1
|
Mercado NB, Real JN, Kaiserman J, Panagioti E, Cook CH, Lawler SE. Clinical implications of cytomegalovirus in glioblastoma progression and therapy. NPJ Precis Oncol 2024; 8:213. [PMID: 39343770 PMCID: PMC11439950 DOI: 10.1038/s41698-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Glioblastoma (GBM) is one of the deadliest brain cancers with a median survival of only 15 months. This poor prognosis has prompted exploration of novel therapeutic targets for GBM patients. Human cytomegalovirus (HCMV) has been implicated in GBM; however, its impact remains poorly defined, and there is conflicting data over the presence of HCMV in tumors. Nonetheless, clinical trials targeting HCMV have shown promising initial data, and evidence suggests that HCMV may negatively impact GBM patient survival by multiple mechanisms including changes in GBM cell behavior and the tumor microenvironment (TME) that potentiate tumor progression as well as therapy-induced virus reactivation. Moreover, HCMV has many effects on host immunity that could impact tumor behavior by altering the TME, which are largely unexplored. The goal of this review is to describe these potential interactions between HCMV and GBM. Better understanding of these processes may allow the development of new therapeutic modalities to improve GBM patient outcomes.
Collapse
Affiliation(s)
- Noe B Mercado
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacqueline N Real
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacob Kaiserman
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Sean E Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US.
- The Warren Alpert Medical School, Brown University, Providence, RI, US.
| |
Collapse
|
2
|
Gaipl US. Do Not Forget the Granulocytic Compartment's Role in T cell-Mediated Antitumor Immunity. Cancer Immunol Res 2024; 12:798-799. [PMID: 38952273 DOI: 10.1158/2326-6066.cir-24-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 07/03/2024]
Abstract
Antitumor immune responses are predominantly mediated by CD8+ cytotoxic T cells (CTLs). But immune-modulatory factors in the tumor microenvironment determine the effectiveness of these responses. In this issue, Wei and colleagues report a new role for CTL-derived IL3 in stimulating basophilic granulocytes to produce IL4, which, in turn, activates, reprograms, and stabilizes CTLs. These findings stress the importance of the crosstalk between the innate and adaptive immune systems to elicit efficient antitumor immunity. See related article by Wei et al., p. 822 (3).
Collapse
Affiliation(s)
- Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
De la Cerda-Vargas MF, Pantalone MR, Söderberg Nauclér C, Medrano-Guzman R, Jauregui Renaud K, Nettel Rueda B, Reynoso-Sanchez MDJ, Lopez-Quintana B, Rodriguez-Florido MA, Feria-Romero IA, Trejo-Rosales RR, Arreola-Rosales RL, Candelas-Rangel JA, Navarro-Dominguez P, Meza-Mata E, Muñoz- Hernandez MA, Segura-Lopez F, Gonzalez-Martinez MDR, Delgado-Aguirre HA, Sandoval-Bonilla BA. Focal-to-bilateral tonic-clonic seizures and High-grade CMV-infection are poor survival predictors in Tumor-related Epilepsy Adult-type diffuse gliomas-A single-center study and literature review. Heliyon 2024; 10:e28555. [PMID: 38623248 PMCID: PMC11016600 DOI: 10.1016/j.heliyon.2024.e28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Previous studies have reported a correlation between a high-grade CMV-infection and an unfavorable prognosis in glioblastoma (GB). Coversely, epilepsy has been associated with a more favorable outcome in GB patients. Despites epilepsy and CMV share similar molecular mechanisms in GB tumoral microenvironment, the correlation between Tumor-Related-Epilepsy (TRE) and CMVinfection remains unexplored. The aim of our study is to examine the correlation between the dregree of CMV infection and seizure types on the survival of TRE Adult-type-diffuse-glioma. To achieve this objective, we conducted a comprehensive literature review to assess our results regarding previous publications. Methods We conducted a retrospective-observational study on TRE Adult-type-diffuse-gliomas treated at a single center in Mexico from 2010 to 2018. Tumor tissue and cDNA were analyzed by immunochemistry (IHC) for CMV (IE and LA antigens) at the Karolinska Institute in Sweden, and RT-PCR for CMV-gB in Torreon Mexico, respectively. Bivariate analysis (X2-test) was performed to evaluate the association between subtypes of Adult-type-diffuse-glioma (IDH-mut grade 4 astrocytoma vs. IDH-wt glioblastoma) and the following variables: type of hemispheric involvement (mesial vs. neocortical involvement), degree of CMV infection (<25%vs. >25% infected-tumoral cells) and seizure types [Focal awareness, focal impaired awareness, and FBTCS]. Kaplan Meier and Cox analyses were performed to determine the risk, p < 0.05 was considered statistically significant. Results Sixty patients with TRE Adult type diffuse gliomas were included (80% IDH-wt glioblastoma and 20% IDH-mut grade 