1
|
Wu H, Zhang G, Liu Z, Liu W, Wang X, Zhao Y. Enhanced anti-tumor activity mediated by combination chimeric antigen receptor T cells targeting GD2 and GPC2 in high-risk neuroblastoma. Cytotherapy 2024; 26:1308-1319. [PMID: 38904586 DOI: 10.1016/j.jcyt.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AIMS Chimeric antigen receptor T (CAR-T) cells targeting single antigens show limited activity against solid tumors due to poor T cell persistence, low efficiency infiltration, and exhaustion together with heterogeneous tumor-associated antigen (TAA) expression. This is also true in high-risk neuroblastoma (HRNB), a lethal pediatric extracranial malignancy. To overcome these obstacles, a combinational strategy using GD2-specific and GPC2-specific CAR-T cells was developed to improve immunotherapeutic efficacy. METHODS We individually developed GD2-specific and GPC2-specific CARs containing a selective domain (sCAR) which was a peptide of 10 amino acids derived from human nuclear autoantigen La/SS-B. These constructs allowed us to generate two different HRNB antigen-specific CAR-T cells with enhanced biological activity through stimulating sCAR-engrafted T cells via a selective domain-specific monoclonal antibody (SmAb). Binding affinity and stimulation of GD2- and GPC2-specific sCARs by SmAb were measured, and transient and persistent anti-tumor cytotoxicity of GD2sCAR-T and GPC2sCAR-T cells were quantified in neuroblastoma cell lines expressing different TAA levels. The anti-tumor pharmaceutical effects and cellular mechanisms mediated by single or combinational sCAR-T cells were evaluated in vitro and in vivo. RESULTS GD2- and GPC2-specific sCARs had antigen-specific binding affinity similar to their parental counterparts and were recognized by SmAb. SmAb-mediated stimulation selectively activated sCAR-T proliferation and increased central memory T cells in the final products. SmAb-stimulated sCAR-T cells had enhanced transient cytolytic activity, and combination therapy extended long-term anti-tumor activity in vitro through TNF-α and IL-15 release. Stimulated sCAR-T cells overcame heterogeneous antigen expression in HRNB, and the multi-TAA-targeting strategy was especially efficacious in vivo, inducing apoptosis through the caspase-3/PARP pathway and inhibiting the release of several tumor-promoting cytokines. CONCLUSIONS These data suggest that combined targeting of multiple TAAs is a promising strategy to overcome heterogenous antigen expression in solid tumors and extend CAR-T cell persistence for HRNB immunotherapy.
Collapse
Affiliation(s)
- Huantong Wu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Guangji Zhang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongfeng Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Weihua Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuan Wang
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Yu Zhao
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
2
|
Lutskovich D, Meleshko A, Katsin M. State of the art and perspectives of chimeric antigen receptor T cells cell therapy for neuroblastoma. Cytotherapy 2024; 26:1122-1131. [PMID: 38852096 DOI: 10.1016/j.jcyt.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Neuroblastoma (NB) is a solid, neuroendocrine pediatric solid tumor with divergent clinical behavior. Patients with high-risk diseases have poor prognoses despite complex multimodal therapy, which requires the search for new therapeutic approaches. Chimeric antigen receptor T cells (CAR-T) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early-phase clinical trials of CAR-T cell therapy for NB have proven safe and feasible, but limited clinical efficacy. At the same time, multiple experimental and preclinical studies have shown that the most common in clinical trials single 2nd or 3rd generation CAR structure is not sufficient for a complete response in solid tumors. Here, we review the recent advances and future perspectives associated with engineered receptors, including several antigens binding, armored CAR-T of 4th and 5th generation and CAR-T cell combination strategies with other immunotherapy. We also summarize the results and shortcomings of ongoing clinical trials of CAR-T therapy for NB.
Collapse
Affiliation(s)
- Dzmitry Lutskovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus.
| | - Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikalai Katsin
- Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| |
Collapse
|
3
|
Markovska A, Somers K, Guillaume J, Melief J, Mazar AP, Schmitt DM, Schipper HS, Boes M. Targeted inhibition of glycogen synthase kinase-3 using 9-ING-41 (elraglusib) enhances CD8 T-cell-reactivity against neuroblastoma cells. Sci Rep 2024; 14:21710. [PMID: 39289439 PMCID: PMC11408500 DOI: 10.1038/s41598-024-72492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
The prognosis of patients with high-risk neuroblastoma remains poor, partly due to inadequate immune recognition of the tumor. Neuroblastomas display extremely low surface MHC-I, preventing recognition by cytotoxic T lymphocytes (CTLs) and contributing to an immunosuppressive tumor microenvironment. Glycogen synthase kinase-3 beta (GSK-3β) is involved in pathways that may affect the MHC-I antigen processing and presentation pathway. We proposed that therapeutic inhibition of GSK-3β might improve the surface display of MHC-I molecules on neuroblastoma cells, and therefore tested if targeting of GSK-3β using the inhibitor 9-ING-41 (Elraglusib) improves MHC-I-mediated CTL recognition. We analyzed mRNA expression data of neuroblastoma tumor datasets and found that non-MYCN-amplified neuroblastomas express higher GSK-3β levels than MYCN-amplified tumors. In non-MYCN-amplified cells SH-SY5Y, SK-N-AS and SK-N-SH 9-ING-41 treatment enhanced MHC-I surface display and the expression levels of a subset of genes involved in MHC-I antigen processing and presentation. Further, 9-ING-41 treatment triggered increased STAT1 pathway activation, upstream of antigen presentation pathways in two of the three non-MYCN-amplified cell lines. Finally, in co-culture experiments with CD8 + T cells, 9-ING-41 improved immune recognition of the neuroblastoma cells, as evidenced by augmented T-cell activation marker levels and T-cell proliferation, which was further enhanced by PD-1 immune checkpoint inhibition. Our preclinical study provides experimental support to further explore the GSK-3β inhibitor 9-ING-41 as an immunomodulatory agent to increase tumor immune recognition in neuroblastoma.
Collapse
Affiliation(s)
- A Markovska
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - K Somers
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - J Guillaume
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - J Melief
- Karolinska Institutet, Stockholm, Sweden
| | - A P Mazar
- Actuate Therapeutics, Fort Worth, TX, 76107, USA
| | - D M Schmitt
- Actuate Therapeutics, Fort Worth, TX, 76107, USA
| | - H S Schipper
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
- Pediatric Cardiology, Sophia Children's Hospital, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - M Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3508 GA, The Netherlands.
| |
Collapse
|
4
|
Mohseni R, Mahdavi Sharif P, Behfar M, Shojaei S, Shoae-Hassani A, Jafari L, Khosravi A, Nikfetrat Z, Hamidieh AA. Phase I study of safety and efficacy of allogeneic natural killer cell therapy in relapsed/refractory neuroblastomas post autologous hematopoietic stem cell transplantation. Sci Rep 2024; 14:20971. [PMID: 39251669 PMCID: PMC11385932 DOI: 10.1038/s41598-024-70958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Despite low incidence, neuroblastoma, an immunologically cold tumor, is the most common extracranial solid neoplasm in pediatrics. In relapsed/refractory cases, the benefits of autologous hematopoietic stem cell transplantation (auto-HSCT) and other therapies are limited. Natural killer (NK) cells apply cytotoxicity against tumor cells independently of antigen-presenting cells and the adaptive immune system. The primary endpoint of this trial was to assess the safety of the injection of allogenic, ex vivo-expanded and primed NK cells in relapsed/refractory neuroblastoma patients after auto-HSCT. The secondary endpoint included the efficacy of this intervention in controlling tumors. NK cells were isolated and primed ex vivo (by adding interleukin [IL]-2, IL-15, and IL-21) in a GMP-compliant CliniMACS system and administered to four patients with relapsed/refractory MYCN-positive neuroblastoma. NK cell injections (1 and 5 × 107 cells/kg in the first and second injections, respectively) were safe, and no acute or sub-acute adverse events were observed. During the follow-up period, one complete response (CR) and one partial response (PR) were observed, while two cases exhibited progressive disease (PD). In follow-up evaluations, two died due to disease progression, including the case with a PR. The patient with CR had regular growth at the 31-month follow-up, and another patient with PD is still alive and receiving chemotherapies 20 months after therapy. This therapy is an appealing and feasible approach for managing refractory neuroblastomas post-HSCT. Further studies are needed to explore its efficacy with higher doses and more frequent administrations for high-risk neuroblastomas and other immunologically cold tumors.Trial registration number: irct.behdasht.gov.ir (Iranian Registry of Clinical Trials, No. IRCT20201202049568N1).
