1
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
2
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
3
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Tawil N, Mohammadnia A, Rak J. Oncogenes and cancer associated thrombosis: what can we learn from single cell genomics about risks and mechanisms? Front Med (Lausanne) 2023; 10:1252417. [PMID: 38188342 PMCID: PMC10769496 DOI: 10.3389/fmed.2023.1252417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Single cell analysis of cancer cell transcriptome may shed a completely new light on cancer-associated thrombosis (CAT). CAT causes morbid, and sometimes lethal complications in certain human cancers known to be associated with high risk of venous thromboembolism (VTE), pulmonary embolism (PE) or arterial thromboembolism (ATE), all of which worsen patients' prognosis. How active cancers drive these processes has long evaded scrutiny. While "unspecific" microenvironmental effects and consequences of patient care (e.g., chemotherapy) have been implicated in pathogenesis of CAT, it has also been suggested that oncogenic pathways driven by either genetic (mutations), or epigenetic (methylation) events may influence the coagulant phenotype of cancer cells and stroma, and thereby modulate the VTE/PE risk. Consequently, the spectrum of driver events and their downstream effector mechanisms may, to some extent, explain the heterogeneity of CAT manifestations between cancer types, molecular subtypes, and individual cases, with thrombosis-promoting, or -protective mutations. Understanding this molecular causation is important if rationally designed countermeasures were to be deployed to mitigate the clinical impact of CAT in individual cancer patients. In this regard, multi-omic analysis of human cancers, especially at a single cell level, has brought a new meaning to concepts of cellular heterogeneity, plasticity, and multicellular complexity of the tumour microenvironment, with profound and still relatively unexplored implications for the pathogenesis of CAT. Indeed, cancers may contain molecularly distinct cellular subpopulations, or dynamic epigenetic states associated with different profiles of coagulant activity. In this article we discuss some of the relevant lessons from the single cell "omics" and how they could unlock new potential mechanisms through which cancer driving oncogenic lesions may modulate CAT, with possible consequences for patient stratification, care, and outcomes.
Collapse
Affiliation(s)
- Nadim Tawil
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdulshakour Mohammadnia
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Rue University, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Jeon HM, Kim JY, Cho HJ, Lee WJ, Nguyen D, Kim SS, Oh YT, Kim HJ, Jung CW, Pinero G, Joshi T, Hambardzumyan D, Sakaguchi T, Hubert CG, McIntyre TM, Fine HA, Gladson CL, Wang B, Purow BW, Park JB, Park MJ, Nam DH, Lee J. Tissue factor is a critical regulator of radiation therapy-induced glioblastoma remodeling. Cancer Cell 2023; 41:1480-1497.e9. [PMID: 37451272 PMCID: PMC10530238 DOI: 10.1016/j.ccell.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Radiation therapy (RT) provides therapeutic benefits for patients with glioblastoma (GBM), but inevitably induces poorly understood global changes in GBM and its microenvironment (TME) that promote radio-resistance and recurrence. Through a cell surface marker screen, we identified that CD142 (tissue factor or F3) is robustly induced in the senescence-associated β-galactosidase (SA-βGal)-positive GBM cells after irradiation. F3 promotes clonal expansion of irradiated SA-βGal+ GBM cells and orchestrates oncogenic TME remodeling by activating both tumor-autonomous signaling and extrinsic coagulation pathways. Intratumoral F3 signaling induces a mesenchymal-like cell state transition and elevated chemokine secretion. Simultaneously, F3-mediated focal hypercoagulation states lead to activation of tumor-associated macrophages (TAMs) and extracellular matrix (ECM) remodeling. A newly developed F3-targeting agent potently inhibits the aforementioned oncogenic events and impedes tumor relapse in vivo. These findings support F3 as a critical regulator for therapeutic resistance and oncogenic senescence in GBM, opening potential therapeutic avenues.
Collapse
Affiliation(s)
- Hye-Min Jeon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeong-Yub Kim
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, Korea
| | - Won Jun Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dayna Nguyen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sung Soo Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Young Taek Oh
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hee-Jin Kim
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Chan-Woong Jung
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Gonzalo Pinero
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanvi Joshi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Takuya Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher G Hubert
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas M McIntyre
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Candece L Gladson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bingcheng Wang
- Department of Medicine, MetroHealth Campus, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin W Purow
- Department of Neurology, UVA Cancer Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Myung Jin Park
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Department of Neurosurgery Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
6
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Burdett KB, Unruh D, Drumm M, Steffens A, Lamano J, Judkins J, Schwartz M, Javier R, Amidei C, Lipp ES, Peters KB, Lai A, Eldred BSC, Heimberger AB, McCortney K, Scholtens DM, Horbinski C. Determining venous thromboembolism risk in patients with adult-type diffuse glioma. Blood 2023; 141:1322-1336. [PMID: 36399711 PMCID: PMC10082363 DOI: 10.1182/blood.2022017858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Venous thromboembolism (VTE) is a life-threating condition that is common in patients with adult-type diffuse gliomas, yet thromboprophylaxis is controversial because of possible intracerebral hemorrhage. Effective VTE prediction models exist for other cancers, but not glioma. Our objective was to develop a VTE prediction tool to improve glioma patient care, incorporating clinical, blood-based, histologic, and molecular markers. We analyzed preoperative arterial blood, tumor tissue, and clinical-pathologic data (including next-generation sequencing data) from 258 patients with newly diagnosed World Health Organization (WHO) grade 2 to 4 adult-type diffuse gliomas. Forty-six (17.8%) experienced VTE. Tumor expression of tissue factor (TF) and podoplanin (PDPN) each positively correlated with VTE, although only circulating TF and D-dimers, not circulating PDPN, correlated with VTE risk. Gliomas with mutations in isocitrate dehydrogenase 1 (IDH1) or IDH2 (IDHmut) caused fewer VTEs; multivariable analysis suggested that this is due to IDHmut suppression of TF, not PDPN. In a predictive time-to-event model, the following predicted increased VTE risk in newly diagnosed patients with glioma: (1) history of VTE; (2) hypertension; (3) asthma; (4) white blood cell count; (5) WHO tumor grade; (6) patient age; and (7) body mass index. Conversely, IDHmut, hypothyroidism, and MGMT promoter methylation predicted reduced VTE risk. These 10 variables were used to create a web-based VTE prediction tool that was validated in 2 separate cohorts of patients with adult-type diffuse glioma from other institutions. This study extends our understanding of the VTE landscape in these tumors and provides evidence-based guidance for clinicians to mitigate VTE risk in patients with glioma.
