1
|
Lu T, Liao B, Lin R, Meng C, Huang P, Wang C, Liu F, Xia C. 18β-Glycyrrhetinic acid synergizes with enzalutamide to counteract castration-resistant prostate cancer by inhibiting OATP2B1 uptake of dehydroepiandrosterone sulfate. Eur J Pharmacol 2024; 983:176995. [PMID: 39277096 DOI: 10.1016/j.ejphar.2024.176995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Androgen dependence is a key feature of prostate cancer, and androgen deprivation is effective in treating prostate cancer. However, the disease often worsens and develops into castration-resistant prostate cancer after short-term control. The current study aimed to explore the mechanism of the synergistic action of 18β-glycyrrhetinic acid (18β-GA) and enzalutamide (ENZ) against prostate cancer. Our findings showed that 18β-GA significantly inhibited the expression of OATP2B1 and the transport of dehydroepiandrosterone sulfate (DHEAS) in LNCap and 22RV1 cells. It also downregulated the expression of androgen receptor (AR) to some extent. ENZ strongly inhibited AR expression, but it did not affect OATP2B1-mediated uptake of DHEAS. Compared to the effects of 18β-GA and ENZ alone, the combination of 18β-GA and ENZ significantly enhanced the inhibitory effects on AR, prostate-specific antigen (PSA) expression, tumor cell proliferation, and migration. The results obtained in castrated model mice matched the findings of in vitro experiments. 18β-GA significantly reduced the uptake of DHEAS mediated by OATP2B1 in mouse tumor tissues and cooperated with ENZ to further inhibit the expression of AR and PSA, combat the growth of tumor cells, and promote the apoptosis of tumor cells. In conclusion, 18β-GA considerably decreased the uptake of DHEAS and androgen production in cells by inhibiting the transport function of OATP2B1, while ENZ inhibited the nuclear translocation of AR and reduced the expression of AR. The combination of 18β-GA and ENZ can simultaneously inhibit androgen production and AR expression and exhibit a synergistic effect against castration and prostate cancer progression.
Collapse
Affiliation(s)
- Ting Lu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Bin Liao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Ronghe Lin
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Chao Meng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Ping Huang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Cheng Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, 330031, PR China
| | - Fanglan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, 330031, PR China.
| | - Chunhua Xia
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, 330031, PR China.
| |
Collapse
|
2
|
Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther 2023; 251:108548. [PMID: 37858628 DOI: 10.1016/j.pharmthera.2023.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Dyuti Bhandary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Ghosh D. Structures and functions of human placental aromatase and steroid sulfatase, two key enzymes in estrogen biosynthesis. Steroids 2023; 196:109249. [PMID: 37207843 DOI: 10.1016/j.steroids.2023.109249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 aromatase (AROM) and steroid sulfatase (STS) are the two key enzymes for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the cytochrome P450 superfamily. It is the only enzyme to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of estrone and dehydroepiandrosterone to the unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol, 16α,17β-estriol, testosterone and dihydrotestosterone. Expression of these steroidogenic enzymes locally within organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. The enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast, endometrial and prostate malignancies. Both enzymes have been the subjects of vigorous research for the past six decades. In this article, we review the important findings on their structure-function relationships, specifically, the work that began with unravelling of the closely guarded secrets, namely, the 3-D structures, active sites, mechanisms of action, origins of substrate specificity and the basis of membrane integration. Remarkably, these studies were conducted on the enzymes purified in their pristine forms from human placenta, the discarded and their most abundant source. The purification, assay, crystallization, and structure determination methodologies are described. Also reviewed are their functional quaternary organizations, post-translational modifications and the advancements made in the structure-guided inhibitor design efforts. Outstanding questions that still remain open are summarized in closing.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
5
|
Abstract