Collapse
Affiliation(s)
- Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Sahar Shojaei
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Shoae-Hassani
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Abbas Khosravi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Zeynab Nikfetrat
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran.
| |
Collapse
|
5
|
Rakhmilevich AL, Tsarovsky NW, Felder M, Zaborek J, Moram S, Erbe AK, Pieper AA, Spiegelman DV, Cheng EM, Witt CM, Overwijk WW, Morris ZS, Sondel PM. A combined radio-immunotherapy regimen eradicates late-stage tumors in mice. Front Immunol 2024; 15:1419773. [PMID: 39076988 PMCID: PMC11284032 DOI: 10.3389/fimmu.2024.1419773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Background The majority of experimental approaches for cancer immunotherapy are tested against relatively small tumors in tumor-bearing mice, because in most cases advanced cancers are resistant to the treatments. In this study, we asked if even late-stage mouse tumors can be eradicated by a rationally designed combined radio-immunotherapy (CRI) regimen. Methods CRI consisted of local radiotherapy, intratumoral IL-12, slow-release systemic IL-2 and anti- CTLA-4 antibody. Therapeutic effects of CRI against several weakly immunogenic and immunogenic mouse tumors including B78 melanoma, MC38 and CT26 colon carcinomas and 9464D neuroblastoma were evaluated. Immune cell depletion and flow cytometric analysis were performed to determine the mechanisms of the antitumor effects. Results Tumors with volumes of 2,000 mm3 or larger were eradicated by CRI. Flow analyses of the tumors revealed reduction of T regulatory (Treg) cells and increase of CD8/Treg ratios following CRI. Rapid shrinkage of the treated tumors did not require T cells, whereas T cells were involved in the systemic effect against the distant tumors. Cured mice developed immunological memory. Conclusions These findings underscore that rationally designed combination immunotherapy regimens can be effective even against large, late-stage tumors.
Collapse
Affiliation(s)
| | - Noah W. Tsarovsky
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mildred Felder
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jen Zaborek
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sritha Moram
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander A. Pieper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Dan V. Spiegelman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily M. Cheng
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cole M. Witt
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Pieniążek B, Cencelewicz K, Bździuch P, Młynarczyk Ł, Lejman M, Zawitkowska J, Derwich K. Neuroblastoma-A Review of Combination Immunotherapy. Int J Mol Sci 2024; 25:7730. [PMID: 39062971 PMCID: PMC11276848 DOI: 10.3390/ijms25147730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in childhood and is responsible for 15% of deaths among children with cancer. Although multimodal therapies focused on surgery, chemotherapy, radiotherapy, and stem cell transplants have favorable results in many cases, the use of conventional therapies has probably reached the limit their possibility. Almost half of the patients with neuroblastoma belong to the high-risk group. Patients in this group require a combination of several therapeutic approaches. It has been shown that various immunotherapies combined with conventional methods can work synergistically. Due to the development of such therapeutic methods, we present combinations and forms of combining immunotherapy, focusing on their mechanisms and benefits but also their limitations and potential side effects.
Collapse
Affiliation(s)
- Barbara Pieniążek
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Katarzyna Cencelewicz
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Patrycja Bździuch
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Łukasz Młynarczyk
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Ł.M.); (K.D.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Ł.M.); (K.D.)
| |
Collapse
|
7
|
张 瑶, 郭 金, 战 世, 洪 恩, 杨 慧, 贾 安, 常 艳, 郭 永, 张 璇. [Role and mechanism of cysteine and glycine-rich protein 2 in the malignant progression of neuroblastoma]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:495-504. [PMID: 38864136 PMCID: PMC11167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the function and underlying mechanism of cysteine and glycine-rich protein 2 (CSRP2) in neuroblastoma (NB). METHODS The correlation between the expression level of CSRP2 mRNA and the prognosis of NB children in NB clinical samples was analyzed in R2 Genomics Analysis and Visualization Platform. The small interfering RNA (siRNA) targeting CSRP2 or CSRP2 plasmid were transfected to NB cell lines SK-N-BE(2) and SH-SY5Y. Cell proliferation was observed by crystal violet staining and real-time cellular analysis. The ability of colony formation of NB cells was observed by colony-forming unit assay. Immunofluorescence assay was used to detect the expression of the proliferation marker Ki-67. Flow cytometry analysis for cell cycle proportion was used with cells stained by propidium iodide (PI). Annexin V/7AAD was used to stain cells and analyze the percentage of cell apoptosis. The ability of cell migration was determined by cell wound-healing assay. The level of protein and mRNA expression of CSRP2 in NB primary tumor and NB cell lines were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS By analyzing the NB clinical sample databases, it was found that the expression levels of CSRP2 in high-risk NB with 3/4 stages in international neuroblastoma staging system (INSS) were significantly higher than that in low-risk NB with 1/2 INSS stages. The NB patients with high expression levels of CSRP2 were shown lower overall survival rate than those with low expression levels of CSRP2. We detected the protein levels of CSRP2 in the NB samples by Western blot, and found that the protein level of CSRP2 in 3/4 INSS stages was significantly higher than that in 1/2 INSS stages. Knockdown of CSRP2 inhibited cell viability and proliferation of NB cells. Overexpression of CSRP2 increased the proliferation of NB cells. Flow cytometry showed that the proportion of sub-G1, G0/G1 and S phase cells and Annexin V positive cells were increased after CSRP2 deficiency. In the cell wound-healing assay, the healing rate of NB cells was significantly attenuated after knockdown of CSRP2. Further mechanism studies showed that the proportion of the proliferation marker Ki-67 and the phosphorylation levels of extracellular signal-regulated kinases 1/2 (ERK1/2) were significantly decreased after CSRP2 knockdown. CONCLUSION CSRP2 is highly expressed in high-risk NB with 3/4 INSS stages, and the expression levels of CSRP2 are negatively correlated with the overall survival of NB patients. CSRP2 significantly increased the proliferation and cell migration of NB cells and inhibited cell apoptosis via the activation of ERK1/2. All these results indicate that CSRP2 promotes the progression of NB by activating ERK1/2, and this study will provide a potential target for high-risk NB therapy.