Collapse
Affiliation(s)
| | | | - Michael Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Alicia Steffens
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Jonathan Lamano
- Department of Neurosurgery, Stanford University, Stanford, CA
| | - Jonathan Judkins
- Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Margaret Schwartz
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Rodrigo Javier
- University of Chicago Pritzker School of Medicine, Chicago, IL
| | - Christina Amidei
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Eric S. Lipp
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, NC
| | - Katherine B. Peters
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, NC
| | - Albert Lai
- Department of Neurology, University of California, Los Angeles, CA
| | | | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | | | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
- Department of Pathology, Northwestern University, Chicago, IL
| |
Collapse
|
9
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022; 87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
Affiliation(s)
- Lata Adnani
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Cristiana Spinelli
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Nadim Tawil
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Janusz Rak
- McGill University and Research Institute of the McGill University Health Centre, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
10
|
Qian C, Xiufu W, Jianxun T, Zihao C, Wenjie S, Jingfeng T, Kahlert UD, Renfei D. A Novel Extracellular Matrix Gene-Based Prognostic Model to Predict Overall Survive in Patients With Glioblastoma. Front Genet 2022; 13:851427. [PMID: 35783254 PMCID: PMC9247148 DOI: 10.3389/fgene.2022.851427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Glioblastoma (GBM), one of the most prevalent brain tumor types, is correlated with an extremely poor prognosis. The extracellular matrix (ECM) genes could activate many crucial pathways that facilitate tumor development. This study aims to provide online models to predict GBM survival by ECM genes. Methods: The associations of ECM genes with the prognosis of GBM were analyzed, and the significant prognosis-related genes were used to develop the ECM index in the CGGA dataset. Furthermore, the ECM index was then validated on three datasets, namely, GSE16011, TCGA-GBM, and GSE83300. The prognosis difference, differentially expressed genes, and potential drugs were obtained. Multiple machine learning methods were selected to construct the model to predict the survival status of GBM patients at 6, 12, 18, 24, 30, and 36 months after diagnosis. Results: Five ECM gene signatures (AEBP1, F3, FLNC, IGFBP2, and LDHA) were recognized to be associated with the prognosis. GBM patients were divided into high– and low–ECM index groups with significantly different overall survival rates in four datasets. High–ECM index patients exhibited a worse prognosis than low–ECM index patients. Four small molecules (podophyllotoxin, lasalocid, MG-262, and nystatin) that might reduce GBM development were predicted by the Cmap dataset. In the independent dataset (GSE83300), the maximum values of prediction accuracy at 6, 12, 18, 24, 30, and 36 months were 0.878, 0.769, 0.748, 0.720, 0.705, and 0.868, respectively. These machine learning models were provided on a publicly accessible, open-source website (https://ospg.shinyapps.io/OSPG/). Conclusion: In summary, our findings indicated that ECM genes were prognostic indicators for patient survival. This study provided an online server for the prediction of survival curves of GBM patients.
Collapse
Affiliation(s)
- Chen Qian
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wu Xiufu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Tang Jianxun
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chen Zihao
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Shi Wenjie
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
- Molecular and Experimental Surgery, Medical Faculty University Hospital Magdeburg, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Otto-von Guericke University, Magdeburg, Germany
| | - Tang Jingfeng
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, Medical Faculty University Hospital Magdeburg, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Otto-von Guericke University, Magdeburg, Germany
- *Correspondence: Ulf D. Kahlert, ; Du Renfei,
| | - Du Renfei
- Clinic of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Chifeng Municipal Hospital, Inner Mongolia, Chifeng, China
- *Correspondence: Ulf D. Kahlert, ; Du Renfei,
| |
Collapse
|
11
|
Tawil N, Rak J. Blood coagulation and cancer genes. Best Pract Res Clin Haematol 2022; 35:101349. [DOI: 10.1016/j.beha.2022.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
|
12
|
Luo Y, Zhang W. WITHDRAWN: DNMT inhibitor (decitabine) attenuates tuberculosis-induced spine injury by modulating the expression of microRNA-155 and matrix metalloproteinase-13 via suppressing the hypermethylation of IDH mutant. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.03.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
The efficacy of an unrestricted cycling ketogenic diet in preclinical models of IDH wild-type and IDH mutant glioma. PLoS One 2022; 17:e0257725. [PMID: 35134075 PMCID: PMC8824343 DOI: 10.1371/journal.pone.0257725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Infiltrative gliomas are the most common neoplasms arising in the brain, and remain largely incurable despite decades of research. A subset of these gliomas contains mutations in isocitrate dehydrogenase 1 (IDH1mut) or, less commonly, IDH2 (together called “IDHmut”). These mutations alter cellular biochemistry, and IDHmut gliomas are generally less aggressive than IDH wild-type (IDHwt) gliomas. Some preclinical studies and clinical trials have suggested that various forms of a ketogenic diet (KD), characterized by low-carbohydrate and high-fat content, may be beneficial in slowing glioma progression. However, adherence to a strict KD is difficult, and not all studies have shown promising results. Furthermore, no study has yet addressed whether IDHmut gliomas might be more sensitive to KD. The aim of the current study was to compare the effects of a unrestricted, cycling KD (weekly alternating between KD and standard diet) in preclinical models of IDHwt versus IDHmut gliomas. In vitro, simulating KD by treatment with the ketone body β-hydroxybutyrate had no effect on the proliferation of patient-derived IDHwt or IDHmut glioma cells, either in low or normal glucose conditions. Likewise, an unrestricted, cycling KD had no effect on the in vivo growth of patient-derived IDHwt or IDHmut gliomas, even though the cycling KD did result in persistently elevated circulating ketones. Furthermore, this KD conferred no survival benefit in mice engrafted with Sleeping-Beauty transposase-engineered IDHmut or IDHwt glioma. These data suggest that neither IDHwt nor IDHmut gliomas are particularly responsive to an unrestricted, cycling form of KD.
