1
|
Cao L, Tian W, Zhao Y, Song P, Zhao J, Wang C, Liu Y, Fang H, Liu X. Gene Mutations in Gastrointestinal Stromal Tumors: Advances in Treatment and Mechanism Research. Glob Med Genet 2024; 11:251-262. [PMID: 39176108 PMCID: PMC11341198 DOI: 10.1055/s-0044-1789204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Although gastrointestinal stromal tumors (GISTs) has been reported in patients of all ages, its diagnosis is more common in elders. The two most common types of mutation, receptor tyrosine kinase (KIT) and platelet-derived growth factor receptor a (PDGFRA) mutations, hold about 75 and 15% of GISTs cases, respectively. Tumors without KIT or PDGFRA mutations are known as wild type (WT)-GISTs, which takes up for 15% of all cases. WT-GISTs have other genetic alterations, including mutations of the succinate dehydrogenase and serine-threonine protein kinase BRAF and neurofibromatosis type 1. Other GISTs without any of the above genetic mutations are named "quadruple WT" GISTs. More types of rare mutations are being reported. These mutations or gene fusions were initially thought to be mutually exclusive in primary GISTs, but recently it has been reported that some of these rare mutations coexist with KIT or PDGFRA mutations. The treatment and management differ according to molecular subtypes of GISTs. Especially for patients with late-stage tumors, developing a personalized chemotherapy regimen based on mutation status is of great help to improve patient survival and quality of life. At present, imatinib mesylate is an effective first-line drug for the treatment of unresectable or metastatic recurrent GISTs, but how to overcome drug resistance is still an important clinical problem. The effectiveness of other drugs is being further evaluated. The progress in the study of relevant mechanisms also provides the possibility to develop new targets or new drugs.
Collapse
Affiliation(s)
- Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Peng Song
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Jia Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Chuntao Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Hong Fang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xingqiang Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Popoiu TA, Pîrvu CA, Popoiu CM, Iacob ER, Talpai T, Voinea A, Albu RS, Tãban S, Bãlãnoiu LM, Pantea S. Gastrointestinal Stromal Tumors (GISTs) in Pediatric Patients: A Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1040. [PMID: 39334573 PMCID: PMC11429550 DOI: 10.3390/children11091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms that primarily affect adults, with pediatric cases constituting only 0.5-2.7% of the total. Pediatric GISTs present unique clinical, genetic, and pathological features that distinguish them from adult cases. This literature review aims to elucidate these differences, emphasizing diagnostic and therapeutic challenges. We discuss the resistance of pediatric GISTs to conventional chemotherapy and highlight the importance of surgical intervention, especially in emergency situations involving intra-abdominal bleeding. The review also explores the molecular characteristics of pediatric GISTs, including rare mutations such as quadruple-negative wild-type GIST with an FGF3 gene gain mutation. To illustrate these points, we conclude with a case from our clinic involving a 15-year-old female with multiple CD117-positive gastric GISTs and a quadruple-negative wild-type genetic profile who required urgent surgical intervention following a failed tumor embolization. This case underscores the critical need for early diagnosis and individualized therapeutic strategies combining oncologic and surgical care to improve outcomes in pediatric GIST patients.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department III of Functional Sciences, Discipline of Medical Informatics and Biostatistics, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãtãlin-Alexandru Pîrvu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãlin-Marius Popoiu
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emil Radu Iacob
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tamas Talpai
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Amalia Voinea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Rãzvan-Sorin Albu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sorina Tãban
- Department of Pathology, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Larisa-Mihaela Bãlãnoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Hu K, Zhang H, Shu M, Wang X. Efficacy of post-first-line agents for advanced gastrointestinal stromal tumors following imatinib failure: A network meta-analysis. Cancer Med 2023. [PMID: 37084005 DOI: 10.1002/cam4.5912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Imatinib is the standard first-line treatment for advanced gastrointestinal stromal tumors (GISTs); however, most patients eventually develop imatinib resistance, leading to considerable clinical challenges. Few direct comparisons have been made between different post-first-line therapies on clinical efficacy in advanced GIST following imatinib failure. METHODS Databases including PubMed, Embase, Scopus, Google Scholars, and Cochrane Library from inception to February 2023 were retrieved for randomized controlled trials evaluating the clinical efficacy of different