4astrocytomas). The mean age was 61.5 SD ± 18.4, and 57% were male. Fifty percent of the patients presented with mesial involvement of the hemysphere. Seizure types included focal awareness (15%), focal impaired awareness (43.3%), and FBTCS (41.7%). Ninety percent of cases were treated with Levetiracetam and 33.3% presented Engel-IA postoperative seizure control. More than 90% of samples were positive for CMV-immunohistochemistry (IHC). However, all cDNA analyzed by RT-PCR return negative results. The median of overall survival (OS) was 15 months. High-grade CMV-IE infection (14 vs. 25 months, p<0.001), mesial involvement (12 vs. 18 months, p<0.001), and FBTCS were associated with worse OS (9 vs.18 months for non-FBTCS). Multivariate analysis demonstrated that high-grade CMV infection (HR = 3.689, p=0.002) and FBTCS (HR=7.007, p<0.001) were independent unfavorable survival factors. Conclusions CMV induces a proinflammatory tumoral microenvironment that contributes to the developmet of epilepsy. Tumor progression could be associated not only with a higher degree of CMV infection but also to epileptogenesis, resulting in a seizure phenotype chracterized by FBTCS and poor survival outcomes. This study represents the first survival analysis in Latin America to include a representative sample of TRE Adult-type diffuse gliomas considering CMV-infection-degree and distinguishing features (such as FBTCS) that might have potential clinical relevance in this group of patients. Further prospective studies are required to validate these results.
Collapse
Affiliation(s)
- Maria F. De la Cerda-Vargas
- Department of Neurosurgery and Neurotechnology, Universitätsklinik Tübingen, Tübingen, Germany
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Mattia Russel Pantalone
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Cecilia Söderberg Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Biosciences at the University of Turku, InFLAMES Research Flagship Center, MediCity, University of Turku, Finland
| | - Rafael Medrano-Guzman
- Department of Sarcomas, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City, Mexico
| | - Kathrine Jauregui Renaud
- Medical Research Unit in Otoneurology, Mexican Institute of Social Security, Mexico City, 06720, Mexico
| | - Barbara Nettel Rueda
- Department of Neurosurgery, Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ma de Jesus Reynoso-Sanchez
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | - Brenda Lopez-Quintana
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | | | - Iris A. Feria-Romero
- Medical Research Unit in Neurological Diseases, Specialties Hospital, National Medical Center Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Rogelio R. Trejo-Rosales
- Medical Oncology, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City, 06720, Mexico
| | | | - Jose A. Candelas-Rangel
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Pedro Navarro-Dominguez
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Elizabeth Meza-Mata
- Department of Pathology, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon, Coahuila, Mexico
| | - Melisa A. Muñoz- Hernandez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - F.K. Segura-Lopez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | | | - Hector A. Delgado-Aguirre
- Department of Transplants, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - Bayron A. Sandoval-Bonilla
- Department of Neurosurgery, Epilepsy Surgery Multidisciplinary Board, Functional NeuroOncology Clinic, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| |
Collapse
|
4
|
Hecht M, Frey B, Gaipl US, Tianyu X, Eckstein M, Donaubauer AJ, Klautke G, Illmer T, Fleischmann M, Laban S, Hautmann MG, Tamaskovics B, Brunner TB, Becker I, Zhou JG, Hartmann A, Fietkau R, Iro H, Döllinger M, Gostian AO, Kist AM. Machine Learning-assisted immunophenotyping of peripheral blood identifies innate immune cells as best predictor of response to induction chemo-immunotherapy in head and neck squamous cell carcinoma - knowledge obtained from the CheckRad-CD8 trial. Neoplasia 2024; 49:100953. [PMID: 38232493 PMCID: PMC10827535 DOI: 10.1016/j.neo.2023.100953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Individual prediction of treatment response is crucial for personalized treatment in multimodal approaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for treatment schemes containing immunotherapy have been identified. This study aims to predict treatment response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with locally advanced HNSCC. METHODS The peripheral blood immune phenotype was assessed in whole blood samples in patients treated in the phase II CheckRad-CD8 trial as part of the pre-planned translational research program. Blood samples were analyzed by multicolor flow cytometry before (T1) and after (T2) induction chemo-immunotherapy with cisplatin/docetaxel/durvalumab/tremelimumab. Machine Learning techniques were used to predict pathological complete response (pCR) after induction therapy. RESULTS The tested classifier methods (LDA, SVM, LR, RF, DT, and XGBoost) allowed a distinct prediction of pCR. Highest accuracy was achieved with a low number of features represented as principal components. Immune parameters obtained from the absolute difference (lT2-T1l) allowed the best prediction of pCR. In general, less than 30 parameters and at most 10 principal components were needed for highly accurate predictions. Across several datasets, cells of the innate immune system such as polymorphonuclear cells, monocytes, and plasmacytoid dendritic cells are most prominent. CONCLUSIONS Our analyses imply that alterations of the innate immune cell distribution in the peripheral blood following induction chemo-immuno-therapy is highly predictive for pCR in HNSCC.
Collapse
Affiliation(s)
- Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany; Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| | - Benjamin Frey
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Xie Tianyu
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Jasmina Donaubauer
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gunther Klautke
- Department of Radiation Oncology, Hospital Chemnitz, Chemnitz, Germany
| | - Thomas Illmer
- Private Praxis Oncology, Arnoldstraße, Dresden, Germany
| | - Maximilian Fleischmann
- Department of Radiation Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Simon Laban
- Department of Otolaryngology - Head & Neck Surgery, University Hospital Ulm, Universität Ulm, Ulm, Germany
| | - Matthias G Hautmann
- Department of Radiotherapy, University Hospital Regensburg, Regensburg, Germany; Department of Radiotherapy and Radiation Oncology, Hospital Traunstein, Traunstein, Germany
| | - Bálint Tamaskovics
- Department of Radiation Oncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorfy, Düsseldorf, Germany
| | - Thomas B Brunner
- Department of Radiation Oncology, Medical University of Graz, Graz, Austria; Department of Radiation Oncology, University Hospitals Magdeburg, Magdeburg, Germany
| | - Ina Becker
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jian-Guo Zhou
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Heinrich Iro
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Elangen, Germany
| | - Michael Döllinger
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Division of Phoniatrics and Pediatric Audiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoniu-Oreste Gostian
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Elangen, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Merciful Brothers Hospital St. Elisabeth, Straubing, Germany
| | - Andreas M Kist
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Division of Phoniatrics and Pediatric Audiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Peredo-Harvey I, Bartek J, Ericsson C, Yaiw KC, Nistér M, Rahbar A, Söderberg-Naucler C. Higher Human Cytomegalovirus (HCMV) Specific IgG Antibody Levels in Plasma Samples from Patients with Metastatic Brain Tumors Are Associated with Longer Survival. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1248. [PMID: 37512060 PMCID: PMC10384986 DOI: 10.3390/medicina59071248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Background: Human cytomegalovirus (HCMV) has been detected in tissue samples from patients with glioblastoma but little is known about the systemic immunological response to HCMV in these patients. Objectives: To investigate the presence and clinical significance of HCMV antibodies levels in plasma samples obtained from patients with brain tumors. Materials and Methods: HCMV-specific IgG and IgM antibody levels were determined in 59 plasma samples collected from brain tumor patients included in a prospective study and in 114 healthy individuals. We examined if the levels of HCMV specific antibodies varied in patients with different brain tumor diagnoses compared to healthy individuals, and if antibody levels were predictive for survival time. Results: HCMV specific IgG antibodies were detected by ELISA in 80% and 89% of patients with GBM and astrocytoma grades II-III, respectively, in all samples (100%) from patients with secondary GBM and brain metastases, as well as in 80% of healthy donors (n = 114). All plasma samples were negative for HCMV-IgM. Patients with brain metastases who had higher plasma HCMV-IgG titers had longer survival times (p = 0.03). Conclusions: HCMV specific IgG titers were higher among all brain tumor patient groups compared with healthy donors, except for patients with secondary GBM. Higher HCMV specific IgG levels in patients with brain metastases but not in patients with primary brain tumors were associated with prolonged survival time.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Koon-Chu Yaiw
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Afsar Rahbar
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Institute of Biomedicine, Infection and Immunology Unit, MediCity Research Laboratory, Turku University, FI-20014 Turku, Finland
