1
|
Sanchez VA, Dinh PC, Rooker J, Monahan PO, Althouse SK, Fung C, Sesso HD, Einhorn LH, Dolan ME, Frisina RD, Travis LB. Prevalence and risk factors for ototoxicity after cisplatin-based chemotherapy. J Cancer Surviv 2023; 17:27-39. [PMID: 36637632 DOI: 10.1007/s11764-022-01313-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Ototoxicity is a prominent side effect of cisplatin-based chemotherapy. There are few reports, however, estimating its prevalence in well-defined cohorts and associated risk factors. METHODS Testicular cancer (TC) survivors given first-line cisplatin-based chemotherapy completed validated questionnaires. Descriptive statistics evaluated the prevalence of ototoxicity, defined as self-reported hearing loss and/or tinnitus. We compared patients with and without tinnitus or hearing loss using Chi-square test, two-sided Fisher's exact test, or two-sided Wilcoxon rank sum test. To evaluate ototoxicity risk factors, a backward selection logistic regression procedure was performed. RESULTS Of 145 TC survivors, 74% reported ototoxicity: 68% tinnitus; 59% hearing loss; and 52% reported both. TC survivors with tinnitus were more likely to indicate hypercholesterolemia (P = 0.008), and difficulty hearing (P < .001). Tinnitus was also significantly related to age at survey completion (OR = 1.79; P = 0.003) and cumulative cisplatin dose (OR = 5.17; P < 0.001). TC survivors with hearing loss were more likely to report diabetes (P = 0.042), hypertension (P = 0.007), hypercholesterolemia (P < 0.001), and family history of hearing loss (P = 0.044). Risk factors for hearing loss included age at survey completion (OR = 1.57; P = 0.036), hypercholesterolemia (OR = 3.45; P = 0.007), cumulative cisplatin dose (OR = 1.94; P = 0.049), and family history of hearing loss (OR = 2.87; P = 0.071). CONCLUSIONS Ototoxicity risk factors included age, cisplatin dose, cardiovascular risk factors, and family history of hearing loss. Three of four TC survivors report some type of ototoxicity; thus, follow-up of cisplatin-treated survivors should include routine assessment for ototoxicity with provision of indicated treatments. IMPLICATIONS FOR CANCER SURVIVORS Survivors should be aware of risk factors associated with ototoxicity. Referrals to audiologists before, during, and after cisplatin treatment is recommended.
Collapse
Affiliation(s)
- Victoria A Sanchez
- Department of Otolaryngology-Head & Neck Surgery, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 73, Tampa, FL, 33612, USA.
| | - Paul C Dinh
- Department of Medical Oncology, Indiana University, Indianapolis, IN, USA
| | - Jennessa Rooker
- College of Nursing, University of South Florida, Tampa, FL, USA
| | - Patrick O Monahan
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Sandra K Althouse
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lawrence H Einhorn
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Robert D Frisina
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - Lois B Travis
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
2
|
de Jong C, Herder GJM, van Haarlem SWA, van der Meer FS, van Lindert ASR, ten Heuvel A, Brouwer J, Egberts TCG, Deneer VHM. Association between Genetic Variants and Peripheral Neuropathy in Patients with NSCLC Treated with First-Line Platinum-Based Therapy. Genes (Basel) 2023; 14:170. [PMID: 36672910 PMCID: PMC9858836 DOI: 10.3390/genes14010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a common, disabling side effect in non-small cell lung cancer (NSCLC) patients treated with platinum-based therapy. There is increasing evidence for associations between genetic variants and susceptibility to CIPN. The aim of this study was to further explore genetic risk factors for CIPN by investigating previously reported genetic associations. Methods: A multicenter prospective follow-up study (PGxLUNG, NTR NL5373610015) in NSCLC patients (stage II-IV) treated with first-line platinum-based (cisplatin or carboplatin) chemotherapy was conducted. Clinical evaluation of neuropathy (CTCAE v4.03) was performed at baseline and before each cycle (four cycles, every three weeks) of chemotherapy and at three and six months after treatment initiation. The relationship between 34 single nucleotide polymorphisms (SNPs) in 26 genes and any grade (grade ≥ 1) and severe (grade ≥ 2) CIPN was assessed by using univariate and multivariate logistic regression modelling. Results: In total, 320 patients were included of which 26.3% (n = 84) and 8.1% (n = 26) experienced any grade and severe CIPN, respectively. The GG-genotype (rs879207, A > G) of TRPV1, a gene expressed in peripheral sensory neurons, was observed in 11.3% (n = 36) of the patients and associated with an increased risk of severe neuropathy (OR 5.2, 95%CI 2.1−12.8, adjusted p-value 0.012). A quarter (25%, n = 9/36) of the patients with the GG-genotype developed severe neuropathy compared to 6% (n = 17/282) of the patients with the AG- or AA-genotype. Multivariate logistic regression analysis showed statistically significant associations between the GG-genotype (ORadj 4.7, 95%CI 1.8−12.3) and between concomitant use of paclitaxel (ORadj 7.2, 95%CI 2.5−21.1) and severe CIPN. Conclusions: Patients with the GG-genotype (rs879207) of TRPV1 have an almost 5-fold higher risk of developing severe neuropathy when treated with platinum-based therapy. Future studies should aim to validate these findings in an independent cohort and to further investigated the individualization of platinum-based chemotherapy in clinical practice.