Collapse
|
14
|
Markwell SM, Ross JL, Olson CL, Brat DJ. Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol 2022; 143:291-310. [PMID: 35039931 DOI: 10.1007/s00401-021-02401-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality. The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenvironment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise due to "cancer outgrowing its blood supply" when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overexpression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that includes breakdown of the blood-brain barrier, immunosuppressive immune cell accumulation, microvascular hyperproliferation, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis, the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - James L Ross
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Cheryl L Olson
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA.
| |
Collapse
|
15
|
Lottin M, Soudet S, Fercot J, Racine F, Demagny J, Bettoni J, Chatelain D, Sevestre MA, Mammeri Y, Lamuraglia M, Galmiche A, Saidak Z. Molecular Landscape of the Coagulome of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:460. [PMID: 35053621 PMCID: PMC8773794 DOI: 10.3390/cancers14020460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hemostatic complications, ranging from thromboembolism to bleeding, are a significant source of morbidity and mortality in cancer patients. The tumor coagulome represents the multiple genes and proteins that locally contribute to the equilibrium between coagulation and fibrinolysis. We aimed to study the coagulome of Oral Squamous Cell Carcinoma (OSCC) and examine its link to the tumor microenvironment (TME). METHODS We used data from bulk tumor DNA/RNA-seq (The Cancer Genome Atlas), single-cell RNA-seq data and OSCC cells in culture. RESULTS Among all tumor types, OSCC was identified as the tumor with the highest mRNA expression levels of F3 (Tissue Factor, TF) and PLAU (urokinase type-plasminogen activator, uPA). Great inter- and intra-tumor heterogeneity were observed. Single-cell analyses showed the coexistence of subpopulations of pro-coagulant and pro-fibrinolytic cancer cells within individual tumors. Interestingly, OSCC with high F3 expressed higher levels of the key immune checkpoint molecules CD274/PD-L1, PDCD1LG2/PD-L2 and CD80, especially in tumor dendritic cells. In vitro studies confirmed the particularity of the OSCC coagulome and suggested that thrombin exerts indirect effects on OSCC cells. CONCLUSIONS OSCC presents a specific coagulome. Further studies examining a possible negative modulation of the tumor's adaptive immune response by the coagulation process are warranted.
Collapse
Affiliation(s)
- Marine Lottin
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Biochemistry, Center for Human Biology, Amiens University Hospital, 80054 Amiens, France
| | - Simon Soudet
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Vascular Medecine, Amiens University Hospital, 80054 Amiens, France
| | - Julie Fercot
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Biochemistry, Center for Human Biology, Amiens University Hospital, 80054 Amiens, France
| | - Floriane Racine
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Biochemistry, Center for Human Biology, Amiens University Hospital, 80054 Amiens, France
| | - Julien Demagny
- Department of Hematology, Center for Human Biology, Amiens University Hospital, 80054 Amiens, France;
| | - Jérémie Bettoni
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Maxillofacial Surgery, Amiens University Hospital, 80054 Amiens, France
| | - Denis Chatelain
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Pathology, Amiens University Hospital, 80054 Amiens, France
| | - Marie-Antoinette Sevestre
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Vascular Medecine, Amiens University Hospital, 80054 Amiens, France
| | - Youcef Mammeri
- Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (LAMFA), CNRS UMR7352, Université de Picardie Jules Verne, 80069 Amiens, France;
| | - Michele Lamuraglia
- Department of Oncology, Amiens University Hospital, 80054 Amiens, France;
| | - Antoine Galmiche
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Biochemistry, Center for Human Biology, Amiens University Hospital, 80054 Amiens, France
| | - Zuzana Saidak
- EA7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (M.L.); (S.S.); (J.F.); (F.R.); (J.B.); (D.C.); (M.-A.S.)
- Department of Biochemistry, Center for Human Biology, Amiens University Hospital, 80054 Amiens, France
| |
Collapse
|
16
|
Coagulome and the tumor microenvironment: an actionable interplay. Trends Cancer 2022; 8:369-383. [PMID: 35027336 DOI: 10.1016/j.trecan.2021.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
Human tumors often trigger a hypercoagulable state that promotes hemostatic complications, including venous thromboembolism. The recent application of systems biology to the study of the coagulome highlighted its link to shaping the tumor microenvironment (TME), both within and outside of the vascular space. Addressing this link provides the opportunity to revisit the significance of biomarkers of hemostasis and assess the communication between vasculature and tumor parenchyma, an important topic considering the advent of immune checkpoint inhibitors and vascular normalization strategies. Understanding how the coagulome and TME influence each other offers exciting new prospects for predicting hemostatic complications and boosting the effectiveness of cancer treatment.
