1
|
Ben Saad E, Oroya A, Anto NP, Bachais M, Rudd CE. PD-1 endocytosis unleashes the cytolytic potential of checkpoint blockade in tumor immunity. Cell Rep 2024; 43:114907. [PMID: 39471174 DOI: 10.1016/j.celrep.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
PD-1 immune checkpoint blockade (ICB) is a key cancer treatment. While blocking PD-1 binding to ligand is known, the role of internalization in enhancing ICB efficacy is less explored. Our study reveals that PD-1 internalization helps unlock ICB's full potential in cancer immunotherapy. Anti-PD-1 induces 50%-60% surface PD-1 internalization from human and mouse cells, leaving low to intermediate levels of resistant receptors. Complexes then appear in early and late endosomes. Both CD4 and CD8 T cells, especially CD8+ effectors, are affected. Nivolumab outperforms pembrolizumab in human T cells, while PD-1 internalization requires crosslinking by bivalent antibody. While mono- and bivalent anti-PD-1 inhibit tumor growth with CD8 tumor-infiltrating cells expressing increased granzyme B, bivalent antibody is more effective where the combination of steric blockade and endocytosis induces greater CD8+ T cell tumor infiltration and the expression of the cytolytic pore protein, perforin. Our findings highlight an ICB mechanism that combines steric blockade and PD-1 endocytosis for optimal checkpoint immunotherapy.
Collapse
Affiliation(s)
- Elham Ben Saad
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada
| | - Andres Oroya
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Nikhil Ponnoor Anto
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Meriem Bachais
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Tanjak P, Chaiboonchoe A, Suwatthanarak T, Thanormjit K, Acharayothin O, Chanthercrob J, Parakonthun T, Methasate A, Fischer JM, Wong MH, Chinswangwatanakul V. Tumor-immune hybrid cells evade the immune response and potentiate colorectal cancer metastasis through CTLA4. Clin Exp Med 2024; 25:2. [PMID: 39499374 PMCID: PMC11538261 DOI: 10.1007/s10238-024-01515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Understanding the metastatic cascade is critical for the treatment and prevention of cancer-related death. Within a tumor, immune cells have the capacity to fuse with tumor cells to generate tumor-immune hybrid cells (THCs). THCs are hypothesized to be a subset of cancer cells with the capacity to enter circulation as circulating hybrid cells (CHC) and seed metastases. To understand the mechanism of THC metastasis, we investigated CHCs in peripheral blood from patients with stage IV colorectal cancer (CRC), as well as THCs in tissues of primary colorectal cancers and their liver metastasis sites using immunofluorescence, spatial proteomic, spatial transcriptomic, molecular classification, and molecular pathway analyses. Our findings indicated a high prevalence of CHCs and THCs in patients with stage IV CRC. THCs expressed CTLA4 in primary CRC lesions and correlated with upregulation of CD68, CD4, and HLA-DR in metastatic liver lesions, which is found in the consensus molecular subtype (CMS) 1 of primary CRC tissue. Pathway analysis of these genes suggested that THCs are associated with neutrophils due to upregulation of neutrophil extracellular trap signaling (NET) and neutrophil degranulation pathways. These data provide molecular pathways for the formation of THCs suggesting fusion with neutrophils, which may facilitate extravasation and metastatic seeding.
Collapse
Grants
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- Mahidol University
Collapse
Affiliation(s)
- Pariyada Tanjak
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanawat Suwatthanarak
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kullanist Thanormjit
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thammawat Parakonthun
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Asada Methasate
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jared M Fischer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland , OR, 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Melissa H Wong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Vitoon Chinswangwatanakul
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand.
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Moës B, Gao Y, Demina E, Kremer R, Rudd CE. Anti-PTHrP blockade limits CD8+ T-cell exhaustion in anti-cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619890. [PMID: 39554058 PMCID: PMC11566012 DOI: 10.1101/2024.10.23.619890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cancer is a major global health concern, with immune suppression hindering treatment. Immunotherapy, specifically immune checkpoint blockage on T cells, has revolutionized cancer treatment. T-cell exhaustion is an abnormal activation state that develops when continuous exposure to antigens, like cancer. In this context, recent evidence suggests that parathyroid hormone-related protein (PTHrP) plays a previously underappreciated role in fostering an immunosuppressive tumor microenvironment. Further, blocking PTHrP activity reduces primary tumor growth, prevents metastasis, and prolongs survival in mice with various cancers. Here, we confirm that administration of anti-PTHrP monoclonal antibodies can reduce the growth of B16-PDL1 melanoma tumors and that although the therapy did not alter the presence of CD4+ and CD8+ TILs, we noted that all stages of T-cell exhaustion were reduced. Further, the expression of cytolytic proteins PERFORIN and GZMB also increased. By contrast, anti-PTHrP therapy increased the relative presence of pre-pro B cells with a decline in mature B cells in the bone marrow. Overall, our data indicates that anti-PTHrP therapy acts by reducing T-cell exhaustion and by affecting B-cell development. These provide further mechanistic evidence to support the application of anti-PTHrP blockade as an alternate therapeutic approach to boost anti-tumor immunity.
Collapse
|
4
|
Wang K, Coutifaris P, Brocks D, Wang G, Azar T, Solis S, Nandi A, Anderson S, Han N, Manne S, Kiner E, Sachar C, Lucas M, George S, Yan PK, Kier MW, Laughlin AI, Kothari S, Giles J, Mathew D, Ghinnagow R, Alanio C, Flowers A, Xu W, Tenney DJ, Xu X, Amaravadi RK, Karakousis GC, Schuchter LM, Buggert M, Oldridge D, Minn AJ, Blank C, Weber JS, Mitchell TC, Farwell MD, Herati RS, Huang AC. Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8 + T cells. Cancer Cell 2024; 42:1582-1597.e10. [PMID: 39214097 PMCID: PMC11387127 DOI: 10.1016/j.ccell.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Combination checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies has shown promising efficacy in melanoma. However, the underlying mechanism in humans remains unclear. Here, we perform paired single-cell RNA and T cell receptor (TCR) sequencing across time in 36 patients with stage IV melanoma treated with anti-PD-1, anti-CTLA-4, or combination therapy. We develop the algorithm Cyclone to track temporal clonal dynamics and underlying cell states. Checkpoint blockade induces waves of clonal T cell responses that peak at distinct time points. Combination therapy results in greater magnitude of clonal responses at 6 and 9 weeks compared to single-agent therapies, including melanoma-specific CD8+ T cells and exhausted CD8+ T cell (TEX) clones. Focused analyses of TEX identify that anti-CTLA-4 induces robust expansion and proliferation of progenitor TEX, which synergizes with anti-PD-1 to reinvigorate TEX during combination therapy. These next generation immune profiling approaches can guide the selection of drugs, schedule, and dosing for novel combination strategies.
Collapse
Affiliation(s)
- Kevin Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulina Coutifaris
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Guanning Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tarek Azar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sabrina Solis
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Ajeya Nandi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaneaka Anderson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Han
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Minke Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sangeeth George
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick K Yan
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie W Kier
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy I Laughlin
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn Kothari
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reem Ghinnagow
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Clinical Immunology and Immunomonitoring Laboratory, Institut Curie, Paris, France
| | - Ahron Flowers
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xiaowei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcus Buggert
- Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Christian Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Department of Hematology and Oncology, University Clinic of Regensburg (UKR), 93053 Regensburg, Germany
| | - Jeffrey S Weber
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Tara C Mitchell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA.
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Lauss M, Phung B, Borch TH, Harbst K, Kaminska K, Ebbesson A, Hedenfalk I, Yuan J, Nielsen K, Ingvar C, Carneiro A, Isaksson K, Pietras K, Svane IM, Donia M, Jönsson G. Molecular patterns of resistance to immune checkpoint blockade in melanoma. Nat Commun 2024; 15:3075. [PMID: 38594286 PMCID: PMC11004175 DOI: 10.1038/s41467-024-47425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Immune checkpoint blockade (ICB) has improved outcome for patients with metastatic melanoma but not all benefit from treatment. Several immune- and tumor intrinsic features are associated with clinical response at baseline. However, we need to further understand the molecular changes occurring during development of ICB resistance. Here, we collect biopsies from a cohort of 44 patients with melanoma after progression on anti-CTLA4 or anti-PD1 monotherapy. Genetic alterations of antigen presentation and interferon gamma signaling pathways are observed in approximately 25% of ICB resistant cases. Anti-CTLA4 resistant lesions have a sustained immune response, including immune-regulatory features, as suggested by multiplex spatial and T cell receptor (TCR) clonality analyses. One anti-PD1 resistant lesion harbors a distinct immune cell niche, however, anti-PD1 resistant tumors are generally immune poor with non-expanded TCR clones. Such immune poor microenvironments are associated with melanoma cells having a de-differentiated phenotype lacking expression of MHC-I molecules. In addition, anti-PD1 resistant tumors have reduced fractions of PD1+ CD8+ T cells as compared to ICB naïve metastases. Collectively, these data show the complexity of ICB resistance and highlight differences between anti-CTLA4 and anti-PD1 resistance that may underlie differential clinical outcomes of therapy sequence and combination.
Collapse
Affiliation(s)
- Martin Lauss
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Lund University Cancer Center, LUCC, Lund, Sweden
| | - Bengt Phung
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Lund University Cancer Center, LUCC, Lund, Sweden
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Katja Harbst
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Lund University Cancer Center, LUCC, Lund, Sweden
| | - Kamila Kaminska
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Lund University Cancer Center, LUCC, Lund, Sweden
| | - Anna Ebbesson
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Lund University Cancer Center, LUCC, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Lund University Cancer Center, LUCC, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22185, Lund, Sweden
| | - Kari Nielsen
- Lund University Cancer Center, LUCC, Lund, Sweden
- Division of Dermatology, Skåne University Hospital and Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
| | - Christian Ingvar
- Division of Surgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
| | - Ana Carneiro
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital Comprehensive Cancer Center, 22185, Lund, Sweden
| | - Karolin Isaksson
- Lund University Cancer Center, LUCC, Lund, Sweden
- Division of Surgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden
- Department of Surgery, Kristianstad Hospital, 29133, Kristianstad, Sweden
| | - Kristian Pietras
- Lund University Cancer Center, LUCC, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22185, Lund, Sweden
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Göran Jönsson
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22185, Lund, Sweden.