Collapse
Affiliation(s)
- 瑶 张
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 金鑫 郭
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 世佳 战
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 恩宇 洪
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 慧 杨
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 安娜 贾
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 艳 常
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 永丽 郭
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 璇 张
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| |
Collapse
|
8
|
Zhao JD, Lu XY, Chen TP, Duan XL, Zuo W, Sai K, Zhu LR, Gao Q. Development and validation of a novel nomogram for predicting overall survival patients with neuroblastoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108321. [PMID: 38598875 DOI: 10.1016/j.ejso.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE The aim of this study was to develop a nomogram specially for predicting overall survival (OS) for Chinese patients with neuroblastoma (NB). METHODS Patients with pathologically confirmed NB who were newly diagnosed and received treatments at our hospital from October 2013 to October 2021 were retrospectively reviewed. The nomogram for OS were built based on Cox regression analysis. The validation of the prognostic model was evaluated by concordance index (C-index), calibration curves, and decision curve analyses (DCAs). RESULTS A total of 254 patients with NB were included in this study. They were randomly divided into a training cohort (n = 178) and a validation cohort (n = 76) at a ratio of 7:3. Multivariate analyses revealed that prognostic variables significantly related to the OS were age at diagnosis, bone metastasis, hepatic metastasis, INSS stage, MYCN status and DNA ploidy. The nomogram was constructed based on above 6 factors. The C-index values of the nomogram for predicting 3-year and 5-year OS were 0.926 and 0.964, respectively. The calibration curves of the nomogram showed good consistency between nomogram prediction and actual survival. The DCAs showed great clinical usefulness of the nomograms. Furthermore, patients with low-risk identified by our nomogram had much higher OS than those with high-risk (p < 0.001). CONCLUSION The nomogram we constructed exhibited good predictive performance and could be used to assist clinicians in their decision-making process.
Collapse
Affiliation(s)
- Jin-du Zhao
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Xian-Ying Lu
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Tian-Ping Chen
- Department of Hematology and Oncology, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Xian-Lun Duan
- Department of Thoracic Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Wei Zuo
- Department of Neonatal Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Kai Sai
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Qun Gao
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China.
| |
Collapse
|
9
|
Hashemi M, Mousavian Roshanzamir S, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Deldar Abad Paskeh M, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res 2024; 9:508-522. [PMID: 38511060 PMCID: PMC10950594 DOI: 10.1016/j.ncrna.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haleh Zokaee
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Salmani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Perzolli A, Koedijk JB, Zwaan CM, Heidenreich O. Targeting the innate immune system in pediatric and adult AML. Leukemia 2024; 38:1191-1201. [PMID: 38459166 PMCID: PMC11147779 DOI: 10.1038/s41375-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
While the introduction of T cell-based immunotherapies has improved outcomes in many cancer types, the development of immunotherapies for both adult and pediatric AML has been relatively slow and limited. In addition to the need to identify suitable target antigens, a better understanding of the immunosuppressive tumor microenvironment is necessary for the design of novel immunotherapy approaches. To date, most immune characterization studies in AML have focused on T cells, while innate immune lineages such as monocytes, granulocytes and natural killer (NK) cells, received less attention. In solid cancers, studies have shown that innate immune cells, such as macrophages, myeloid-derived suppressor cells and neutrophils are highly plastic and may differentiate into immunosuppressive cells depending on signals received in their microenvironment, while NK cells appear to be functionally impaired. Hence, an in-depth characterization of the innate immune compartment in the TME is urgently needed to guide the development of immunotherapeutic interventions for AML. In this review, we summarize the current knowledge on the innate immune compartment in AML, and we discuss how targeting its components may enhance T cell-based- and other immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alicia Perzolli
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Joost B Koedijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
11
|
Talleur AC, Fabrizio VA, Aplenc R, Grupp SA, Mackall C, Majzner R, Nguyen R, Rouce R, Moskop A, McNerney KO. INSPIRED Symposium Part 5: Expanding the Use of CAR T Cells in Children and Young Adults. Transplant Cell Ther 2024; 30:565-579. [PMID: 38588880 PMCID: PMC11139555 DOI: 10.1016/j.jtct.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable efficacy in relapsed/refractory (r/r) B cell malignancies, including in pediatric patients with acute lymphoblastic leukemia (ALL). Expanding this success to other hematologic and solid malignancies is an area of active research and, although challenges remain, novel solutions have led to significant progress over the past decade. Ongoing clinical trials for CAR T cell therapy for T cell malignancies and acute myeloid leukemia (AML) have highlighted challenges, including antigen specificity with off-tumor toxicity and persistence concerns. In T cell malignancies, notable challenges include CAR T cell fratricide and prolonged T cell aplasia, which are being addressed with strategies such as gene editing and suicide switch technologies. In AML, antigen identification remains a significant barrier, due to shared antigens across healthy hematopoietic progenitor cells and myeloid blasts. Strategies to limit persistence and circumvent the immunosuppressive tumor microenvironment (TME) created by AML are also being explored. CAR T cell therapies for central nervous system and solid tumors have several challenges, including tumor antigen heterogeneity, immunosuppressive and hypoxic TME, and potential for off-target toxicity. Numerous CAR T cell products have been designed to overcome these challenges, including "armored" CARs and CAR/T cell receptor (TCR) hybrids. Strategies to enhance CAR T cell delivery, augment CAR T cell performance in the TME, and ensure the safety of these products have shown promising results. In this manuscript, we will review the available evidence for CAR T cell use in T cell malignancies, AML, central nervous system (CNS), and non-CNS solid tumor malignancies, and recommend areas for future research.
Collapse
Affiliation(s)
- Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Vanessa A Fabrizio
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Children's Hospital Colorado/University of Colorado Anschutz, Aurora, Colorado
| | - Richard Aplenc
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Crystal Mackall
- Department of Pediatrics, Department of Medicine, Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, California
| | | | - Rosa Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rayne Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas
| | - Amy Moskop
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Kevin O McNerney
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Murphy C, Devis-Jauregui L, Struck R, Boloix A, Gallagher C, Gavin C, Cottone F, Fernandez AS, Madden S, Roma J, Segura MF, Piskareva O. In vivo cisplatin-resistant neuroblastoma metastatic model reveals tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as an independent prognostic factor of survival in neuroblastoma. PLoS One 2024; 19:e0303643. [PMID: 38809883 PMCID: PMC11135766 DOI: 10.1371/journal.pone.0303643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Neuroblastoma is the most common solid extracranial tumour in children. Despite major advances in available therapies, children with drug-resistant and/or recurrent neuroblastoma have a dismal outlook with 5-year survival rates of less than 20%. Therefore, tackling relapsed tumour biology by developing and characterising clinically relevant models is a priority in finding targetable vulnerability in neuroblastoma. Using matched cisplatin-sensitive KellyLuc and resistant KellyCis83Luc cell lines, we developed a cisplatin-resistant metastatic MYCN-amplified neuroblastoma model. The average number of metastases per mouse was significantly higher in the KellyCis83Luc group than in the KellyLuc group. The vast majority of sites were confirmed as having lymph node metastasis. Their stiffness characteristics of lymph node metastasis values were within the range reported for the patient samples. Targeted transcriptomic profiling of immuno-oncology genes identified tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as a significantly dysregulated MYCN-independent gene. Importantly, differential TNFRSF4 expression was identified in tumour cells rather than lymphocytes. Low TNFRSF4 expression correlated with poor prognostic indicators in neuroblastoma, such as age at diagnosis, stage, and risk stratification and significantly associated with reduced probability of both event-free and overall survival in neuroblastoma. Therefore, TNFRSF4 Low expression is an independent prognostic factor of survival in neuroblastoma.
Collapse
Affiliation(s)
- Catherine Murphy
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Devis-Jauregui
- Faculty of Medicine, Cell Biology Unit, Department of Pathology and Experimental Therapeutics, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, L’Hospitalet de Llobregat, Spain
| | - Ronja Struck
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ariadna Boloix
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ciara Gallagher
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Cian Gavin
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Federica Cottone
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Aroa Soriano Fernandez
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen Madden
- Data Science Centre, School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Josep Roma
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel F. Segura
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
13
|
Wang Y, Shi Y, Niu K, Yang R, Lv Q, Zhang W, Feng K, Zhang Y. Ubiquitin specific peptidase 3: an emerging deubiquitinase that regulates physiology and diseases. Cell Death Discov 2024; 10:243. [PMID: 38773075 PMCID: PMC11109179 DOI: 10.1038/s41420-024-02010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Proteins are the keystone for the execution of various life activities, and the maintenance of protein normalization is crucial for organisms. Ubiquitination, as a post-transcriptional modification, is widely present in organisms, and it relies on the sophisticated ubiquitin-proteasome (UPS) system that controls protein quality and modulates protein lifespan. Deubiquitinases (DUBs) counteract ubiquitination and are essential for the maintenance of homeostasis. Ubiquitin specific peptidase 3 (USP3) is a member of the DUBs that has received increasing attention in recent years. USP3 is a novel chromatin modifier that tightly regulates the DNA damage response (DDR) and maintains genome integrity. Meanwhile, USP3 acts as a key regulator of inflammatory vesicles and sustains the normal operation of the innate immune system. In addition, USP3 is aberrantly expressed in a wide range of cancers, such as gastric cancer, glioblastoma and neuroblastoma, implicating that USP3 could be an effective target for targeted therapies. In this review, we retrace all the current researches of USP3, describe the structure of USP3, elucidate its functions in DNA damage, immune and inflammatory responses and the cell cycle, and summarize the important role of USP3 in multiple cancers and diseases.
