie Zhang
- Department of Radiation OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Fei Li
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Yue Yin
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Zhenxing Sun
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Xiuwei Chen
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Hang Yin
- Department of Radiation OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and TherapyHarbin Medical UniversityHarbinHeilongjiang150000China
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHung HomKowloonHong Kong27665111China
| |
Collapse
|
6
|
Hu P, Wang Y, Chen X, Zhao L, Qi C, Jiang G. Development and verification of a newly established cuproptosis-associated lncRNA model for predicting overall survival in uterine corpus endometrial carcinoma. Transl Cancer Res 2023; 12:1963-1979. [PMID: 37701111 PMCID: PMC10493807 DOI: 10.21037/tcr-23-61] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/01/2023] [Indexed: 09/14/2023]
Abstract
Background Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecologic malignant tumor with high recurrence and mortality rates. This study aimed to develop and validate a prognostic model for patients with UCEC based on cuproptosis-related long non-coding RNA (lncRNA) signature. Methods Transcriptome and clinical UCEC data were obtained from The Cancer Genome Atlas (TCGA) database. Correlation analysis was conducted to screen out the cuproptosis-related lncRNAs, and univariate regression analysis was performed to determine prognostic factors associated with overall survival (OS). A cuproptosis-related lncRNA risk model was constructed through least absolute shrinkage and selection operator (LASSO) regression and cross-validation. The accuracy and reliability of the model were verified through Kaplan-Meier (KM), proportional hazards model (Cox) regression, nomogram, principal component analysis (PCA), and stage analysis. Gene Ontology (GO) enrichment, immune function, and tumor mutation burden (TMB) analyses were conducted between low-risk and high-risk groups, and antineoplastic drugs were predicted. Results By correlation analysis, 155 cuproptosis-related lncRNAs were acquired, and 9 lncRNAs were identified as independent prognostic factors. A 6-cuproptosis-related lncRNA model was established. The results revealed that patients in the high-risk group were more inclined to have a poor OS than those in the low-risk group. Risk score was an independent prognostic factor and had a high accuracy and predictive value. The extracellular structure and anchored components of membrane-related GO terms were significantly enriched. Immune function and TMB results were assumed to be different from each other, which might explain a better outcome in the low-risk group than that in the high-risk group. Eighteen compounds were predicted as chemotherapy drugs with high half maximal inhibitory concentration (IC50) in the high-risk group. Conclusions We successfully developed a cuproptosis-related lncRNA risk model for the prediction of prognosis, while simultaneously providing insights on new approaches for immunotherapy and chemotherapy for patients with UCEC.
Collapse
Affiliation(s)
- Panwei Hu
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongxiang Wang
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiuhui Chen
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijie Zhao
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong Qi
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guojing Jiang
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
8
|
Radwan IT, Elwahy AH, Darweesh AF, Sharaky M, Bagato N, Khater HF, Salem ME. Design, synthesis, docking study, and anticancer evaluation of novel bis-thiazole derivatives linked to benzofuran or benzothiazole moieties as PI3k inhibitors and apoptosis inducers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Singer CF, Holst F, Steurer S, Burandt EC, Lax SF, Jakesz R, Rudas M, Stöger H, Greil R, Sauter G, Filipits M, Simon R, Gnant M. Estrogen Receptor Alpha Gene Amplification Is an Independent Predictor of Long-Term Outcome in Postmenopausal Patients with Endocrine-Responsive Early Breast Cancer. Clin Cancer Res 2022; 28:4112-4120. [PMID: 35920686 PMCID: PMC9475247 DOI: 10.1158/1078-0432.ccr-21-4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Estrogen receptor (ER) expression is a prognostic parameter in breast cancer, and a prerequisite for the use of endocrine therapy. In ER+ early breast cancer, however, no receptor-associated biomarker exists that identifies patients with a particularly favorable outcome. We have investigated the value of ESR1 amplification in predicting the long-term clinical outcome in tamoxifen-treated postmenopausal women with