Collapse
|
17
|
Sun Y, Jiang Y, Wang Y, Yu P, Su X, Song Y, Wang M, Li Y, Zhao L. The epithelial-mesenchymal transition of glioma cells promotes tissue factor expression via the miR200a/ZEB1 axis. Brain Res 2022; 1778:147782. [DOI: 10.1016/j.brainres.2022.147782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
18
|
Osada Y, Saito R, Miyata S, Shoji T, Shibahara I, Kanamori M, Sonoda Y, Kumabe T, Watanabe M, Tominaga T. Association between IDH mutational status and tumor-associated epilepsy or venous thromboembolism in patients with grade II and III astrocytoma. Brain Tumor Pathol 2021; 38:218-227. [PMID: 34269949 DOI: 10.1007/s10014-021-00406-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
In previous studies, isocitrate dehydrogenase (IDH) mutations were associated with tumor-associated epilepsy (TAE) and venous thromboembolism (VTE). We examined the relationship between IDH mutations in grade II/III astrocytomas and TAE/VTE according to the 2016 World Health Organization classification. The clinical data of patients with newly diagnosed grade II/III gliomas who were treated at Tohoku University Hospital from January 2010 to December 2018 were reviewed. Associations between TAE or VTE and the clinical/biological characteristics, histology, and IDH1/2 mutational status in patients with grade II/III gliomas were evaluated. Of the initial 137 patients (290 hospitalizations), 117 patients (203 hospitalizations) were included in the TAE group and 124 patients (213 hospitalizations) were included in the VTE group. Seventy-eight patients (66.7%) in the TAE group were diagnosed with astrocytoma and 38/78 (48.3%) presented with TAE. According to the multivariable analysis, the IDH mutational status and male sex were associated independently with an increased risk of TAE (p < 0.05). Eighty-five patients (68.5%) in the VTE group were diagnosed with astrocytoma. VTE was observed in 16/161 (9.9%) hospitalizations. According to the multivariable analysis, age, diffuse astrocytoma histology, and resection were associated independently with an increased risk of VTE. The decision tree analysis showed that TAE was more frequent in younger patients while VTE was more frequent in older patients. This study demonstrated that the IDH mutational status was associated with TAE but not with VTE. Therefore, a future large-scale study is needed to provide sufficient evidence. TAE was more common in young patients, while VTE was more common in the elderly.
Collapse
Affiliation(s)
- Yoshinari Osada
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Satoshi Miyata
- Teikyo University Graduate School of Public Health, Tokyo, Japan
| | - Takuhiro Shoji
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University Graduate School of Medicine, Kanagawa, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University Graduate School of Medicine, Yamagata, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University Graduate School of Medicine, Kanagawa, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
19
|
Tawil N, Spinelli C, Bassawon R, Rak J. Genetic and epigenetic regulation of cancer coagulome - lessons from heterogeneity of cancer cell populations. Thromb Res 2021; 191 Suppl 1:S99-S105. [PMID: 32736787 DOI: 10.1016/s0049-3848(20)30405-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/15/2022]
Abstract
Cancer-associated thrombosis (CAT) is a morbid, potentially life threatening and biologically impactful paraneoplastic state. At least in part, CAT is likely driven by cancer-specific mechanisms the nature of which is still poorly understood, hampering diagnostic, prophylactic and therapeutic efforts. It is increasingly appreciated that cancer-specific drivers of CAT include a constellation of oncogenic mutations and their superimposed epigenetic states that shape the transcriptome, phenotype and secretome of cancer cell populations, including the repertoire of genes impacting the vascular and coagulation systems. High-grade brain tumours, such as glioblastoma multiforme (GBM) represent a paradigm of locally initiated haemostatic abnormalities that propagate systemically, likely through circulating mediators, such as extracellular vesicles and soluble factors. Reciprocally, CAT impacts the biology of cancer cells and may drive tumour evolution. The constituent, oncogene-transformed cancer cell populations form complex ecosystems, the intricate architecture of which has been recently revealed by single cell sequencing technologies. Amidst this phenotypic heterogeneity, several alternative pathways of CAT may exist both between and within individual tumours and their subtypes, including GBM. Indeed, different contributions of cells expressing key coagulant mediators, such as tissue factor, or podoplanin, have been identified in GBM subtypes driven by oncogenic mutations in EGFR, IDH1 and other transforming genes. Thus, a better understanding of cellular sources of CAT, including dominant cancer cell phenotypes and their dynamic shifts, may help design more personalised approaches to thrombosis in cancer patients to improve outcomes.
Collapse
Affiliation(s)
- Nadim Tawil
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Cristiana Spinelli
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Rayhaan Bassawon
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Adv 2021; 5:1682-1694. [PMID: 33720339 DOI: 10.1182/bloodadvances.2020002998] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular anomalies, including local and peripheral thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of deregulation of the cancer cell genome and epigenome. Although the molecular effectors of these changes are poorly understood, the upregulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk for venous thromboembolism (VTE) in GBM patients. Therefore, regulation of this platelet-activating protein by transforming events in cancer cells is of considerable interest. We used single-cell and bulk transcriptome data mining, as well as cellular and xenograft models in mice, to analyze the nature of cells expressing PDPN, as well as their impact on the activation of the coagulation system and platelets. We report that PDPN is expressed by distinct (mesenchymal) GBM cell subpopulations and downregulated by oncogenic mutations of EGFR and IDH1 genes, along with changes in chromatin modifications (enhancer of zeste homolog 2) and DNA methylation. Glioma cells exteriorize their PDPN and/or tissue factor (TF) as cargo of exosome-like extracellular vesicles (EVs) shed from cells in vitro and in vivo. Injection of glioma-derived podoplanin carrying extracelluar vesicles (PDPN-EVs) activates platelets, whereas tissue factor carrying extracellular vesicles (TF-EVs) activate the clotting cascade. Similarly, an increase in platelet activation (platelet factor 4) or coagulation (D-dimer) markers occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Coexpression of PDPN and TF by GBM cells cooperatively affects tumor microthrombosis. Thus, in GBM, distinct cellular subsets drive multiple facets of cancer-associated thrombosis and may represent targets for phenotype- and cell type-based diagnosis and antithrombotic intervention.