post-first-line agents for advanced GIST following imatinib failure. Network and conventional meta-analysis were carried out using Stata/MP 16.0. RESULTS Ripretinib showed significant improvement in progression-free survival (PFS) rates from the 2nd to the 12th month compared to placebo, while there was virtually no evidence that the rest active agents had a significant benefit at the 12th month. Masitinib, ripretinib, sunitinib, regorafenib, and pimitespib exhibited significantly longer median PFS than placebo, and pairwise comparisons indicated there were no significant differences among masitinib, ripretinib, and sunitinib. These post-first-line agents decreased the risk of disease progression or death by 65% (HR = 0.35, 95% CI: 0.26-0.47) compared to placebo. Ripretinib and sunitinib came into effect earlier and exhibited more consistent overall survival (OS) rate improvements than masitinib and pimitespib, while pairwise comparisons revealed no significant differences in these four active agents concerning the improvement in OS rate. These post-first-line agents decreased the risk of death by 39% (HR = 0.61, 95% CI: 0.44-0.83) over placebo for advanced GIST following imatinib failure. CONCLUSION The active agents in our analysis as post-first-line therapies are able to provide superior clinical efficacy, with improved PFS rate and OS rate at certain time points, as well as absolute values of PFS and OS for advanced GIST. Ripretinib might be the optimal recommendation as a post-first-line treatment for advanced GIST following imatinib failure.
Collapse
Affiliation(s)
- Kehan Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, Institution of Inflammation and Immunity, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, Institution of Inflammation and Immunity, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Shu
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyue Wang
- Department of Graduate Medical Education, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Masucci MT, Motti ML, Minopoli M, Di Carluccio G, Carriero MV. Emerging Targeted Therapeutic Strategies to Overcome Imatinib Resistance of Gastrointestinal Stromal Tumors. Int J Mol Sci 2023; 24:6026. [PMID: 37046997 PMCID: PMC10094678 DOI: 10.3390/ijms24076026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common malignant mesenchymal neoplasms of the gastrointestinal tract. The gold standard for the diagnosis of GISTs is morphologic analysis with an immunohistochemical evaluation plus genomic profiling to assess the mutational status of lesions. The majority of GISTs are driven by gain-of-function mutations in the proto-oncogene c-KIT encoding the tyrosine kinase receptor (TKR) known as KIT and in the platelet-derived growth factor-alpha receptor (PDGFRA) genes. Approved therapeutics are orally available as tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA oncogenic activation. Among these, imatinib has changed the management of patients with unresectable or metastatic GISTs, improving their survival time and delaying disease progression. Nevertheless, the majority of patients with GISTs experience disease progression after 2-3 years of imatinib therapy due to the development of secondary KIT mutations. Today, based on the identification of new driving oncogenic mutations, targeted therapy and precision medicine are regarded as the new frontiers for GISTs. This article reviews the most important mutations in GISTs and highlights their importance in the current understanding and treatment options of GISTs, with an emphasis on the most recent clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Masucci
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Letizia Motti
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| |
Collapse
|
5
|
Sargsyan A, Kucharczyk MA, Jones RL, Constantinidou A. Ripretinib for the treatment of adult patients with advanced gastrointestinal stromal tumors. Expert Rev Gastroenterol Hepatol 2023; 17:119-127. [PMID: 36644853 DOI: 10.1080/17474124.2023.2167711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. Imatinib mesylate revolutionized the management of advanced/metastatic GIST, and remains the standard first-line therapy in this setting. Upon development of secondary resistance, sunitinib and regorafenib are used as subsequent treatments, although clinical benefit is often non-durable. Ripretinib is a type II kinase inhibitor targeting KIT and PDGFRA mutations and resistance through switching active I and inactive II forms. AREAS COVERED This drug profile article provides an overview of the current state of the art treatment algorithm for advanced/metastatic GIST, focusing on the role of ripretinib in the fourth-line setting as defined by currently available clinical trials evidence. The mechanism of action, the safety profile, efficacy, and clinical application of ripretinib are presented. In addition, the Phase I study (NCT02571036) through which the optimal dose was established and the Phase III trials that assessed the efficacy and safety of ripretinib as fourth- (INVICTUS) and second-line treatment (INTRIGUE) are presented. EXPERT OPINION Ripretinib is a safe and an effective therapy for the fourth-line setting in advanced/metastatic GIST. Future studies should evaluate combination schedules and the identification of markers predictive of benefit from ripretinib.