endocrine-responsive breast cancer. EXPERIMENTAL DESIGN 394 patients who had been randomized into the tamoxifen-only arm of the prospective randomized ABCSG-06 trial of adjuvant endocrine therapy with available formalin-fixed, paraffin-embedded tumor tissue were included in this analysis. IHC ERα expression was evaluated both locally and in a central lab using the Allred score, while ESR1 gene amplification was evaluated by FISH analysis using the ESR1/CEP6 ratio indicating focal copy number alterations. RESULTS Focal ESR1 copy-number elevations (amplifications) were detected in 187 of 394 (47%) tumor specimens, and were associated with a favorable outcome: After a median follow-up of 10 years, women with intratumoral focal ESR1 amplification had a significantly longer distant recurrence-free survival [adjusted HR, 0.48; 95% confidence interval (CI), 0.26-0.91; P = 0.02] and breast cancer-specific survival (adjusted HR 0.47; 95% CI, 0.27-0.80; P = 0.01) as compared with women without ESR1 amplification. IHC ERα protein expression, evaluated by Allred score, correlated significantly with focal ESR1 amplification (P < 0.0001; χ2 test), but was not prognostic by itself. CONCLUSIONS Focal ESR1 amplification is an independent and powerful predictor for long-term distant recurrence-free and breast cancer-specific survival in postmenopausal women with endocrine-responsive early-stage breast cancer who received tamoxifen for 5 years.
Collapse
Affiliation(s)
- Christian F. Singer
- Department of OB/GYN, Medical University of Vienna, Vienna, Austria.,Corresponding Author: Christian F. Singer, Medical University of Vienna, AKH Wien, Waehringer Guertel 18-20, Vienna 1090, Austria. Phone: 4314-0400-28010, Fax: 4314-0400-23230; E-mail:
| | | | - Frederik Holst
- Department of OB/GYN, Medical University of Vienna, Vienna, Austria.,Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike C. Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigurd F. Lax
- Department of Pathology, Medical University of Graz, Graz, Austria.,Hospital Graz II, Graz, Austria.,Johannes Kepler University, School of Medicine, Graz, Austria
| | - Raimund Jakesz
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Margaretha Rudas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Herbert Stöger
- Department of Medicine, Medical University of Graz, Graz, Austria
| | - Richard Greil
- Salzburg Cancer Research Institute - Center for Clinical and Immunology Trials and Cancer Cluster Salzburg; IIIrd Medical Department, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Filipits
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Kobayashi Kato M, Asami Y, Takayanagi D, Matsuda M, Shimada Y, Hiranuma K, Kuno I, Komatsu M, Hamamoto R, Matumoto K, Ishikawa M, Kohno T, Kato T, Shiraishi K, Yoshida H. Clinical impact of genetic alterations of
CTNNB1
in patients with grade 3 endometrial endometrioid carcinoma. Cancer Sci 2022; 113:1712-1721. [PMID: 35278272 PMCID: PMC9128156 DOI: 10.1111/cas.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
To identify prognostic factors in patients with grade 3 (high‐grade) endometrial endometrioid carcinoma, we evaluated the spectrum of genomic alterations and examined whether previously reported molecular subtypes of endometrial carcinoma were adapted to clinical outcome prediction. Seventy‐five Japanese patients with grade 3 endometrial endometrioid carcinoma, who underwent a potentially curative resection procedure between 1997 and 2018 at the National Cancer Center Hospital, were included. We classified the patients into four risk groups of the disease based on the Proactive Molecular Risk Classifier for Endometrial Cancer. Genomic alterations in PTEN, ARID1A, TP53, and PIK3CA were detected in more than 30% of the patients. Overall survival and recurrence‐free survival of patients with genomic alterations in CTNNB1 were poorer than those of patients with wild‐type CTNNB1 (p = 0.006 and p = 0.004, respectively). Compared with that of alterations prevalent in Caucasians, the frequency of genomic alterations in POLE and TP53 was higher in our study than in The Cancer Genome Atlas dataset (p = 0.01 and p = 0.01, respectively). The tendency for recurrence‐free survival in the POLE exonuclease domain mutation group was better than that in the TP53 mutation and mismatch repair‐deficient groups (p = 0.08 and p = 0.07, respectively), consistent with the Proactive Molecular Risk Classifier for Endometrial Cancer risk classifier definition. The CTNNB1 mutation is a potential novel biomarker for the prognosis of patients with grade 3 endometrial endometrioid carcinoma, and prognosis classification using Proactive Molecular Risk Classifier for Endometrial Cancer may help screen Japanese patients with the disease.