| |
Collapse
|
6
|
Prospective Evaluation of CD45RA+/CCR7- Effector Memory T (T EMRA) Cell Subsets in Patients with Primary and Secondary Brain Tumors during Radiotherapy of the Brain within the Scope of the Prospective Glio-CMV-01 Clinical Trial. Cells 2023; 12:cells12040516. [PMID: 36831183 PMCID: PMC9954596 DOI: 10.3390/cells12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Radiotherapy (RT) of the brain is a common treatment for patients with high-grade gliomas and brain metastases. It has previously been shown that reactivation of cytomegalovirus (CMV) frequently occurs during RT of the brain. This causes neurological decline, demands antiviral treatment, and is associated with a worse prognosis. CMV-specific T cells are characterized by a differentiated effector memory phenotype and CD45RA+ CCR7- effector memory T (TEMRA) cells were shown to be enriched in CMV seropositive individuals. In this study, we investigated the distribution of TEMRA cells and their subsets in the peripheral blood of healthy donors and, for the first time, prospectively within the scope of the prospective Glio-CMV-01 clinical trial of patients with high-grade glioma and brain metastases during radiation therapy as a potential predictive marker. First, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of TEMRA cells in a longitudinal manner. The CMV serostatus and age were considered as influencing factors. We revealed that patients who had a reactivation of CMV have significantly higher amounts of CD8+ TEMRA cells. Further, the distribution of the subsets of TEMRA cells based on the expression of CD27, CD28, and CD57 is highly dependent on the CMV serostatus. We conclude that the percentage of CD8+ TEMRA cells out of all CD8+ T cells has the potential to serve as a biomarker for predicting the risk of CMV reactivation during RT of the brain. Furthermore, this study highlights the importance of taking the CMV serostatus into account when analyzing TEMRA cells and their subsets.
Collapse
|
7
|
Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022; 350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals possessing unique optoelectrical properties in that they can emit light energy of specific tunable wavelengths when excited by photons. They are gaining attention nowadays owing to their all-around ability to allow high-quality bio-imaging along with targeted drug delivery. The most lethal central nervous system (CNS) disorders are brain cancers or malignant brain tumors. CNS is guarded by the blood-brain barrier which poses a selective blockade toward drug delivery into the brain. QDs have displayed strong potential to deliver therapeutic agents into the brain successfully. Their bio-imaging capability due to photoluminescence and specific targeting ability through the attachment of ligand biomolecules make them preferable clinical tools for coming times. Biocompatible QDs are emerging as nanotheranostic tools to identify/diagnose and selectively kill cancer cells. The current review focuses on QDs and associated nanoformulations as potential futuristic clinical aids in the continuous battle against brain cancer.
Collapse
|
8
|
Yang T, Liu D, Fang S, Ma W, Wang Y. Cytomegalovirus and Glioblastoma: A Review of the Biological Associations and Therapeutic Strategies. J Clin Med 2022; 11:jcm11175221. [PMID: 36079151 PMCID: PMC9457369 DOI: 10.3390/jcm11175221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma is the most common and aggressive malignancy in the adult central nervous system. Cytomegalovirus (CMV) plays a crucial role in the pathogenesis and treatment of glioblastoma. We reviewed the epidemiology of CMV in gliomas, the mechanism of CMV-related carcinogenesis, and its therapeutic strategies, offering further clinical practice insights. To date, the CMV infection rate in glioblastoma is controversial, while mounting studies have suggested a high infection rate. The carcinogenesis mechanism of CMV has been investigated in relation to various aspects, including oncomodulation, oncogenic features, tumor microenvironment regulation, epithelial–mesenchymal transition, and overall immune system regulation. In clinical practice, the incidence of CMV-associated encephalopathy is high, and CMV-targeting treatment bears both anti-CMV and anti-tumor effects. As the major anti-CMV treatment, valganciclovir has demonstrated a promising survival benefit in both newly diagnosed and recurrent glioblastoma as an adjuvant therapy, regardless of surgery and the MGMT promoter methylation state. Immunotherapy, including DC vaccines and adoptive CMV-specific T cells, is also under investigation, and preliminary results have been promising. There are still questions regarding the significance of CMV infection and the carcinogenic mechanism of CMV. Meanwhile, studies have demonstrated the clinical benefits of anti-CMV therapy in glioblastoma. Therefore, anti-CMV therapies are worthy of further recognition and investigation.