Cytochrome P450 aromatase (AROM) and steroid (estrone (E1)/dehydroepiandrosterone (DHEA)) sulfatase (STS) are the two key enzymes responsible for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the Fe-heme containing cytochrome P450 superfamily having a cysteine thiolate as the fifth Fe-coordinating ligand. It is the only enzyme known to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol (E2), 16α,17β-estriol (E3), testosterone (TST) and dihydrotestosterone (DHT). Expression of these steroidogenic enzymes locally within various organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. Thus, the enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast and prostate malignancies and endometriosis. Both AROM and STS have been the subjects of vigorous research for the past six decades. In this article, we review the procedures of their extraction and purification from human term placenta are described in detail, along with the activity assays.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
6
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Ghosh D. Structure of human placental steroid sulfatase at 2.0 angstrom resolution: Catalysis, quaternary association, and a secondary ligand site. J Steroid Biochem Mol Biol 2023; 227:106228. [PMID: 36427797 DOI: 10.1016/j.jsbmb.2022.106228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Human placental estrone (E1)/dehydroepiandrosterone (DHEA) sulfatase (human placental steroid sulfatase; hSTS) is an integral membrane protein of the endoplasmic reticulum. This Ca2+-dependent enzyme catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, which then act as precursors for the biosynthesis of 17β-estradiol (E2) and dihydrotestosterone (DHT), respectively, the most potent forms of estrogens and androgens. hSTS is a key enzyme for the local production of E2 and DHT in the breast and the prostate. The enzyme is known to be responsible for maintaining high levels of estrogens in the breast tumor cells. The crystal structure of hSTS purified from human placenta has previously been reported at 2.6 Å resolution. Here we present the structure of hSTS determined at the superior 2.0 Å resolution bringing new clarity to the atomic architecture of the active site. The molecular basis of catalysis and steroid-protein interaction are revisited in light of the new data. We also reexamine the enzyme's quaternary association and its implication on the membrane integration. A secondary ligand binding pocket at the intermolecular interface and adjacent to the active site access channel, buried into the gill of the mushroom-shaped molecule, has been identified. Its role as well as that of a phosphate ion bound to an exposed histidine side chain are examined from the structure-function perspective. Higher resolution data also aids in the tracing of an important loop missing in the previous structure.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
8
|
Zhuang Q, Huang S, Li Z. Prospective role of 3βHSD1 in prostate cancer precision medicine. Prostate 2023; 83:619-627. [PMID: 36842160 DOI: 10.1002/pros.24504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Prostate cancer is addicted to androgens. The steroidogenic enzyme 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) recognizes pregnenolone, dehydroepiandrosterone (DHEA), and steroidal medicine abiraterone as substrates to accelerate disease progression. METHODS References for this review were identified through searches of PubMed with the search terms "prostate cancer", "HSD3B1", and "3bHSD1" from 1990 until June, 2022. RESULTS Genotype of 3βHSD1 has been reported to correlate with tumor aggressiveness of advanced prostate cancer in multiple clinical scenarios. The ethnic differences and limitations of using 3βHSD1 genotype as a prognostic biomarker have been discussed here. The activity of 3βHSD1 increases in patients treated with abiraterone and enzalutamide, giving rise to treatment resistance. Further elucidation of 3βHSD1 regulatory mechanisms will shed light on more approaches for disease intervention. We also review the recent advance on 3βHSD1 inhibitors and targeting 3βHSD1 for prostate cancer management. Novel 3βHSD1 inhibitors will be needed to provide additional options for prostate cancer management. CONCLUSION 3βHSD1 is both a predictive biomarker and a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Huang
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Shang D, Lan T, Wang Y, Li X, Liu Q, Dong H, Xu B, Cheng H, Zhou R. PGCLCs of human 45,XO reveal pathogenetic pathways of neurocognitive and psychosocial disorders. Cell Biosci 2022; 12:194. [DOI: 10.1186/s13578-022-00925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Neurocognitive disorders and psychosocial difficulties are common in patients with Turner syndrome and multiple neurodegenerative diseases, yet there is no effective cure. Human primordial germ cells (hPGCs) are pluripotent germline stem cells in early embryo, which pass genetic information from one generation to the next, whereas all somatic cells will die along with the end of life. However, it is not known whether patient hPGCs with Turner syndrome contain information of neurocognitive and psychosocial illness.