Collapse
Affiliation(s)
- Mayumi Kobayashi Kato
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Yuka Asami
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Department of Obstetrics and Gynecology Showa University School of Medicine Tokyo 142‐8555 Japan
| | - Daisuke Takayanagi
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Maiko Matsuda
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Yoko Shimada
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Kengo Hiranuma
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Ikumi Kuno
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Cancer Translational Research Team RIKEN Center for Advanced Intelligence Project Tokyo 103‐0027 Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Cancer Translational Research Team RIKEN Center for Advanced Intelligence Project Tokyo 103‐0027 Japan
| | - Koji Matumoto
- Department of Obstetrics and Gynecology Showa University School of Medicine Tokyo 142‐8555 Japan
| | - Mitsuya Ishikawa
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Takashi Kohno
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Tomoyasu Kato
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Kouya Shiraishi
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Hiroshi Yoshida
- Division of Diagnostic Pathology National Cancer Center Hospital Tokyo 104‐0045 Japan
| |
Collapse
|
11
|
He Z, Gao Y, Li T, Yu C, Ou L, Luo C. HepaCAM‑PIK3CA axis regulates the reprogramming of glutamine metabolism to inhibit prostate cancer cell proliferation. Int J Oncol 2022; 60:37. [PMID: 35191516 PMCID: PMC8878713 DOI: 10.3892/ijo.2022.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Energy metabolism reprogramming is becoming an increasingly important hallmark of cancer. Specifically, cancers tend to undergo metabolic reprogramming to upregulate a cell-dependent glutamine (Gln) metabolism. Notably, hepatocellular cell adhesion molecule (HepaCAM) has been previously reported to serve a key role as a tumour suppressor. However, the possible regulatory role of HepaCAM in Gln metabolism in prostate cancer (PCa) remains poorly understood. In the present study, bioinformatics analysis predicted a significant negative correlation among the expression of HepaCAM, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA), glutaminase (GLS) and solute carrier family 1 member 5 (SLC1A5), components of Gln metabolism, in clinical and genomic datasets. Immunohistochemistry results verified a negative correlation between HepaCAM and PIK3CA expression in PCa tissues. Subsequently, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) assays were performed, and the results revealed markedly reduced levels of Gln and metabolic flux in the blood samples of patients with PCa and in PCa cells. Mechanistically, overexpression of HepaCAM inhibited Gln metabolism and proliferation by regulating PIK3CA in PCa cells. In addition, Gln metabolism was discovered to be stress-resistant in PCa cells, since the expression levels of GLS and SLC1A5 remained high for a period of time after Gln starvation. However, overexpression of HepaCAM reversed this resistance to some extent. Additionally, alpelisib, a specific inhibitor of PIK3CA, effectively potentiated the inhibitory effects of HepaCAM overexpression on Gln metabolism and cell proliferation through mass spectrometry and CCK-8 experiments. In addition, the inhibitory effect of PIK3CA on the growth of tumor tissue in nude mice was also confirmed by immunohistochemistry in vivo. To conclude, the results from the present study revealed an abnormal Gln metabolic profile in the blood samples of patients with PCa, suggesting that it can be applied as a clinical diagnostic tool for PCa. Additionally, a key role of the HepaCAM/PIK3CA axis in regulating Gln metabolism, cell proliferation and tumour growth was identified. The combination of alpelisib treatment with the upregulation of HepaCAM expression may serve as a novel method for treating patients with PCa.