- Lund University Cancer Center, LUCC, Lund, Sweden.
| |
Collapse
|
6
|
Suijkerbuijk KPM, van Eijs MJM, van Wijk F, Eggermont AMM. Clinical and translational attributes of immune-related adverse events. NATURE CANCER 2024; 5:557-571. [PMID: 38360861 DOI: 10.1038/s43018-024-00730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
With immune checkpoint inhibitors (ICIs) becoming the mainstay of treatment for many cancers, managing their immune-related adverse events (irAEs) has become an important part of oncological care. This Review covers the clinical presentation of irAEs and crucial aspects of reversibility, fatality and long-term sequelae, with special attention to irAEs in specific patient populations, such as those with autoimmune diseases. In addition, the genetic basis of irAEs, along with cellular and humoral responses to ICI therapy, are discussed. Detrimental effects of empirically used high-dose steroids and second-line immunosuppression, including impaired ICI effectiveness, call for more tailored irAE-treatment strategies. We discuss open therapeutic challenges and propose potential avenues to accelerate personalized management strategies and optimize outcomes.
Collapse
Affiliation(s)
- Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Mick J M van Eijs
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Alexander M M Eggermont
- University Medical Center Utrecht and Princess Máxima Center, Utrecht, the Netherlands
- Comprehensive Cancer Center Munich of the Technical University of Munich and the Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
7
|
Buchan SL. CTLA-4: Checkpoints beyond the membrane. Mol Ther 2024; 32:279-281. [PMID: 38237584 PMCID: PMC10861949 DOI: 10.1016/j.ymthe.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Affiliation(s)
- Sarah L Buchan
- Department of Life and Environmental Science, Bournemouth University, Fern Barrow, BH12 5BB Poole, UK.
| |
Collapse
|
8
|
Almonte AA, Cavic G, Carroll CSE, Neeman T, Fahrer AM. Early T Cell Infiltration Correlates with Anti-CTLA4 Treatment Response in Murine Cancer Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1858-1867. [PMID: 37930122 DOI: 10.4049/jimmunol.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Immune checkpoint inhibitor (ICI) Abs are a revolutionary class of cancer treatment, but only ∼30% of patients receive a lasting benefit from therapy. Preclinical studies using animals from the same genetic backgrounds, challenged with the same cancer models, also show nonuniform responses. Most mouse studies that have evaluated tumor-infiltrating leukocytes after ICI therapy cannot directly correlate their findings with treatment outcomes, because terminal methods were used to acquire immune infiltrate data. In the present study, we used fine-needle aspiration (a nonterminal sampling method) to collect multiple aspirates over several days from s.c. implanted P815, CT26, and 4T1 mouse cancer models treated with ICI Abs. These aspirates were then analyzed with flow cytometry to directly correlate tumor-infiltrating leukocyte populations with treatment success. We found that the P815 and CT26 models respond well to anti-CTLA4 therapies. Among P815-challenged animals, mice that regressed following anti-CTLA4 treatment showed significant increases in CD8+ T cells on days 3, 5, and 7 and in CD4+ T cells on days 5 and 7 and a decrease in macrophages and monocytes on days 3, 5, and 7 after treatment. Similar results were obtained in the CT26 model on day 11 posttreatment. Our study is the first, to our knowledge, to directly correlate early tumor infiltration of T cells with anti-CTLA4 treatment success, thus providing a mechanistic clue toward understanding why alloidentical mice challenged with identical tumors do not respond uniformly to ICI therapies.
Collapse
Affiliation(s)
- Andrew A Almonte
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - George Cavic
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | | | - Teresa Neeman
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
9
|
Jenkins KA, Park M, Pederzoli-Ribeil M, Eskiocak U, Johnson P, Guzman W, McLaughlin M, Moore-Lai D, O'Toole C, Liu Z, Nicholson B, Flesch V, Qiu H, Clackson T, O'Hagan RC, Rodeck U, Karow M, O'Neil J, Williams JC. XTX101, a tumor-activated, Fc-enhanced anti-CTLA-4 monoclonal antibody, demonstrates tumor-growth inhibition and tumor-selective pharmacodynamics in mouse models of cancer. J Immunother Cancer 2023; 11:e007785. [PMID: 38164757 PMCID: PMC10729150 DOI: 10.1136/jitc-2023-007785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION The clinical benefit of the anti-CTLA-4 monoclonal antibody (mAb) ipilimumab has been well established but limited by immune-related adverse events, especially when ipilimumab is used in combination with anti-PD-(L)1 mAb therapy. To overcome these limitations, we have developed XTX101, a tumor-activated, Fc-enhanced anti-CTLA-4 mAb. METHODS XTX101 consists of an anti-human CTLA-4 mAb covalently linked to masking peptides that block the complementarity-determining regions, thereby minimizing the mAb binding to CTLA-4. The masking peptides are designed to be released by proteases that are typically dysregulated within the tumor microenvironment (TME), resulting in activation of XTX101 intratumorally. Mutations within the Fc region of XTX101 were included to enhance affinity for FcγRIII, which is expected to enhance potency through antibody-dependent cellular cytotoxicity. RESULTS Biophysical, biochemical, and cell-based assays demonstrate that the function of XTX101 depends on proteolytic activation. In human CTLA-4 transgenic mice, XTX101 monotherapy demonstrated significant tumor growth inhibition (TGI) including complete responses, increased intratumoral CD8+T cells, and regulatory T cell depletion within the TME while maintaining minimal pharmacodynamic effects in the periphery. XTX101 in combination with anti-PD-1 mAb treatment resulted in significant TGI and was well tolerated in mice. XTX101 was activated in primary human tumors across a range of tumor types including melanoma, renal cell carcinoma, colon cancer and lung cancer in an ex vivo assay system. CONCLUSIONS These data demonstrate that XTX101 retains the full potency of an Fc-enhanced CTLA-4 antagonist within the TME while minimizing the activity in non-tumor tissue, supporting the further evaluation of XTX101 in clinical studies.
Collapse
Affiliation(s)
- Kurt A Jenkins
- Xilio Therapeutics, Waltham, Massachusetts, USA
- Molecular Medicine, City of Hope National Medical Center, Beckman Research Institute, Duarte, California, USA
| | - Miso Park
- Molecular Medicine, City of Hope National Medical Center, Beckman Research Institute, Duarte, California, USA
| | | | | | - Parker Johnson
- Xilio Therapeutics, Waltham, Massachusetts, USA
- Molecular Medicine, City of Hope National Medical Center, Beckman Research Institute, Duarte, California, USA
| | | | | | | | | | - Zhen Liu
- Xilio Therapeutics, Waltham, Massachusetts, USA
| | | | - Veronica Flesch
- Molecular Medicine, City of Hope National Medical Center, Beckman Research Institute, Duarte, California, USA
| | - Huawei Qiu
- Xilio Therapeutics, Waltham, Massachusetts, USA
| | | | | | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - John C Williams
- Molecular Medicine, City of Hope National Medical Center, Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
10
|
Martín-Cruz L, Viñuela M, Kalograiaki I, Angelina A, Oquist-Phillips P, Real-Arévalo I, Cañada FJ, Tudela JI, Moltó L, Moreno-Sierra J, Subiza JL, Palomares O. A tumor-associated heparan sulfate-related glycosaminoglycan promotes the generation of functional regulatory T cells. Cell Mol Immunol 2023; 20:1499-1512. [PMID: 37990034 PMCID: PMC10687014 DOI: 10.1038/s41423-023-01096-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023] Open
Abstract
Functional Tregs play a key role in tumor development and progression, representing a major barrier to anticancer immunity. The mechanisms by which Tregs are generated in cancer and the influence of the tumor microenvironment on these processes remain incompletely understood. Herein, by using NMR, chemoenzymatic structural assays and a plethora of in vitro and in vivo functional analyses, we demonstrate that the tumoral carbohydrate A10 (Ca10), a cell-surface carbohydrate derived from Ehrlich's tumor (ET) cells, is a heparan sulfate-related proteoglycan that enhances glycolysis and promotes the development of tolerogenic features in human DCs. Ca10-stimulated human DCs generate highly suppressive Tregs by mechanisms partially dependent on metabolic reprogramming, PD-L1, IL-10, and IDO. Ca10 also reprograms the differentiation of human monocytes into DCs with tolerogenic features. In solid ET-bearing mice, we found positive correlations between Ca10 serum levels, tumor size and splenic Treg numbers. Administration of isolated Ca10 also increases the proportion of splenic Tregs in tumor-free mice. Remarkably, we provide evidence supporting the presence of a circulating human Ca10 counterpart (Ca10H) and show, for the first time, that serum levels of Ca10H are increased in patients suffering from different cancer types compared to healthy individuals. Of note, these levels are higher in prostate cancer patients with bone metastases than in prostate cancer patients without metastases. Collectively, we reveal novel molecular mechanisms by which heparan sulfate-related structures associated with tumor cells promote the generation of functional Tregs in cancer. The discovery of this novel structural-functional relationship may open new avenues of research with important clinical implications in cancer treatment.
