2
|
Deen SS, Rooney C, Shinozaki A, McGing J, Grist JT, Tyler DJ, Serrão E, Gallagher FA. Hyperpolarized Carbon 13 MRI: Clinical Applications and Future Directions in Oncology. Radiol Imaging Cancer 2023; 5:e230005. [PMID: 37682052 PMCID: PMC10546364 DOI: 10.1148/rycan.230005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Hyperpolarized carbon 13 MRI (13C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected 13C-labeled molecules and their downstream metabolites to be imaged in vivo, thus providing real-time information on kinetics. To date, the most important reaction studied with hyperpolarized 13C MRI is exchange of the hyperpolarized 13C signal from injected [1-13C]pyruvate with the resident tissue lactate pool. Recent preclinical and human studies have shown the role of several biologic factors such as the lactate dehydrogenase enzyme, pyruvate transporter expression, and tissue hypoxia in generating the MRI signal from this reaction. Potential clinical applications of hyperpolarized 13C MRI in oncology include using metabolism to stratify tumors by grade, selecting therapeutic pathways based on tumor metabolic profiles, and detecting early treatment response through the imaging of shifts in metabolism that precede tumor structural changes. This review summarizes the foundations of hyperpolarized 13C MRI, presents key findings from human cancer studies, and explores the future clinical directions of the technique in oncology. Keywords: Hyperpolarized Carbon 13 MRI, Molecular Imaging, Cancer, Tissue Metabolism © RSNA, 2023.
Collapse
Affiliation(s)
- Surrin S Deen
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Catriona Rooney
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ayaka Shinozaki
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Jordan McGing
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - James T Grist
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Damian J Tyler
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Eva Serrão
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ferdia A Gallagher
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| |
Collapse
|
3
|
Perkons NR, Metz DC, Siegelman ES, Yang Z, Collingwood R, Fortuna D, Pryma DA, Abt P, Hoteit MA. Where LI-RADS Falls Short: Two Cases of Image-diagnosed HCC, Found to Be NET on Explant. Transplantation 2022; 106:e350-e351. [PMID: 35731153 DOI: 10.1097/tp.0000000000004115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nicholas R Perkons
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David C Metz
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Evan S Siegelman
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zhaohai Yang
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robin Collingwood
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Danielle Fortuna
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Abt
- Division of Transplant Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maarouf A Hoteit
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Perkons NR, Johnson O, Pilla G, Gade TPF. Pharmacodynamics and pharmacokinetics of hyperpolarized [1- 13 C]-pyruvate in a translational oncologic model. NMR IN BIOMEDICINE 2021; 34:e4502. [PMID: 33772910 DOI: 10.1002/nbm.4502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the in vivo pharmacokinetics and pharmacodynamics of hyperpolarized [1-13 C]-pyruvate in a translational cancer model in order to inform the application of dynamic nuclear polarization (DNP)-enhanced magnetic resonance spectroscopic imaging (MRSI) as a tool for imaging liver cancer. Intratumoral metabolism within autochthonous hepatocellular carcinomas in male Wistar rats was analyzed by MRSI following hyperpolarized [1-13 C]-pyruvate injections with 80 mM (low dose [LD]) or 160 mM (high dose [HD]) pyruvate. Rats received (i) LD followed by HD injection, (ii) sequential LD injections with or without an interposed lactate dehydrogenase inhibitor (LDHi) injection, or (iii) a single LD injection. A subset of rats in (ii) were sacrificed immediately after imaging, permitting measurement of active LDH concentrations in tumor extracts. Urine and serum were collected before and after injections for rats in (iii). Comparison of LD and HD injections confirmed concentration-dependent variation of intratumoral metabolite fractions and intermetabolite ratios. In addition, quantification of the lactate-to-pyruvate ratio was sensitive to pharmacologic inhibition with intermetabolite ratios correlating with active LDH concentrations in tumor extracts. Finally, comparison of pre- and post-DNP urine collections revealed that pyruvate and the radical source are renally excreted after injection. These data demonstrate that DNP-MRSI facilitates real-time quantification of intratumoral metabolism that is repeatable and reflective of intracellular processes. A translational model system confirmed that interpretation requires consideration of probe dose, administration frequency and excretion.
Collapse
Affiliation(s)
- Nicholas R Perkons
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Omar Johnson
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabrielle Pilla
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terence P F Gade
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|