Collapse
Affiliation(s)
- Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shiyuan Fang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (W.M.); (Y.W.); Tel.: +86-137-0136-4566 (W.M.); +86-153-1186-0318 (Y.W.)
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (W.M.); (Y.W.); Tel.: +86-137-0136-4566 (W.M.); +86-153-1186-0318 (Y.W.)
| |
Collapse
|
9
|
Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ 2022; 29:1639-1653. [PMID: 35194187 PMCID: PMC9346009 DOI: 10.1038/s41418-022-00953-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.
Collapse
|
10
|
Ahn J, Shin C, Kim YS, Park JS, Jeun SS, Ahn S. Cytomegalovirus-Specific Immunotherapy for Glioblastoma Treatments. Brain Tumor Res Treat 2022; 10:135-143. [PMID: 35929110 PMCID: PMC9353163 DOI: 10.14791/btrt.2022.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last two decades, numerous studies have investigated the presence of human cytomegalovirus (CMV) within glioblastoma or gliomas; however, the results are severely conflicting. While a few researchers have suggested the potential benefits of cytotoxic T lymphocyte or dendritic cell-based vaccines for recurrent or newly diagnosed glioblastoma patients, several studies did not at all agree with the existence of CMV in glioblastoma cells. In this review, we summarized the conflicting results and issues about the detection of CMV in glioblastoma or glioma patients. We also provided the clinical data of published and unpublished clinical trials using CMV-specific immunotherapy for glioblastomas.
Collapse
Affiliation(s)
- Jaehyun Ahn
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Christopher Shin
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeo Song Kim
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
11
|
Valganciclovir as Add-on to Second-Line Therapy in Patients with Recurrent Glioblastoma. Cancers (Basel) 2022; 14:cancers14081958. [PMID: 35454863 PMCID: PMC9030820 DOI: 10.3390/cancers14081958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Patients with glioblastoma have a dismal prognosis. The major challenge with this disease is that it recurs despite aggressive first-line therapy and rapidly becomes therapy resistant. Cytomegalovirus has been found in most glioblastoma tumors and may contribute to tumor aggressiveness. Antiviral therapy may thus represent a novel therapeutic strategy and has shown promising results in patients with newly diagnosed glioblastoma. We performed a retrospective analysis of survival data of 29 patients with recurrent glioblastoma receiving the antiviral drug valganciclovir as an add-on to second-line therapy and of 109 contemporary controls treated at our institution. Valganciclovir was well tolerated and seemed to improve survival after tumor recurrence in patients with recurrent disease both in re-operated and non-re-operated patients and in patients with unmethylated and methylated MGMT promoter status. Prospective controlled clinical studies on patients with recurrent glioblastoma are warranted to evaluate if valganciclovir treatment offers a novel therapeutic option. Abstract Glioblastoma invariably recurs despite aggressive and multimodal first-line treatment and no standardized second-line therapy exists. We previously reported that treatment with the antiviral drug valganciclovir as an add-on to standard therapy significantly prolonged overall survival in 102 patients with newly diagnosed glioblastoma compared to contemporary controls. Here we present the results of retrospective survival analyses including patients with glioblastoma that initiated valganciclovir therapy after recurrence. Twenty-nine patients with recurrent glioblastoma received valganciclovir as an add-on to second-line therapy at Karolinska University Hospital. Contemporary controls were 109 patients with glioblastoma who received similar second-line therapy at our institution. We retrospectively analyzed survival data of these patients. Patients with recurrent glioblastoma who received valganciclovir had longer median overall survival after recurrence than controls (12.1 vs. 7.4 months, respectively, p = 0.0028). The drug was well tolerated. Both patients who underwent re-operation and patients that were not re-operated after recurrence benefitted significantly from valganciclovir therapy. Valganciclovir prolonged survival after recurrence both in patients with an unmethylated and methylated MGMT promoter gene. Valganciclovir was safe to use and prolonged median survival after recurrence for patients with recurrent glioblastoma, re-operated or not after recurrence, and with methylated or unmethylated MGMT promoter gene.