Collapse
Grants
- SAF-2017-84978-R Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- PID2020-114396RB-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- PID2021-123781OB-C22 Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- RTC-2015-3805-1 Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Marcos Viñuela
- Inmunotek, Alcalá de Henares, Madrid, Spain
- Fundación Investigación Hospital Clínico San Carlos, Martin Lagos s/n, 28040, Madrid, Spain
| | - Ioanna Kalograiaki
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maetzu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Paola Oquist-Phillips
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maetzu 9, 28040, Madrid, Spain
| | | | - Francisco Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maetzu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | | | - Luis Moltó
- Fundación Investigación Hospital Clínico San Carlos, Martin Lagos s/n, 28040, Madrid, Spain
| | - Jesús Moreno-Sierra
- Servicio de Urología, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Martín Lagos s/n, 28040, Madrid, Spain
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Meyblum L, Chevaleyre C, Susini S, Jego B, Deschamps F, Kereselidze D, Bonnet B, Marabelle A, de Baere T, Lebon V, Tselikas L, Truillet C. Local and distant response to intratumoral immunotherapy assessed by immunoPET in mice. J Immunother Cancer 2023; 11:e007433. [PMID: 37949616 PMCID: PMC10649793 DOI: 10.1136/jitc-2023-007433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Despite the promising efficacy of immune checkpoint blockers (ICB), tumor resistance and immune-related adverse events hinder their success in cancer treatment. To address these challenges, intratumoral delivery of immunotherapies has emerged as a potential solution, aiming to mitigate side effects through reduced systemic exposure while increasing effectiveness by enhancing local bioavailability. However, a comprehensive understanding of the local and systemic distribution of ICBs following intratumoral administration, as well as their impact on distant tumors, remains crucial for optimizing their therapeutic potential.To comprehensively investigate the distribution patterns following the intratumoral and intravenous administration of radiolabeled anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and to assess its corresponding efficacy in both injected and non-injected tumors, we conducted an immunoPET imaging study. METHODS CT26 and MC38 syngeneic colorectal tumor cells were implanted subcutaneously on both flanks of Balb/c and C57Bl/6 mice, respectively. Hamster anti-mouse CTLA-4 antibody (9H10) labeled with zirconium-89 ([89Zr]9H10) was intratumorally or intravenously administered. Whole-body distribution of the antibody was monitored by immunoPET imaging (n=12 CT26 Balb/c mice, n=10 MC38 C57Bl/6 mice). Tumorous responses to injected doses (1-10 mg/kg) were correlated with specific uptake of [89Zr]9H10 (n=24). Impacts on the tumor microenvironment were assessed by immunofluorescence and flow cytometry. RESULTS Half of the dose was cleared into the blood 1 hour after intratumoral administration. Despite this, 7 days post-injection, 6-8% of the dose remained in the intratumoral-injected tumors. CT26 tumors with prolonged ICB exposure demonstrated complete responses. Seven days post-injection, the contralateral non-injected tumor uptake of the ICB was comparable to the one achieved through intravenous administration (7.5±1.7% ID.cm-3 and 7.6±2.1% ID.cm-3, respectively) at the same dose in the CT26 model. This observation was confirmed in the MC38 model. Consistent intratumoral pharmacodynamic effects were observed in both intratumoral and intravenous treatment groups, as evidenced by a notable increase in CD8+T cells within the CT26 tumors following treatment. CONCLUSIONS ImmunoPET-derived pharmacokinetics supports intratumoral injection of ICBs to decrease systemic exposure while maintaining efficacy compared with intravenous. Intratumoral-ICBs lead to high local drug exposure while maintaining significant therapeutic exposure in non-injected tumors. This immunoPET approach is applicable for clinical practice to support evidence-based drug development.
Collapse
Affiliation(s)
- Louis Meyblum
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
| | - Céline Chevaleyre
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Sandrine Susini
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
| | - Benoit Jego
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Frederic Deschamps
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
| | - Dimitri Kereselidze
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Baptiste Bonnet
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
| | - Aurelien Marabelle
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Saint Aubin, France
| | - Thierry de Baere
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
- Université Paris Saclay, Saint Aubin, France
| | - Vincent Lebon
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Lambros Tselikas
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
- Université Paris Saclay, Saint Aubin, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| |
Collapse
|
12
|
Abdeldaim DT, Schindowski K. Fc-Engineered Therapeutic Antibodies: Recent Advances and Future Directions. Pharmaceutics 2023; 15:2402. [PMID: 37896162 PMCID: PMC10610324 DOI: 10.3390/pharmaceutics15102402] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Monoclonal therapeutic antibodies have revolutionized the treatment of cancer and other diseases. Fc engineering aims to enhance the effector functions or half-life of therapeutic antibodies by modifying their Fc regions. Recent advances in the Fc engineering of modern therapeutic antibodies can be considered the next generation of antibody therapy. Various strategies are employed, including altering glycosylation patterns via glycoengineering and introducing mutations to the Fc region, thereby enhancing Fc receptor or complement interactions. Further, Fc engineering strategies enable the generation of bispecific IgG-based heterodimeric antibodies. As Fc engineering techniques continue to evolve, an expanding portfolio of Fc-engineered antibodies is advancing through clinical development, with several already approved for medical use. Despite the plethora of Fc-based mutations that have been analyzed in in vitro and in vivo models, we focus here in this review on the relevant Fc engineering strategies of approved therapeutic antibodies to finetune effector functions, to modify half-life and to stabilize asymmetric bispecific IgGs.
Collapse
Affiliation(s)
- Dalia T. Abdeldaim
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
| |
Collapse
|
13
|
Lax BM, Palmeri JR, Lutz EA, Sheen A, Stinson JA, Duhamel L, Santollani L, Kennedy A, Rothschilds AM, Spranger S, Sansom DM, Wittrup KD. Both intratumoral regulatory T cell depletion and CTLA-4 antagonism are required for maximum efficacy of anti-CTLA-4 antibodies. Proc Natl Acad Sci U S A 2023; 120:e2300895120. [PMID: 37487077 PMCID: PMC10400942 DOI: 10.1073/pnas.2300895120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion. Comparison of b1s1e2-Fc to 9d9, an antagonistic anti-CTLA-4 antibody, allowed for interrogation of the separate contributions of CTLA-4 antagonism and Treg depletion to efficacy. Despite equivalent levels of intratumoral Treg depletion, 9d9 achieved more long-term cures than b1s1e2-Fc in MC38 tumors, demonstrating that CTLA-4 antagonism provided additional survival benefit. Consistent with prior reports that CTLA-4 antagonism enhances priming, treatment with 9d9, but not b1s1e2-Fc, increased the percentage of activated T cells in the tumor-draining lymph node (tdLN). Treg depletion with either construct was restricted to the tumor due to insufficient surface CTLA-4 expression on Tregs in other compartments. Through intratumoral administration of diphtheria toxin in Foxp3-DTR mice, we show that depletion of both intratumoral and nodal Tregs provided even greater survival benefit than 9d9, consistent with Treg-driven restraint of priming in the tdLN. Our data demonstrate that anti-CTLA-4 therapies require both CTLA-4 antagonism and intratumoral Treg depletion for maximum efficacy-but that potential future therapies also capable of depleting nodal Tregs could show efficacy in the absence of CTLA-4 antagonism.
Collapse
Affiliation(s)
- Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joseph R. Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emi A. Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - Adrienne M. Rothschilds
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David M. Sansom
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
14
|
Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol 2023; 14:1188049. [PMID: 37256141 PMCID: PMC10225594 DOI: 10.3389/fimmu.2023.1188049] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy represents a major breakthrough in cancer care since the approval of tisagenlecleucel by the Food and Drug Administration in 2017 for the treatment of pediatric and young adult patients with relapsed or refractory acute lymphocytic leukemia. As of April 2023, six CAR T cell therapies have been approved, demonstrating unprecedented efficacy in patients with B-cell malignancies and multiple myeloma. However, adverse events such as cytokine release syndrome and immune effector cell-associated neurotoxicity pose significant challenges to CAR T cell therapy. The severity of these adverse events correlates with the pretreatment tumor burden, where a higher tumor burden results in more severe consequences. This observation is supported by the application of CD19-targeted CAR T cell therapy in autoimmune diseases including systemic lupus erythematosus and antisynthetase syndrome. These results indicate that initiating CAR T cell therapy early at low tumor burden or using debulking strategy prior to CAR T cell infusion may reduce the severity of adverse events. In addition, CAR T cell therapy is expensive and has limited effectiveness against solid tumors. In this article, we review the critical steps that led to this groundbreaking therapy and explore ongoing efforts to overcome these challenges. With the promise of more effective and safer CAR T cell therapies in development, we are optimistic that a broader range of cancer patients will benefit from this revolutionary therapy in the foreseeable future.
Collapse
Affiliation(s)
- Aroshi Mitra
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amrita Barua
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Luping Huang
- Immunobiology and Transplant Science Center, Departments of Surgery and Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Siddhartha Ganguly
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Section of Hematology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bin He
- Immunobiology and Transplant Science Center, Departments of Surgery and Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
15
|
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, Liu J, Subudhi SK, Poon C, Gant KL, Herbrich SM, Anandhan S, Islam S, Amit M, Anandappa G, Allison JP. Immune checkpoint therapy-current perspectives and future directions. Cell 2023; 186:1652-1669. [PMID: 37059068 DOI: 10.1016/j.cell.2023.03.006] [Citation(s) in RCA: 267] [Impact Index Per Article: 267.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/16/2023]
Abstract
Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratishtha Singh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashwat Nagarajan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candice Poon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristal L Gant
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley M Herbrich
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shajedul Islam
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Li Q, Lu J, Li J, Zhang B, Wu Y, Ying T. Antibody-based cancer immunotherapy by targeting regulatory T cells. Front Oncol 2023; 13:1157345. [PMID: 37182149 PMCID: PMC10174253 DOI: 10.3389/fonc.2023.1157345] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Regulatory T cells (Tregs) are among the most abundant suppressive cells, which infiltrate and accumulate in the tumor microenvironment, leading to tumor escape by inducing anergy and immunosuppression. Their presence has been correlated with tumor progression, invasiveness and metastasis. Targeting tumor-associated Tregs is an effective addition to current immunotherapy approaches, but it may also trigger autoimmune diseases. The major limitation of current therapies targeting Tregs in the tumor microenvironment is the lack of selective targets. Tumor-infiltrating Tregs express high levels of cell surface molecules associated with T-cell activation, such as CTLA4, PD-1, LAG3, TIGIT, ICOS, and TNF receptor superfamily members including 4-1BB, OX40, and GITR. Targeting these molecules often attribute to concurrent depletion of antitumor effector T-cell populations. Therefore, novel approaches need to improve the specificity of targeting Tregs in the tumor microenvironment without affecting peripheral Tregs and effector T cells. In this review, we discuss the immunosuppressive mechanisms of tumor-infiltrating Tregs and the status of antibody-based immunotherapies targeting Tregs.