Results
In this report, we used a high-density of culture system of embryoids derived from iPSCs of a patient with Turner syndrome to ask how pathogenetic pathways are associated with onset of neurocognitive and psychosocial disorders. The hPGC-Like Cells (hPGCLCs) were in vitro specified from iPSCs of 45,XO, 46,XX and 46,XY by the high-density induction of embryoids. Amazingly, we found that the specification process of the hPGCLCs in 45,XO, compared to those in 46,XX and 46,XY, enriched several common pathogenetic pathways regulating neurocognitive and psychosocial disorders, that shared among multiple neurodegenerative diseases and Turner syndrome. The downregulated chemical synaptic transmission pathways, including glutamatergic, GABAergic, and nicotine cholinergic synapses, indicated synaptic dysfunctions, while upregulated pathways that were associated with imbalance of mitochondrial respiratory chain complexes and apoptosis, may contribute to neuronal dysfunctions. Notably, downregulation of three types of ubiquitin ligases E1-E2-E3 and lysosome-associated sulfatases and RAB9A, owing to haploinsufficiency and parental preference of the X chromosome expression, indicated that two pathways of cellular degradation, lysosome and ubiquitin–proteasome, were impaired in the specification process of 45,XO hPGCLCs. This would lead to accumulation of undesired proteins and aggregates, which is a typically pathological hallmark in neurodegenerative diseases.
Conclusions
Our data suggest that the specification process of the hPGCLCs in 45,XO, compared to those in 46,XX and 46,XY, enriched pathogenetic pathways that are associated with the onset of neurocognitive and psychosocial disorders.
Collapse
|
10
|
Chang CN, Lin IC, Lin TS, Chiu PF, Lu YL, Narwane M, Liu IC, Hng Y, Tsai KC, Lin MH, S. Y. Hsieh Y, Chen MJ, Liang PH. The Design, Structure–Activity, and kinetic studies of 3-Benzyl-5-oxa-1,2,3,4-Tetrahydro-2H-chromeno-(3,4-c)pyridin-8-yl sulfamates as Steroid sulfatase inhibitors. Bioorg Chem 2022; 129:106148. [DOI: 10.1016/j.bioorg.2022.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
|
11
|
Li R, Ke M, Qi M, Han Z, Cao Y, Deng Z, Qian J, Yang Y, Gu C. G6PD promotes cell proliferation and dexamethasone resistance in multiple myeloma via increasing anti-oxidant production and activating Wnt/β-catenin pathway. Exp Hematol Oncol 2022; 11:77. [PMID: 36271440 PMCID: PMC9587560 DOI: 10.1186/s40164-022-00326-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) as the rate-limiting enzyme in the pentose phosphate pathway (PPP) is well-established as an aberrantly expressed protein in numerous clinical diseases; however, its role in cancer, specifically in multiple myeloma (MM) remains elusive. Methods In this study, serum metabolites in 70 normal people and 70 newly diagnosed MM patients were analyzed using untargeted metabolomics and the results were verified using ELISA. The survival analysis of multiple clinical datasets was performed to identify a potential target gene in MM. The oncogenic role of G6PD was investigated using lentivirus-based overexpression or knockdown of G6PD using RNAi or an inhibitor in vitro, and in a xenograft mouse model in vivo. The mechanisms of induced Dexamethasone (Dexa)-resistance of G6PD were further explored using the above established MM cell lines in vitro. Results Based on the screening of potential genes, PPP was shown to be involved in the occurrence of MM, which was evidenced by the differential expression of serum metabolites of G6P and Dehydroepiandrosterone sulfate (DHEAS, the more stable sulfate ester form of an endogenously uncompetitive G6PD inhibitor known as DHEA). Elevated G6PD promoted MM cell proliferation. Mechanistically, high G6PD expression enhanced enzymatic generation of the antioxidant NADPH via the PPP and decreased the production of reactive oxygen species (ROS), thus inducing the proliferation and Dexa resistance in MM cells. Furthermore, canonical Wnt/β-catenin signaling also participated in regulating G6PD-induced drug resistance and cellular redox levels of ROS. Intriguingly, DHEA treatment could enhance the sensitivity of MM cells to Dexa primarily through augmenting cellular oxidative stress. Conclusions Our data demonstrate that G6PD enhances the generation of the enzymatic anti-oxidant NADPH and decreases ROS generation, thereby promoting resistance to Dexa-induced apoptosis via the enzymatic PPP and non-enzymatic Wnt/β-catenin signaling pathway in MM. Targeting G6PD to harness cellular redox may serve as a promising novel strategy for the management of MM. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00326-6.