Collapse
|
21
|
Schmid D, Warnken U, Latzer P, Hoffmann DC, Roth J, Kutschmann S, Jaschonek H, Rübmann P, Foltyn M, Vollmuth P, Winkler F, Seliger C, Felix M, Sahm F, Haas J, Reuss D, Bendszus M, Wildemann B, von Deimling A, Wick W, Kessler T. Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies. J Neurochem 2021; 158:522-538. [PMID: 33735443 DOI: 10.1111/jnc.15350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Recent technological advances in molecular diagnostics through liquid biopsies hold the promise to repetitively monitor tumor evolution and treatment response of brain malignancies without the need of invasive surgical tissue accrual. Here, we implemented a mass spectrometry-based protein analysis pipeline which identified hundreds of proteins in 251 cerebrospinal fluid (CSF) samples from patients with four types of brain malignancies (glioblastoma, lymphoma, brain metastasis, and leptomeningeal disease [LMD]) and from healthy individuals with a focus on glioblastoma in a retrospective and confirmatory prospective observational study. CSF proteome deregulation via disruption of the blood brain barrier appeared to be largely conserved across brain tumor entities. CSF analysis of glioblastoma patients identified two proteomic clusters that correlated with tumor size and patient survival. By integrating CSF data with proteomic analyses of matching glioblastoma tumor tissue and primary glioblastoma cells, we identified potential CSF biomarkers for glioblastoma, in particular chitinase-3-like protein 1 (CHI3L1) and glial fibrillary acidic protein (GFAP). Key findings were validated in a prospective cohort consisting of 35 glioma patients. Finally, in LMD patients who frequently undergo repeated CSF work-up, we explored our proteomic pipeline as a mean to profile consecutive CSF samples. Therefore, proteomic analysis of CSF in brain malignancies has the potential to reveal biomarkers for diagnosis and therapy monitoring.
Collapse
Affiliation(s)
- Dominic Schmid
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Functional Proteome Analysis, DKFZ, Heidelberg, Germany
| | - Pauline Latzer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Judith Roth
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Kutschmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Jaschonek
- Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Petra Rübmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martha Foltyn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Seliger
- Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marius Felix
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Neuroimmunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program at the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
22
|
Sørensen MD, Nielsen O, Reifenberger G, Kristensen BW. The presence of TIM-3 positive cells in WHO grade III and IV astrocytic gliomas correlates with isocitrate dehydrogenase mutation status. Brain Pathol 2021; 31:e12921. [PMID: 33244787 PMCID: PMC8412096 DOI: 10.1111/bpa.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Diffuse gliomas are aggressive brain tumors that respond poorly to immunotherapy including immune checkpoint inhibition. This resistance may arise from an immunocompromised microenvironment and deficient immune recognition of tumor cells because of low mutational burden. The most prominent genetic alterations in diffuse glioma are mutations in the isocitrate dehydrogenase (IDH) genes that generate the immunosuppressive oncometabolite d-2-hydroxyglutarate. Our objective was to explore the association between IDH mutation and presence of cells expressing the immune checkpoint proteins galectin-9 and/or T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Astrocytic gliomas of World Health Organization (WHO) grades III or IV (36 IDH-mutant and 36 IDH-wild-type) from 72 patients were included in this study. A novel multiplex chromogenic immunohistochemistry panel was applied using antibodies against galectin-9, TIM-3, and the oligodendrocyte transcription factor 2 (OLIG2). Validation studies were performed using data from The Cancer Genome Atlas (TCGA) project. IDH mutation was associated with decreased levels of TIM-3+ cells (p < 0.05). No significant association was found between galectin-9 and IDH status (p = 0.10). Most TIM-3+ and galectin-9+ cells resembled microglia/macrophages, and very few TIM-3+ and/or galectin-9+ cells co-expressed OLIG2. The percentage of TIM-3+ T cells was generally low, however, IDH-mutant tumors contained significantly fewer TIM-3+ T cells (p < 0.01) and had a lower interaction rate between TIM-3+ T cells and galectin-9+ microglia/macrophages (p < 0.05). TCGA data confirmed lower TIM-3 mRNA expression in IDH-mutant compared to IDH-wild-type astrocytic gliomas (p = 0.013). Our results show that IDH mutation is associated with diminished levels of TIM-3+ cells and fewer interactions between TIM-3+ T cells and galectin-9+ microglia/macrophages, suggesting reduced activity of the galectin-9/TIM-3 immune checkpoint pathway in IDH-mutant astrocytic gliomas.
Collapse
Affiliation(s)
- Mia D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ole Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Guido Reifenberger
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,German Cancer Consortium (DKT), partner site Essen/Düsseldorf, Essen, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Diaz M, Jo J, Smolkin M, Ratcliffe SJ, Schiff D. Risk of Venous Thromboembolism in Grade II-IV Gliomas as a Function of Molecular Subtype. Neurology 2020; 96:e1063-e1069. [PMID: 33361259 DOI: 10.1212/wnl.0000000000011414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To determine the incidence of venous thromboembolism (VTE) in lower-grade gliomas (LGGs, WHO grades II-III) and to stratify the risk of VTE by molecular subtype in gliomas grade II-IV, we performed a retrospective review of a large cohort of patients with glioma. METHODS We performed a retrospective analysis of a cohort of 635 adult patients with glioma with molecular testing seen at the University of Virginia with a diagnosis of diffuse glioma established from January 2005 to August 2017. Estimates of cumulative incidence of VTE were calculated with death as competing risk; significance was determined using the Fine and Gray model. RESULTS Of 256 patients with LGG, 81 were isocitrate dehydrogenase (IDH) wild-type; 113 IDH mutant, 1p/19q codeleted; and 62 IDH mutant, 1p/19q intact. With a median follow-up of 17.9 months, the overall cumulative incidence of VTE was 8.2% for grade II (147 patients), 9.2% for grade III (109 patients), and 30.5% for grade IV (334 patients). In grade II-IV patients, absence of an IDH mutation was associated with a threefold increase in VTE risk when compared to IDH-mutant patients (hazard ratio 3.06, 95% confidence interval 2.03-4.64). In patients with glioblastoma, there was no difference in VTE incidence according to O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. CONCLUSION Patients with LGG have a higher VTE risk compared to the general population, which is decreased, but not eliminated, in the presence of an IDH mutation. MGMT promoter methylation in glioblastoma does not affect the incidence of VTE.