Collapse
Affiliation(s)
- Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
14
|
Zebertavage L, Schopf A, Nielsen M, Matthews J, Erbe AK, Aiken TJ, Katz S, Sun C, Witt CM, Rakhmilevich AL, Sondel PM. Evaluation of a Combinatorial Immunotherapy Regimen That Can Cure Mice Bearing MYCN-Driven High-Risk Neuroblastoma That Resists Current Clinical Therapy. J Clin Med 2024; 13:2561. [PMID: 38731089 PMCID: PMC11084214 DOI: 10.3390/jcm13092561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Incorporating GD2-targeting monoclonal antibody into post-consolidation maintenance therapy has improved survival for children with high-risk neuroblastoma. However, ~50% of patients do not respond to, or relapse following, initial treatment. Here, we evaluated additional anti-GD2-based immunotherapy to better treat high-risk neuroblastoma in mice to develop a regimen for patients with therapy-resistant neuroblastoma. Methods: We determined the components of a combined regimen needed to cure mice of established MYCN-amplified, GD2-expressing, murine 9464D-GD2 neuroblastomas. Results: First, we demonstrate that 9464D-GD2 is nonresponsive to a preferred salvage regimen: anti-GD2 with temozolomide and irinotecan. Second, we have previously shown that adding agonist anti-CD40 mAb and CpG to a regimen of radiotherapy, anti-GD2/IL2 immunocytokine and anti-CTLA-4, cured a substantial fraction of mice bearing small 9464D-GD2 tumors; here, we further characterize this regimen by showing that radiotherapy and hu14.18-IL2 are necessary components, while anti-CTLA-4, anti-CD40, or CpG can individually be removed, and CpG and anti-CTLA-4 can be removed together, while maintaining efficacy. Conclusions: We have developed and characterized a regimen that can cure mice of a high-risk neuroblastoma that is refractory to the current clinical regimen for relapsed/refractory disease. Ongoing preclinical work is directed towards ways to potentially translate these findings to a regimen appropriate for clinical testing.
Collapse
Affiliation(s)
- Lauren Zebertavage
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Allison Schopf
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Megan Nielsen
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Joel Matthews
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Taylor J. Aiken
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA;
| | - Sydney Katz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Claire Sun
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Cole M. Witt
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
- Department of Pediatrics, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
15
|
Guan Q, Zhang X, Liu J, Zhou C, Zhu J, Wu H, Zhuo Z, He J. ALKBH5 gene polymorphisms and risk of neuroblastoma in Chinese children from Jiangsu Province. CANCER INNOVATION 2024; 3:e103. [PMID: 38946930 PMCID: PMC11212286 DOI: 10.1002/cai2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 07/02/2024]
Abstract
Background Neuroblastoma is one of the most common extracranial malignant solid tumors in children. AlkB homolog 5 (ALKBH5) is an RNA N6-methyladenosine (m6A) demethylase that plays a critical role in tumorigenesis and development. We assessed the association between single nucleotide polymorphisms (SNPs) in ALKBH5 and the risk of neuroblastoma in a case-control study including 402 patients and 473 non-cancer controls. Methods Genotyping was determined by the TaqMan method. The association between ALKBH5 polymorphisms (rs1378602 and rs8400) and the risk of neuroblastoma was evaluated using the odds ratio (OR) and 95% confidence interval (CI). Results We found no strong association of ALKBH5 rs1378602 and rs8400 with neuroblastoma risk. Further stratification analysis by age, sex, primary site, and clinical stage showed that the rs1378602 AG/AA genotype was associated with a lower risk of neuroblastoma in males (adjusted OR = 0.58, 95% CI = 0.35-0.97, p = 0.036) and children with retroperitoneal neuroblastoma (adjusted OR = 0.58, 95% CI = 0.34-0.98, p = 0.040). Conclusions ALKBH5 SNPs do not seem to be associated with neuroblastoma risk. More studies are required to confirm this negative result and reveal the relationship between gene polymorphisms of the m6A modifier ALKBH5 and neuroblastoma.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chunlei Zhou
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinhong Zhu
- Department of Clinical Laboratory, BiobankHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Haiyan Wu
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
16
|
Zheng M, Kumar A, Sharma V, Behl T, Sehgal A, Wal P, Shinde NV, Kawaduji BS, Kapoor A, Anwer MK, Gulati M, Shen B, Singla RK, Bungau SG. Revolutionizing pediatric neuroblastoma treatment: unraveling new molecular targets for precision interventions. Front Cell Dev Biol 2024; 12:1353860. [PMID: 38601081 PMCID: PMC11004261 DOI: 10.3389/fcell.2024.1353860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.
Collapse
Affiliation(s)
- Min Zheng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | | | | | - Anupriya Kapoor
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
17
|
Yankelevich M, Thakur A, Modak S, Chu R, Taub J, Martin A, Schalk D, Schienshang A, Whitaker S, Rea K, Lee DW, Liu Q, Shields AF, Cheung NKV, Lum LG. Targeting refractory/recurrent neuroblastoma and osteosarcoma with anti-CD3×anti-GD2 bispecific antibody armed T cells. J Immunother Cancer 2024; 12:e008744. [PMID: 38519053 PMCID: PMC10961524 DOI: 10.1136/jitc-2023-008744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND The survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients. METHODS The 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion. RESULTS Of the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. CONCLUSIONS This study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.
Collapse
Affiliation(s)
- Maxim Yankelevich
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, USA
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Archana Thakur
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roland Chu
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Jeffrey Taub
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Alissa Martin
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Dana Schalk
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Amy Schienshang
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Sarah Whitaker
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Katie Rea
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Daniel W Lee
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Qin Liu
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lawrence G Lum
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| |
Collapse
|
18
|
Lin Y, Wang Z, Liu S. Risk factors and novel predictive models for metastatic neuroblastoma in children. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107110. [PMID: 37862722 DOI: 10.1016/j.ejso.2023.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) with distant metastasis (DM) is a high-risk condition with a poor prognosis. Early identify the risk and prognostic differences of DM in children, which is helpful for the development of clinical diagnosis and treatment. METHODS The study cohort included patients with NB in surveillance, epidemiological, and final outcome databases between 2010 and 2018. To identify the risk and prognostic factors for DM, both univariate and multivariate logistic and Cox regression analyses were conducted. In addition, we created and verified three online clinical prediction models. Finally, we assess the performance of the proposed predictive model. RESULTS Among the 1224 children with NB included in the study, 599 developed DM. Primary site is the most important factor affecting metastasis and prognosis. The training and validation groups of the diagnostic nomograms had area under curves (AUC) values of 0.872 and 0.824, respectively. In addition, in the training group, the AUC values at 12, 36, and 60 months were 0.68, 0.71, and 0.75 for the OS nomogram and 0.70, 0.72, and 0.75 for the CSS nomogram. In the validation group, the AUC values at 12, 36, and 60 months were 0.68, 0.72, and 0.70 for the OS nomogram and 0.67, 0.71, and 0.69 for the CSS nomogram, respectively. Calibration curve and decision curve analyses revealed good performance of the nomogram. CONCLUSIONS The nomogram developed in this study could appropriately predict DM and assess its prognosis in patients with NB.