Collapse
Affiliation(s)
- Rui Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Mengying Ke
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Mingming Qi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenru Han
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Yuhao Cao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Zhendong Deng
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Jinjun Qian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China.
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China.
| |
Collapse
|
12
|
D’Abronzo LS, Lombard AP, Ning S, Armstong CM, Leslie AR, Sharifi M, Schaaf ZA, Lou W, Gao AC. Wntless expression promotes lineage plasticity and is associated with neuroendocrine prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:299-310. [PMID: 36313205 PMCID: PMC9605943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Resistance to androgen receptor (AR) targeted therapies remains as the main reason for most prostate cancer related deaths. Lineage plasticity resulting in altered, treatment insensitive prostate tumor cell phenotypes such neuroendocrine differentiated prostate cancer is a common manifestation within resistant tumors upon AR-targeted therapies. The mechanisms responsible for lineage plasticity in prostate cancer remain incompletely understood. Here we demonstrate that the enzalutamide resistant MDVR cell line possesses lineage plastic characteristics associated with overexpression of the Wnt transporter Wntless (WLS). Furthermore, we present evidence that overexpression of WLS is common in varying cell line models of lineage plastic prostate cancer, is higher in neuroendocrine patient samples, and positively correlates with the neuroendocrine marker SYP in clinical data. Targeting WLS in lineage plastic cellular models reduces viability and represses lineage plasticity associated gene expression. Our study provides insight into the importance of WLS to the development of lethal resistant prostate cancer and provides a potential target for the treatment of advanced disease.
Collapse
Affiliation(s)
- Leandro S D’Abronzo
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Alan P Lombard
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
- UC Davis Comprehensive Cancer Center, University of California DavisSacramento, California, USA
- Department of Biochemistry and Molecular Medicine, University of California DavisSacramento, California, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Cameron M Armstong
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Amy R Leslie
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Zachary A Schaaf
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Wei Lou
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
- UC Davis Comprehensive Cancer Center, University of California DavisSacramento, California, USA
- VA Northern California Health Care SystemSacramento, California, USA
| |
Collapse
|
13
|
Ning S, Liu C, Lou W, Yang JC, Lombard AP, D'Abronzo LS, Batra N, Yu AM, Leslie AR, Sharifi M, Evans CP, Gao AC. Bioengineered BERA-Wnt5a siRNA Targeting Wnt5a/FZD2 Signaling Suppresses Advanced Prostate Cancer Tumor Growth and Enhances Enzalutamide Treatment. Mol Cancer Ther 2022; 21:1594-1607. [PMID: 35930737 PMCID: PMC9547958 DOI: 10.1158/1535-7163.mct-22-0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
The next-generation antiandrogen drugs such as enzalutamide and abiraterone extend survival times and improve quality of life in patients with advanced prostate cancer. However, resistance to both drugs occurs frequently through mechanisms that are incompletely understood. Wnt signaling, particularly through Wnt5a, plays vital roles in promoting prostate cancer progression and induction of resistance to enzalutamide and abiraterone. Development of novel strategies targeting Wnt5a to overcome resistance is an urgent need. In this study, we demonstrated that Wnt5a/FZD2-mediated noncanonical Wnt pathway is overexpressed in enzalutamide-resistant prostate cancer. In patient databases, both the levels of Wnt5a and FZD2 expression are upregulated upon the development of enzalutamide