Collapse
Affiliation(s)
- Zhenting He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yingying Gao
- Department of Laboratory Diagnosis, People's Hospital of Chongqing Banan District, Chongqing 401320, P.R. China
| | - Ting Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chaowen Yu
- Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Liping Ou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
12
|
Gonzalez-Bosquet J, Bakkum-Gamez JN, Weaver AL, McGree ME, Dowdy SC, Famuyide AO, Kipp BR, Halling KC, Couch FJ, Podratz KC. PP2A and E3 ubiquitin ligase deficiencies: Seminal biological drivers in endometrial cancer. Gynecol Oncol 2021; 162:182-189. [PMID: 33867147 DOI: 10.1016/j.ygyno.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE PI3K-AKT pathway mutations initiate a kinase cascade that characterizes endometrial cancer (EC). As kinases seldom cause oncogenic transformation without dysregulation of antagonistic phosphatases, pivotal interactions governing this pathway were explored and correlated with clinical outcomes. METHODS After exclusion of patients with POLE mutations from The Cancer Genome Atlas EC cohort with endometrioid or serous EC, the study population was 209 patients with DNA sequencing, quantitative gene-specific RNA expression, copy number variation (CNV), and surveillance data available. Extracted data were annotated and integrated. RESULTS A PIK3CA, PTEN, or PIK3R1 mutant (-mu) was present in 83% of patients; 57% harbored more than 1 mutation without adversely impacting progression-free survival (PFS) (P = .10). PIK3CA CNV of at least 1.1 (CNV high [-H]) was detected in 26% and linked to TP53-mu and CIP2A expression (P < .001) but was not associated with PFS (P = .24). PIK3CA expression was significantly different between those with CIP2A-H and CIP2A low (-L) expression (the endogenous inhibitor of protein phosphatase 2A [PP2A]), when stratified by PIK3CA mutational status or by PIK3CA CNV-H and CNV-L (all P < .01). CIP2A-H or PPP2R1A-mu mitigates PP2A kinase dephosphorylation, and FBXW7-mu nullifies E3 ubiquitin ligase (E3UL) oncoprotein degradation. CIP2A-H and PPP2R1A-mu (PP2A impairment) and FBXW7-mu (E3UL impairment) were associated with compromised PFS (P < .001) and were prognostically discriminatory for PIK3CA-mu and PIK3CA CNV-H tumors (P < .001). Among documented recurrences, 84% were associated with impaired PP2A (75%) and/or E3UL (20%). CONCLUSION PP2A and E3UL deficiencies are seminal biological drivers in EC independent of PIK3CA-mu, PTEN-mu, and PIK3R1-mu and PIK3CA CNV.