Collapse
Affiliation(s)
- Yaobin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhihong Wang
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.
| | - Shan Liu
- Department of Hematology-Oncology, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
19
|
Zhu A, Li X, Wang J. Integrating bulk-seq and single-cell-seq reveals disulfidptosis potential index associating with neuroblastoma prognosis and immune infiltration. J Cancer Res Clin Oncol 2023; 149:16647-16658. [PMID: 37721569 DOI: 10.1007/s00432-023-05392-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Neuroblastoma is a challenging pediatric tumor with a need for improved treatment strategies. This study explores the role of disulfidptosis, a form of cell death induced by intracellular disulfide accumulation, in neuroblastoma and its implications for prognosis and immune infiltration. METHODS We subgrouped neuroblastoma samples based on disulfidptosis-related gene expression and constructed a disulfidptosis potential index (DPI) to quantify disulfidptosis levels in neurobalstoma. The correlation between DPI, outcome, immune infiltration, and drug sensitivity were explored. RESULTS Combing RNA-seq and single-cell dataset, we found that higher disulfidptosis potential index (DPI) is associated with poorer outcomes in neuroblastoma patients, indicating the detrimental impact of enhanced disulfide stress and cellular dysfunction. Furthermore, we found that higher DPI is correlated with reduced immune infiltration within the tumor microenvironment, highlighting an immunosuppressive milieu in high DPI neuroblastomas. The DPI-high neuroblastoma may benefit from the estrogen pathway related drug fulvestrant. CONCLUSION Overall, this study highlights the significance of disulfidptosis as a potential therapeutic target and underscores the importance of integrating immune modulation strategies, offering new avenues for improved management of neuroblastoma.
Collapse
Affiliation(s)
- Aiguo Zhu
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xin Li
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jian Wang
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
20
|
Tan J, Wang C, Jin Y, Xia Y, Gong B, Zhao Q. Optimal combination of MYCN differential gene and cellular senescence gene predicts adverse outcomes in patients with neuroblastoma. Front Immunol 2023; 14:1309138. [PMID: 38035110 PMCID: PMC10687280 DOI: 10.3389/fimmu.2023.1309138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Neuroblastoma (NB) is a common extracranial tumor in children and is highly heterogeneous. The factors influencing the prognosis of NB are not simple. Methods To investigate the effect of cell senescence on the prognosis of NB and tumor immune microenvironment, 498 samples of NB patients and 307 cellular senescence-related genes were used to construct a prediction signature. Results A signature based on six optimal candidate genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) was successfully constructed and proved to have good prognostic ability. Through verification, the signature had more advantages than the gene expression level alone in evaluating prognosis was found. Further T cell phenotype analysis displayed that exhausted phenotype PD-1 and senescence-related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-amplified group with higher risk-score. Conclusion A signature constructed the six MYCN-amplified differential genes and aging-related genes can be used to predict the prognosis of NB better than using each high-risk gene individually and to evaluate immunosuppressed and aging tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxiong Tan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaoyu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Jin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuren Xia
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Baocheng Gong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
21
|
Callahan C, Haas L, Smith L. CAR-T cells for pediatric malignancies: Past, present, future and nursing implications. Asia Pac J Oncol Nurs 2023; 10:100281. [PMID: 38023730 PMCID: PMC10661550 DOI: 10.1016/j.apjon.2023.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 12/01/2023] Open
Abstract
The treatment landscape for pediatric cancers over the last 11 years has undergone a dramatic change, especially with relapsed and refractory B-cell acute lymphoblastic leukemia (ALL), due to the introduction of chimeric antigen receptor-T (CAR-T) cell therapy. Because of the success of CAR-T cell therapy in patients with relapsed and refractory B-cell ALL, this promising therapy is undergoing trials in multiple other pediatric malignancies. This article will focus on the introduction of CAR-T cell therapy in pediatric B-cell ALL and discuss past and current trials. We will also discuss trials for CAR-T cell therapy in other pediatric malignancies. This information was gathered through a comprehensive literature review along with using first hand institutional experience. Due to the potential severe toxicities related to CAR-T cell therapy, safe practices and monitoring are key. These authors demonstrate that nurses have a profound responsibility in preparing and caring for patients and families, monitoring and managing side effects in these patients, ensuring that study guidelines are followed, and providing continuity for patients, families, and referring providers. Education of nurses is crucial for improved patient outcomes.
Collapse
Affiliation(s)
- Colleen Callahan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Lauren Haas
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Laura Smith
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
22
|
Kalinovsky DV, Kholodenko IV, Svirshchevskaya EV, Kibardin AV, Ryazantsev DY, Rozov FN, Larin SS, Deyev SM, Kholodenko RV. Targeting GD2-Positive Tumor Cells by Pegylated scFv Fragment-Drug Conjugates Carrying Maytansinoids DM1 and DM4. Curr Issues Mol Biol 2023; 45:8112-8125. [PMID: 37886955 PMCID: PMC10604934 DOI: 10.3390/cimb45100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide-thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improving the therapeutic characteristics of GD2-specific antibody fragments. In this work, we obtained pegylated conjugates of scFv fragments of GD2-specific antibodies with maytansinoids DM1 or DM4 using tetravalent PEG-maleimide (PEG4). The protein products from the two-stage thiol-maleimide reaction resolved by gel electrophoresis indicated that pegylated scFv fragments constituted the predominant part of the protein bands, and most of the scFv formed pegylated monomers and dimers. The conjugates retained the ability to bind ganglioside GD2 comparable to that of the parental scFv fragment and to specifically interact with GD2-positive cells. Both induced significant inhibitory effects in the GD2-positive B78-D14 cell line, in contrast to the GD2-negative B16 cell line. The decrease in the B78-D14 cell viability when treated with scFv-PEG4-DM4 was more prominent than that for scFv-PEG4-DM1, and was characterized by a twofold lower half-maximal inhibitory concentration (IC50). Unlike the parental scFv fragment, the product of scFv and PEG4 conjugation (scFv-PEG4), consisting predominantly of pegylated scFv multimers and monomers, induced direct cell death in the GD2-positive B78-D14 cells. However, the potency of scFv-PEG4 was low in the selected concentration range, thus demonstrating that the cytotoxic effect of DM1 and DM4 within the antibody fragment-drug conjugates was primary. The suggested approach may contribute to development of novel configurations of antibody fragment-drug conjugates for cancer treatment.