Collapse
Affiliation(s)
- Amalya Sargsyan
- Medical School, University of Cyprus, Nicosia, Cyprus.,Department of Medical Oncology, Bank of Cyprus Oncology Centre, Nicosia, Cyprus
| | | | - Robin L Jones
- NHS Trust, Royal Marsden Hospital, London, UK.,Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia, Cyprus.,Department of Medical Oncology, Bank of Cyprus Oncology Centre, Nicosia, Cyprus
| |
Collapse
|
6
|
Gao Z, Li C, Sun H, Bian Y, Cui Z, Wang N, Wang Z, Yang Y, Liu Z, He Z, Li B, Li F, Li Z, Wang L, Zhang D, Yang L, Xu Z, Li X, Xu H. N 6-methyladenosine-modified USP13 induces pro-survival autophagy and imatinib resistance via regulating the stabilization of autophagy-related protein 5 in gastrointestinal stromal tumors. Cell Death Differ 2023; 30:544-559. [PMID: 36528756 PMCID: PMC9950061 DOI: 10.1038/s41418-022-01107-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Secondary resistance to imatinib (IM) represents a major challenge for therapy of gastrointestinal stromal tumors (GISTs). Aberrations in oncogenic pathways, including autophagy, correlate with IM resistance. Regulation of autophagy-related protein 5 (ATG5) by the ubiquitin-proteasome system is critical for autophagic activity, although the molecular mechanisms that underpin reversible deubiquitination of ATG5 have not been deciphered fully. Here, we identified USP13 as an essential deubiquitinase that stabilizes ATG5 in a process that depends on the PAK1 serine/threonine-protein kinase and which enhances autophagy and promotes IM resistance in GIST cells. USP13 preferentially is induced in GIST cells by IM and interacts with ATG5, which leads to stabilization of ATG5 through deubiquitination. Activation of PAK1 promoted phosphorylation of ATG5 thereby enhancing the interaction of ATG5 with USP13. Furthermore, N6-methyladenosine methyltransferase-like 3 (METTL3) mediated stabilization of USP13 mRNA that required the m6A reader IGF2BP2. Moreover, an inhibitor of USP13 caused ATG5 decay and co-administration of this inhibitor with 3-methyladenine boosted treatment efficacy of IM in murine xenograft models derived from GIST cells. Our findings highlight USP13 as an essential regulator of autophagy and IM resistance in GIST cells and reveal USP13 as a novel potential therapeutic target for GIST treatment.
Collapse
Affiliation(s)
- Zhishuang Gao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Chao Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Haoyu Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Yibo Bian
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Zhiwei Cui
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Nuofan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zhangjie Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zonghang Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zhongyuan He
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, 211816, Nanjing, China.