Collapse
Affiliation(s)
- Jesus Gonzalez-Bosquet
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, United States of America
| | - Jamie N Bakkum-Gamez
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, United States of America
| | - Amy L Weaver
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Michaela E McGree
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Sean C Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, United States of America
| | - Abimbola O Famuyide
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States of America
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Karl C Podratz
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
13
|
Luo Y, Yuan J, Huang J, Yang T, Zhou J, Tang J, Liu M, Chen J, Chen C, Huang W, Zhang H. Role of PRPS2 as a prognostic and therapeutic target in osteosarcoma. J Clin Pathol 2021; 74:321-326. [PMID: 33589531 DOI: 10.1136/jclinpath-2020-206505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022]
Abstract
AIMS Osteosarcoma (OS) is the most common primary malignant tumour of the bone. However, further improvement in survival has not been achieved due to a lack of well-validated prognostic markers and more effective therapeutic agents. Recently, the c-Myc-phosphoribosyl pyrophosphate synthetase 2 (PRPS2) pathway has been shown to promote nucleic acid metabolism and cancer cell proliferation in malignant melanoma; phosphorylated mammalian target of rapamycin (p-mTOR) has been upregulated and an effective therapeutic target in OS. However, the p-mTOR-PRPS2 pathway has not been evaluated in OS. METHODS In this study, the expression level of PRPS2, p-mTOR and marker of proliferation (MKI-67) was observed in a cohort of specimens (including 236 OS cases and 56 control samples) using immunohistochemistry, and the association between expression level and clinicopathological characteristics of patients with OS was analysed. RESULTS PRPS2 protein level, which is related to tumour proliferation, was higher in OS cells (p=0.003) than in fibrous dysplasia, and the higher PRPS2 protein level was associated with a higher tumour recurrence (p=0.001). In addition, our statistical analysis confirmed that PRPS2 is a novel, independent prognostic indicator of OS. Finally, we found that the expression of p-mTOR was associated with the poor prognosis of patients with OS (p<0.05). CONCLUSIONS PRPS2 is an independent prognostic marker and a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Yanli Luo
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junqing Yuan
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin Huang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tingting Yang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Zhou
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Tang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Min Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Chen
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyan Chen
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wentao Huang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Basu M, Chakraborty B, Ghosh S, Samadder S, Dutta S, Roy A, Pal DK, Ghosh A, Panda CK. Divergent molecular profile of PIK3CA gene in arsenic-associated bladder carcinoma. Mutagenesis 2020; 35:499-508. [PMID: 33400797 DOI: 10.1093/mutage/geaa031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/11/2020] [Indexed: 07/10/2024] Open
Abstract
The activation of PIK3CA in bladder carcinoma (BlCa) with its recurrent mutations in exon 9 and 20 were well reported. But the association of arsenic on the activation of the pathway is not well elucidated. Therefore, we aimed to analyse the effect of arsenic on the genetic (copy number variation/mutation) and expression profiles of PIK3CA in primary BlCa samples. Infrequent amplification (16%) of the PIK3CA locus was observed, with higher frequency among the arsenic-high (AsH) than arsenic-low (AsL) samples. Frequent (54%) tumour-specific mutations in exon 9 and 20 of PIK3CA were observed in the BlCa samples with prevalent (47%) C>T transition mutations. Exon 9 and 20 harboured 48% and 73% of the total mutations, respectively, with 37% in E542K/E545K and 25% of the mutation in H1047Y/R. Though mutation frequency in AsH and AsL was found to be comparable, we observed some arsenic-specific mutation at c.1633G>A, c.1634A>C (E545K) and c.2985C>T and c.3130G>T mutations, as well as prevalent transverse mutations of A>C and G>T in AsH group. Furthermore, 73% of the BlCa samples showed overexpression (mRNA/protein) of PIK3CA with genetic alterations (amplification/mutation), significantly (P = 0.01) higher in AsH group. However, 36% of the samples showed overexpressed PIK3CA, independent of mutation or amplification, signifying a transcriptional upregulation of PIK3CA gene. Therefore, the expression status of NFκB, a transcription factor of PIK3CA, was assessed and found to be significantly correlated with the overexpression of PIK3CA (mRNA/protein) in AsH group. Similarly, the expression pattern of pAKT1 (Thr 308) was also found to be significantly correlated with PIK3CA overexpression. Finally, AsH patients with the overexpression of PIK3CA or NFκB had the worst overall survival, signifying a strong impact of arsenic on this pathway and outcome of the patients. Thus, our study showed that the arsenic-associated differential molecular profile of PIK3CA/AKT1/NFkB in BlCa has an important role in the molecular pathogenesis of the disease.