Collapse
Affiliation(s)
- Daniel V. Kalinovsky
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia
| | - Elena V. Svirshchevskaya
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Alexey V. Kibardin
- Laboratory of Molecular Immunology, D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia; (A.V.K.); (S.S.L.)
| | - Dmitry Yu. Ryazantsev
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Fedor N. Rozov
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Sergey S. Larin
- Laboratory of Molecular Immunology, D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia; (A.V.K.); (S.S.L.)
| | - Sergey M. Deyev
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
- Laboratory of Molecular Pharmacology, Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia
| | - Roman V. Kholodenko
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
- Real Target LLC, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| |
Collapse
|
23
|
Bodden M, Häcker A, Röder J, Kiefer A, Zhang C, Bhatti A, Pfeifer Serrahima J, Ullrich E, Kühnel I, Wels WS. Co-Expression of an IL-15 Superagonist Facilitates Self-Enrichment of GD 2-Targeted CAR-NK Cells and Mediates Potent Cell Killing in the Absence of IL-2. Cancers (Basel) 2023; 15:4310. [PMID: 37686586 PMCID: PMC10486391 DOI: 10.3390/cancers15174310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
In contrast to T lymphocytes, natural killer (NK) cells do not require prior sensitization but are rapidly activated upon encountering virally infected or neoplastic cells. In addition, NK cells can be safely applied in an allogeneic setting, making them important effector cells for the development of off-the-shelf therapeutics for adoptive cancer immunotherapy. To further enhance their therapeutic potential, here, we engineered continuously expanding NK-92 cells as a clinically relevant model to express a humanized second-generation chimeric antigen receptor (CAR) with a composite CD28-CD3ζ signaling domain (hu14.18.28.z) that targets the disialoganglioside GD2, which is expressed at high levels by neuroblastoma cells and other tumors of neuroectodermal origin. In a separate approach, we fused an IL-15 superagonist (RD-IL15) to the GD2-CAR via a P2A processing site. Lentivirally transduced NK-92/hu14.18.28.z and NK-92/hu14.18.28.z_RD-IL15 cells both displayed high and stable CAR surface expression and specific cytotoxicity toward GD2-positive tumor cells. GD2-CAR NK cells carrying the RD-IL15 construct in addition expressed the IL-15 superagonist, resulting in self-enrichment and targeted cell killing in the absence of exogenous IL-2. Furthermore, co-culture with RD-IL15-secreting GD2-CAR NK cells markedly enhanced proliferation and cytotoxicity of bystander immune cells in a paracrine manner. Our results demonstrate that GD2-CAR NK cells co-expressing the IL-15 superagonist mediate potent direct and indirect antitumor effects, suggesting this strategy as a promising approach for the further development of functionally enhanced cellular therapeutics.
Collapse
Affiliation(s)
- Malena Bodden
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
| | - Aline Häcker
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
| | - Anne Kiefer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Anita Bhatti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Jordi Pfeifer Serrahima
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a Partnership between DKFZ and University Hospital Frankfurt, 60590 Frankfurt, Germany
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University, 60590 Frankfurt, Germany
| | - Ines Kühnel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a Partnership between DKFZ and University Hospital Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
24
|
He E, Shi B, Liu Z, Chang K, Zhao H, Zhao W, Cui H. Identification of the molecular subtypes and construction of risk models in neuroblastoma. Sci Rep 2023; 13:11790. [PMID: 37479876 PMCID: PMC10362029 DOI: 10.1038/s41598-023-35401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 07/23/2023] Open
Abstract
The heterogeneity of neuroblastoma directly affects the prognosis of patients. Individualization of patient treatment to improve prognosis is a clinical challenge at this stage and the aim of this study is to characterize different patient populations. To achieve this, immune-related cell cycle genes, identified in the GSE45547 dataset using WGCNA, were used to classify cases from multiple datasets (GSE45547, GSE49710, GSE73517, GES120559, E-MTAB-8248, and TARGET) into subgroups by consensus clustering. ESTIMATES, CIBERSORT and ssGSEA were used to assess the immune status of the patients. And a 7-gene risk model was constructed based on differentially expressed genes between subtypes using randomForestSRC and LASSO. Enrichment analysis was used to demonstrate the biological characteristics between different groups. Key genes were screened using randomForest to construct neural network and validated. Finally, drug sensitivity was assessed in the GSCA and CellMiner databases. We classified the 1811 patients into two subtypes based on immune-related cell cycle genes. The two subtypes (Cluster1 and Cluster2) exhibited distinct clinical features, immune levels, chromosomal instability and prognosis. The same significant differences were demonstrated between the high-risk and low-risk groups. Through our analysis, we identified neuroblastoma subtypes with unique characteristics and established risk models which will improve our understanding of neuroblastoma heterogeneity.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Ziyu Liu
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Kaili Chang
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Hailan Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Wei Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China.
- Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
25
|
Rivera Z, Escutia C, Madonna MB, Gupta KH. Biological Insight and Recent Advancement in the Treatment of Neuroblastoma. Int J Mol Sci 2023; 24:ijms24108470. [PMID: 37239815 DOI: 10.3390/ijms24108470] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
One of the most frequent solid tumors in children is neuroblastoma, which has a variety of clinical behaviors that are mostly influenced by the biology of the tumor. Unique characteristics of neuroblastoma includes its early age of onset, its propensity for spontaneous tumor regression in newborns, and its high prevalence of metastatic disease at diagnosis in individuals older than 1 year of age. Immunotherapeutic techniques have been added to the previously enlisted chemotherapeutic treatments as therapeutic choices. A groundbreaking new treatment for hematological malignancies is adoptive cell therapy, specifically chimeric antigen receptor (CAR) T cell therapy. However, due to the immunosuppressive nature of the tumor microenvironment (TME) of neuroblastoma tumor, this treatment approach faces difficulties. Numerous tumor-associated genes and antigens, including the MYCN proto-oncogene (MYCN) and disialoganglioside (GD2) surface antigen, have been found by the molecular analysis of neuroblastoma cells. The MYCN gene and GD2 are two of the most useful immunotherapy findings for neuroblastoma. The tumor cells devise numerous methods to evade immune identification or modify the activity of immune cells. In addition to addressing the difficulties and potential advancements of immunotherapies for neuroblastoma, this review attempts to identify important immunological actors and biological pathways involved in the dynamic interaction between the TME and immune system.
Collapse
Affiliation(s)
- Zoriamin Rivera
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Carlos Escutia
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mary Beth Madonna
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal H Gupta
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Vitale C, Bottino C, Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12:885. [PMID: 36980226 PMCID: PMC10047506 DOI: 10.3390/cells12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past decade, immunotherapy has represented an enormous step forward in the fight against cancer. Immunotherapeutic approaches have increasingly become a fundamental part of the combined therapies currently adopted in the treatment of patients with high-risk (HR) neuroblastoma (NB). An increasing number of studies focus on the understanding of the immune landscape in NB and, since this tumor expresses low or null levels of MHC class I, on the development of new strategies aimed at enhancing innate immunity, especially Natural Killer (NK) cells and macrophages. There is growing evidence that, within the NB tumor microenvironment (TME), tumor-associated macrophages (TAMs), which mainly present an M2-like phenotype, have a crucial role in mediating NB development and immune evasion, and they have been correlated to poor clinical outcomes. Importantly, TAM can also impair the antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells upon the administration of anti-GD2 monoclonal antibodies (mAbs), the current standard immunotherapy for HR-NB patients. This review deals with the main mechanisms regulating the crosstalk among NB cells and TAMs or other cellular components of the TME, which support tumor development and induce drug resistance. Furthermore, we will address the most recent strategies aimed at limiting the number of pro-tumoral macrophages within the TME, reprogramming the TAMs functional state, thus enhancing NK cell functions. We also prospectively discuss new or unexplored aspects of human macrophage heterogeneity.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
27
|
Jiménez C, Moreno L, Segura MF. Epigenetic therapies for neuroblastoma: immunogenicity awakens. Mol Oncol 2023; 17:718-721. [PMID: 36840349 PMCID: PMC10158771 DOI: 10.1002/1878-0261.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023] Open
Abstract
The development of immunotherapies for neuroblastoma remains challenging owing to the low immunogenicity of neuroblastoma cells, as reflected by the low expression of one of the main triggers of immune recognition, the major histocompatibility complex class I (MHC-I). Cornel et al. showed that epigenetic modulation of neuroblastoma cells with a histone deacetylase inhibitor can boost the expression of major histocompatibility complex class I, among other immune receptors, priming their recognition by T- and natural killer cells. By leveraging the developmentally related aberrant epigenetic landscapes of neuroblastoma, these discoveries pave the way to overcome a major limitation in the field of neuroblastoma immunotherapy.