Collapse
Affiliation(s)
- Maria Diaz
- From the Division of NeuroOncology (D.S.), Department of Neurology (M.D., J.J.), and Department of Public Health Sciences, Division of Biostatistics (M.S., S.J.R.), University of Virginia, Charlottesville. M.D. is currently affiliated with the Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY. J.J. is currently affiliated with the Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University/Vidant Medical Center, Greenville, NC.
| | - Jasmin Jo
- From the Division of NeuroOncology (D.S.), Department of Neurology (M.D., J.J.), and Department of Public Health Sciences, Division of Biostatistics (M.S., S.J.R.), University of Virginia, Charlottesville. M.D. is currently affiliated with the Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY. J.J. is currently affiliated with the Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University/Vidant Medical Center, Greenville, NC
| | - Mark Smolkin
- From the Division of NeuroOncology (D.S.), Department of Neurology (M.D., J.J.), and Department of Public Health Sciences, Division of Biostatistics (M.S., S.J.R.), University of Virginia, Charlottesville. M.D. is currently affiliated with the Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY. J.J. is currently affiliated with the Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University/Vidant Medical Center, Greenville, NC
| | - Sarah Jane Ratcliffe
- From the Division of NeuroOncology (D.S.), Department of Neurology (M.D., J.J.), and Department of Public Health Sciences, Division of Biostatistics (M.S., S.J.R.), University of Virginia, Charlottesville. M.D. is currently affiliated with the Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY. J.J. is currently affiliated with the Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University/Vidant Medical Center, Greenville, NC
| | - David Schiff
- From the Division of NeuroOncology (D.S.), Department of Neurology (M.D., J.J.), and Department of Public Health Sciences, Division of Biostatistics (M.S., S.J.R.), University of Virginia, Charlottesville. M.D. is currently affiliated with the Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY. J.J. is currently affiliated with the Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University/Vidant Medical Center, Greenville, NC
| |
Collapse
|
24
|
Leiva O, Newcomb R, Connors JM, Al-Samkari H. Cancer and thrombosis: new insights to an old problem. JOURNAL DE MÉDECINE VASCULAIRE 2020; 45:6S8-6S16. [PMID: 33276943 DOI: 10.1016/s2542-4513(20)30514-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Venous thromboembolism (VTE) is a common complication in patients with cancer and portends a poor prognosis. Our understanding of the underlying pathophysiology of VTE in cancer has advanced since Trousseau first described hypercoagulability in patients with malignancy and Virchow described his famous triad of thrombosis formation. Malignancy itself induces a thrombophilic state by increasing the risk of venous stasis, endothelial injury and an imbalance of pro and anti-thrombotic factors leading to a hypercoaguable state. Additional insults to this thrombotic balance are introduced by patient-specific, treatment related and tumor-specific factors. The importance of understanding the factors associated with increased thrombosis in cancer is paramount in order to adequately identify patients who will benefit from thromboprophylaxis.
Collapse
Affiliation(s)
- O Leiva
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - R Newcomb
- Division of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - J M Connors
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - H Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
25
|
Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, Barthelemy V, Klein E, Bougnaud S, Keunen O, Wantz M, Michelucci A, Neirinckx V, Muller A, Kaoma T, Nazarov PV, Azuaje F, De Falco A, Flies B, Richart L, Poovathingal S, Arns T, Grzyb K, Mock A, Herold-Mende C, Steino A, Brown D, May P, Miletic H, Malta TM, Noushmehr H, Kwon YJ, Jahn W, Klink B, Tanner G, Stead LF, Mittelbronn M, Skupin A, Hertel F, Bjerkvig R, Niclou SP. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol 2020; 140:919-949. [PMID: 33009951 PMCID: PMC7666297 DOI: 10.1007/s00401-020-02226-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.
Collapse
Affiliation(s)
- Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Daniel Stieber
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
| | - Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Virginie Baus
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Vanessa Barthelemy
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Sébastien Bougnaud
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Olivier Keunen
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - May Wantz
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Neuro-Immunology Group, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Virginie Neirinckx
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Arnaud Muller
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Tony Kaoma
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Francisco Azuaje
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Alfonso De Falco
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
| | - Ben Flies
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
| | - Lorraine Richart
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Suresh Poovathingal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Thais Arns
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anne Steino
- DelMar Pharmaceuticals, Inc., Vancouver, BC, Canada
- DelMar Pharmaceuticals, Inc., Menlo Park, CA, USA
| | - Dennis Brown
- DelMar Pharmaceuticals, Inc., Vancouver, BC, Canada
- DelMar Pharmaceuticals, Inc., Menlo Park, CA, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tathiane M Malta
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Yong-Jun Kwon
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Winnie Jahn
- German Cancer Consortium (DKTK), 01307, Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
- German Cancer Consortium (DKTK), 01307, Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Georgette Tanner
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Frank Hertel
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Department of Neurosurgery, Centre Hospitalier Luxembourg, 1210, Luxembourg, Luxembourg
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg.
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway.