Collapse
Affiliation(s)
- Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sabnam Ghosh
- Department of Life Science, Presidency University, Kolkata, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sankhadeep Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- Nil Ratan Sircar Medical College and Hospital Kolkata
| | | | - Amlan Ghosh
- Department of Life Science, Presidency University, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
15
|
Saglam O, Tang Z, Tang G, Medeiros LJ, Toruner GA. KAT6A amplifications are associated with shorter progression-free survival and overall survival in patients with endometrial serous carcinoma. PLoS One 2020; 15:e0238477. [PMID: 32877461 PMCID: PMC7467277 DOI: 10.1371/journal.pone.0238477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Somatic copy number alterations (CNA) are common in endometrial serous carcinoma (ESC). We used the Tumor Cancer Genome Atlas Pan Cancer dataset (TCGA Pan Can) to explore the impact of somatic CNA and gene expression levels (mRNA) of cancer-related genes in ESC. Results were correlated with clinico-pathologic parameters such as age of onset, disease stage, progression-free survival (PFS) and overall survival (OS) (n = 108). 1,449 genes with recurrent somatic CNA were identified, observed in 10% or more tumor samples. Somatic CNA and mRNA expression levels were highly correlated (r> = 0.6) for 383 genes. Among these, 45 genes were classified in the Tier 1 category of Cancer Genome Census-Catalogue of Somatic Mutations in Cancer. Eighteen of 45 Tier 1 genes had highly correlated somatic CNA and mRNA expression levels including ARNT, PIK3CA, TBLXR1, ASXL1, EIF4A2, HOOK3, IKBKB, KAT6A, TCEA1, KAT6B, ERBB2, BRD4, KEAP1, PRKACA, DNM2, SMARCA4, AKT2, SS18L1. Our results are in agreement with previously reported somatic CNA for ERBB2, BRD4 and PIK3C in ESC. In addition, AKT2 (p = 0.002) and KAT6A (p = 0.015) amplifications were more frequent in tumor samples from younger patients (<60), and CEBPA (p = 0.028) and MYC (p = 0.023) amplifications were more common with advanced (stage III and IV) disease stage. Patients with tumors carrying KAT6A and MYC amplifications had shorter PFS and OS. The hazard ratio (HR) of KAT6A was 2.82 [95 CI 1.12-7.07] for PFS and 3.87 [95 CI 1.28-11.68] for OS. The HR of MYC was 2.25 [95 CI 1.05-4.81] and 2.62[95 CI 1.07-6.41] for PFS and OS, respectively.
Collapse
Affiliation(s)
- Ozlen Saglam
- Department of Surgical Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Zhenya Tang
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guilin Tang
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - L. Jeffrey Medeiros
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gokce A. Toruner
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hu X, Bian Y, Wen X, Wang M, Li Y, Wan X. Collagen triple helix repeat containing 1 promotes endometrial cancer cell migration by activating the focal adhesion kinase signaling pathway. Exp Ther Med 2020; 20:1405-1414. [PMID: 32742375 PMCID: PMC7388291 DOI: 10.3892/etm.2020.8833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Metastasis of endometrial cancer (EC) is known to be the major cause of relapse and death of patients. However, the mechanisms of this process are not well understood. Focal adhesion kinase (FAK) is known for its essential role in integrin signaling and is highly expressed in many human tumors. FAK also plays important roles in a variety of cellular processes. Collagen triple helix repeat containing 1 (CTHRC1) is a secreted protein that has been detected in many human solid cancers. In the present study, CTHRC1 was found to be highly expressed in EC tissues when compared with normal tissues. In addition, overexpression of CTHRC1 promoted the migration of EC cells in vitro. Recombinant CTHRC1 protein also promoted the migration of EC cells in vitro. The results of the present study suggested that CTHRC1 mediated EC cell migration via the FAK signaling pathway. Taken together, these data indicated that CTHRC1 and the FAK signaling pathway may be potential therapeutic targets for EC metastasis treatment.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Yiding Bian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Xiaoli Wen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Mengfei Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
17
|
Sorolla MA, Parisi E, Sorolla A. Determinants of Sensitivity to Radiotherapy in Endometrial Cancer. Cancers (Basel) 2020; 12:E1906. [PMID: 32679719 PMCID: PMC7409033 DOI: 10.3390/cancers12071906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is one of the cornerstone treatments for endometrial cancer and has successfully diminished the risk of local recurrences after surgery. However, a considerable percentage of patients suffers tumor relapse due to radioresistance mechanisms. Knowledge about the molecular determinants that confer radioresistance or radiosensitivity in endometrial cancer is still partial, as opposed to other cancers. In this review, we have highlighted different central cellular signaling pathways and processes that are known to modulate response to radiotherapy in endometrial cancer such as PI3K/AKT, MAPK and NF-κB pathways, growth factor receptor signaling, DNA damage repair mechanisms and the immune system. Moreover, we have listed different clinical trials employing targeted therapies against some of the aforementioned signaling pathways and members with radiotherapy. Finally, we have identified the latest advances in radiotherapy that have started being utilized in endometrial cancer, which include modern radiotherapy and radiogenomics. New molecular and genetic studies in association with the analysis of radiation responses in endometrial cancer will assist clinicians in taking suitable decisions for each individual patient and pave the path for personalized radiotherapy.