Collapse
Affiliation(s)
- Quanxiao Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| |
Collapse
|
17
|
Seyhan AA, Carini C. Insights and Strategies of Melanoma Immunotherapy: Predictive Biomarkers of Response and Resistance and Strategies to Improve Response Rates. Int J Mol Sci 2022; 24:ijms24010041. [PMID: 36613491 PMCID: PMC9820306 DOI: 10.3390/ijms24010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the recent successes and durable responses with immune checkpoint inhibitors (ICI), many cancer patients, including those with melanoma, do not derive long-term benefits from ICI therapies. The lack of predictive biomarkers to stratify patients to targeted treatments has been the driver of primary treatment failure and represents an unmet medical need in melanoma and other cancers. Understanding genomic correlations with response and resistance to ICI will enhance cancer patients' benefits. Building on insights into interplay with the complex tumor microenvironment (TME), the ultimate goal should be assessing how the tumor 'instructs' the local immune system to create its privileged niche with a focus on genomic reprogramming within the TME. It is hypothesized that this genomic reprogramming determines the response to ICI. Furthermore, emerging genomic signatures of ICI response, including those related to neoantigens, antigen presentation, DNA repair, and oncogenic pathways, are gaining momentum. In addition, emerging data suggest a role for checkpoint regulators, T cell functionality, chromatin modifiers, and copy-number alterations in mediating the selective response to ICI. As such, efforts to contextualize genomic correlations with response into a more insightful understanding of tumor immune biology will help the development of novel biomarkers and therapeutic strategies to overcome ICI resistance.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Correspondence:
| | - Claudio Carini
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Biomarkers Consortium, Foundation of the National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Direct AKT activation in tumor-infiltrating lymphocytes markedly increases interferon-γ (IFN-γ) for the regression of tumors resistant to PD-1 checkpoint blockade. Sci Rep 2022; 12:18509. [PMID: 36323740 PMCID: PMC9630443 DOI: 10.1038/s41598-022-23016-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
PD-1 immune checkpoint blockade against inhibitory receptors such as receptor programmed cell death-1 (PD-1), has revolutionized cancer treatment. Effective immune reactivity against tumour antigens requires the infiltration and activation of tumour-infiltrating T-cells (TILs). In this context, ligation of the antigen-receptor complex (TCR) in combination with the co-receptor CD28 activates the intracellular mediator AKT (or PKB, protein kinase B) and its downstream targets. PD-1 inhibits the activation of AKT/PKB. Given this, we assessed whether the direct activation of AKT might be effective in activating the immune system to limit the growth of tumors that are resistant to PD-1 checkpoint blockade. We found that the small molecule activator of AKT (SC79) limited growth of a B16 tumor and an EMT-6 syngeneic breast tumor model that are poorly responsive to PD-1 immunotherapy. In the case of B16 tumors, direct AKT activation induced (i) a reduction of suppressor regulatory (Treg) TILs and (ii) an increase in effector CD8+ TILs. SC79 in vivo therapy caused a major increase in the numbers of CD4+ and CD8+ TILs to express interferon-γ (IFN-γ). This effect on IFN-γ expression distinguished responsive from non-responsive anti-tumor responses and could be recapitulated ex vivo with human T-cells. In CD4+FoxP3+Treg TILs, AKT induced IFN-γ expression was accompanied by a loss of suppressor activity, the conversation to CD4+ helper Th1-like TILs and a marked reduction in phospho-SHP2. In CD8+ TILs, we observed an increase in the phospho-activation of PLC-γ. Further, the genetic deletion of the transcription factor T-bet (Tbx21) blocked the increased IFN-γ expression on all subsets while ablating the therapeutic benefits of SC79 on tumor growth. Our study shows that AKT activation therapy acts to induce IFN-γ on CD4 and CD8 TILs that is accompanied by the intra-tumoral conversation of suppressive Tregs into CD4+Th1-like T-cells and augmented CD8 responses.
Collapse
|
19
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
20
|
Sanmamed MF, Berraondo P, Rodriguez-Ruiz ME, Melero I. Charting roadmaps towards novel and safe synergistic immunotherapy combinations. NATURE CANCER 2022; 3:665-680. [PMID: 35764745 DOI: 10.1038/s43018-022-00401-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Checkpoint inhibitor-based cancer immunotherapy is often combined in the clinic with other immunotherapy strategies, targeted therapies, chemotherapy or standard-of-care treatments to achieve superior therapeutic efficacy. The large number of immunotherapy combinations that are currently undergoing clinical testing necessitate the establishment of faithful criteria to prioritize optimal combinations with evidence of synergy, to determine their safety and optimal sequence of administration and to identify biomarkers of therapy resistance and response. In this review, we focus on recent developments in immunotherapy combinations and reflect on how combinations should be optimized to maximize the impact of immunotherapy in clinical oncology.
Collapse
Affiliation(s)
- Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| |
Collapse
|
21
|
Yang H, Lei G, Sun F, Cheng J, Yan J, Zhang S, Yang P. Oncolytic Activity of a Chimeric Influenza A Virus Carrying a Human CTLA4 Antibody in Hepatocellular Carcinoma. Front Oncol 2022; 12:875525. [PMID: 35494032 PMCID: PMC9039307 DOI: 10.3389/fonc.2022.875525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022] Open
Abstract
Oncolytic virotherapy belongs to a kind of active immunotherapy, which could trigger a potent antitumor immune response, showing great potential in clinical application. OVs could induce immune responses through the dual mechanisms of selective tumor killing without destroying normal tissues and induction of systemic antitumor immunity. In this study, we successfully rescued a chimeric oncolytic influenza virus carrying a human CTLA4 antibody in the background of the A/PR/8/34 (PR8) virus. The chimeric virus, called rFlu-huCTLA4, contained the heavy and light chains of the human CTLA4 antibody in the PB1 and PA segments of the PR8 virus, respectively. The first-generation hemagglutination (HA) titers of the rFlu-huCTLA4 virus ranged from 27 to 28, which could be passaged stably in specific pathogen-free (SPF) chicken embryos from P1 to P5. The morphology and size distribution of the chimeric virus were consistent with those of the wt influenza virus. The rFlu-huCTLA4 virus could effectively replicate in various cells in time- and dose-dependent manners. ELISA assay revealed that the secreted huCTLA4 antibody levels in chicken embryos increased gradually over time. Furthermore, MTS and crystal violet analysis showed that the selective cytotoxicity of the virus was higher in hepatocellular carcinoma cells (HepG2 and Huh7) than in normal liver cells (MIHA). In vivo experiments displayed that intratumoral injection with rFlu-huCTLA4 reduced tumor growth and increased the survival of mice compared with the PR8 group. More importantly, in the rFlu-huCTLA4 group, we found that CD4+ and CD8 +T cells were significantly increased in tumor-bearing BALB/c mice. Taken together, these findings demonstrated that the chimeric oncolytic virus rFlu-huCTLA4 could selectively destroy hepatocellular carcinoma cells in vitro and in vivo and may provide a promising clinical strategy for targeted immunotherapy of HCC with the oncolytic flu virus.
Collapse
Affiliation(s)
- Hao Yang
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,The Graduate Department, Hebei North University, Zhangjiakou, China
| | - Guanglin Lei
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinxia Cheng
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin Yan
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaogeng Zhang
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Penghui Yang
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Revenko A, Carnevalli LS, Sinclair C, Johnson B, Peter A, Taylor M, Hettrick L, Chapman M, Klein S, Solanki A, Gattis D, Watt A, Hughes AM, Magiera L, Kar G, Ireland L, Mele DA, Sah V, Singh M, Walton J, Mairesse M, King M, Edbrooke M, Lyne P, Barry ST, Fawell S, Goldberg FW, MacLeod AR. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J Immunother Cancer 2022; 10:jitc-2021-003892. [PMID: 35387780 PMCID: PMC8987763 DOI: 10.1136/jitc-2021-003892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).
Collapse
Affiliation(s)
| | | | | | - Ben Johnson
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | | | - Melissa Chapman
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew Watt
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | - Gozde Kar
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Vasu Sah
- Oncology R&D, AstraZeneca, Waltham, MA, USA
| | | | | | | | | | | | - Paul Lyne
- Oncology R&D, AstraZeneca, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
23
|
Edmunds GL, Wong CCW, Ambler R, Milodowski EJ, Alamir H, Cross SJ, Galea G, Wülfing C, Morgan DJ. Adenosine 2A receptor and TIM3 suppress cytolytic killing of tumor cells via cytoskeletal polarization. Commun Biol 2022; 5:9. [PMID: 35013519 PMCID: PMC8748690 DOI: 10.1038/s42003-021-02972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
Tumors generate an immune-suppressive environment that prevents effective killing of tumor cells by CD8+ cytotoxic T cells (CTL). It remains largely unclear upon which cell type and at which stage of the anti-tumor response mediators of suppression act. We have combined an in vivo tumor model with a matching in vitro reconstruction of the tumor microenvironment based on tumor spheroids to identify suppressors of anti-tumor immunity that directly act on interaction between CTL and tumor cells and to determine mechanisms of action. An adenosine 2A receptor antagonist, as enhanced by blockade of TIM3, slowed tumor growth in vivo. Engagement of the adenosine 2A receptor and TIM3 reduced tumor cell killing in spheroids, impaired CTL cytoskeletal polarization ex vivo and in vitro and inhibited CTL infiltration into tumors and spheroids. With this role in CTL killing, blocking A2AR and TIM3 may complement therapies that enhance T cell priming, e.g. anti-PD-1 and anti-CTLA-4.
Collapse
Affiliation(s)
- Grace L Edmunds
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Carissa C W Wong
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Hanin Alamir
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen J Cross
- Wolfson BioImaging Facility, University of Bristol, Bristol, BS8 1TD, UK
| | - Gabriella Galea
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - David J Morgan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
24
|
Harnessing Antitumor CD4 + T Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14010260. [PMID: 35008422 PMCID: PMC8750687 DOI: 10.3390/cancers14010260] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Diverse evidence revealed that CD4+ T cells play an important role in antitumor immunity by promoting or suppressing cytotoxic T cell responses. This review outlines the role of CD4+ T subsets within the tumor microenvironment and summarizes the latest progress regarding their potentials in cancer immunotherapy and methods for improving outcomes in cancer strategies by modulating CD4+ T responses. Abstract Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.