resistance and correlate with higher Gleason score, biochemical recurrence, and metastatic status, and with shortened disease-free survival duration. Blocking Wnt5a/FZD2 signal transduction not only diminished the activation of noncanonical Wnt signaling pathway, but also suppressed the constitutively activated androgen receptor (AR) and AR variants. Furthermore, we developed a novel bioengineered BERA-Wnt5a siRNA construct and demonstrated that inhibition of Wnt5a expression by the BERA-Wnt5a siRNA significantly suppressed tumor growth and enhanced enzalutamide treatment in vivo. These results indicate that Wnt5a/FZD2 signal pathway plays a critical role in promoting enzalutamide resistance, and targeting this pathway by BERA-Wnt5a siRNA can be developed as a potential therapy to treat advanced prostate cancer.
Collapse
Affiliation(s)
- Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Wei Lou
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Joy C Yang
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Alan P Lombard
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Neelu Batra
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
| | - Ai-Ming Yu
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
| | - Amy R Leslie
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Allen C Gao
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
14
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
15
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
16
|
Armstrong CM, Gao AC. Dysregulated androgen synthesis and anti-androgen resistance in advanced prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:292-300. [PMID: 34541028 PMCID: PMC8446765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Current therapies for treating castration resistant prostate cancer (CRPC) include abiraterone and enzalutamide which function by inhibiting androgen signaling by targeting androgen synthesis and antagonizing the androgen receptor (AR) respectively. While these therapies are initially beneficial, resistance inevitably develops. A number of pathways have been identified to contribute to CRPC progression and drug resistance. Among these is aberrant androgen signaling perpetuated by increased expression and activity of androgenic enzymes. While abiraterone inhibits the androgenic enzyme, CYP17A1, androgen synthesis inhibition by abiraterone is incomplete and sustained androgenesis persists, in part due to increased levels of AKR1C3 and steroid sulfatase (STS). Expression of both of these enzymes is increased in CRPC and is associated with resistance to anti-androgens. A number of studies have identified methods for targeting these enzymes. Indomethacin, a non-steroidal anti-inflammatory drug commonly used to treat inflammatory arthritis has been well established as an inhibitor of AKR1C3. Treatment of CRPC cells with indomethacin reduces cell growth and improves the response to enzalutamide and abiraterone. Similarly, STS inhibitors have been shown to reduce intracrine androgens and also reduce CRPC growth and enhance anti-androgen treatment. In this review, we provide an overview of androgen synthesis in CRPC and strategies aimed at inhibiting intracrine androgens.
Collapse
Affiliation(s)
- Cameron M Armstrong
- Department of Urology, University of California, DavisSacramento, CA 95817, USA
| | - Allen C Gao
- Department of Urology, University of California, DavisSacramento, CA 95817, USA
- Comprehensive Cancer Center, University of California, DavisSacramento, CA 95817, USA
- VA Northern California Health Care SystemSacramento, CA 95655, USA
| |
Collapse
|
17
|
Foster PA. Steroid Sulphatase and Its Inhibitors: Past, Present, and Future. Molecules 2021; 26:2852. [PMID: 34064842 PMCID: PMC8151039 DOI: 10.3390/molecules26102852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter's imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase-STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.
Collapse
Affiliation(s)
- Paul A. Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; ; Tel.: +44-121-414-3776
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, UK
| |
Collapse
|