| |
Collapse
|
26
|
Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
Affiliation(s)
- Ann S Kim
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Alok A Khorana
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Keith R McCrae
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
27
|
Tiburcio PDB, Locke MC, Bhaskara S, Chandrasekharan MB, Huang LE. The neural stem-cell marker CD24 is specifically upregulated in IDH-mutant glioma. Transl Oncol 2020; 13:100819. [PMID: 32622311 PMCID: PMC7332530 DOI: 10.1016/j.tranon.2020.100819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Malignant gliomas have disproportionally high morbidity and mortality. Heterozygous mutations in the isocitrate dehydrogenase 1 (IDH1) gene are most common in glioma, resulting in predominantly arginine to histidine substitution at codon 132. Because IDH1R132H requires a wild-type allele to produce (D)-2-hydroxyglutarate for epigenetic reprogramming, loss of IDH1R132H heterozygosity is associated with glioma progression in an IDH1-wildtype-like phenotype. Although previous studies have reported that transgenic IDH1R132H induces the expression of nestin-a neural stem-cell marker, the underlying mechanism remains unclear. Furthermore, this finding seems at odds with better outcome of IDH1R132H glioma because of a negative association of nestin with overall survival. METHODS Gene expression was compared between IDH1R132H-hemizygous and IDH1R132H-heterozygous glioma cells under adherent and spheroid growth conditions. The results were validated for (D)-2-hydroxyglutarate responsiveness by pharmacologic agents, associations with DNA methylation by bioinformatic analysis, and associations with overall survival. Bisulfite DNA sequencing, chromatin immunoprecipitation, and pharmacological approach were used. FINDINGS Neural stem-cell marker genes, including CD44, NES, and PROM1, are generally downregulated in IDH-mutant gliomas and IDH1R132H-heterozygous spheroid growth compared respectively with IDH-wildtype gliomas and IDH1R132H-hemizygous spheroid growth, in agreement with their negative associations with patient outcome. In contrast, CD24 is specifically upregulated and apparently associated with better survival. CD24 and NES expression respond differentially to alteration of (D)-2-hydroxyglutarate levels. CD24 upregulation is associated with histone and DNA demethylation as opposed to hypermethylation in the downregulated genes. INTERPRETATION The better outcome of IDH-mutant glioma is orchestrated exquisitely through epigenetic reprogramming that directs bidirectional expression of neural stem-cell marker genes.
Collapse
Affiliation(s)
- Patricia D B Tiburcio
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Mary C Locke
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Srividya Bhaskara
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - L Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Leiva O, Connors JM, Al-Samkari H. Impact of Tumor Genomic Mutations on Thrombotic Risk in Cancer Patients. Cancers (Basel) 2020; 12:cancers12071958. [PMID: 32707653 PMCID: PMC7409200 DOI: 10.3390/cancers12071958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Venous thromboembolism (VTE) is common in patients with cancer and is an important contributor to morbidity and mortality in these patients. Early thromboprophylaxis initiated only in those cancer patients at highest risk for VTE would be optimal. Risk stratification scores incorporating tumor location, laboratory values and patient characteristics have attempted to identify those patients most likely to benefit from thromboprophylaxis but even well-validated scores are not able to reliably distinguish the highest-risk patients. Recognizing that tumor genetics affect the biology and behavior of malignancies, recent studies have explored the impact of specific molecular aberrations on the rate of VTE in cancer patients. The presence of certain molecular aberrations in a variety of different cancers, including lung, colon, brain and hematologic tumors, have been associated with an increased risk of VTE and arterial thrombotic events. This review examines the findings of these studies and discusses the implications of these findings on decisions relating to thromboprophylaxis use in the clinical setting. Ultimately, the integration of tumor molecular genomic information into clinical VTE risk stratification scores in cancer patients may prove to be a major advancement in the prevention of cancer-associated thrombosis.
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02215, USA;
| | - Jean M. Connors
- Harvard Medical School, Boston, MA 02215, USA;
- Hematology Division, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, MA 02215, USA;
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: ; Tel.: +1-617-643-6214
| |
Collapse
|
29
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
30
|
Buijs JT, Versteeg HH. Genes and proteins associated with the risk for cancer-associated thrombosis. Thromb Res 2020; 191 Suppl 1:S43-S49. [DOI: 10.1016/s0049-3848(20)30396-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
|
31
|
Thakkar JP, Prabhu VC, Rouse S, Lukas RV. Acute Neurological Complications of Brain Tumors and Immune Therapies, a Guideline for the Neuro-hospitalist. Curr Neurol Neurosci Rep 2020; 20:32. [PMID: 32596758 DOI: 10.1007/s11910-020-01056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Patients with brain tumors presenting to the emergency room with acute neurologic complications may warrant urgent investigations and emergent management. As the neuro-hospitalist will likely encounter this complex patient population, an understanding of the acute neurologic issues will have value. RECENT FINDINGS We discuss updated information and management regarding various acute neurologic complications among neuro-oncology patients and neurologic complications of immunotherapy. Understanding of the acute neurologic complications associated with central nervous system tumors and with common contemporary cancer treatments will facilitate the neuro-hospitalist management of these patient populations. While there are aspects analogous to the diagnosis and management in the non-oncologic population, a number of unique features discussed in this review should be considered.
Collapse
Affiliation(s)
- Jigisha P Thakkar
- Department of Neurology, Stritch School of Medicine, Loyola University Medical Center, 2160 S. 1st Avenue, Bldg 105, Room 2700, Maywood, IL, 60153, USA. .,Department of Neurosurgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Bldg 105, Room 1900, Maywood, IL, 60153, USA.
| | - Vikram C Prabhu
- Department of Neurosurgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Bldg 105, Room 1900, Maywood, IL, 60153, USA
| | - Stasia Rouse
- Department of Neurology, Stritch School of Medicine, Loyola University Medical Center, 2160 S. 1st Avenue, Bldg 105, Room 2700, Maywood, IL, 60153, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA.,Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
32
|
Lisi L, Chiavari M, Ciotti GMP, Lacal PM, Navarra P, Graziani G. DNA inhibitors for the treatment of brain tumors. Expert Opin Drug Metab Toxicol 2020; 16:195-207. [PMID: 32067518 DOI: 10.1080/17425255.2020.1729352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: The worldwide incidence of central nervous system (CNS) primary tumors is increasing. Most of the chemotherapeutic agents used for treating these cancer types induce DNA damage, and their activity is affected by the functional status of repair systems involved in the detection or correction of DNA lesions. Unfortunately, treatment of malignant high-grade tumors is still an unmet medical need.Areas covered: We summarize the action mechanisms of the main DNA inhibitors used for the treatment of brain tumors. In addition, studies on new agents or drug combinations investigated for this indication are reviewed, focusing our attention on clinical trials that in the last 3 years have been completed, terminated or are still recruiting patients.Expert opinion: Much still needs to be done to render aggressive CNS tumors curable or at least to transform them from lethal to chronic diseases, as it is possible for other cancer types. Drugs with improved penetration in the CNS, toxicity profile, and activity against primary and recurrent tumors are eagerly needed. Targeted agents with innovative mechanisms of action and ability to harness the cells of the tumor microenvironment against cancer cells represent a promising approach for improving the clinical outcome of CNS tumors.