Collapse
|
12
|
Peredo-Harvey I, Rahbar A, Söderberg-Nauclér C. Presence of the Human Cytomegalovirus in Glioblastomas-A Systematic Review. Cancers (Basel) 2021; 13:cancers13205051. [PMID: 34680198 PMCID: PMC8533734 DOI: 10.3390/cancers13205051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Whether the human cytomegalovirus (HCMV) is present in samples obtained from patients with glioblastoma (GBM) has been a matter under debate during the last two decades. Many investigators have demonstrated the presence of HCMV proteins and nucleic acids in GBM tumors, while some have not been able to detect it. It is important to evaluate current data and resolve these issues to clarify the possible role of the HCMV in GBM tumorigenesis and if this virus can serve as a potential target of therapy for these patients. In the present systematic review, we aim to review published research studies with a focus to identify differences and similarities in methods used for the detection of the HCMV in GBM samples found to be positive or negative for HCMV. Our data suggest that the HCMV is highly prevalent in glioblastomas and that optimized immunohistochemistry techniques are required to detect it. Abstract Glioblastoma is a malignant brain tumor with a dismal prognosis. The standard treatment has not changed in the past 15 years as clinical trials of new treatment protocols have failed. A high prevalence of the human cytomegalovirus (HCMV) in glioblastomas was first reported in 2002. The virus was found only in the tumor and not in the surrounding healthy brain tissue. Many groups have confirmed the presence of the HCMV in glioblastomas, but others could not. To resolve this discrepancy, we systematically reviewed 645 articles identified in different databases. Of these, 81 studies included results from 247 analyses of 9444 clinical samples (7024 tumor samples and 2420 blood samples) by different techniques, and 81 articles included 191 studies that identified the HCMV in 2529 tumor samples (36% of all tumor samples). HCMV proteins were often detected, whereas HCMV nucleic acids were not reliably detected by PCR methods. Optimized immunohistochemical techniques identified the virus in 1391 (84,2%) of 1653 samples. These data suggest that the HCMV is highly prevalent in glioblastomas and that optimized immunohistochemistry techniques are required to detect it.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
| | - Afsar Rahbar
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
13
|
Krenzlin H, Zdioruk M, Nowicki MO, Finkelberg T, Keric N, Lemmermann N, Skubal M, Chiocca EA, Cook CH, Lawler SE. Cytomegalovirus infection of glioblastoma cells leads to NF-κB dependent upregulation of the c-MET oncogenic tyrosine kinase. Cancer Lett 2021; 513:26-35. [PMID: 33989707 PMCID: PMC8209659 DOI: 10.1016/j.canlet.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Cytomegalovirus (CMV) is widespread in humans and has been implicated in glioblastoma (GBM) and other tumors. However, the role of CMV in GBM remains poorly understood and the mechanisms involved are not well-defined. The goal of this study was to identify candidate pathways relevant to GBM that may be modulated by CMV. Analysis of RNAseq data after CMV infection of patient-derived GBM cells showed significant upregulation of GBM-associated transcripts including the MET oncogene, which is known to play a role in a subset of GBM patients. These findings were validated in vitro in both mouse and human GBM cells. Using immunostaining and RT-PCR in vivo, we confirmed c-MET upregulation in a mouse model of CMV-driven GBM progression and in human GBM. siRNA knockdown showed that MET upregulation was dependent on CMV-induced upregulation of NF-κB signaling. Finally, proneural GBM xenografts overexpressing c-MET grew much faster in vivo than controls, suggesting a mechanism by which CMV infection of tumor cells could induce a more aggressive mesenchymal phenotype. These studies implicate the CMV-induced upregulation of c-MET as a potential mechanism involved in the effects of CMV on GBM growth.