Collapse
|
25
|
Hatzioannou A, Boumpas A, Papadopoulou M, Papafragkos I, Varveri A, Alissafi T, Verginis P. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Front Immunol 2021; 12:731947. [PMID: 34539668 PMCID: PMC8446642 DOI: 10.3389/fimmu.2021.731947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune homeostasis, and their function has been closely linked to development of diverse pathologies including autoimmunity and cancer. Comprehensive studies in various disease contexts revealed an increased plasticity as a characteristic of Treg cells. Although Treg cell plasticity comes in various flavors, the major categories enclose the loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to “ex-Treg” cells and the “fragile” Treg cells in which FOXP3 expression is retained but accompanied by the engagement of an inflammatory program and attenuation of the suppressive activity. Treg cell plasticity possess a tremendous therapeutic potential either by inducing Treg cell de-stabilization to promote anti-tumor immunity, or re-enforcing Treg cell stability to attenuate chronic inflammation. Herein, we review the literature on the Treg cell plasticity with lessons learned in autoimmunity and cancer and discuss challenges and open questions with potential therapeutic implications.
Collapse
Affiliation(s)
- Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athina Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Iosif Papafragkos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Themis Alissafi
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
26
|
Huppert LA, Daud AI. Pembrolizumab and Ipilimumab as Second-Line Therapy for Advanced Melanoma. J Clin Oncol 2021; 39:2637-2639. [PMID: 34138634 DOI: 10.1200/jco.21.00943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Laura A Huppert
- Division of Hematology Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Adil I Daud
- Division of Hematology Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
27
|
Erdem N, Montero E, Roep BO. Breaking and restoring immune tolerance to pancreatic beta-cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:397-403. [PMID: 34183540 DOI: 10.1097/med.0000000000000646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) results from the loss of immune tolerance to pancreatic beta-cells leading to their destruction. Immune intervention therapies tested in T1D so far delayed progression but failed to restore tolerance, which partly explains their lack of durable clinical efficacy. RECENT FINDINGS The role of beta-cells and islets themselves in dialogue with their micro- and macro-environment including the immune system and the intestinal microbiome is increasingly evident. Indeed, islets can both maintain and break immune tolerance. Some recent immune therapies in cancer that block immune regulation also break tolerance. Induction of immune tolerance requires activating immune activation too, whereas immune suppression precludes this process. Immunotherapy alone my not suffice without engaging islets to restore tolerance and preserve beta-cell function. SUMMARY New insight into the role of islet tissue and its interaction with its environment in preserving or breaking tolerance has contributed to understand the development of islet autoimmunity and T1D. Knowing which factors in islets and the immune system contribute to maintaining, breaking, and restoring the balance in the immune system is critical to prevent initiation and reverse disease progression, and guides the design of novel tolerogenic strategies for durable therapeutic intervention and remission that target both the immune system and distressed islets.
Collapse
Affiliation(s)
- Neslihan Erdem
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Enrique Montero
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
| | - Bart O Roep
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
- Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Nishikawa H, Koyama S. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J Immunother Cancer 2021; 9:jitc-2021-002591. [PMID: 34330764 PMCID: PMC8327843 DOI: 10.1136/jitc-2021-002591] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 11/04/2022] Open
Abstract
With the broad application of cancer immunotherapies such as immune checkpoint inhibitors in multiple cancer types, the immunological landscape in the tumor microenvironment (TME) has become enormously important for determining the optimal cancer treatment. Tumors can be immunologically divided into two categories: inflamed and non-inflamed based on the extent of immune cell infiltration and their activation status. In general, immunotherapies are preferable for the inflamed tumors than for non-inflamed tumors. Regulatory T cells (Tregs), an immunosuppressive subset of CD4+ T cells, play an essential role in maintaining self-tolerance and immunological homeostasis. In tumor immunity, Tregs compromise immune surveillance against cancer in healthy individuals and impair the antitumor immune response in tumor-bearing hosts. Tregs, therefore, accelerate immune evasion by tumor cells, leading to tumor development and progression in various types of cancer. Therefore, Tregs are considered to be a crucial therapeutic target for cancer immunotherapy. Abundant Tregs are observed in the TME in many types of cancer, both in inflamed and non-inflamed tumors. Diverse mechanisms of Treg accumulation, activation, and survival in the TME have been uncovered for different tumor types, indicating the importance of understanding the mechanism of Treg infiltration in each patient when selecting the optimal Treg-targeted therapy. Here, we review recent advances in the understanding of mechanisms leading to Treg abundance in the TME to optimize Treg-targeted therapy. Furthermore, in addition to the conventional strategies targeting cell surface molecules predominantly expressed by Tregs, reagents targeting molecules and signaling pathways specifically employed by Tregs for infiltration, activation, and survival in each tumor type are illustrated as novel Treg-targeted therapies. The effectiveness of immune precision therapy depends on conditions in the TME of each cancer patient.
Collapse
Affiliation(s)
- Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan .,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
29
|
Yang W, Feng Y, Zhou J, Cheung OKW, Cao J, Wang J, Tang W, Tu Y, Xu L, Wu F, Tan Z, Sun H, Tian Y, Wong J, Lai PBS, Chan SL, Chan AWH, Tan PBO, Chen Z, Sung JJY, Yip KYL, To KF, Cheng ASL. A selective HDAC8 inhibitor potentiates antitumor immunity and efficacy of immune checkpoint blockade in hepatocellular carcinoma. Sci Transl Med 2021; 13:13/588/eaaz6804. [PMID: 33827976 DOI: 10.1126/scitranslmed.aaz6804] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 09/26/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Insufficient T cell infiltration into noninflamed tumors, such as hepatocellular carcinoma (HCC), restricts the effectiveness of immune-checkpoint blockade (ICB) for a subset of patients. Epigenetic therapy provides further opportunities to rewire cancer-associated transcriptional programs, but whether and how selective epigenetic inhibition counteracts the immune-excluded phenotype remain incompletely defined. Here, we showed that pharmacological inhibition of histone deacetylase 8 (HDAC8), a histone H3 lysine 27 (H3K27)-specific isozyme overexpressed in a variety of human cancers, thwarts HCC tumorigenicity in a T cell-dependent manner. The tumor-suppressive effect of selective HDAC8 inhibition was abrogated by CD8+ T cell depletion or regulatory T cell adoptive transfer. Chromatin profiling of human HDAC8-expressing HCCs revealed genome-wide H3K27 deacetylation in 1251 silenced enhancer-target gene pairs that are enriched in metabolic and immune regulators. Mechanistically, down-regulation of HDAC8 increased global and enhancer acetylation of H3K27 to reactivate production of T cell-trafficking chemokines by HCC cells, thus relieving T cell exclusion in both immunodeficient and humanized mouse models. In an HCC preclinical model, selective HDAC8 inhibition increased tumor-infiltrating CD8+ T cells and potentiated eradication of established hepatomas by anti-PD-L1 therapy without evidence of toxicity. Mice treated with HDAC8 and PD-L1 coblockade were protected against subsequent tumor rechallenge as a result of the induction of memory T cells and remained tumor-free for greater than 15 months. Collectively, our study demonstrates that selective HDAC8 inhibition elicits effective and durable responses to ICB by co-opting adaptive immunity through enhancer reprogramming.
Collapse
Affiliation(s)
- Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Otto Ka-Wing Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianquan Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liangliang Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhiwu Tan
- AIDS Institute, The University of Hong Kong, Hong Kong SAR 999077, China.,Department of Microbiology and Research Center for Infection and Immunity, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanyong Sun
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518061, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Patrick Boon-Ooi Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169857, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore 119228, Singapore
| | - Zhiwei Chen
- AIDS Institute, The University of Hong Kong, Hong Kong SAR 999077, China.,Department of Microbiology and Research Center for Infection and Immunity, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
30
|
Tsang J, Wong JSL, Kwok GGW, Li BCW, Leung R, Chiu J, Cheung TT, Yau T. Nivolumab + Ipilimumab for patients with hepatocellular carcinoma previously treated with Sorafenib. Expert Rev Gastroenterol Hepatol 2021; 15:589-598. [PMID: 33666530 DOI: 10.1080/17474124.2021.1899808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The systemic treatment of advanced, unresectable hepatocellular carcinoma (HCC) has undergone an evolution in recent years. In March 2020, a combination of nivolumab and ipilimumab was approved by the FDA for treatment of patients with advanced HCC who received prior sorafenib. This was based on the results of the phase I/II CheckMate-040 cohort 4 trials, which showed a promising overall response rate and encouraging overall survival with a manageable safety profile. AREAS COVERED This article reviews the pharmacology, efficacy and safety of nivolumab-ipilimumab in advanced HCC with prior sorafenib. Other existing systemic treatment options for advanced HCC will be described and compared to nivolumab-ipilimumab. Impact of different dose regimes, ongoing research and future developments of nivolumab-ipilimumab will be discussed. We focus on the analysis from the aforementioned CheckMate-040 cohort 4 registration trial. EXPERT OPINION The approval of nivolumab-ipilimumab in the second-line treatment of advanced HCC by the FDA is an important development for treatment of advanced HCC. However, further investigations are needed to optimize dosing regimens and explore the use of nivolumab-ipilimumab in other combinations and settings.
Collapse
Affiliation(s)
- Josephine Tsang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Jeffrey Sum Lung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Gerry Gin Wai Kwok
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Bryan Cho Wing Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Roland Leung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Joanne Chiu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Tan To Cheung
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Thomas Yau
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
De Keersmaecker B, Claerhout S, Carrasco J, Bar I, Corthals J, Wilgenhof S, Neyns B, Thielemans K. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J Immunother Cancer 2021; 8:jitc-2019-000329. [PMID: 32114500 PMCID: PMC7057443 DOI: 10.1136/jitc-2019-000329] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background We previously reported that dendritic cell-based mRNA vaccination plus ipilimumab (TriMixDC-MEL IPI) results in an encouraging rate of tumor responses in patients with pretreated advanced melanoma. Here, we report the TriMixDC-MEL IPI-induced T-cell responses detected in the peripheral blood. Methods Monocyte-derived dendritic cells electroporated with mRNA encoding CD70, CD40 ligand, and constitutively active TLR4 (TriMix) as well as the tumor-associated antigens tyrosinase, gp100, MAGE-A3, or MAGE-C2 were administered together with IPI for four cycles. For 18/39 patients, an additional vaccine was administered before the first IPI administration. We evaluated tumor-associated antigen specific T-cell responses in previously collected peripheral blood mononuclear cells, available from 15 patients. Results Vaccine-induced enzyme-linked immunospot assay responses detected after in vitro T-cell stimulation were shown in 12/15 patients. Immune responses detected in patients with a complete or partial response were significantly stronger and broader, and exhibited a higher degree of multifunctionality compared with responses in patients with stable or progressive disease. CD8+ T-cell responses from patients with an ongoing clinical response, either elicited by TriMixDC-MEL IPI or on subsequent pembrolizumab treatment, exhibited the highest degree of multifunctionality. Conclusions TriMixDC-MEL IPI treatment results in robust CD8+ T-cell responses in a meaningful portion of stage III or IV melanoma patients, and obviously in patients with a clinical response. The levels of polyfunctional and multiantigen T-cell responses measured in patients with a complete response, particularly in patients evidently cured after 5+ years of follow-up, may provide a benchmark for the level of immune stimulation needed to achieve a durable clinical remission. Trial registration number NCT01302496.