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China.
| |
Collapse
|
7
|
Ligon JA, Sundby RT, Wedekind MF, Arnaldez FI, del Rivero J, Wiener L, Srinivasan R, Spencer M, Carbonell A, Lei H, Shern J, Steinberg SM, Figg WD, Peer CJ, Zimmerman S, Moraly J, Xu X, Fox S, Chan K, Barbato MI, Andresson T, Taylor N, Pacak K, Killian JK, Dombi E, Linehan WM, Miettinen M, Piekarz R, Helman LJ, Meltzer P, Widemann B, Glod J. A Phase II Trial of Guadecitabine in Children and Adults with SDH-Deficient GIST, Pheochromocytoma, Paraganglioma, and HLRCC-Associated Renal Cell Carcinoma. Clin Cancer Res 2023; 29:341-348. [PMID: 36302175 PMCID: PMC9851965 DOI: 10.1158/1078-0432.ccr-22-2168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Succinate dehydrogenase (dSDH)-deficient tumors, including pheochromocytoma/paraganglioma, hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinoma (HLRCC-RCC), and gastrointestinal stromal tumors (GIST) without KIT or platelet-derived growth factor receptor alpha mutations are often resistant to cytotoxic chemotherapy, radiotherapy, and many targeted therapies. We evaluated guadecitabine, a dinucleotide containing the DNA methyltransferase inhibitor decitabine, in these patient populations. PATIENTS AND METHODS Phase II study of guadecitabine (subcutaneously, 45 mg/m2/day for 5 consecutive days, planned 28-day cycle) to assess clinical activity (according to RECISTv.1.1) across three strata of patients with dSDH GIST, pheochromocytoma/paraganglioma, or HLRCC-RCC. A Simon optimal two-stage design (target response rate 30% rule out 5%) was used. Biologic correlates (methylation and metabolites) from peripheral blood mononuclear cells (PBMC), serum, and urine were analyzed. RESULTS Nine patients (7 with dSDH GIST, 1 each with paraganglioma and HLRCC-RCC, 6 females and 3 males, age range 18-57 years) were enrolled. Two patients developed treatment-limiting neutropenia. No partial or complete responses were observed (range 1-17 cycles of therapy). Biologic activity assessed as global demethylation in PBMCs was observed. No clear changes in metabolite concentrations were observed. CONCLUSIONS Guadecitabine was tolerated in patients with dSDH tumors with manageable toxicity. Although 4 of 9 patients had prolonged stable disease, there were no objective responses. Thus, guadecitabine did not meet the target of 30% response rate across dSDH tumors at this dose, although signs of biologic activity were noted.
Collapse
Affiliation(s)
- John A Ligon
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA,Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, FL
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary F Wedekind
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Jaydira del Rivero
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA,Developmemtal Therapeutics Branch, CCR, NCI, Bethesda, MD
| | - Lori Wiener
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Melissa Spencer
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amanda Carbonell
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Cody J Peer
- Clinical Pharmacology Program, NCI/NIH, Bethesda, MD
| | | | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA,Laboratory of physiopathology and treatment of Hematological malignancies, Institut imagine, INSERM U1153, Université de Paris, Paris, France
| | - Xia Xu
- Cancer Research Technology Program, Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Stephen Fox
- Cancer Research Technology Program, Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - King Chan
- Cancer Research Technology Program, Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Michael I Barbato
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thorkell Andresson
- Cancer Research Technology Program, Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | | | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Richard Piekarz
- Cancer Therapy Evaluation Program, Division of Cancer Treatments and Diagnosis, NCI, Bethesda, MD
| | | | | | - Brigitte Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Andrzejewska M, Czarny J, Derwich K. Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 14:4989. [PMID: 36291774 PMCID: PMC9599787 DOI: 10.3390/cancers14204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Gastrointestinal stromal tumor is the most common mesenchymal neoplasm of the gastrointestinal tract, usually found in elderly adults. It is infrequent among pediatric patients and usually differs biologically from adult-type diseases presenting mutations of KIT and PDGFR genes. In this population, more frequent is the wild-type GIST possessing SDH, TRK, RAS, NF1 mutations, among others. Both tumor types require individualized treatment with kinase inhibitors that are still being tested in the pediatric population due to the different neoplasm biology. We review the latest updates to the management of pediatric gastrointestinal tumors with a particular focus on the advances in molecular biology of the disease that enables the definition of possible resistance. Emerging treatment with kinase inhibitors that could serve as targeted therapy is discussed, especially with multikinase inhibitors of higher generation, the effectiveness of which has already been confirmed in the adult population.