Collapse
Affiliation(s)
| | - Lucas Moreno
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Spain
| |
Collapse
|
28
|
Li Q, Wang J, Cheng Y, Hu A, Li D, Wang X, Guo Y, Zhou Y, Chen G, Bao B, Gao H, Song J, Du X, Zheng L, Tong Q. Long-Term Survival of Neuroblastoma Patients Receiving Surgery, Chemotherapy, and Radiotherapy: A Propensity Score Matching Study. J Clin Med 2023; 12:jcm12030754. [PMID: 36769402 PMCID: PMC9918249 DOI: 10.3390/jcm12030754] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid malignancy in children. This study was undertaken to determine the long-term survival of neuroblastoma patients receiving conventional therapeutics (surgery, chemotherapy, and radiotherapy). The neuroblastoma patients examined were registered in the Surveillance, Epidemiology and End Results (SEER) database (1975-2016). Using propensity score matching analysis, the patients were paired by record depending on whether they received surgery, chemotherapy, or radiotherapy. Univariate and multivariate analyses of the disease-specific survival of the paired patients were performed by the log-rank test and Cox regression assay. A total of 4568 neuroblastoma patients were included in this study. During 1975-2016, the proportion of histopathological grade III/IV cases receiving surgery gradually increased, while the number of patients with tumors of grade I to IV undergoing chemotherapy or radiotherapy was stable or even decreased. After propensity score analysis, for Grade I + II and Grade III tumors, surgery obviously improved the disease-specific survival of patients, while chemotherapy was unfavorable for patient prognosis, and radiotherapy exerted no obvious effect on the patients. However, no matter what treatment was chosen, the patients with advanced-histopathological-grade tumors had a poor prognosis. Meanwhile, for all histopathological grades, the patients receiving surgery and subsequent chemotherapy or radiotherapy suffered from worsen disease-specific survival than those simply undergoing surgery. Fortunately, the negative effects of surgery, chemotherapy, or radiotherapy improved gradually over time. Surgery improved the long-term survival of the neuroblastoma patients, while chemotherapy and radiotherapy exerted an unfavorable impact on patient outcome. These results provide an important reference for the clinical treatment of neuroblastoma.
Collapse
Affiliation(s)
- Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Haiyang Gao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xinyi Du
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Correspondence: (L.Z.); (Q.T.); Tel.: +86-27-8572-6129 (L.Z.); +86-27-8535-0762 (Q.T.); Fax: +86-27-8572-6821 (L.Z. & Q.T.)
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Correspondence: (L.Z.); (Q.T.); Tel.: +86-27-8572-6129 (L.Z.); +86-27-8535-0762 (Q.T.); Fax: +86-27-8572-6821 (L.Z. & Q.T.)
| |
Collapse
|
29
|
Pulido R, Nunes-Xavier CE. Editorial: Cell and Developmental Signalling in Neuroblastoma. Front Cell Dev Biol 2023; 10:1126352. [PMID: 36684434 PMCID: PMC9846788 DOI: 10.3389/fcell.2022.1126352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain,*Correspondence: Rafael Pulido, ; Caroline E. Nunes-Xavier,
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,*Correspondence: Rafael Pulido, ; Caroline E. Nunes-Xavier,
| |
Collapse
|
30
|
Mu J, Gong J, Lin P, Zhang M, Wu K. Machine learning methods revealed the roles of immune-metabolism related genes in immune infiltration, stemness, and prognosis of neuroblastoma. Cancer Biomark 2023; 38:241-259. [PMID: 37545226 DOI: 10.3233/cbm-230119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Immunometabolism plays an important role in neuroblastoma (NB). However, the mechanism of immune-metabolism related genes (IMRGs) in NB remains unclear. This study aimed to explore the effects of IMRGs on the prognosis, immune infiltration and stemness of patients with NB using machine learning methods. METHODS R software (v4.2.1) was used to identify the differentially expressed IMRGs, and machine learning algorithm was used to screen the prognostic genes from IMRGs. Then we constructed a prognostic model and calculated the risk scores. The NB patients were grouped according to the prognosis scores. In addition, the genes most associated with the immune infiltration and stemness of NB were analyzed by weighted gene co-expression network analysis (WGCNA). RESULTS There were 89 differentially expressed IMRGs between the MYCN amplification and the MYCN non-amplification group, among which CNR1, GNAI1, GLDC and ABCC4 were selected by machine learning algorithm to construct the prognosis model due to their better prediction effect. Both the K-M survival curve and the 5-year Receiver operating characteristic (ROC) curve indicated that the prognosis model could predict the prognosis of NB patients, and there was significant difference in immune infiltration between the two groups according to the median of risk score. CONCLUSIONS We verified the effects of IMRGs on the prognosis, immune infiltration and stemness of NB. These findings could provide help for predicting prognosis and developing immunotherapy in NB.
Collapse
Affiliation(s)
- Jianhua Mu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengzhen Zhang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Lucarini V, Melaiu O, D’Amico S, Pastorino F, Tempora P, Scarsella M, Pezzullo M, De Ninno A, D’Oria V, Cilli M, Emionite L, Infante P, Di Marcotullio L, De Ioris MA, Barillari G, Alaggio R, Businaro L, Ponzoni M, Locatelli F, Fruci D. Combined mitoxantrone and anti-TGFβ treatment with PD-1 blockade enhances antitumor immunity by remodelling the tumor immune landscape in neuroblastoma. J Exp Clin Cancer Res 2022; 41:326. [PMID: 36397148 PMCID: PMC9670422 DOI: 10.1186/s13046-022-02525-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Poor infiltration of functioning T cells renders tumors unresponsive to checkpoint-blocking immunotherapies. Here, we identified a combinatorial in situ immunomodulation strategy based on the administration of selected immunogenic drugs and immunotherapy to sensitize poorly T-cell-infiltrated neuroblastoma (NB) to the host antitumor immune response. Methods 975A2 and 9464D NB cell lines derived from spontaneous tumors of TH-MYCN transgenic mice were employed to study drug combinations able of enhancing the antitumor immune response using in vivo and ex vivo approaches. Migration of immune cells towards drug-treated murine-derived organotypic tumor spheroids (MDOTS) were assessed by microfluidic devices. Activation status of immune cells co-cultured with drug-treated MDOTS was evaluated by flow cytometry analysis. The effect of drug treatment on the immune content of subcutaneous or orthotopic tumors was comprehensively analyzed by flow-cytometry, immunohistochemistry and multiplex immunofluorescence. The chemokine array assay was used to detect soluble factors released into the tumor microenvironment. Patient-derived organotypic tumor spheroids (PDOTS) were generated from human NB specimens. Migration and activation status of autologous immune cells to drug-treated PDOTS were performed. Results We found that treatment with low-doses of mitoxantrone (MTX) recalled immune cells and promoted CD8+ T and NK cell activation in MDOTS when combined with TGFβ and PD-1 blockade. This combined immunotherapy strategy curbed NB growth resulting in the enrichment of a variety of both lymphoid and myeloid immune cells, especially intratumoral dendritic cells (DC) and IFNγ- and granzyme B-expressing CD8+ T cells and NK cells. A concomitant production of inflammatory chemokines involved in remodelling the tumor immune landscape was also detected. Interestingly, this treatment induced immune cell recruitment against PDOTS and activation of CD8+ T cells and NK cells. Conclusions Combined treatment with low-dose of MTX and anti-TGFβ treatment with PD-1 blockade improves antitumor immunity by remodelling the tumor immune landscape and overcoming the immunosuppressive microenvironment of aggressive NB. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02525-9.