Collapse
Affiliation(s)
| | | | - Javier Carrasco
- Laboratory of Translational Oncology, Institute of Pathology and Genetics, Grand Hopital de Charleroi, Charleroi, Hainaut, Belgium
| | - Isabelle Bar
- Laboratory of Translational Oncology, Institute of Pathology and Genetics, Grand Hopital de Charleroi, Charleroi, Hainaut, Belgium
| | - Jurgen Corthals
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Sofie Wilgenhof
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
32
|
Recruitment and Expansion of Tregs Cells in the Tumor Environment-How to Target Them? Cancers (Basel) 2021; 13:cancers13081850. [PMID: 33924428 PMCID: PMC8069615 DOI: 10.3390/cancers13081850] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic strategies developed to block these mechanisms. Abstract Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.
Collapse
|
33
|
Campbell JR, McDonald BR, Mesko PB, Siemers NO, Singh PB, Selby M, Sproul TW, Korman AJ, Vlach LM, Houser J, Sambanthamoorthy S, Lu K, Hatcher SV, Lohre J, Jain R, Lan RY. Fc-Optimized Anti-CCR8 Antibody Depletes Regulatory T Cells in Human Tumor Models. Cancer Res 2021; 81:2983-2994. [PMID: 33757978 DOI: 10.1158/0008-5472.can-20-3585] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/07/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
FOXP3+ regulatory T cells (Treg) play a critical role in mediating tolerance to self-antigens and can repress antitumor immunity through multiple mechanisms. Therefore, targeted depletion of tumor-resident Tregs is warranted to promote effective antitumor immunity while preserving peripheral homeostasis. Here, we propose the chemokine receptor CCR8 as one such optimal tumor Treg target. CCR8 was expressed by Tregs in both murine and human tumors, and unlike CCR4, a Treg depletion target in the clinic, CCR8 was selectively expressed on suppressive tumor Tregs and minimally expressed on proinflammatory effector T cells (Teff). Preclinical mouse tumor modeling showed that depletion of CCR8+ Tregs through an FcyR-engaging anti-CCR8 antibody, but not blockade, enabled dose-dependent, effective, and long-lasting antitumor immunity that synergized with PD-1 blockade. This depletion was tumor Treg-restricted, sparing CCR8+ T cells in the spleen, thymus, and skin of mice. Importantly, Fc-optimized, nonfucosylated (nf) anti-human CCR8 antibodies specifically depleted Tregs and not Teffs in ex vivo tumor cultures from primary human specimens. These findings suggest that anti-CCR8-nf antibodies may deliver optimal tumor-targeted Treg depletion in the clinic, providing long-term antitumor memory responses while limiting peripheral toxicities. SIGNIFICANCE: These findings show that selective depletion of regulatory T cells with an anti-CCR8 antibody can improve antitumor immune responses as a monotherapy or in combination with other immunotherapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2983/F1.large.jpg.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Selby
- Bristol Myers Squibb, Redwood City, California
| | | | | | | | - Jeff Houser
- Bristol Myers Squibb, Redwood City, California
| | | | - Kai Lu
- Bristol Myers Squibb, Redwood City, California
| | | | - Jack Lohre
- Bristol Myers Squibb, Redwood City, California
| | - Renu Jain
- Bristol Myers Squibb, Redwood City, California.
| | - Ruth Y Lan
- Bristol Myers Squibb, Redwood City, California.
| |
Collapse
|
34
|
Willsmore ZN, Coumbe BGT, Crescioli S, Reci S, Gupta A, Harris RJ, Chenoweth A, Chauhan J, Bax HJ, McCraw A, Cheung A, Osborn G, Hoffmann RM, Nakamura M, Laddach R, Geh JLC, MacKenzie-Ross A, Healy C, Tsoka S, Spicer JF, Josephs DH, Papa S, Lacy KE, Karagiannis SN. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur J Immunol 2021; 51:544-556. [PMID: 33450785 DOI: 10.1002/eji.202048747] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and the Programmed Death Receptor 1 (PD-1) are immune checkpoint molecules that are well-established targets of antibody immunotherapies for the management of malignant melanoma. The monoclonal antibodies, Ipilimumab, Pembrolizumab, and Nivolumab, designed to interfere with T cell inhibitory signals to activate immune responses against tumors, were originally approved as monotherapy. Treatment with a combination of immune checkpoint inhibitors may improve outcomes compared to monotherapy in certain patient groups and these clinical benefits may be derived from unique immune mechanisms of action. However, treatment with checkpoint inhibitor combinations also present significant clinical challenges and increased rates of immune-related adverse events. In this review, we discuss the potential mechanisms attributed to single and combined checkpoint inhibitor immunotherapies and clinical experience with their use.
Collapse
Affiliation(s)
- Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Ben G T Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Sara Reci
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Ayushi Gupta
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alexa McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Ricarda M Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Jenny L C Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie-Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sophie Papa
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- ImmunoEngineering, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
35
|
Relecom A, Merhi M, Inchakalody V, Uddin S, Rinchai D, Bedognetti D, Dermime S. Emerging dynamics pathways of response and resistance to PD-1 and CTLA-4 blockade: tackling uncertainty by confronting complexity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:74. [PMID: 33602280 PMCID: PMC7893879 DOI: 10.1186/s13046-021-01872-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors provide considerable therapeutic benefit in a range of solid cancers as well as in a subgroup of hematological malignancies. Response rates are however suboptimal, and despite considerable efforts, predicting response to immune checkpoint inhibitors ahead of their administration in a given patient remains elusive. The study of the dynamics of the immune system and of the tumor under immune checkpoint blockade brought insight into the mechanisms of action of these therapeutic agents. Equally relevant are the mechanisms of adaptive resistance to immune checkpoint inhibitors that have been uncovered through this approach. In this review, we discuss the dynamics of the immune system and of the tumor under immune checkpoint blockade emanating from recent studies on animal models and humans. We will focus on mechanisms of action and of resistance conveying information predictive of therapeutic response.
Collapse
Affiliation(s)
- Allan Relecom
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Darawan Rinchai
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar
| | - Davide Bedognetti
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar. .,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Said Dermime
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
36
|
Mathew D, Torres RM. Lysophosphatidic Acid Is an Inflammatory Lipid Exploited by Cancers for Immune Evasion via Mechanisms Similar and Distinct From CTLA-4 and PD-1. Front Immunol 2021; 11:531910. [PMID: 33584637 PMCID: PMC7873449 DOI: 10.3389/fimmu.2020.531910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance has evolved to curtail immune responses against self-antigens and prevent autoimmunity. One mechanism that contributes to immunological tolerance is the expression of inhibitory receptors by lymphocytes that signal to dampen immune responses during the course of an infection and to prevent immune-mediated collateral damage to the host. The understanding that tumors exploit these physiological mechanisms to avoid elimination has led to remarkable, but limited, success in the treatment of cancer through the use of biologics that interfere with the ability of cancers to suppress immune function. This therapy, based on the understanding of how T lymphocytes are normally activated and suppressed, has led to the development of therapeutic blocking antibodies, referred to as immune checkpoint blockade, which either directly or indirectly promote the activation of CD8 T cells to eradicate cancer. Here, we highlight the distinct signaling mechanisms, timing and location of inhibition used by the CTLA-4 and PD-1 inhibitory receptors compared to a novel inhibitory signaling axis comprised of the bioactive lipid, lysophosphatidic acid (LPA), signaling via the LPA5 receptor expressed by CD8 T cells. Importantly, abundant evidence indicates that an LPA-LPA5 signaling axis is also exploited by diverse cancers to suppress T cell activation and function. Clearly, a thorough molecular and biochemical understanding of how diverse T cell inhibitory receptors signal to suppress T cell antigen receptor signaling and function will be important to inform the choice of which complimentary checkpoint blockade modalities might be used for a given cancer.
Collapse
Affiliation(s)
| | - Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
37
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol 2020; 51:280-291. [PMID: 33302322 DOI: 10.1002/eji.202048992] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
The adaptive immune system is modulated by an important subset of CD4+ T lymphocytes called Treg cells that function in maintaining immune homeostasis by preventing excessive immune activation. Both deficiency and overactivation of Treg cell function can result in disease pathology. While loss of Treg function can lead to autoimmunity, an overabundance of Treg activity can promote tumorigenesis. Blocking and/or depleting Tregs has emerged as a viable strategy to enhance antitumor immunity. A major limitation underlying the limited efficacy observed with Treg therapies in the clinic is lack of selective targeting, often attributed to concurrent depletion of antitumor effector T-cell populations. Novel approaches to improve the specificity of Treg targeting in the context of cancer include the use of T-cell receptor mimic antibodies, bispecific antibodies, and near-infrared photoimmunotherapy. Next-generation technology platforms and transcriptomic/computational-based screening methods have been recently developed to identify preferential Treg targets. Herein, we highlight key advancements and challenges pertaining to the development of novel Treg targeting cancer therapeutics and discuss ongoing clinical trials evaluating next-generation Treg therapies for solid tumors.
Collapse
Affiliation(s)
- Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Rajkumar Ganesan
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
39
|
Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-Engineering for Modulated Effector Functions-Improving Antibodies for Cancer Treatment. Antibodies (Basel) 2020; 9:E64. [PMID: 33212886 PMCID: PMC7709126 DOI: 10.3390/antib9040064] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The majority of monoclonal antibody (mAb) therapeutics possess the ability to engage innate immune effectors through interactions mediated by their fragment crystallizable (Fc) domain. By delivering Fc-Fc gamma receptor (FcγR) and Fc-C1q interactions, mAb are able to link exquisite specificity to powerful cellular and complement-mediated effector functions. Fc interactions can also facilitate enhanced target clustering to evoke potent receptor signaling. These observations have driven decades-long research to delineate the properties within the Fc that elicit these various activities, identifying key amino acid residues and elucidating the important role of glycosylation. They have also fostered a growing interest in Fc-engineering whereby this knowledge is exploited to modulate Fc effector function to suit specific mechanisms of action and therapeutic purposes. In this review, we document the insight that has been generated through the study of the Fc domain; revealing the underpinning structure-function relationships and how the Fc has been engineered to produce an increasing number of antibodies that are appearing in the clinic with augmented abilities to treat cancer.