Collapse
Affiliation(s)
- Lucia Lisi
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy
| | - Marta Chiavari
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy
| | | | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy.,Department of Safety and Bioethics, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
33
|
Huang LE. Friend or foe-IDH1 mutations in glioma 10 years on. Carcinogenesis 2019; 40:1299-1307. [PMID: 31504231 PMCID: PMC6875900 DOI: 10.1093/carcin/bgz134] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
The identification of recurrent point mutations in the isocitrate dehydrogenase 1 (IDH1) gene, albeit in only a small percentage of glioblastomas a decade ago, has transformed our understanding of glioma biology, genomics and metabolism. More than 1000 scientific papers have been published since, propelling bench-to-bedside investigations that have led to drug development and clinical trials. The rapid biomedical advancement has been driven primarily by the realization of a neomorphic activity of IDH1 mutation that produces high levels of (d)-2-hydroxyglutarate, a metabolite believed to promote glioma initiation and progression through epigenetic and metabolic reprogramming. Thus, novel inhibitors of mutant IDH1 have been developed for therapeutic targeting. However, numerous clinical and experimental findings are at odds with this simple concept. By taking into consideration a large body of findings in the literature, this article analyzes how different approaches have led to opposing conclusions and proffers a counterintuitive hypothesis that IDH1 mutation is intrinsically tumor suppressive in glioma but functionally undermined by the glutamate-rich cerebral environment, inactivation of tumor-suppressor genes and IDH1 copy-number alterations. This theory also provides an explanation for some of the most perplexing observations, including the scarcity of proper model systems and the prevalence of IDH1 mutation in glioma.
Collapse
Affiliation(s)
- L Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
34
|
Patsouras MD, Vlachoyiannopoulos PG. Evidence of epigenetic alterations in thrombosis and coagulation: A systematic review. J Autoimmun 2019; 104:102347. [PMID: 31607428 DOI: 10.1016/j.jaut.2019.102347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Thrombosis in the context of Cardiovascular disease (CVD) affects mainly the blood vessels supplying the heart, brain and peripheries and it is the leading cause of death worldwide. The pathophysiological thrombotic mechanisms are largely unknown. Heritability contributes to a 30% of the incidence of CVD. The remaining variation can be explained by life style factors such as smoking, dietary and exercise habits, environmental exposure to toxins, and drug usage and other comorbidities. Epigenetic variation can be acquired or inherited and constitutes an interaction between genes and the environment. Epigenetics have been implicated in atherosclerosis, ischemia/reperfusion damage and the cardiovascular response to hypoxia. Epigenetic regulators of gene expression are mainly the methylation of CpG islands, histone post translational modifications (PTMs) and microRNAs (miRNAs). These epigenetic regulators control gene expression either through activation or silencing. Epigenetic control is mostly dynamic and can potentially be manipulated to prevent or reverse the uncontrolled expression of genes, a trait that renders them putative therapeutic targets. In the current review, we systematically studied and present available data on epigenetic alterations implicated in thrombosis derived from human studies. Evidence of epigenetic alterations is observed in several thrombotic diseases such as Coronary Artery Disease and Cerebrovascular Disease, Preeclampsia and Antiphospholipid Syndrome. Differential CpG methylation and specific histone PTMs that control transcription of prothrombotic and proinflammatory genes have also been associated with predisposing factors of thrombosis and CVD, such us smoking, air pollution, hypertriglyceridemia, occupational exposure to particulate matter and comorbidities including cancer, Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease. These clinical observations are further supported by in vitro experiments and indicate that epigenetic regulation affects the pathophysiology of thrombotic disorders with potential diagnostic or therapeutic utility.
Collapse
Affiliation(s)
- M D Patsouras
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - P G Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
35
|
Unruh D, Zewde M, Buss A, Drumm MR, Tran AN, Scholtens DM, Horbinski C. Methylation and transcription patterns are distinct in IDH mutant gliomas compared to other IDH mutant cancers. Sci Rep 2019; 9:8946. [PMID: 31222125 PMCID: PMC6586617 DOI: 10.1038/s41598-019-45346-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
Mutations in isocitrate dehydrogenases 1 and 2 (IDHmut) are present in a variety of cancers, including glioma, acute myeloid leukemia (AML), melanoma, and cholangiocarcinoma. These mutations promote hypermethylation, yet it is only a favorable prognostic marker in glioma, for reasons that are unclear. We hypothesized that the patterns of DNA methylation, and transcriptome profiles, would vary among IDHmut cancers, especially gliomas. Using Illumina 450K and RNA-Seq data from The Cancer Genome Atlas, we show that of 365,092 analyzed CpG sites, 70,591 (19%) were hypermethylated in IDHmut gliomas compared to wild-type (IDHwt) gliomas, and only 3%, 2%, and 4% of CpG sites were hypermethylated in IDHmut AML, melanoma, and cholangiocarcinoma, relative to each of their IDHwt counterparts. Transcriptome differences showed pro-malignant genes that appear to be unique to IDHmut gliomas. However, genes involved in differentiation and immune response were suppressed in all IDHmut cancers. Additionally, IDHmut caused a greater degree of hypermethylation in undifferentiated neural progenitor cells than in mature astrocytes. These data suggest that the extent and targets of IDHmut-induced genomic hypermethylation vary greatly according to the cellular context and may help explain why IDHmut is only a favorable prognostic marker in gliomas.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Makda Zewde
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Adam Buss
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael R Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Anh N Tran
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA.
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|