Collapse
Affiliation(s)
- Corine de Jong
- Department of Clinical Pharmacy, Division of Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, 3430 EM Nieuwegein, The Netherlands
| | - Gerarda J. M. Herder
- Department of Pulmonology, Meander Medical Center, 3813 TZ Amersfoort, The Netherlands
| | | | | | - Anne S. R. van Lindert
- Department of Pulmonology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | - Jan Brouwer
- Department of Pulmonology, Rivierenland Hospital, 4002 WP Tiel, The Netherlands
| | - Toine C. G. Egberts
- Department of Clinical Pharmacy, Division of Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Vera H. M. Deneer
- Department of Clinical Pharmacy, Division of Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Du S, Zhu C, Ren X, Chen X, Cui X, Guan S. Regulation of secretory pathway kinase or kinase-like proteins in human cancers. Front Immunol 2023; 14:942849. [PMID: 36825005 PMCID: PMC9941534 DOI: 10.3389/fimmu.2023.942849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Secretory pathway kinase or kinase-like proteins (SPKKPs) are effective in the lumen of the endoplasmic reticulum (ER), Golgi apparatus (GA), and extracellular space. These proteins are involved in secretory signaling pathways and are distinctive from typical protein kinases. Various reports have shown that SPKKPs regulate the tumorigenesis and progression of human cancer via the phosphorylation of various substrates, which is essential in physiological and pathological processes. Emerging evidence has revealed that the expression of SPKKPs in human cancers is regulated by multiple factors. This review summarizes the current understanding of the contribution of SPKKPs in tumorigenesis and the progression of immunity. With the epidemic trend of immunotherapy, targeting SPKKPs may be a novel approach to anticancer therapy. This study briefly discusses the recent advances regarding SPKKPs.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhang X, Trendowski MR, Wilkinson E, Shahbazi M, Dinh PC, Shuey MM, Feldman DR, Hamilton RJ, Vaughn DJ, Fung C, Kollmannsberger C, Huddart R, Martin NE, Sanchez VA, Frisina RD, Einhorn LH, Cox NJ, Travis LB, Dolan ME. Pharmacogenomics of cisplatin-induced neurotoxicities: Hearing loss, tinnitus, and peripheral sensory neuropathy. Cancer Med 2022; 11:2801-2816. [PMID: 35322580 PMCID: PMC9302309 DOI: 10.1002/cam4.4644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Cisplatin is a critical component of first-line chemotherapy for several cancers, but causes peripheral sensory neuropathy, hearing loss, and tinnitus. We aimed to identify comorbidities for cisplatin-induced neurotoxicities among large numbers of similarly treated patients without the confounding effect of cranial radiotherapy. METHODS Utilizing linear and logistic regression analyses on 1680 well-characterized cisplatin-treated testicular cancer survivors, we analyzed associations of hearing loss, tinnitus, and peripheral neuropathy with nongenetic comorbidities. Genome-wide association studies and gene-based analyses were performed on each phenotype. RESULTS Hearing loss, tinnitus, and peripheral neuropathy, accounting for age and cisplatin dose, were interdependent. Survivors with these neurotoxicities experienced more hypertension and poorer self-reported health. In addition, hearing loss was positively associated with BMIs at clinical evaluation and nonwork-related noise exposure (>5 h/week). Tinnitus was positively associated with tobacco use, hypercholesterolemia, and noise exposure. We observed positive associations between peripheral neuropathy and persistent vertigo, tobacco use, and excess alcohol consumption. Hearing loss and TXNRD1, which plays a key role in redox regulation, showed borderline significance (p = 4.2 × 10-6 ) in gene-based analysis. rs62283056 in WFS1 previously found to be significantly associated with hearing loss (n = 511), was marginally significant in an independent replication cohort (p = 0.06; n = 606). Gene-based analyses identified significant associations between tinnitus and WNT8A (p = 2.5 × 10-6 ), encoding a signaling protein important in germ cell tumors. CONCLUSIONS Genetics variants in TXNRD1 and WNT8A are notable risk factors for hearing loss and tinnitus, respectively. Future studies should investigate these genes and if replicated, identify their potential impact on preventive strategies.