Collapse
Affiliation(s)
- Rena Liu
- GlaxoSmithKline Research and Development, Stevenage SG1 2NY, UK;
| | - Robert J. Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Emma Teal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| |
Collapse
|
40
|
Shklovskaya E, Lee JH, Lim SY, Stewart A, Pedersen B, Ferguson P, Saw RPM, Thompson JF, Shivalingam B, Carlino MS, Scolyer RA, Menzies AM, Long GV, Kefford RF, Rizos H. Tumor MHC Expression Guides First-Line Immunotherapy Selection in Melanoma. Cancers (Basel) 2020; 12:cancers12113374. [PMID: 33202676 PMCID: PMC7696726 DOI: 10.3390/cancers12113374] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Immunotherapy leads to durable responses in a proportion of patients with advanced melanoma. Combination immunotherapy is more efficacious than single-agent immunotherapy, yet it is associated with significant toxicity. Currently there are no robust biomarkers to guide first-line immunotherapy selection. We have developed a flow cytometry-based score, to quantify the expression of antigen-presenting molecules MHC-I and MHC-II on melanoma cells, that incorporates both the fraction of tumor cells expressing MHC molecules and the level of expression. We demonstrate that the evaluation of tumor cell surface MHC-I expression aids in treatment selection, with combination immunotherapy providing clinical benefit over single-agent immunotherapy in MHC-I low melanoma with poor immune cell infiltration. Abstract Immunotherapy targeting T-cell inhibitory receptors, namely programmed cell death-1 (PD-1) and/or cytotoxic T-lymphocyte associated protein-4 (CTLA-4), leads to durable responses in a proportion of patients with advanced metastatic melanoma. Combination immunotherapy results in higher rates of response compared to anti-PD-1 monotherapy, at the expense of higher toxicity. Currently, there are no robust molecular biomarkers for the selection of first-line immunotherapy. We used flow cytometry to profile pretreatment tumor biopsies from 36 melanoma patients treated with anti-PD-1 or combination (anti-PD-1 plus anti-CTLA-4) immunotherapy. A novel quantitative score was developed to determine the tumor cell expression of antigen-presenting MHC class I (MHC-I) molecules, and to correlate expression data with treatment response. Melanoma MHC-I expression was intact in all tumors derived from patients who demonstrated durable response to anti-PD-1 monotherapy. In contrast, melanoma MHC-I expression was low in 67% of tumors derived from patients with durable response to combination immunotherapy. Compared to MHC-I high tumors, MHC-I low tumors displayed reduced T-cell infiltration and a myeloid cell-enriched microenvironment. Our data emphasize the importance of robust MHC-I expression for anti-PD-1 monotherapy response and provide a rationale for the selection of combination immunotherapy as the first-line treatment in MHC-I low melanoma.
Collapse
Affiliation(s)
- Elena Shklovskaya
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (E.S.); (J.H.L.); (S.Y.L.); (A.S.); (B.P.); (R.F.K.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
| | - Jenny H Lee
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (E.S.); (J.H.L.); (S.Y.L.); (A.S.); (B.P.); (R.F.K.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW 2050, Australia
| | - Su Yin Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (E.S.); (J.H.L.); (S.Y.L.); (A.S.); (B.P.); (R.F.K.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
| | - Ashleigh Stewart
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (E.S.); (J.H.L.); (S.Y.L.); (A.S.); (B.P.); (R.F.K.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
| | - Bernadette Pedersen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (E.S.); (J.H.L.); (S.Y.L.); (A.S.); (B.P.); (R.F.K.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
| | - Peter Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW 2050, Australia
| | - Robyn PM Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Brindha Shivalingam
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Sydney, NSW 2050, Australia
- Department of Neurosurgery, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia
- Department of Medical Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, NSW 2148, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW 2050, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Department of Medical Oncology, Mater Hospital, Sydney, NSW 2060, Australia
| | - Richard F Kefford
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (E.S.); (J.H.L.); (S.Y.L.); (A.S.); (B.P.); (R.F.K.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (E.S.); (J.H.L.); (S.Y.L.); (A.S.); (B.P.); (R.F.K.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (P.F.); (R.P.S.); (J.F.T.); (B.S.); (M.S.C.); (R.A.S.); (A.M.M.); (G.V.L.)
- Correspondence: ; Tel.: +61-2-9850-2762
| |
Collapse
|
41
|
Wang S, Long S, Deng Z, Wu W. Positive Role of Chinese Herbal Medicine in Cancer Immune Regulation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1577-1592. [DOI: 10.1142/s0192415x20500780] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Complementary and alternative medicine (CAM) plays a critical role in treating cancer patients. Traditional Chinese Medicine (TCM) is the main component of CAM. TCM, especially Chinese Herbal Medicine (CHM), has been increasingly used in China, some other Asian countries and European countries. It has been proven to enhance the efficacy of chemotherapy, radiotherapy, targeted-therapy, and immunotherapy. It lessens the damage caused by these therapies. CHM functions on cancer by inhibiting tumor progression and improving an organism’s immune system. Increasing evidence has shown that many CHM exert favorable effects on the immune regulation. We will summarize the role of CHM on patient’s immune system when treating cancer patients. Our evidence reveals that single herbs, including their extracts, compound formulations, and preparations, will provide current advances on CHM study, especially from the perspective of immune regulation and novel insights for CHM application in clinic. The main herbs used to treat cancer patients are health-strengthening (Fu-Zheng) herbs and pathogen eliminating (Qu-Xie) herbs. The key mechanism is regulating the immune system of cancer patients. Firstly, health-strengthening herbs are mainly functioned as immune regulatory effectors on cancer. Secondly, some of the compound formulations mainly strengthen the health of patients by regulating the immune system of cancer patients. Lastly, some Chinese medicine preparations are widely used to treat cancer for their properties of spiriting vital energy and anti-cancer effects, mainly by improving immunity. CHM plays a positive role in regulating patients’ immune system, which helps cancer patients to fight against cancer itself and finally improves patients’ life quality.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| | - Shunqin Long
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| | - Zhiyin Deng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510005, P. R. China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| |
Collapse
|
42
|
Schwarze JK, Awada G, Cras L, Tijtgat J, Forsyth R, Dufait I, Tuyaerts S, Van Riet I, Neyns B. Intratumoral Combinatorial Administration of CD1c (BDCA-1) + Myeloid Dendritic Cells Plus Ipilimumab and Avelumab in Combination with Intravenous Low-Dose Nivolumab in Patients with Advanced Solid Tumors: A Phase IB Clinical Trial. Vaccines (Basel) 2020; 8:vaccines8040670. [PMID: 33182610 PMCID: PMC7712037 DOI: 10.3390/vaccines8040670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Intratumoral (IT) myeloid dendritic cells (myDCs) play a pivotal role in re-licensing antitumor cytotoxic T lymphocytes. IT injection of the IgG1 monoclonal antibodies ipilimumab and avelumab may induce antibody-dependent cellular cytotoxicity, thereby enhancing the release of tumor antigens that can be captured and processed by CD1c (BDCA-1)+ myDCs. Patients with advanced solid tumors after standard care were eligible for IT injections of ≥1 lesion with ipilimumab (10 mg) and avelumab (40 mg) and intravenous (IV) nivolumab (10 mg) on day 1, followed by IT injection of autologous CD1c (BDCA-1)+ myDCs on day 2. IT/IV administration of ipilimumab, avelumab, and nivolumab was repeated bi-weekly. Primary objectives were safety and feasibility. Nine patients were treated with a median of 21 × 106 CD1c (BDCA-1)+ myDCs, and a median of 4 IT/IV administrations of ipilimumab, avelumab, and nivolumab. The treatment was safe with mainly injection-site reactions, but also immune-related pneumonitis (n = 2), colitis (n = 1), and bullous pemphigoid (n = 1). The best response was a durable partial response in a patient with stage IV melanoma who previously progressed on checkpoint inhibitors. Our combinatorial therapeutic approach, including IT injection of CD1c (BDCA-1)+ myDCs, is feasible and safe, and it resulted in encouraging signs of antitumor activity in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Julia Katharina Schwarze
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
- Correspondence: ; Tel.: +32-2-477-64-15
| | - Gil Awada
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Louise Cras
- Department of Anatomopathology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.C.); (R.F.)
| | - Jens Tijtgat
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Ramses Forsyth
- Department of Anatomopathology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.C.); (R.F.)
| | - Inès Dufait
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Sandra Tuyaerts
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Ivan Van Riet
- Stem Cell Laboratory, Department of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| |
Collapse
|
43
|
Stéphan P, Lautraite R, Voisin A, Grinberg-Bleyer Y. Transcriptional Control of Regulatory T Cells in Cancer: Toward Therapeutic Targeting? Cancers (Basel) 2020; 12:E3194. [PMID: 33143070 PMCID: PMC7693300 DOI: 10.3390/cancers12113194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive research in the past decades has highlighted the tight link between immunity and cancer, leading to the development of immunotherapies that have revolutionized cancer care. However, only a fraction of patients display durable responses to these treatments, and a deeper understanding of the cellular and mechanisms orchestrating immune responses to tumors is mandatory for the discovery of novel therapeutic targets. Among the most scrutinized immune cells, Forkhead Box Protein P3 (Foxp3)+ Regulatory T cells (Treg cells) are central inhibitors of protective anti-tumor immunity. These tumor-promoting functions render Treg cells attractive immunotherapy targets, and multiple strategies are being developed to inhibit their recruitment, survival, and function in the tumor microenvironment. In this context, it is critical to decipher the complex and multi-layered molecular mechanisms that shape and stabilize the Treg cell transcriptome. Here, we provide a global view of the transcription factors, and their upstream signaling pathways, involved in the programming of Treg cell homeostasis and functions in cancer. We also evaluate the feasibility and safety of novel therapeutic approaches aiming at targeting specific transcriptional regulators.