Collapse
Affiliation(s)
- Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
18
|
Pan Y, Jia LP, Liu Y, Han Y, Deng Q. Alteration of tumor associated neutrophils by PIK3CA expression in endometrial carcinoma from TCGA data. J Ovarian Res 2019; 12:81. [PMID: 31472672 PMCID: PMC6717327 DOI: 10.1186/s13048-019-0557-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common cancer in female worldwide. PIK3CA has been proven to be a strong prognostic biomarker in UCEC. Nevertheless, current studies have not investigated what effects PIK3CA had on tumor associated neutrophils (TANss). Kaplan-Meier methods were used to compute the survival time of TCGA UCEC patients. GO and KEGG enrichment analysis unveiled relevant pathways PIK3CA affected using DEGs between PIK3CA high expression group and PIK3CA low expression group in TCGA UCEC, as well as GSEA. immune infiltration status was calculated using TIMER. We found that PIK3CA influenced a number of pathways including immune related pathways. The fraction of TANs was certainly altered by PIK3CA expression in UCEC. Our findings suggest that PIK3CA expression may play an important role in tumor immune microenvironment and could alter fraction of TANs in UCEC.
Collapse
Affiliation(s)
- Yinglian Pan
- Department of Medical Oncology, Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China
| | - Li Ping Jia
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China
| | - Yuzhu Liu
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China
| | - Yixu Han
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China
| | - Qingchun Deng
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China.
| |
Collapse
|
19
|
Marshall JDS, Whitecross DE, Mellor P, Anderson DH. Impact of p85α Alterations in Cancer. Biomolecules 2019; 9:biom9010029. [PMID: 30650664 PMCID: PMC6359268 DOI: 10.3390/biom9010029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in the regulation of cell signaling, proliferation, survival, migration and vesicle trafficking in normal cells and is frequently deregulated in many cancers. The p85α protein is the most characterized regulatory subunit of the class IA PI3Ks, best known for its regulation of the p110-PI3K catalytic subunit. In this review, we will discuss the impact of p85α mutations or alterations in expression levels on the proteins p85α is known to bind and regulate. We will focus on alterations within the N-terminal half of p85α that primarily regulate Rab5 and some members of the Rho-family of GTPases, as well as those that regulate PTEN (phosphatase and tensin homologue deleted on chromosome 10), the enzyme that directly counteracts PI3K signaling. We highlight recent data, mapping the interaction surfaces of the PTEN⁻p85α breakpoint cluster region homology (BH) domain, which sheds new light on key residues in both proteins. As a multifunctional protein that binds and regulates many different proteins, p85α mutations at different sites have different impacts in cancer and would necessarily require distinct treatment strategies to be effective.
Collapse
Affiliation(s)
- Jeremy D S Marshall
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Dielle E Whitecross
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Paul Mellor
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|