Collapse
Affiliation(s)
- Xindi Zhang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Emma Wilkinson
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Mohammad Shahbazi
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Paul C Dinh
- Division of Medical Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Megan M Shuey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | - Neil E Martin
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Victoria A Sanchez
- Department of Otolaryngology - Head and Neck Surgery, University of South Florida, Tampa, Florida, USA
| | - Robert D Frisina
- Departments of Medical Engineering and Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, Florida, USA
| | - Lawrence H Einhorn
- Division of Medical Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lois B Travis
- Division of Medical Oncology, Indiana University, Indianapolis, Indiana, USA.,Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Suzuki K, Kakuta Y, Naito T, Takagawa T, Hanai H, Araki H, Sasaki Y, Sakuraba H, Sasaki M, Hisamatsu T, Motoya S, Matsumoto T, Onodera M, Ishiguro Y, Nakase H, Andoh A, Hiraoka S, Shinozaki M, Fujii T, Katsurada T, Kobayashi T, Fujiya M, Otsuka T, Oshima N, Suzuki Y, Sato Y, Hokari R, Noguchi M, Ohta Y, Matsuura M, Kawai Y, Tokunaga K, Nagasaki M, Kudo H, Minegishi N, Okamoto D, Shimoyama Y, Moroi R, Kuroha M, Shiga H, Li D, McGovern DPB, Kinouchi Y, Masamune A. Genetic Background of Mesalamine-induced Fever and Diarrhea in Japanese Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:21-31. [PMID: 33501934 DOI: 10.1093/ibd/izab004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Some patients with inflammatory bowel disease (IBD) who were under mesalamine treatment develop adverse reactions called "mesalamine allergy," which includes high fever and worsening diarrhea. Currently, there is no method to predict mesalamine allergy. Pharmacogenomic approaches may help identify these patients. Here we analyzed the genetic background of mesalamine intolerance in the first genome-wide association study of Japanese patients with IBD. METHODS Two independent pharmacogenetic IBD cohorts were analyzed: the MENDEL (n = 1523; as a discovery set) and the Tohoku (n = 788; as a replication set) cohorts. Genome-wide association studies were performed in each population, followed by a meta-analysis. In addition, we constructed a polygenic risk score model and combined genetic and clinical factors to model mesalamine intolerance. RESULTS In the combined cohort, mesalamine-induced fever and/or diarrhea was significantly more frequent in ulcerative colitis vs Crohn's disease. The genome-wide association studies and meta-analysis identified one significant association between rs144384547 (upstream of RGS17) and mesalamine-induced fever and diarrhea (P = 7.21e-09; odds ratio = 11.2). The estimated heritability of mesalamine allergy was 25.4%, suggesting a significant correlation with the genetic background. Furthermore, a polygenic risk score model was built to predict mesalamine allergy (P = 2.95e-2). The combined genetic/clinical prediction model yielded a higher area under the curve than did the polygenic risk score or clinical model alone (area under the curve, 0.89; sensitivity, 71.4%; specificity, 90.8%). CONCLUSIONS Mesalamine allergy was more common in ulcerative colitis than in Crohn's disease. We identified a novel genetic association with and developed a combined clinical/genetic model for this adverse event.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.,F. Widjaja Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tetsuya Takagawa
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Hiroshi Araki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yu Sasaki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Makoto Sasaki
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Japan
| | - Satoshi Motoya
- IBD Center, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Motoyuki Onodera
- Department of Gastroenterology, Iwate Prefectural Isawa Hospital, Iwate, Japan
| | - Yoh Ishiguro
- Department of Gastroenterology and Hematology, Hirosaki National Hospital, Hirosaki, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Andoh
- Department of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaru Shinozaki
- Department of Surgery, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshimitsu Fujii
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takehiko Katsurada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Mikihiro Fujiya