Collapse
Affiliation(s)
| | | | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (R.L.); (A.V.)
| |
Collapse
|
44
|
Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, Wind-Rotolo M, Champhekar A, Medina E, Torrejon DY, Shin DS, Tran P, Kim YJ, Puig-Saus C, Campbell K, Vega-Crespo A, Quist M, Martignier C, Luke JJ, Wolchok JD, Johnson DB, Chmielowski B, Hodi FS, Bhatia S, Sharfman W, Urba WJ, Slingluff CL, Diab A, Haanen JBAG, Algarra SM, Pardoll DM, Anagnostou V, Topalian SL, Velculescu VE, Speiser DE, Kalbasi A, Ribas A. Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell 2020; 38:500-515.e3. [PMID: 32916126 PMCID: PMC7872287 DOI: 10.1016/j.ccell.2020.08.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/17/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
Abstract
We analyze the transcriptome of baseline and on-therapy tumor biopsies from 101 patients with advanced melanoma treated with nivolumab (anti-PD-1) alone or combined with ipilimumab (anti-CTLA-4). We find that T cell infiltration and interferon-γ (IFN-γ) signaling signatures correspond most highly with clinical response to therapy, with a reciprocal decrease in cell-cycle and WNT signaling pathways in responding biopsies. We model the interaction in 58 human cell lines, where IFN-γ in vitro exposure leads to a conserved transcriptome response unless cells have IFN-γ receptor alterations. This conserved IFN-γ transcriptome response in melanoma cells serves to amplify the antitumor immune response. Therefore, the magnitude of the antitumor T cell response and the corresponding downstream IFN-γ signaling are the main drivers of clinical response or resistance to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Catherine S Grasso
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jennifer Tsoi
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mykola Onyshchenko
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gabriel Abril-Rodriguez
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | - Megan Wind-Rotolo
- Translational Bioinformatics, Bristol-Myers Squibb, Hopewell, NJ, USA
| | - Ameya Champhekar
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Egmidio Medina
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Davis Y Torrejon
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniel Sanghoon Shin
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Phuong Tran
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yeon Joo Kim
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Katie Campbell
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Agustin Vega-Crespo
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael Quist
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Bartosz Chmielowski
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - F Stephen Hodi
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Dana Farber Cancer Institute, Boston, MA, USA
| | | | - William Sharfman
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Walter J Urba
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - Adi Diab
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valsamo Anagnostou
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suzanne L Topalian
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victor E Velculescu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Anusha Kalbasi
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
45
|
Mechanisms of immune escape in the cancer immune cycle. Int Immunopharmacol 2020; 86:106700. [PMID: 32590316 DOI: 10.1016/j.intimp.2020.106700] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Cancer is a critical issue globally with high incidence and mortality, imposing great burden on the society. Although great progress has been made in immunotherapy based on immune checkpoint, only a subset of patients responds to this treatment, suggesting that cancer immune evasion is still a major barrier in current immunotherapy. There are a series of factors contributing to immune evasion despite in an immunocompetent environment. Given that these factors are involved in different steps of the cancer immune cycle. In this review, we discuss the mechanisms of immune escape in each step of the cancer immune cycle and then present therapeutic strategies for overcoming immune escape, with the potential to better understand the determinants of immune escape and make anti-tumor immunity more effective.
Collapse
|
46
|
Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020; 20:680-693. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.
Collapse
|
47
|
Mastracci L, Fontana V, Queirolo P, Carosio R, Grillo F, Morabito A, Banelli B, Tanda E, Boutros A, Dozin B, Gualco M, Salvi S, Romani M, Spagnolo F, Poggi A, Pistillo MP. Response to ipilimumab therapy in metastatic melanoma patients: potential relevance of CTLA-4 + tumor infiltrating lymphocytes and their in situ localization. Cancer Immunol Immunother 2020; 69:653-662. [PMID: 32025849 DOI: 10.1007/s00262-020-02494-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
Immune checkpoint inhibitors, including ipilimumab (IPI), achieve a clinical benefit in a small proportion of melanoma patients highlighting the need to investigate predictive biomarkers. In this study, we characterized tumor infiltrating lymphocytes (TILs), focusing on the CTLA-4+ subset, and evaluated their possible predictive significance. We characterized TIL density, cell type, and localization in 40 melanoma lesions from 17 patients treated with IPI. Associations of TILs with IPI timing, tissue localization, and response to IPI were estimated using a linear mixed-effects modelling approach. We found that most of TIL subsets increased in situ upon IPI therapy, with particular reference to FoxP3+ cells. TILs and TIL subsets, such as CD3+, CD45RO+, CTLA-4+, CD4+, CD8+ T cells, CD20+ B cells, and NKp46+ NK cells, showed significantly different spatial distributions in the tumor microenvironment being higher at the invasive margin (IM) as compared to the tumor center (TC) (P value < 0.001 for TIL score and P value < 0.05 for all subsets). Remarkably, high TIL score and density of CD3+, CD8+ T cells, and CTLA-4+ immune cells were significantly associated with a better response to IPI (P values = 0.002, 0.023, 0.007, and 0.001, respectively, for responders vs non-responders). In conclusion, we provide a detailed analysis of CTLA-4+ TIL distribution in melanoma tissues taking into account localization, relationship with CD3+/CD8+ TILs, and changes in response to IPI treatment. We identified that CTLA-4+ TILs may represent a marker of IPI response, alone or with CD3+/CD8+ subsets, although this requires confirmation in larger studies.
Collapse
Affiliation(s)
- Luca Mastracci
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genoa, Italy
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberta Carosio
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genoa, Italy
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Morabito
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Barbara Banelli
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Enrica Tanda
- Skin Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Boutros
- Skin Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatrice Dozin
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marina Gualco
- Anatomic Pathology Unit, Ospedale Villa Scassi, ASL3, Genoa, Italy
| | - Sandra Salvi
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Romani
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | | | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Pia Pistillo
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
48
|
Gibellini L, De Biasi S, Porta C, Lo Tartaro D, Depenni R, Pellacani G, Sabbatini R, Cossarizza A. Single-Cell Approaches to Profile the Response to Immune Checkpoint Inhibitors. Front Immunol 2020; 11:490. [PMID: 32265933 PMCID: PMC7100547 DOI: 10.3389/fimmu.2020.00490] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Novel treatments based upon the use of immune checkpoint inhibitors have an impressive efficacy in different types of cancer. Unfortunately, most patients do not derive benefit or lasting responses, and the reasons for the lack of therapeutic success are not known. Over the past two decades, a pressing need to deeply profile either the tumor microenvironment or cells responsible for the immune response has led investigators to integrate data obtained from traditional approaches with those obtained with new, more sophisticated, single-cell technologies, including high parameter flow cytometry, single-cell sequencing and high resolution imaging. The introduction and use of these technologies had, and still have a prominent impact in the field of cancer immunotherapy, allowing delving deeper into the molecular and cellular crosstalk between cancer and immune system, and fostering the identification of predictive biomarkers of response. In this review, besides the molecular and cellular cancer-immune system interactions, we are discussing how cutting-edge single-cell approaches are helping to point out the heterogeneity of immune cells in the tumor microenvironment and in blood.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Camillo Porta
- Department of Internal Medicine and Therapeutics, Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, University of Pavia, Pavia, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology, Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology, Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.,Section of Modena, Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| |
Collapse
|
49
|
Wang H, Sové RJ, Jafarnejad M, Rahmeh S, Jaffee EM, Stearns V, Torres ETR, Connolly RM, Popel AS. Conducting a Virtual Clinical Trial in HER2-Negative Breast Cancer Using a Quantitative Systems Pharmacology Model With an Epigenetic Modulator and Immune Checkpoint Inhibitors. Front Bioeng Biotechnol 2020; 8:141. [PMID: 32158754 PMCID: PMC7051945 DOI: 10.3389/fbioe.2020.00141] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
The survival rate of patients with breast cancer has been improved by immune checkpoint blockade therapies, and the efficacy of their combinations with epigenetic modulators has shown promising results in preclinical studies. In this prospective study, we propose an ordinary differential equation (ODE)-based quantitative systems pharmacology (QSP) model to conduct an in silico virtual clinical trial and analyze potential predictive biomarkers to improve the anti-tumor response in HER2-negative breast cancer. The model is comprised of four compartments: central, peripheral, tumor, and tumor-draining lymph node, and describes immune activation, suppression, T cell trafficking, and pharmacokinetics and pharmacodynamics (PK/PD) of the therapeutic agents. We implement theoretical mechanisms of action for checkpoint inhibitors and the epigenetic modulator based on preclinical studies to investigate their effects on anti-tumor response. According to model-based simulations, we confirm the synergistic effect of the epigenetic modulator and that pre-treatment tumor mutational burden, tumor-infiltrating effector T cell (Teff) density, and Teff to regulatory T cell (Treg) ratio are significantly higher in responders, which can be potential biomarkers to be considered in clinical trials. Overall, we present a readily reproducible modular model to conduct in silico virtual clinical trials on patient cohorts of interest, which is a step toward personalized medicine in cancer immunotherapy.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sondra Rahmeh
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vered Stearns
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Evanthia T. Roussos Torres
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roisin M. Connolly
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
50
|
The renal adverse effects of cancer immunotherapy. J Nephrol 2020; 33:467-481. [PMID: 31912436 DOI: 10.1007/s40620-019-00691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
Over the past decade, the development and clinical use of immunotherapy agents has increased exponentially. As clinical experience builds with these agents so too does our understanding of the associated adverse effects. In particular, the effects of immunotherapy on the kidneys, individual nephrons, and kidney function remain less well described than the adverse effects on barrier organ systems such as the gastrointestinal tract and skin. However, phase IV post-marketing surveillance and clinical case studies together with basic research has begun to reveal mechanisms by which immunotherapy mediates renal adverse effects. This work may lead to improvements in treatment guidelines and therapy. These advances are particularly important as post-cancer survival increases leaving patients to cope with the consequences of not only the cancer, but the short- and long-term adverse effects of treatment. Here we discuss the major renal adverse effects encountered with individual immunotherapeutic agents, putative mechanisms, their current management, and how cancer survivorship programs can help patients who have been treated with immunotherapy.
Collapse
|