Collapse
Affiliation(s)
- Marta Andrzejewska
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Jakub Czarny
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
9
|
Chi P, Qin LX, Camacho N, Kelly CM, D'Angelo SP, Dickson MA, Gounder MM, Keohan ML, Movva S, Nacev BA, Rosenbaum E, Thornton KA, Crago AM, Francis JH, Martindale M, Phelan HT, Biniakewitz MD, Lee CJ, Singer S, Hwang S, Berger MF, Chen Y, Antonescu CR, Tap WD. Phase Ib Trial of the Combination of Imatinib and Binimetinib in Patients with Advanced Gastrointestinal Stromal Tumors. Clin Cancer Res 2022; 28:1507-1517. [PMID: 35110417 PMCID: PMC9012681 DOI: 10.1158/1078-0432.ccr-21-3909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE This phase Ib trial was designed to evaluate the safety and early efficacy signal of the combination of imatinib and binimetinib in patients with imatinib-resistant advanced gastrointestinal stromal tumors (GISTs). PATIENTS AND METHODS This trial used a standard 3 + 3 design to determine the recommended phase II dose (RP2D). Additional patients were enrolled on an expansion cohort at the RP2D enriching for succinate dehydrogenase (SDH)-deficient GISTs to explore potential efficacy. RESULTS The trial enrolled nine patients in the dose-escalation cohort and 14 in the dose-expansion cohort including six with SDH-deficient GISTs. Imatinib 400 mg daily with binimetinib 45 mg twice daily was established as the RP2D. Dose-limiting toxicity (DLT) was asymptomatic grade 4 creatinine phosphokinase (CPK) elevation. The most common non-DLT grade 3/4 toxicity was asymptomatic CPK elevation (69.6%). Other common ≥grade 2 toxicities included peripheral edema (17.4%), acneiform rash (21.7%), anemia (30.4%), hypophosphatemia (39.1%), and aspartate aminotransferase (AST) increase (17.4%). Two serious adverse events occurred (grade 2 dropped head syndrome and grade 3 central retinal vein occlusion). No unexpected toxicities were observed. Limited clinical activity was observed in KIT-mutant GIST. For SDH-deficient GISTs, one of five had confirmed RECIST1.1 partial response (PR). The median progression-free survival (mPFS) in patients with SDH-deficient GIST was 45.1 months [95% confidence interval (CI), 15.8-not estimable (NE)]; the median overall survival (mOS) was not reached (95% CI, 31.6 months-NE). One patient with a refractory metastatic SDH-deficient GIST had an exceptional pathologic response and durable clinical benefit. CONCLUSIONS The combination of imatinib and binimetinib is safe with manageable toxicity and has encouraging activity in SDH-deficient but not imatinib-refractory KIT/PDGFRA-mutant GISTs. The observed clinical benefits provide a motivation for a larger trial of the combination strategy in SDH-deficient GISTs.
Collapse
Affiliation(s)
- Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Li-Xuan Qin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niedzica Camacho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sandra P. D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mary L. Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Benjamin A. Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Katherine A. Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Jasmine H. Francis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York
| | - Moriah Martindale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Haley T. Phelan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F. Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
10
|
Nannini M, Rizzo A, Indio V, Schipani A, Astolfi A, Pantaleo MA. Targeted therapy in SDH-deficient GIST. Ther Adv Med Oncol 2021; 13:17588359211023278. [PMID: 34262616 PMCID: PMC8246492 DOI: 10.1177/17588359211023278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
The medical management of advanced gastrointestinal stromal tumors (GIST) has improved with the development of tyrosine kinase inhibitors (TKIs) targeting KIT and PDGFRA mutations. However, approximately 5-10% of GIST lack KIT and PDGFRA mutations, and about a half are deficient in succinate dehydrogenase (SDH) that promotes carcinogenesis by the cytoplasmic accumulation of succinate. This rare group of GIST primarily occurs in the younger patients than other subtypes, and is frequently associated with hereditary syndromes. The role of TKIs in patients with SDH-deficient GIST is controversial, with conflicting results; thus, there is an urgent need to uncover the disease mechanisms, treatment patterns, and responses to systemic therapy among these patients. Here, based on an extensive literature search, we have provided a rigorous overview of the current evidence on the medical treatment of SDH-deficient GIST.