- Department of Medicine, Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Japan
| | - Takafumi Otsuka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Naoki Oshima
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Yuichirou Sato
- Department of Gastroenterology, Osaki Citizen Hospital, Osaki, Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Yuki Ohta
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Japan.,Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hisaaki Kudo
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoko Minegishi
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Daisuke Okamoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Gastroenterology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yoshitaka Kinouchi
- Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
6
|
King J, Adra N, Einhorn LH. Testicular cancer: Biology to bedside. Cancer Res 2021; 81:5369-5376. [PMID: 34380632 DOI: 10.1158/0008-5472.can-21-1452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
Testicular cancer is the first solid tumor with a remarkably high cure rate. This success was only made possible through collaborative efforts of basic and clinical research. Most patients with distant metastases can be cured. However, the majority of these patients are diagnosed at a young age, leaving many decades for the development of treatment-related complications. This has magnified the importance of research into survivorship issues after exposure to platinum-based chemotherapy. This research, along with research into newer biomarkers that will aid in the diagnosis and surveillance of patients and survivors of testicular cancer, will continue to advance the field and provide new opportunities for these patients. There also remains the need for further therapeutic options for patients who unfortunately do not respond to standard treatment regimens and ultimately die from this disease, including a cohort of patients with late relapses and platinum-refractory disease. Here we discuss the advancements in management that led to a highly curable malignancy, while highlighting difficult situations still left to solve as well as emerging research into novel biomarkers.
Collapse
Affiliation(s)
- Jennifer King
- Hematology/Oncology, Indiana University School of Medicine
| | - Nabil Adra
- Hematology/Oncology, Indiana University School of Medicine
| | | |
Collapse
|
7
|
The ABCs of the atypical Fam20 secretory pathway kinases. J Biol Chem 2021; 296:100267. [PMID: 33759783 PMCID: PMC7948968 DOI: 10.1016/j.jbc.2021.100267] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The study of extracellular phosphorylation was initiated in late 19th century when the secreted milk protein, casein, and egg-yolk protein, phosvitin, were shown to be phosphorylated. However, it took more than a century to identify Fam20C, which phosphorylates both casein and phosvitin under physiological conditions. This kinase, along with its family members Fam20A and Fam20B, defined a new family with altered amino acid sequences highly atypical from the canonical 540 kinases comprising the kinome. Fam20B is a glycan kinase that phosphorylates xylose residues and triggers peptidoglycan biosynthesis, a role conserved from sponges to human. The protein kinase, Fam20C, conserved from nematodes to humans, phosphorylates well over 100 substrates in the secretory pathway with overall functions postulated to encompass endoplasmic reticulum homeostasis, nutrition, cardiac function, coagulation, and biomineralization. The preferred phosphorylation motif of Fam20C is SxE/pS, and structural studies revealed that related member Fam20A allosterically activates Fam20C by forming a heterodimeric/tetrameric complex. Fam20A, a pseudokinase, is observed only in vertebrates. Loss-of-function genetic alterations in the Fam20 family lead to human diseases such as amelogenesis imperfecta, nephrocalcinosis, lethal and nonlethal forms of Raine syndrome with major skeletal defects, and altered phosphate homeostasis. Together, these three members of the Fam20 family modulate a diverse network of secretory pathway components playing crucial roles in health and disease. The overarching theme of this review is to highlight the progress that has been made in the emerging field of extracellular phosphorylation and the key roles secretory pathway kinases play in an ever-expanding number of cellular processes.
Collapse
|