Collapse
Affiliation(s)
- Harald Krenzlin
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Mykola Zdioruk
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michal O Nowicki
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Finkelberg
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naureen Keric
- Department of Neurosurgery, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Niels Lemmermann
- Institute of Virology, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Magdalena Skubal
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA.
| | - Sean E Lawler
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Predictive factors of human cytomegalovirus reactivation in newly diagnosed glioblastoma patients treated with chemoradiotherapy. J Neurovirol 2021; 27:94-100. [PMID: 33405205 DOI: 10.1007/s13365-020-00922-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
The human cytomegalovirus (HCMV) is a ubiquitous herpes virus which infects 40 to 99% of the population. HCMV reactivation may occur in the context of immunosuppression and can induce significant morbidities. Several cases of HCMV infections or HCMV reactivation have thus been reported in glioblastoma (GBM) patients treated with radio(chemo)therapy. With the aim to identify the main risk factors associated with HCMV reactivation, we reviewed all patients treated for a newly diagnosed GBM in our institution from October 2013 to December 2015. Age, sex, Karnofsky performance status (KPS), absolute lymphocyte count (ALC), serological HCMV status, and steroid doses were recorded at the start and 1 month after the end of radiotherapy (RT). Within the 103 patients analyzed, 34 patients (33%) had an initial negative serology for HCMV, and none of them developed a seroconversion after treatment. Among patients with positive HCMV IgG (n = 69), 16 patients (23%) developed a viremia at one point during treatment. Age (> 60 years), steroid intake, and ALC (< 1500/mm3) before RT were correlated with HCMV reactivation. HCMV viremia was associated with neurological decline 1 month after chemoradiotherapy but progression-free survival was not impacted. A shorter overall survival was seen in these patients when compared with the others, but this could be biased by the older age in this subgroup. HCMV reactivation needs to be sought in case of a neurological decline during RT especially in older patients treated with steroids and low lymphocytes counts.
Collapse
|
15
|
Stragliotto G, Pantalone MR, Rahbar A, Bartek J, Söderberg-Naucler C. Valganciclovir as Add-on to Standard Therapy in Glioblastoma Patients. Clin Cancer Res 2020; 26:4031-4039. [PMID: 32423968 DOI: 10.1158/1078-0432.ccr-20-0369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Several groups have reported a prevalence of human cytomegalovirus (CMV) in glioblastoma close to 100%. Previously, we reported that treatment with the antiviral drug valganciclovir as an add-on to standard therapy significantly prolonged survival in 50 patients with glioblastoma. Here, we present an updated retrospective analysis that includes an additional 52 patients. EXPERIMENTAL DESIGN From December 2006 to November 2019, 102 patients with newly diagnosed glioblastoma received valganciclovir as an add-on to standard therapy. No additional toxicity was observed. Contemporary controls were 231 patients with glioblastoma who received similar baseline therapy. RESULTS Patients with newly diagnosed glioblastoma receiving valganciclovir had longer median overall survival (OS 24.1 vs. 13.3 months, P < 0.0001) and a 2-year survival rate (49.8% vs. 17.3%) than controls. Median time-to-tumor progression was also longer than in controls; 9.9 (0.7-67.5 months) versus 7.3 (1.2-49 months), P = 0.0003. Valganciclovir improved survival in patients with radical or partial resection and an unmethylated or methylated MGMT promoter gene. CONCLUSIONS Valganciclovir prolonged median OS of patients with newly diagnosed glioblastoma (with methylated or unmethylated MGMT promoter gene) and was safe to use.
Collapse
Affiliation(s)
- Giuseppe Stragliotto
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, Stockholm, Sweden.,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, Stockholm, Sweden.,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, Stockholm, Sweden.,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, Stockholm, Sweden. .,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Lawler SE, Chiocca EA, Cook CH. Cytomegalovirus Encephalopathy during Brain Tumor Irradiation. Clin Cancer Res 2020; 26:3077-3078. [PMID: 32276942 DOI: 10.1158/1078-0432.ccr-20-0646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
Some patients with brain cancer show extremely short survival postradiochemotherapy treatment for unknown reasons. Recent work shows that this is closely linked to encephalopathy associated with reactivation of latent cytomegalovirus in the host. Importantly, survival can be enhanced by treatment with antiviral drugs.See related article by Goerig et al., p. 3259.
Collapse
Affiliation(s)
- Sean E Lawler
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E Antonio Chiocca
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|