Collapse
Affiliation(s)
- Margherita Nannini
- Division of Oncology, IRCSS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Angela Schipani
- Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121, Italy
| | | |
Collapse
|
11
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
13
|
Huelse JM, Fridlyand DM, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020. [PMID: 32417270 DOI: 10.1016/j.pharmthera.2020.107577107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diana M Fridlyand
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Chen HW, Chen TWW. Genomic-guided precision therapy for soft tissue sarcoma. ESMO Open 2020; 5:e000626. [PMID: 32132106 PMCID: PMC7059546 DOI: 10.1136/esmoopen-2019-000626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/27/2022] Open
Abstract
Soft tissue sarcoma (STS), although heterogeneous in histopathology presentation, has mostly been treated with chemotherapy agents as one entity. Our understanding of crucial genomic alterations in different STS histologies and the advent of molecular-targeted agents have reshaped the treatment paradigm for advanced STS. Small-molecule inhibitors of c-KIT, plate-derived growth factor receptor alpha, c-MET, BRAF, anaplastic lymphoma kinase, ROS1 and colony-stimulating factor-1 receptor have been successfully validated in clinical studies to yield practice-changing results. Inhibitors of other novel genomic targets including mouse double minute 2 homolog, cyclin-dependent kinase 4/6, mitogen-activated protein kinase and epigenetic regulators are expected to be developed in the near future. Furthermore, with the advancement and accessibility of molecular diagnosis and next-generation sequencing, a genomic-based therapeutic approach should be widely applicable to advanced STS patients. This review will focus on the progress of genomic-guided therapy tailored to each molecular alteration of different STS histologies.
Collapse
Affiliation(s)
- Hsing-Wu Chen
- Department of Oncology, National Taiwan University Hospital Yunlin Branch, Douliou, Yunlin, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Wilding CP, Elms ML, Judson I, Tan AC, Jones RL, Huang PH. The landscape of tyrosine kinase inhibitors in sarcomas: looking beyond pazopanib. Expert Rev Anticancer Ther 2019; 19:971-991. [PMID: 31665941 PMCID: PMC6882314 DOI: 10.1080/14737140.2019.1686979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Introduction: Tyrosine kinases are key mediators of intracellular signaling cascades and aberrations in these proteins have been implicated in driving oncogenesis through the dysregulation of fundamental cellular processes including proliferation, migration, and apoptosis. As such, targeting these proteins with small molecule tyrosine kinase inhibitors (TKI) has led to significant advances in the treatment of a number of cancer types.Areas covered: Soft tissue sarcomas (STS) are a heterogeneous and challenging group of rare cancers to treat, but the approval of the TKI pazopanib for the treatment of advanced STS demonstrates that this class of drugs may have broad utility against a range of different sarcoma histological subtypes. Since the approval of pazopanib, a number of other TKIs have entered clinical trials to evaluate whether their activity in STS matches the promising results seen in other solid tumors. In this article, we review the emerging role of TKIs in the evolving landscape of sarcoma treatment.Expert opinion: As our biological understanding of response and resistance of STS to TKIs advances, we anticipate that patient management will move away from a 'one size fits all' paradigm toward personalized, multi-line, and patient-specific treatment regimens where patients are treated according to the underlying biology and genetics of their specific disease.
Collapse
Affiliation(s)
| | - Mark L Elms
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Ian Judson
- Department of Medical Oncology, Sarcoma Unit, The Royal Marsden Hospital, London, UK
| | - Aik-Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Robin L Jones
- Department of Medical Oncology, Sarcoma Unit, The Royal Marsden Hospital, London, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|