Collapse
|
32
|
Hopes on immunotherapy targeting B7-H3 in neuroblastoma. Transl Oncol 2022; 27:101580. [PMID: 36327699 PMCID: PMC9636568 DOI: 10.1016/j.tranon.2022.101580] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
Neuroblastoma is one of the most aggressive cancer forms in children, with highly heterogenous clinical manifestations ranging from spontaneous regression to high metastatic capacity. High-risk neuroblastoma has the highest mortality rates of all pediatric cancers, highlighting the urgent need for effective novel therapeutic interventions. B7-H3 immune checkpoint protein is highly expressed in neuroblastoma, and it is involved in oncogenic signaling, tumor cell plasticity, and drug resistance. Immunotherapies based on immune checkpoint inhibition have improved patient survival in several human cancers, and recent reports provide preclinical evidence on the benefits of targeting B7-H3 in neuroblastoma, with emphasis on novel CAR T/NK-cell approaches. Here, we summarize the current status of neuroblastoma targeted therapies, with a focus on B7-H3 as a promising novel immunoregulatory therapeutic target for high-risk neuroblastoma.
Collapse
|
33
|
Slattery K, Breheny M, Woods E, Keating S, Brennan K, Rooney C, Augustine S, Ryan A, Owens C, Gardiner CM. Heightened metabolic responses in NK cells from patients with neuroblastoma suggests increased potential for immunotherapy. Front Oncol 2022; 12:1004871. [PMID: 36276144 PMCID: PMC9585418 DOI: 10.3389/fonc.2022.1004871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
High risk neuroblastoma is responsible for 15% of deaths in pediatric cancer patients. The introduction of anti-GD2 immunotherapy has significantly improved outcomes but there is still only approximately a 50% 5 year event-free-survival for these children and improvements in treatments are urgently required. Anti-GD2 immunotherapy uses the patients’ own immune system to kill cancer cells. In particular, Natural Killer (NK) cells kill antibody coated tumor cells by a process called antibody dependent cellular cytotoxicity (ADCC). However, our previous work has highlighted metabolic exhaustion of NK cells in circulating blood of adult cancer patients, identifying this as a potential therapeutic target. In this study, we investigated circulating NK cells in patients newly diagnosed with neuroblastoma. We found evidence of activation of NK cells in vivo by the cancer itself. While some evidence of NK cell dysfunction was observed in terms of IFNγ production, most results indicated that the NK cell compartment remained relatively intact. In fact, some aspects of metabolic and functional activities were actually increased in patients compared to controls. Glycolytic responses, which we show are crucial for ADCC, were actually enhanced in patients and CD16, the NK cell receptor that mediates ADCC, was also expressed at high levels in some patients. Overall, the data suggest that patient NK cells could be harvested at diagnosis for subsequent beneficial autologous use during immunotherapy. Enhancing glycolytic capacity of cell therapies could also be a strategic goal of future cell therapies for patients with neuroblastoma and indeed other cancers.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Megan Breheny
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Elena Woods
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Sinead Keating
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Kiva Brennan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Caroline Rooney
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Sindhu Augustine
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Aishling Ryan
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Cormac Owens
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Clair M. Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- *Correspondence: Clair M. Gardiner,
| |
Collapse
|
34
|
Chilamakuri R, Agarwal S. Direct Targeting of the Raf-MEK-ERK Signaling Cascade Inhibits Neuroblastoma Growth. Curr Oncol 2022; 29:6508-6522. [PMID: 36135081 PMCID: PMC9497977 DOI: 10.3390/curroncol29090512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The Raf-MEK-ERK signaling network has been the subject of intense research due to its role in the development of human cancers, including pediatric neuroblastoma (NB). MEK and ERK are the central components of this signaling pathway and are attractive targets for cancer therapy. Approximately 3–5% of the primary NB samples and about 80% of relapsed samples contain mutations in the Raf-MEK-ERK pathway. In the present study, we analyzed the NB patient datasets and revealed that high RAF and MEK expression leads to poor overall survival and directly correlates with cancer progression and relapse. Further, we repurposed a specific small-molecule MEK inhibitor CI-1040 to inhibit the Raf-MEK-ERK pathway in NB. Our results show that CI-1040 potently inhibits NB cell proliferation and clonogenic growth in a dose-dependent manner. Inhibition of the Raf-MEK-ERK pathway by CI-1040 significantly enhances apoptosis, blocks cell cycle progression at the S phase, inhibits expression of the cell cycle-related genes, and significantly inhibits phosphorylation and activation of the ERK1/2 protein. Furthermore, CI-1040 significantly inhibits tumor growth in different NB 3D spheroidal tumor models in a dose-dependent manner and by directly inhibiting spheroidal tumor cells. Overall, our findings highlight that direct inhibition of the Raf-MEK-ERK pathway is a novel therapeutic approach for NB, and further developing repurposing strategies using CI-1040 is a clinically tractable strategy for effectively treating NB.
Collapse
|
35
|
Yan H, Zhai B, Yang F, Chen Z, Zhou Q, Paiva-Santos AC, Yuan Z, Zhou Y. Nanotechnology-Based Diagnostic and Therapeutic Strategies for Neuroblastoma. Front Pharmacol 2022; 13:908713. [PMID: 35721107 PMCID: PMC9201105 DOI: 10.3389/fphar.2022.908713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB), as the most common extracranial solid tumor in childhood, is one of the critical culprits affecting children's health. Given the heterogeneity and invisibility of NB tumors, the existing diagnostic and therapeutic approaches are inadequate and ineffective in early screening and prognostic improvement. With the rapid innovation and development of nanotechnology, nanomedicines have attracted widespread attention in the field of oncology research for their excellent physiological and chemical properties. In this review, we first explored the current common obstacles in the diagnosis and treatment of NB. Then we comprehensively summarized the advancements in nanotechnology-based multimodal synergistic diagnosis and treatment of NB and elucidate the underlying mechanisms. In addition, a discussion of the pending challenges in biocompatibility and toxicity of nanomedicine was conducted. Finally, we described the development and application status of nanomaterials against some of the recognized targets in the field of NB research, and pointed out prospects for nanomedicine-based precision diagnosis and therapy of NB.
Collapse
Affiliation(s)
- Hui Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bo Zhai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Fang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhenliang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ana Cláudia Paiva-Santos
- Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
36
|
Yang H, Yang J, Bian H, Wang X. A novel cuproptosis-related gene signature predicting overall survival in pediatric neuroblastoma patients. Front Pediatr 2022; 10:1049858. [PMID: 36568423 PMCID: PMC9768227 DOI: 10.3389/fped.2022.1049858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cuproptosis is a novel cell death pathway, and the regulatory mechanism in pediatric neuroblastoma (NB) remains to be explored. We amid to investigate cuproptosis-related genes (CRGs) and construct a novel prognostic model for NB. METHODS To evaluate the role of CRGs on the clinical outcome of pediatric NB, the dataset of pediatric patients with NB of GSE49710 dataset was used to identify CRGs in association with patient overall survival (OS), and TARGET database was used to validate the predictive value of cuproptosis-related signature (CRG-score). The correlation between the CRG-score and the tumor microenvironment (TME), clinicopathological parameters, chemotherapy, and the response to immunotherapy was explored. RESULTS Overall, 31 CRGs were associated with OS in the univariate Cox regression analysis. Then, a prognostic model incorporating 9 CRGs was established with the LASSO regression analysis, which could classify all NB patients into two CRG-score groups. The performance of the signature was verified in both internal and external validation cohorts. Multivariate analysis indicated that the CRG-score was an independent prognostic indicator, and stratification analysis still showed a high predictive ability for survival prediction. The CRG-score was associated with age, MYCN status, INSS stage, and COG risk. Additionally, the higher CRG-score group exhibited lower immune scores, immune cell infiltration, and decreased expression of immune checkpoints. Meanwhile, the CRG-score could predict the drug sensitivity of administering chemotherapeutic agents for NB patients. CONCLUSIONS Our comprehensive analysis of cuproptosis-associated genes in NB provides a new approach for the prediction of clinical outcomes and more effective treatment strategies.
Collapse
Affiliation(s)
- Hu Yang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqiang Bian
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|